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Background: The clinical response to antihistamine therapy exhibits substantial

heterogeneity among individuals with allergic rhinitis (AR). While these

medications represent a cornerstone in AR management, the molecular basis

underlying differential treatment outcomes remains incompletely understood.

This investigation sought to delineate specific metabolomic profiles that

distinguish between AR patients who demonstrate favorable responses to

antihistamine treatment and those who exhibit therapeutic resistance.

Methods: This investigation encompassed a cohort of 57 patients diagnosed with

AR, stratified into antihistamine-effective (n=49) and antihistamine-ineffective (n=8)

groups. The study protocol integrated multiple analytical approaches, including

clinical phenotyping, serum vitamin D quantification, mRNA expression, and

untargeted metabolomic analysis. Metabolomic profiling was conducted using a

state-of-the-art liquid chromatography-mass spectrometry (LC-MS) platform,

enabling comprehensive characterization of the serum metabolome.

Results: While demographic characteristics and vitamin D levels showed no

significant differences between two groups, blood H1R mRNA expression was

significantly higher in antihistamine-ineffective patients (P=0.046), and nasal

TPSB mRNA expression was elevated (P=0.006). Nineteen metabolites showed

significant differences (p<0.05, fold change>2.0, VIP>1.0) between groups. ROC

curve analysis identified nine metabolites with high diagnostic potential

(AUC>0.70), with Methotrexate (AUC=0.862), Pro-Val-Ala-Glu-Val

(AUC=0.804), and TyrMe-Ile-OH (AUC=0.791) showing the strongest

discriminatory power. Pathway analysis highlighted the involvement of caffeine

metabolism and tryptophan metabolism pathways.
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Conclusions: This study identified distinct metabolomic signatures between

antihistamine-effective and antihistamine-ineffective AR patients, providing

potential biomarkers for predicting treatment response and new insights into

the metabolic mechanisms underlying treatment efficacy in AR.
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Introduction

Allergic rhinitis (AR) is a prevalent chronic inflammatory

condition affecting the nasal mucosa, with an estimated global

prevalence of 10-30% (1). This disorder not only disrupts patients’

quality of life but also imposes a considerable socioeconomic burden

(2). AR is an IgE-mediated inflammation of the nasal mucosa,

presenting with symptoms such as rhinorrhea, nasal congestion,

sneezing, and itching. Although a range of treatments, including

antihistamines and allergen immunotherapy, are available, patient

responses to these therapies vary widely. While some individuals

achieve significant symptom relief, others experience limited

improvement (3). This variability underscores the pressing need for

predictive biomarkers to enable more personalized and effective

treatment strategies.

Understanding the mechanisms underlying variable treatment

responses is essential for advancing personalized therapeutic

strategies. Metabolomics, an emerging discipline within systems

biology, provides a powerful platform to explore metabolic changes

linked to disease states and therapeutic outcomes (4). While this

approach has demonstrated potential in several allergic disorders,

its application in deciphering treatment efficacy in AR remains

relatively underexplored (5). Recent advancements in high-

throughput metabolomics, particularly liquid chromatography-

mass spectrometry (LC-MS), have made it possible to analyze

thousands of metabolites simultaneously, offering valuable

insights into disease pathways (6) and treatment responses (7).

Despite these technological strides, limited research has focused on

comparing metabolomic profiles between AR patients who respond

effectively to treatment and those who do not, leaving a critical gap

in understanding the variability in treatment outcomes.

Precision medicine in allergic diseases has underscored the need

for reliable biomarkers to enable patient stratification and optimize

treatment selection (8). Although traditional clinical parameters

and biomarkers, such as total IgE levels, have been employed, their

predictive value for treatment outcomes remains limited.

Combining metabolomic profiling with clinical and molecular

data offers a novel and promising strategy to gain deeper insights

into the mechanisms driving variability in treatment responses.

This study aimed to identify metabolomic signatures capable of

distinguishing between antihistamine-effective and antihistamine-

ineffective AR patients. By integrating comprehensive metabolomic
02
profiling with clinical characteristics, vitamin D levels, and RNA

expression analysis, we sought to establish a more reliable method

for predicting treatment outcomes in AR patients. This research

marks a significant step toward advancing personalized medicine in

AR management, paving the way for more targeted and effective

therapeutic strategies.
Methods

Study population and design

This study was carried out at Peking Union Medical College

Hospital in Beijing between October 2023 and January 2024. The

study protocol received approval from the institutional ethics

committee of Peking Union Medical College Hospital (approval

number: K3949), and written informed consent was obtained from

all participants.
Diagnosis and treatment response
definition

AR was diagnosed following the Allergic Rhinitis and its Impact

on Asthma (ARIA) guidelines (2, 9), based on typical symptoms,

positive specific IgE tests, and skin prick test results. To specifically

assess the effectiveness of antihistamine treatment while minimizing

potential confounding factors, all enrolled patients, after providing

informed consent, were treated with antihistamines for 4 weeks

without the use of intranasal corticosteroids.

Treatment effectiveness was defined as follows: patients were

classified as antihistamine-effective if they achieved a ≥50%

reduction in the total nasal symptom score (TNSS) (TNSS) (10,

11) after 4 weeks of treatment, and as antihistamine-ineffective if

the reduction in TNSS was <50%. TNSS was calculated by summing

the scores of four individual symptoms—rhinorrhea, nasal

congestion, nasal itching, and sneezing—each rated on a scale

from 0 to 3 (0 = none, 1 = mild, 2 = moderate, 3 = severe).

The exclusion criteria for all groups included a history of

autoimmune diseases, the use of immunosuppressive medications,

or antibiotic use within the previous 4 weeks. Additionally, patients

with a history of allergen-specific immunotherapy within the past 5
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years were excluded to avoid potential confounding effects on the

metabolomic profile (2). Those requiring systemic corticosteroids

for AR management were also excluded from the study.
Clinical assessment

Demographic data and clinical characteristics were gathered

using standardized questionnaires. Seasonal allergies and

sensitivities to specific allergens were assessed through clinical

history, standard skin prick tests, and serum-specific IgE

measurements. Additionally, a family history of allergies was

recorded for all participants.
Vitamin D analysis

Serum vitamin D levels, including total vitamin D, vitamin D2,

and vitamin D3, were measured using liquid chromatography-

tandem mass spectrometry (LC-MS/MS) in accordance with

standardized protocols.
mRNA expression analysis

mRNAwas extracted from blood samples and nasal swabs using

the Fluorescent PCR-chip method (Hangzhou Zheda Dixun

Biological Gene Engineering Co., Ltd.). The analysis included the

expression levels of eosinophil cationic protein (ECP), beta-

tryptase-like protein (TPSB), cysteinyl leukotriene type 1 receptor

(CYS1), CYS2, histamine type 1 receptor (H1R), and histamine type

4 receptor (H4R). Results were normalized to housekeeping genes

and expressed as copies/µL.
Metabolomic sample preparation and
extraction

Liquid samples class I
Blood samples were collected in serum separator tubes following

the recommended handling guidelines for metabolomics studies.

Serum was separated and stored at -80°C within 2 hours of

collection. Prior to analysis, the samples stored at -80°C were

thawed on ice and vortexed for 10 seconds. A 50 mL aliquot of the

sample was mixed with 300 mL of extraction solution (ACN:

Methanol = 1:4, v/v) containing internal standards in a 2 mL

microcentrifuge tube. The mixture was vortexed for 3 minutes and

centrifuged at 12,000 rpm for 10 minutes at 4°C. Subsequently, 200

mL of the supernatant was collected, placed at -20°C for 30 minutes,

and centrifuged again at 12,000 rpm for 3 minutes at 4°C. Finally, 180

mL of the supernatant was transferred for LC-MS analysis.

Metabolomic profiling
Non-targeted global metabolomic profiles were generated using

ultra-performance liquid chromatography (LC-30A, Shimadzu,
Frontiers in Immunology 03
Japan) coupled with a high-resolution/accurate mass spectrometer

(TripleTOF 6600+, SCIEX, Foster City, CA, USA) in an LC-MS/MS

setup. All samples were analyzed using two LC/MS methods. One

aliquot was analyzed under positive ion conditions and eluted from

a T3 column (Waters ACQUITY Premier HSS T3 Column, 1.8 µm,

2.1 mm × 100 mm) with 0.1% formic acid in water as solvent A and

0.1% formic acid in acetonitrile as solvent B. The gradient used was

as follows: 5% to 20% solvent B in 2 minutes, increased to 60% in

the next 3 minutes, further increased to 99% in 1 minute and held

for 1.5 minutes, then returned to 5% solvent B within 0.1 minute

and held for 2.4 minutes. The analytical conditions were as follows:

column temperature, 40°C; flow rate, 0.4 mL/min; injection volume,

4 mL. A second aliquot was analyzed under negative ion conditions,

following the same elution gradient as in the positive ion mode.
MS conditions (AB)

Data acquisition was performed using the information-

dependent acquisition (IDA) mode with Analyst TF 1.7.1

software (Sciex, Concord, ON, Canada). The source parameters

were set as follows: ion source gas 1 (GAS1), 50 psi; ion source gas 2

(GAS2), 50 psi; curtain gas (CUR), 25 psi; temperature (TEM), 550°

C; declustering potential (DP), 60 V for positive mode and −60 V

for negative mode; and ion spray voltage floating (ISVF), 5000 V for

positive mode and −4000 V for negative mode.

The TOF MS scan parameters were configured as follows: mass

range, 50–1000 Da; accumulation time, 200 ms; and dynamic

background subtraction, enabled. The product ion scan

parameters were set as follows: mass range, 25–1000 Da;

accumulation time, 40 ms; collision energy, 30 V for positive

mode and −30 V for negative mode; collision energy spread, 15;

resolution, UNIT; charge state, 1 to 1; intensity threshold, 100 cps;

exclusion of isotopes within a 4 Da window; mass tolerance, 50

ppm; and a maximum of 18 candidate ions to monitor per cycle.
Statistical analysis

The raw data files acquired by LC-MS were converted into

mzXML format using ProteoWizard software. Peak extraction,

alignment, and retention time correction were conducted using

the XCMS program. The “SVR”method was applied to correct peak

areas, and peaks with a detection rate lower than 50% in each

sample group were excluded. Metabolite identification was then

performed by referencing the laboratory’s self-built database,

integrated public databases, AI databases, and metDNA.

Unsupervised principal component analysis (PCA) was

conducted using the prcomp function in R (www.r-project.org),

with the data scaled to unit variance prior to analysis. Hierarchical

cluster analysis (HCA) results for samples and metabolites were

visualized as heatmaps with dendrograms, while Pearson

correlation coefficients (PCC) between samples were calculated

using the cor function in R and displayed as heatmaps. Both

HCA and PCC analyses were performed using the R package
frontiersin.org
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ComplexHeatmap. For HCA, normalized signal intensities of

metabolites (unit variance scaling) were represented as a color

spectrum in the heatmaps.

For two-group analysis, differential metabolites were identified

based on the following criteria: VIP > 1, P-value < 0.05 (Student’s t-

test), and fold change > 2.0. VIP values were extracted from the

OPLS-DA results, which included score plots and permutation

plots, and were generated using the R package MetaboAnalystR.

Prior to OPLS-DA analysis, the data were log-transformed (log2)

and mean-centered. To prevent overfitting, a permutation test with

200 iterations was conducted.

Identifiedmetabolites were annotated using the KEGGCompound

database (http://www.kegg.jp/kegg/compound/), and the annotated

metabolites were subsequently mapped to the KEGG Pathway

database (http://www.kegg.jp/kegg/pathway.html). Significantly

enriched pathways were identified using a hypergeometric test

based on the P-value for the given list of metabolites.

The following R packages were utilized in this study: base

(version 4.1.2), corrplot (version 0.92), ComplexHeatmap (version

2.9.4), MetaboAnalystR (version 1.0.1), fmsb (version 0.7.1), igraph

(version 1.2.11), ggraph (version 2.0.5), and FELLA (version 1.2.0).
Results

A total of 57 patients with allergic rhinitis were included in the

study, consisting of 49 cases responsive to antihistamines and 8

cases unresponsive to antihistamines (Table 1). The mean age of

patients in the antihistamine-effective group was 33.88 ± 8.40 years,

compared to 29.25 ± 9.56 years in the antihistamine-ineffective

group (P = 0.162). The proportion of male patients was similar

between the two groups (28.6% vs. 25.0%, P = 0.835). The mean

rhinitis scores were also comparable (2.79 ± 0.50 vs. 2.88 ± 0.35, P

= 0.627).

Themaximum duration of medical history was 7.87 ± 6.51 years in

the antihistamine-effective group and 5.12 ± 3.87 years in the

antihistamine-ineffective group (P = 0.254). Seasonal allergies were

common in both groups (79.2% vs. 87.5%, P = 0.583). Interestingly,

32.7% of patients in the antihistamine-effective group exhibited

allergies to specific allergens, whereas no such cases were observed in

the antihistamine-ineffective group (P = 0.057). A family history of
Frontiers in Immunology 04
allergies was reported in 38.8% of patients in the antihistamine-effective

group and 25.0% in the antihistamine-ineffective group (P = 0.454).

Overall, no statistically significant differences were identified in

demographic or clinical characteristics between the two groups.

The comparison of serum vitamin levels and RNA expression

between antihistamine-effective (n=49) and antihistamine-

ineffective (n=8) groups revealed several notable findings. Serum

vitamin D parameters, including total vitamin D (17.73 ± 6.81 vs

16.14 ± 7.10 ng/ml, P=0.546), vitamin D2 (1.52 ± 2.02 vs 1.24 ± 1.08

ng/ml, P=0.705), and vitamin D3 (16.21 ± 6.70 vs 14.91 ± 6.12 ng/

ml, P=0.607), showed no significant differences between the groups

(Table 2).

In the analysis of blood mRNA, most parameters showed no

statistically significant differences between the groups, except for

H1R expression, which was significantly higher in the

antihistamine-ineffective group (2.77 ± 3.27 vs. 1.22 ± 1.73

copies/µL, P = 0.046). Other blood RNA markers, including ECP,

TPSB, CYS1, CYS2, and H4R, did not differ significantly between

the groups. However, there was a notable trend toward higher ECP

levels in the antihistamine-ineffective group (107.63 ± 109.55 vs.

55.28 ± 74.90 copies/µL, P = 0.092).

Analysis of nasal swab RNA revealed that TPSB expression was

significantly higher in the antihistamine-ineffective group (38.68 ±

30.08 vs. 13.52 ± 21.79 copies/µL, P = 0.006). Additionally, CYS1

exhibited a trend toward higher expression in the antihistamine-

ineffective group (56.09 ± 55.69 vs. 31.49 ± 31.01 copies/µL, P =

0.072), though this difference did not reach statistical significance.

Other nasal swab RNA markers, including ECP, CYS2, H1R, and

H4R, showed no significant differences between the two groups.

A total of 3,998 biochemicals were tested in this study. Figure 1

illustrates the class composition of metabolites.

A comparison between antihistamine-effective and antihistamine-

ineffective patients identified 19 metabolites that differed significantly,

based on a cutoff of P < 0.05, fold change > 2.0, and Variable

Importance in the Projection (VIP) > 1.0. In this study, an

untargeted integrated metabolomics analysis using LC-MS was

conducted to explore differences in metabolomic patterns between

antihistamine-effective and antihistamine-ineffective AR patients. As

shown in Figure 2, a clear separation between the two groups was

achieved using both the PLS-DA (Figure 2A) and OPLS-DA

(Figure 2B) models. In the PLS-DA model, all antihistamine-
TABLE 1 Summary characteristics of the study population.

Characteristics Antihistamine-effective group (n=49) Antihistamine-ineffective group (n=8) P-value*

Age, year 33.88 ± 8.40 29.25 ± 9.56 0.162

Sex, male, n, % 14 (28.6%) 2 (25.0%) 0.835

Rhinitis Score 2.79 ± 0.50 2.88 ± 0.35 0.627

Maximum medical history, years 7.87 ± 6.51 5.12 ± 3.87 0.254

Seasonal allergies 38 (79.2%) 7 (87.5%) 0.583

Allergy to specific allergens 16 (32.7%) 0 (0.0%) 0.057

Family history of allergies 19 (38.8%) 2 (25.0%) 0.454
* suggests p<0.05 for statistically different results.
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ineffective samples (red dots) were clustered on the right, while all

antihistamine-effective samples (green dots) were clustered on the left.

Similarly, in the OPLS-DA model, the two groups occupied the same

respective positions (Figure 2B). Notably, no overlap was observed

between the two groups in either model (Figures 2A, B). These results

indicate significant differences in the metabolomic profiles between

antihistamine-effective and antihistamine-ineffective patients.

Figure 2C presents the VIP plot, which was used to identify key

metabolites contributing to the distinction between the drug-effective
Frontiers in Immunology 05
and drug-ineffective groups. The VIP plot, generated from the OPLS-

DA model, highlights 19 significant compounds ranked according to

their discriminatory power. Variables with a VIP score > 1 are

considered highly influential. Among these, the principal metabolites

contributing to the separation included Eudesobovatol A,

Methotrexate, TyrMe-Ile-OH, 2,5-Dihydroxybenzoic acid,

Paraxanthine, Theophylline, Pro-Val-Ala-Glu-Val, Ergosta-5,22-dien-

3-ol (3beta,22E), Neu5Ac2-3(GalNAc1-4)Gal1-4GlcNAcSp, THOS

Streptonigrin, 7-Xylosyl-10-deacetyltaxol, Glu-Gln-Phe-Arg, 4-
TABLE 2 Comparison of serum vitamin levels, blood mRNA and nasal swab mRNA expression between antihistamine-effective and antihistamine-
ineffective allergic rhinitis patients.

Variables
Antihistamine-effective
group (n=49)

Antihistamine-ineffective
group(n=8)

P-value*

Vitamin D (20-100) ng/ml 17.73 ± 6.81 16.14 ± 7.10 0.546

Vitamin D2ng/ml 1.52 ± 2.02 1.24 ± 1.08 0.705

Vitamin D3ng/ml 16.21 ± 6.70 14.91 ± 6.12 0.607

Blood RNA

eosinophil cationic protein (ECP) copies/µL 55.28 ± 74.90 107.63 ± 109.55 0.092

beta-pancreatin-like protein (TPSB) 1.57 ± 2.63 3.40 ± 5.79 0.140

cysteinyl leukotriene type 1 receptor (CYS1)
copies/µL

165.93 ± 281.76 159.50 ± 135.11 0.950

CYS2 copies/µL 55.46 ± 99.08 51.36 ± 48.22 0.915

histamine type 1 receptor (H1R) copies/µL 1.22 ± 1.73 2.77 ± 3.27 0.046

H4R copies/µL 24.38 ± 45.53 21.65 ± 21.78 0.869

Nasal swab RNA

ECP copies/µL 45.13 ± 45.90 63.51 ± 53.55 0.309

TPSB copies/µL 13.52 ± 21.79 38.68 ± 30.08 0.006

CYS1 copies/µL 31.49 ± 31.01 56.09 ± 55.69 0.072

CYS2 copies/µL 36.25 ± 42.76 50.54 ± 46.58 0.390

H1R copies/µL 32.82 ± 36.79 47.84 ± 40.07 0.295

H4R copies/µL 27.37 ± 28.69 38.22 ± 32.47 0.334
f

* and Bold value suggests p<0.05 for statistically different results.
FIGURE 1

Metabolite class composition ring.
rontiersin.org

https://doi.org/10.3389/fimmu.2025.1565972
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lyu et al. 10.3389/fimmu.2025.1565972
(Methylthio)benzoic acid, Trp-Gln-Met, Myxalamid S, 10S,17S-

dihydroxy-4Z,7Z,11E,13Z,15E,19Z-docosahexaenoic acid, 5-

Hydroxyindoleacetaldehyde, p-Toluenesulfonic acid, and Asp-Ser-

Lys-Asp. These metabolites were identified as the most influential

contributors to the separation of the two groups.

Variations in metabolite levels between antihistamine-effective

and antihistamine-ineffective AR patients are presented in Figure 3.

Specifically, a heatmap (Figure 3A) illustrates the relative

abundances of the top 19 significant metabolites, with color
Frontiers in Immunology 06
intensity representing differences between the two groups.

Additionally, a volcano plot analysis (Figure 3B) was performed

by integrating fold change values (>2.0, antihistamine-effective/

antihistamine-ineffective) and FDR-corrected p-values (<0.05) as

cutoff criteria, highlighting the metabolites that significantly

contributed to the distinction between the groups. A total of 19

metabolites were upregulated in the antihistamine-effective group

compared to the antihistamine-ineffective group. Figure 3C displays

the differential metabolite correlation heatmap, with the legend on
FIGURE 2

Metabolic data analysis of antihistamine-effective and antihistamine-ineffective AR patients was performed using multivariate statistical methods.
(A) The score plot generated by Partial Least Squares Discriminant Analysis (PLS-DA) and (B) the score plot produced by Orthogonal Partial Least
Squares Discriminant Analysis (OPLS-DA) visually demonstrate a clear separation in metabolomic profiles between antihistamine-effective and
antihistamine-ineffective AR patients. (C) The VIP score plot, derived from the OPLS-DA model, identifies 19 metabolites that showed significant
differences between the two groups. The colored boxes on the right side of the plot represent the relative concentration variations of the
corresponding metabolites, with red indicating higher concentrations.
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https://doi.org/10.3389/fimmu.2025.1565972
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lyu et al. 10.3389/fimmu.2025.1565972
FIGURE 3

Variations in metabolite levels between antihistamine-effective and antihistamine-ineffective AR patients. (A) The heatmap displays the relative
abundances of the top 19 metabolites and lipids, with red indicating increased abundance and green indicating decreased abundance. Columns
represent samples, and rows represent metabolites. (B) The volcano plot highlights significantly different metabolites between the two groups, based
on fold change and p-value. Red points indicate upregulated metabolites, while gray points represent non-significant ones. The horizontal axis
shows the fold change (log scale), and the vertical axis indicates significance (p-value). Dot size reflects the VIP value. (C) The correlation heatmap
shows Pearson correlation coefficients between metabolites, with red indicating strong positive correlations and green indicating strong negative
correlations. Darker colors represent stronger correlations. (D) The metabolite correlation network diagram visualizes significantly different
metabolites as dots, with dot size reflecting connectivity. Pink lines indicate positive correlations, blue lines indicate negative correlations, and line
thickness represents the strength of the correlation.
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the right indicating the relationship between correlation coefficients

and colors. Lastly, Figure 3D presents the differential metabolite

correlation network diagram, where the dots represent significantly

different metabolites, and the size of each dot reflects its degree of

connectivity within the network.

Subsequently, the top 19 statistically significant metabolites are

presented in Figure 4. Notably, all 19 metabolites exhibited

increased concentrations in antihistamine-effective AR patients

compared to antihistamine-ineffective AR patients. To further

evaluate the differences between the two groups, a violin plot

analysis of peak intensities for the top 50 significant compounds

was performed, with the results also shown in Figure 4. Details of

the metabolites corresponding to the codes in Figure 4 are provided

in Supplementary File 1.

Figure 5 highlights the metabolic pathways associated with the

identified compounds, as determined using the Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway database. The
Frontiers in Immunology 08
differentially expressed compounds between antihistamine-

effective and antihistamine-ineffective AR patients are primarily

involved in the Caffeine Metabolism and Tryptophan Metabolism

pathways (Figures 5A, B), with additional pathways detailed in

Supplementary File 2. These metabolic pathways provide insights

into the potential causes of phenotypic differences among the study

subjects. The KEGG enrichment analysis of differential metabolites

is shown in Figure 5C, including pathways such as Caffeine

Metabolism, Methotrexate Action Pathway, and Tryptophan

Metabolism. Furthermore, pathway searches and regulatory

interaction network analyses were conducted based on the KEGG

database for the corresponding species, and the results are

presented as a network plot in Figure 5D.

The diagnostic performance of differentially expressed

metabolites as potential biomarkers was evaluated using ROC

curves, focusing on sensitivity and specificity (Figure 6). The area

under the ROC curve (AUC) was used to assess the accuracy and
FIGURE 4

A violin plot combines a box plot and a density plot to display data distributions and probability densities. The central box represents the interquartile
range, the thin black line indicates the 95% confidence interval, and the black horizontal line marks the median. The outer shape reflects the data
distribution density. The horizontal axis represents sample groups, and the vertical axis shows the relative content of differential metabolites (raw
peak area). P-values were calculated using the Student’s t-test.
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efficiency of distinguishing antihistamine-effective from

antihistamine-ineffective AR patients. Among the differentially

expressed metabolites, 9 showed the highest AUC values (AUC >

0.70). Notably, Methotrexate (AUC = 0.862, 95% CI: 0.768–0.956),

Pro-Val-Ala-Glu-Val (AUC = 0.804, 95% CI: 0.686–0.921), and

TyrMe-Ile-OH (AUC = 0.791, 95% CI: 0.667–0.915) demonstrated

AUC values around 0.8, indicating strong discriminative ability

between the two groups. Other compounds, including

Eudesobovatol A, Ergosta-5,22-dien-3-ol (3beta,22E), 2,5-

Dihydroxybenzoic acid, 4-(Methylthio)benzoic acid, Paraxanthine,

and THOS Streptonigrin, exhibited AUC values around or above

0.70, suggesting moderate discriminatory capability (Figure 6).
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Discussion

This study provides a comprehensive analysis of metabolomic

profiles in antihistamine-effective and antihistamine-ineffective allergic

rhinitis patients, uncovering key findings that may inform personalized

treatment strategies. Our results identified distinct metabolomic

signatures linked to treatment response, emphasizing the

involvement of specific metabolic pathways and potential biomarkers.

The most notable finding of this study was the identification of 19

differential metabolites between the antihistamine-effective and

antihistamine-ineffective groups. Among these, nine metabolites

exhibited strong diagnostic potential (AUC > 0.70), with Methotrexate,
FIGURE 5

The pathways associated with each identified compound were determined using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
database. (A, B) KEGG pathway maps of differential metabolites: red indicates significantly upregulated metabolites, green indicates significantly
downregulated metabolites, blue indicates metabolites detected without significant changes, and orange represents pathways containing both
upregulated and downregulated metabolites. Only two pathway maps are shown as examples; additional details are provided in Supplementary File
2. (C) KEGG enrichment analysis of differential metabolites: dot size represents the number of significantly enriched metabolites in each pathway,
with the top three pathways (based on p-value) displayed. (D) Network plot based on the KEGG database for the corresponding species.
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Pro-Val-Ala-Glu-Val, and TyrMe-Ile-OH demonstrating the highest

discriminatory power. These results suggest that metabolomic profiling

could be a valuable tool for predicting treatment responses in AR

patients. Although nine metabolites showed high diagnostic potential,

we did not assess their clinical utility, including detection cost and

feasibility. Future studies should evaluate these aspects to facilitate

translation into clinical practice. We did not conduct a detailed

analysis of the relationships between metabolite levels and specific

clinical symptoms (e.g., nasal congestion, rhinorrhea, sneezing).

Further research should investigate these associations to enhance the

clinical relevance of the identified biomarkers.

Interestingly, there are no prior reports linking methotrexate to

allergic disease metabolomics. Considering that all patients were
Frontiers in Immunology 10
excluded from taking immunosuppressive antihistamines, it is possible

that thedetectedmethotrexate-related signals represent intermediates or

analogs in metabolic processes rather than the drug itself.

Tyrosine has been previously implicated in allergic rhinitis in

several studies. For example, serum TAM receptor tyrosine kinase

levels have been suggested as potential indicators of disease severity

and predictors of sublingual immunotherapy (SLIT) responsiveness

in AR patients (12). Additionally, polymorphisms in the PTPN22

(protein tyrosine phosphatase non-receptor 22) and CTLA-4

(cytotoxic T lymphocyte-associated antigen 4) genes have been

strongly associated with asthma prevalence and morbidity (13). In

our study, higher levels of TyrMe-Ile-OH were observed in the

antihistamine-effective group, potentially indicating that lower
FIGURE 6

ROC curve analysis of statistically significant compounds (AUC>0.70).
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levels of TyrMe-Ile-OH may be associated with greater difficulty in

identifying effective therapeutic agents. This finding aligns with

previous research, further supporting its relevance.

The significantly higher expression of H1R in the blood of

antihistamine-ineffective patients (P = 0.046) is particularly

noteworthy. H1R plays a critical role in allergic reactions, as

histamine exerts its effects by binding to H1 receptors. In allergic

rhinitis, antihistamines alleviate symptoms by blocking H1

receptors. However, prolonged use of antihistamines may lead to

compensatory upregulation of H1 receptors, characterized by

increased H1R mRNA and protein expression, to counteract the

inhibitory effects of antihistamines. This compensatory mechanism

has been proposed as a potential cause of antihistamine resistance

(14). Our findings support the hypothesis that H1R expression

levels may significantly influence treatment response, particularly in

relation to antihistamine therapy.

The significantly elevated TPSB expression in nasal swabs of

antihistamine-ineffective patients (P = 0.006) suggests a more

pronounced local inflammatory response in these individuals. The

TPSB gene encodes tryptase-like protease B (Tryptase Beta), a protein

specifically secreted by mast cells that plays a key role in allergic and

inflammatory responses (15). Mast cells are central to the

pathophysiology of allergic rhinitis. Upon allergen stimulation,

mast cells degranulate, releasing inflammatory mediators such as

histamine and tryptase, which trigger the symptoms of allergic

rhinitis. In antihistamine-resistant patients, the diminished efficacy

of antihistamines in controlling symptoms may result in further mast

cell activation and the subsequent release of additional inflammatory

mediators, including tryptase. This process likely contributes to the

observed increase in TPSB RNA expression. Elevated TPSB RNA

levels may serve as a biomarker for heightened inflammatory activity

and more severe disease in antihistamine-resistant patients.

Pathway analysis revealed significant enrichment in the caffeine

metabolism and tryptophan metabolism pathways. The involvement

of caffeine metabolism is particularly intriguing, as it points to a

potential role of methylxanthines in influencing treatment response

(16). This finding is consistent with previous studies demonstrating

the anti-inflammatory effects of methylxanthines in allergic

conditions (17). The enrichment of the tryptophan metabolism

pathway suggests that this essential amino acid plays a critical role

in treatment response (18). Tryptophan metabolites are known to

modulate immune responses through various mechanisms, including

the regulation of T cell activity and the production of inflammatory

mediators (19, 20). The differential expression of tryptophan-related

metabolites between the antihistamine-effective and -ineffective

groups highlights their potential as novel therapeutic targets for

allergic rhinitis treatment.

Several limitations of our study should be acknowledged. First, the

relatively small sample size, especially in the antihistamine-ineffective

group, may reduce statistical power and increase the risk of random

findings, thus restricting the reliability and generalizability of our

results. Future studies with larger, multicenter cohorts are warranted

to validate and expand upon these findings. Second, as an observational

study, we can only describe associations between metabolomic profiles

and antihistamine response, but cannot determine whether the
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observed metabolic changes are causative or consequential.

Mechanistic and longitudinal studies are needed to clarify

these relationships.

Additionally, although we excluded patients recently using

immunosuppressants or antibiotics, and all participants were required

to fast prior to blood sample collection to minimize the acute effects of

dietary intake, other potential confounding factors such as long-term

dietary habits, lifestyle, and comorbidities were not systematically

controlled for, which may have influenced the metabolomic results.

While we identified 19 significantly different metabolites, we did not

perform functional studies to elucidate their roles in AR

pathophysiology or antihistamine response. Future research should

combine metabolomic analysis with in vitro or animal model

experiments to validate the biological functions and mechanisms of

these metabolites. We did not differentiate between different types or

generations of antihistamines, which may have distinct metabolic and

efficacy profiles. Future studies with larger sample sizes should stratify

patients by antihistamine type to refine metabolomic associations.

In conclusion, this study demonstrates that metabolomic

profiling can effectively differentiate between antihistamine-

effective and antihistamine-ineffective allergic rhinitis patients.

The identification of specific metabolic signatures, particularly the

nine metabolites with high diagnostic potential, highlights

promising biomarkers for predicting treatment response.

Alongside the findings of differential H1R and TPSB expression,

these results provide valuable insights into the biological

mechanisms underlying treatment response variability in allergic

rhinitis. This work marks a significant step toward personalized

medicine in the management of allergic rhinitis, paving the way for

more targeted and effective therapeutic strategies. However, further

validation in larger cohorts and the development of clinical

applications will be essential to fully translate these findings into

practical diagnostic and treatment tools.
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