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related genes in osteosarcoma:
based on comprehensive tumor
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Jiaming Zhang and Wei Wang*

Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of
Technology, Liaoning Cancer Hospital and Institute, Liaoning, Shenyang, China

Introduction: Osteosarcoma (OS) is the most common primary bone
malignancy, predominantly affecting children and adolescents. Current
treatment approaches have limited efficacy, with a 5-year survival rate of
approximately 60%. Epithelial-mesenchymal transition (EMT) plays a key role in
the onset, progression, and metastasis of OS, potentially influencing
patient prognosis.

Methods: We screened EMT -related genes from multiple transcriptomic datasets
of OS and performed unsupervised consensus clustering of EMT-related gene
sets. Key EMT-related genes were identified using weighted gene co-expression
network analysis (WGCNA) and intersected with differentially expressed genes
(DEGs) between OS and normal tissue samples. The least absolute shrinkage and
selection operator (LASSO) algorithm was applied to screen candidate genes for
developing a prognostic model. Single-cell RNA-Seq (scRNA-Seq) analysis was
conducted on OS samples to identify cell populations expressing model genes.
Functional validation was performed using si-GPC3 in the MG-63 cell line.

Results: The EMT-based prognostic model demonstrated strong predictive
capacity across several validation cohorts. The model effectively predicted
immune-related features and immunotherapy responses in high-risk and low-
risk patient groups. Seven primary cell types were identified from scRNA-Seq
data of OS samples, with the osteoblast population showing the highest
proportion of cells positive for model genes. The OS_C3 subpopulation
exhibited significantly higher scores and included nine gene modules
associated with metabolism, structural integrity, proliferation, differentiation,
adhesion, migration, immune responses, inflammatory reactions, and signal
transduction. The model genes also demonstrated prognostic value across
various cancer types. Knockdown of GPC3 in MG-63 cells resulted in
decreased proliferation and migration ability.
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Conclusion: This study provides new insights into the potential mechanisms of
EMT in OS and its impact on the tumor immune microenvironment and response
to immunotherapy. These findings may pave the way for novel personalized
treatment strategies for OS patients.

osteosarcoma, epithelial-to-mesenchymal, prognostic model, immune characteristics,
gene expression analysis

1 Introduction

Osteosarcoma (OS) is the most prevalent primary bone
malignancy (1), and is more common in children and young
people (2). About 5.2 children per million are diagnosed with OS
each year (3), and patients 10 to 20 years of age account for about
60% of OS cases (4). The high incidence of OS in adolescents is
largely attributed to puberty (1). The 5-year survival rate of OS
patients following surgery and chemotherapy is only 60% (5, 6).
Several etiological factors of OS have been identified, including
chemical agents such as beryllium and methylcholanthrene,
physical agents such as radiation, and viruses such as Kaposi’s
sarcoma-associated herpesvirus (KSHV) (7). OS originates from
mesenchymal cells and can induce osteoblast differentiation,
resulting in the formation of malignant bone-like tissues (2). High-
grade OS consists of osteoblastic cells, chondroblastic cells,
fibroblastic cells, teleangiectatic cells, giant cells, small cells and
sclerotic tissue (8), and has been classified into more than 20
histological subtypes. OS is common in the epiphyses of long bones
of the limbs, such as the distal femur, proximal tibia, and proximal
humerus (5), and frequently metastasizes to the lungs, distant bones
and lymph nodes (9). The 5-year survival rate of patients with
metastatic OS is only 25%, which reflects worsening prognosis (10).
The typical symptoms of OS include pain, local swelling, and limited
joint movement. In addition, pathological fractures may occur in a
small fraction of patients (11). Currently, primary OS is treated
through surgical intervention combined with perioperative
neoadjuvant chemotherapy (including high-dose methotrexate,
doxorubicin and cisplatin) (12). However, these conventional
therapies are often ineffective due to distant metastasis and drug
resistance (13). Furthermore, immunotherapeutic strategies such as
immune checkpoint inhibitors, adoptive cell transplantation, and
cancer vaccines, have limited efficacy (14). Therefore, it is crucial to
identify novel therapeutic targets to reach a higher survival rate for
patients suffering from OS remains a top priority.

Epithelial-mesenchymal transition (EMT) is process wherein
epithelial cells attain the motility and invasive capacity of
mesenchymal cells due to changes in the expression of cell
adhesion and cytoskeletal proteins (15). EMT plays a key role in
embryogenesis, fibrosis, wound healing, inflammation, and cancer
initiation and progression (16, 17). In addition, EMT facilitates
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distant metastasis of tumor cells (18), and may also induce
multidrug resistance (MDR) through the ABC transporter ATP
binding box (19). However, given the mesenchymal origin of
sarcomas, the role of EMT in these tumors may differ from that
seen in epithelial tumors. For instance, the overexpression of
mesenchymal factors like cadherins can impede OS cells from
migrating and metastasizing (20). On the other hand, bone
marrow-derived mesenchymal stem cells (BM-MSCs) facilitate the
mesenchymal-to-amoeboid transition (MAT) of OS cells by secreting
cytokines like IL-6 and IL-8, p thereby enhancing their capacity for
migration and invasion (21). Therefore, the role of EMT and
mesenchymal-epithelial transition (MET) in OS need further study,
especially considering the heterogeneity among sarcoma subtypes.
To this end, we screened EMT-related genes from multiple
transcriptomic datasets of OS, and constructed a prognostic model
using the hub genes. The EMT-based model could predict the
prognosis, immune landscape, and immunotherapy response of OS
patients across several independent cohorts. Our findings provide
new insights into the role of EMT in the progression of OS, along
with its possible impact on the tumor microenvironment (TME),
which may have implications for the development of more effective
treatment strategies.

2 Methods
2.1 Data acquisition and preparation

Bulk RNA sequencing (Bulk RNA-seq) data was retrieved from
the Therapeutically Applicable Research to Generate Effective
Treatments (TARGET, https://ocg.cancer.gov/programs/target),
Genotype-Tissue Expression (GTEx, www.gtexportal.org/home/
index.html), Gene Expression Omnibus (GEO, https://
www.ncbinlm.nih.gov/geo/), and Tumor Immunotherapy Gene
Expression Resource (TIGER, http://tiger.canceromics.org/)
databases. The GTEx dataset included 395 normal muscle and
bone tissue samples (controls), while the TARGET (n = 88),
GSE21257 (n = 53) and GSE16091 (n = 34) datasets included OS
samples. In addition, datasets of other tumor types, including
Rose2021UC (n = 87), Mariathasan2018UC (n = 298),
Liu2019SKCM (n = 121), Braun2020RCC (n = 172),

frontiersin.org


https://ocg.cancer.gov/programs/target
http://www.gtexportal.org/home/index.html
http://www.gtexportal.org/home/index.html
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://tiger.canceromics.org/
https://doi.org/10.3389/fimmu.2025.1566061
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhang and Wang

Gide2019SKCM (n = 73) and Van2015SKCM (n = 42), were
obtained from the TIGER database. The GSE162454 dataset
comprising of single-cell RNA sequencing (scRNAseq) data from
six OS patients was retrieved from the GEO database. All data had
undergone preprocessing, and the samples with survival duration of
0 days were excluded. EMT-related genes were downloaded from
the GOBP_EPITHELIAL_TO_MESENCHYMAL_TRANSITION
and HALLMARK_EPITHELIAL _MESENCHYMAL_
TRANSITION datasets in Molecular Signatures Database
(MSigDB, https://www.gsea-msigdb.org/gsea/msigdb), and from
dbEMT 2.0 (http://dbemt.bioinfo-minzhao.org/index.html). Since
all data for this study were obtained from public databases, ethical
approval was not necessary. The procedures of data collection and
analysis adhered closely to the applicable regulations.

2.2 Consensus clustering

The EMT-related genes that were common to all three databases
were identified using Venn diagram. Unsupervised clustering was
performed on these intersecting genes using the R package
The TARGET-OS samples were
categorized into k clusters (where k ranges from 2 to 9), each with

“ConsensusClusterPlus”.

distinct gene expression patterns. The optimal number of clusters
was determined based on the proportion of fuzzy clustering, the
cumulative distribution function (CDF) curve, and the consensus
score matrix. The specific criteria are as follows: (1) The maximum k
value appears before the inflection point of the proportion of
ambiguous clustering (PAC) line graph; (2) The CDF curve is
smooth and the downward slope is minimal; (3) The consensus
score matrix shows the characteristics of “high cohesion and low
coupling”. The optimal clusters were further subjected to
dimensionality reduction using Principal Component Analysis
(PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE).
The reliability of the selected k value was evaluated by investigating
the degree of independence among various clusters in a two-
dimensional spatial distribution. The overall survival in the two
clusters, and in subgroups stratified by age and clinical stage (I/IT and
III/IV) were analyzed using the Kaplan-Meier (KM) method. The
tumor immune characteristics and infiltration of 30 immune
populations in both clusters were evaluated using the ESTIMATE
algorithm from the “IOBR” R package using four indicators: tumor
purity, immune score, stromal score, and ESTIMATE score.

2.3 Weighted gene co-expression network
analysis

WGCNA was conducted on the intersecting genes using the
“WGCNA” R package to identify the hub genes associated with
EMT. A correlation matrix was constructed after excluding the
genes with low expression levels or similar expression levels in all
samples, and then converted into an adjacency matrix using the
power function. The optimal power value (3 value) was determined
following two conditions: (1) this network is infinitely close to a
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scale-free network, that is, rA2 is close to 1; (2) connectivity
information is retained as much as possible. The Topological
Overlap Matrix (TOM) was then constructed to form a co-
expression network, and the intersecting genes were hierarchically
clustered to form a clustering tree. The modules were classified
using the Dynamic Tree Cut method, and those that displayed
similar expression patterns were grouped together. The distinct
modules were color coded, and their correlation with the EMT
clusters was visualized by plotting heat maps. The hub genes were
extracted from modules with the strongest connection with the
consensus clusters using the following criteria: gene significance
(GS) > 0.4 and module membership (MM) > 0.6. The hub genes
were functionally annotated by Gene Ontology (GO) analysis, and
the most significantly enriched molecular function (MF), cellular
component (CC), and biological process (BP) terms were selected.

2.4 Construction and validation of the
prognostic model

The differentially expressed genes (DEGs) between the OS
tissues and para-tumor tissues within the TARGET-OS dataset
were screened, and intersected with the module hub genes using
Venn diagrams. The candidate model genes independently
correlated to the overall survival were identified multivariate
Cox regression analysis. LASSO regression was then performed
to screen the genes for constructing a prognostic model. The
features were selected through the optimal A corresponding to the
smallest binomial deviance. The prognostic model was applied to
the training TARGET-OS cohort, and the external validation
cohorts GSE21257 and GSE16091. Each cohort was stratified
into the high-risk and low-risk groups according to the median
risk score, and the survival trends were compared by the Kaplan-
Meier method. The predictive ability of the model for 1-, 3-, and 5-
year survival was evaluated by the receiver operating characteristic
(ROC) analysis.

2.5 Multi-omics analysis based on
prognostic models

Twenty-one immunomodulatory molecules, including
receptors, inhibitory molecules, stimulatory molecules, and
chemokines, were retrieved from the TISIDB database (http://
cis.hku.hk/TISIDB/). The differential expression of these
molecules across risk groups, and between CD8+ T cells, Thl
cells and macrophages within each risk category were analyzed.
Additionally, we assessed and quantified the activity levels of seven
crucial stages within the anti-cancer immunity cycles across various
risk groups, followed by a comparison of the scores presented in a
box plot. The CIBERSORT, EPIC, MCP-counter, quanTIseq,
TIMER, and xCell algorithms in the “IOBR” R package were used
to measure the infiltration of different immune cell types in the two
risk groups. The correlation between the EMT model and pathways
related to immunotherapy and targeted therapy were also analyzed.
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2.6 Predictive value of prognostic models
in immunotherapy

The Tumor Immune Dysfunction and Exclusion (TIDE, http://
tide.dfciharvard.edu/) database was used to predict immunotherapy
response and immune escape in the high-risk and low-risk groups
by calculating TIDE scores, CAF scores, Exclusion scores,
Dysfunction scores, Myeloid-Derived Suppressor Cell (MDSC)
scores, Tumor-Associated Macrophage M2 (TAM.M2) scores,
CD8 scores, Gene Expression Profile (GEP) scores, Tertiary
Lymphoid Structure (TLS) scores, and Merckl8 scores. The
predictive model was applied to six real-world immunotherapy
cohorts, and the overall survival of the high-risk and low-risk
groups in each dataset was determined by the Kaplan-Meier
method. Each cohort was divided into the responsive (R) and
non-responsive (NR) groups, and the association between the risk
score and immunotherapy response was analyzed in each group.

2.7 Single-cell analysis

The scRNA-Seq data from GSE162454 was analyzed using the
“Seurat” package. The cells with fewer than 300 genes, and those with
mitochondrial genes exceeding 10% of the overall expressed genes were
excluded prior to dimensionality reduction and clustering. In addition,
possible duplicates and lower-order multiplets that appeared during the
encapsulation process were also removed, along with cell pairs that
remained unsorted during the sample preparation phase. After
integrating multiple samples using the “harmony” R package, the
UMAP algorithm was used to downscale the filtered dataset. The
cells were classified into specific populations based on the “Seurat”
package, and their distribution patterns were visualized by plotting a
UMAP diagram. The expression levels of 19 cell type-specific markers
were measured in the six sample cohorts to determine the relative
abundance of the immune cell types. Furthermore, the expression levels
of the model genes were also analyzed in the individual cells using the
“AddModuleScore” function. Based on the EMT gene expression score,
all cells classified as a specific type were divided them into the high-
score and low-score groups. The pathways associated with these groups
were identified through gene-set enrichment analysis (GSEA). Each cell
type was divided into subgroups following a second round of
dimensionality reduction clustering. The predicted cellular potency
and absolute developmental potential of these subgroups were
determined using the cytotrace2 algorithm. To identify the
subpopulations associated with EMT, the expression levels of
particular model genes were analyzed in individual cells, and the
scores of different subpopulations were visualized through
UMAP plots.

2.8 Co-expression network analysis of
single-cell data

The population with highest EMT scores were subjected to
hdWGCNA to identify co-expressed cellular modules and hub genes
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associated with EMT. To create a resilient scale-free network topology,
the variations in scale-freeness and connectivity of the co-expression
network were examined across different soft thresholds. The cell
modules were detected using the dynamic tree cutting technique and
the UMAP dimensionality reduction was used to determine cellular
distribution and the connections among distinct modules. After
calculating the Module Eigengenes (ME) of each module, the hub
genes in each module were identified based on the characteristic gene
connectivity (KME). Protein-protein interaction (PPI) networks were
constructed for each module, and the functional pathways and
biological processes associated with the hub genes were derived from
the GO-BP 2023 entries and the WikiPathway_2023_Human database.

2.9 Pan-cancer analysis

The expression levels of the model genes were analyzed in 18
cancers, and correlation coefficients of each gene pair were
calculated. The differential expression of model genes between the
tumor and para-tumor tissues in each cancer type by calculating the
logFoldChange (logFC), and their prognostic significance in 33
cancer types was determined through Cox analysis. In addition, the
expression levels of the model genes were also analyzed in different
immune subtypes. Finally, the relationships among the model
genes, immune scores, matrix scores, RNA stemness scores
(RNAss), and DNA stemness scores (DNAss) were evaluated.

2.10 Cell culture and transfection

Human OS cell lines (Mg63) and the human normal osteoblast cell
line Nhost were obtained from The Cell Bank at the Chinese Academy
of Sciences, and cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM) supplemented with 10% fetal bovine serum (FBS; BI, Israel),
100 U/ml of penicillin (HyClone, USA). and 100 pg/ml of streptomycin
(HyClone, USA). The cells were maintained in a humidified incubator
at 37°C under 5% CO,, and passaged every 24 h. The U20S and 143B
cells were transfected with GPC3-specific and control siRNAs
(designed and produced by Sangon, China). The cells were harvested
using trypsin (KeyGEN, China), washed once with PBS, and seeded
into 6-well plates in 2 ml complete medium at the density of 1x10°
cells/well. The siRNA construct was mixed with the transfection agent
PolyFast (catalog number HY-K1014, MCE, USA) in the specified ratio
as per the manufacturer’s instructions. Following incubation at room
temperature for 15 minutes, the mixture was centrifuged at low speed
for 1 minute and evenly pipetted into the corresponding wells. The
culture medium was changed 6 h after transfection, and the
experiments were performed 48 h after transfection.

2.11 Total RNA extraction and RT-gPCR

The cultured cells were harvested and lysed with Trizol (Takara,
Japan) on ice for 5 minutes. Following sequential addition of 200 ul
chloroform (SINOPHARM, China), and equal amounts of isopropanol
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(SINOPHARM, China) and anhydrous ethanol (SINOPHARM,
China), the lysate was thoroughly mixed, centrifuged at low
temperature, and kept on ice for 15 minutes. The organic phase was
removed, and the solution was left to dry for 20 minutes. The RNA
precipitate was reconstituted in 20 ul DEPC-treated water, and the
concentration was measured using a Nanodrop2000 instrument
(Thermo, USA). The RNA was reverse transcribed into cDNA using
the PrimeScript RT Kit (TaKaRa, Japan) according to the
manufacturer’s guidelines, and the cDNA samples were pre-mixed
with the SYBR GreenER Supermix (TaKaRa, Japan) kit. RTqPCR was
performed on the 7500 Real-Time PCR System (Thermo Fisher
Scientific, USA) following the manual instructions, and the reaction
conditions were as outlined in the SYBR GreenER Supermix Kit. The
relative expression of GPC3 was calculated using the 2" method,
and normalized to that of B-actin. The primer sequences are as follows:
[-actin: Forward: 5> - CCTGGCACCCAGCACAAT - 3, Reverse: 5" -
GGGCCGGACTCGTCATAC - 3’; GPC3: Forward: 5°-CG
GAATTCCTTGGTGGTGGCGATGCT-3’, Reverse: 5-
TGAAAGGTCGGGATCCCCCGAGGTTGTGAAAGGT -3’.
Scrambled siRNA (SCR) and two siRNA duplexes designed to target
the GPC-3 gene (21 nt long double-stranded RNA oligonucleotides
with dTdT overhangs and sequences as follows: sense,
GUGCUUUGCCUGGCU ACAU (dTdT), antisense,
AUGUAGCCAGGCAAAGCAC (dTdT)were obtained from Bioneer
(Daejeon, Korea). Negative control (NC; si-NC group; 5°-
TTCTCCGAACGTGTCACGTTT-3)).

2.12 Cell assay of GPC3 in osteosarcoma

By comparing the number and size of different cell clones, the
impact of GPC3 on cellular proliferation capacity is evaluated. Total
protein is extracted from osteosarcoma cells, and after separation
through SDS-PAGE electrophoresis, the proteins are transferred to
a PVDF membrane. Immunoblotting analysis is performed using
specific antibodies against GPC3 and other proteins related to cell
proliferation pathways (such as CTNNBI1) to detect the expression
level of GPC3 and its effect on relevant signaling pathways. The
Transwell chamber is utilized to assess the invasive capacity of
osteosarcoma cells. Cell suspension is added to the upper chamber
of the Transwell, while the lower chamber contains culture medium
with chemokines. After a certain incubation period, the cells are
fixed and stained, followed by observation and counting of the
number of cells that have migrated through the chamber membrane
using a microscope, thereby evaluating the influence of GPC3 on
the invasive ability of osteosarcoma cells. Through these
experimental methods, we are able to comprehensively assess the
function of GPC3 in osteosarcoma cells, including its effects on cell
proliferation, clone formation, and invasive capability.

2.13 Statistical analysis

Pearson or Spearman correlation coefficients were calculated to
evaluate the relationship among variables, depending on the
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distribution of data. Paired t test was used to compare continuous
variables with normal distribution, and the Mann-Whitney U test was
employed in case normality was not satisfied. The categorical variables
were compared by the Chi-square test or Fisher’s exact test. Survival
curves were generated using the Kaplan-Meier method, and the log-
rank test was used to determine statistical significance. P-value less than
0.05 was considered statistically significant. All statistical analyses were
performed using R software version 4.1.3. Unless stated otherwise, the
“ggplot2” package was used to create the graphs.

3 Results
3.1 Consensus clustering

As shown in the Venn diagram in Figure la, eleven EMT-
related genes were common to the GOBP, HALLMARK and
dbEMT2.0 databases. Consensus clustering of these genes (k =2)
revealed two sample clusters (C1 and C2) in the TARGET-OS
dataset (Figures 1b, ). As shown in the PCA and TSNE plots in
Figure 1d, the two clusters were independent. Furthermore, C1 and
C2 had distinct prognostic profiles and clinical characteristics. Cl1
was associated with lower OS (p = 0.013, Figure le) and older age
compared to C2. In addition, the proportion of clinical stage I & IT
cases (84.6%) exceeded that of stage IIT & IV cases (15.4%) in Cl1,
whereas C2 had a higher proportion of individuals diagnosed with
stage ITI&IV OS (53.3%) compared to those with stage I&II tumors
(46.7%) (p = 0.041, Figure 1f). Furthermore, C2 exhibited lower
immune infiltration compared to C1, which is indicative of an
immunosuppressive TME (Figure 1g). The immune score and
ESTIMATE score of C2 were higher, and the stromal score was
lower compared to that of C1. On the other hand, there was no
significant difference in the tumor purity of the two clusters
(Figure 1h). The downregulation of HALLMARK-related
pathways was more obvious in C2 (Figure 1i).

3.2 WGCNA

By analyzing the scale independence and average connectivity
results, we selected B = 4 as the optimal soft threshold, at which the
network exhibited good scale-free properties and appropriate
connectivity (Figure 2a). After dynamic cutting and merging, 10
different gene modules were generated (Figure 2b). The brown
module showed the strongest correlation with C2, and had a total
of 101 hub genes (p < 0.001, r = -0.8, Figures 2¢, d). The top
enriched GO terms for the hub genes were extracellular matrix
(ECM) organization, extracellular matrix structural constituent,
extracellular matrix structural constituent conferring tensile
strength, collagen-containing extracellular matrix, basement
membrane, and other extracellular matrix. In addition, pathways
related to heparin binding, integrin binding, collagen binding,
external encapsulating structure organization, extracellular structure
organization, endoplasmic reticulum lumen, and collagen trimer
showed significant enrichment (p < 0.001, Figure 2e).
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3.3 Construction and validation of the
prognostic model

There were 34 intersecting genes between the hub genes and
DEGs in TARGET-OS (Figure 3a), of which PTN, PTGFR, TOX,
POSTN, FAP, LOXL1, and ITGA11 were identified as independent
prognostic protective factors for OS (Hazard Ratio < 1) in the
multivariate regression model (Figure 3b). To minimize the
binomial deviance, we selected the A corresponding to the lowest
point of the cross-validation curve, i.e., A = 0.04, and further extracted
the model genes. Seven genes, including COL3A1, FBLNI, FAP,
GPC3, CYP7B1, ECM2, and AMPH, were used to construct the
prognostic model (Figure 3c). The prognosis of the high-risk group
was significantly worse than that of the low-risk group across three
independent cohorts. Furthermore, the area under the ROC curve
(AUC) of the prognostic model for 1-, 3-, and 5-year survival rates
were all > 0.6, indicating good predictive ability (Figures 3d-i).
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3.4 Immune-related analysis based on the
prognostic model

Given the variations in the expression levels of immune-related
genes between the risk groups, we performed a targeted analysis of
immunomodulatory molecules, including receptors, inhibitory
molecules, stimulatory molecules, and chemokines. The genes
related to anti-tumor effector immune cells (CD8 T cells, Thl
cells and macrophages) were upregulated in the low-risk group,
whereas the high-risk group had a higher abundance of
immunosuppressive genes (p < 0.05, Figures 4a-d). In addition,
the prognostic model was correlated to pathways involved in
immunotherapy and targeted therapy (Figures 4e, f).

The TIDE algorithm was used to compare the immunotherapy
response in the risk categories. As shown in Figure 5a, 92.7% of the
patients in the high-risk group and 92.7% in the low-risk group
were classified as non-responders to immune checkpoint blockade.
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The overall percentage of non-responding patients was 74.5% (see
Figure 5a). The TIDE score (Figure 5b), CAF score (p < 0.001,
Figure 5¢), Exclusion score (p < 0.001, Figure 5d), Dysfunction
score (Figure 5e), and TAM.M2 score (p < 0.01, Figure 5g) in the
high-risk group exceeded that in the low-risk group, which was
indicative of greater immune evasion in the former. Increased CAF
infiltration in the high-risk group is consistent with poor prognosis,
whereas higher Exclusion score signifies more pronounced rejection
of immune cells and suboptimal response to immunotherapy, and
high Dysfunction score is indicative of the functional suppression of
tumor-specific T cells. Increased infiltration of MDSCs and TAM-
M2 in the TME may enhance the immunosuppressive effect and
lower the efficacy of immunotherapy. However, the infiltration of
MDSCs was similar in the two risk groups (Figure 5f). In contrast,
the scores for CD8 T cells, GEP, TLS, and Merck18 were higher in
the low-risk group (p < 0.05, Figures 5h-k), suggesting enhanced
immune activity which is likely linked to an improved response to
immunotherapy and a more favorable prognosis. We applied the
prognostic model on six independent, real-world immunotherapy
cohorts, and observed significantly worse prognosis in the high-risk
group compared to the low-risk group. In addition, the NR group
had a higher risk score than the R group, indicating that the EMT-
based model can the prognosis and immunotherapy response in OS
patients to a certain extent (p < 0.001, Figures 6a-f).
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3.5 Single-cell analysis

After quality control and sample de-batch integration, 49,744 cells
were retained and used for single-cell analysis. We identified 19 distinct
populations at a resolution of 0.6, which were classified into seven main
categories, including osteoblastic cells, macrophages, monocytes, T
cells, B cells, mesenchymal stem cells (MSC), and endothelial cells
(Figure 7a). The osteoblastic cells and MSCs share markers like
COL1A1, CPE, and COLA1A2 (Figure 7b). As shown in Figure 7c,
the proportion of these different cell types varies significantly among
the six data sets. Furthermore, the model genes were expressed in 92.%
of the osteoblastic cells and 91.7% of the MSCs, which significantly
exceeded that for other cell types (Figure 7d). The distribution of the
risk score in different cell types followed similar trends (Figure 7e).
GSEA of osteoblastic cells showed upregulation of pathways related to
cytoskeleton in muscle cells, focal adhesion, and PI3K-Akt signaling in
the high-scoring cells, while metabolic and cancer-related pathways
upregulated in the low-scoring population (Figure 7f). The UMAP
algorithm was applied again to osteoblastic cells, and seven
subpopulations were identified (OS_CO0 to OS_C6). To further
explore the possible developmental trajectories of osteoblastic cells,
we analyzed the differences in differentiation potential among these
subpopulations. OS_C3 had the lowest differentiation potential,
indicating that these cells are likely in the terminal stage of
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were drawn to assess 1-, 3-, and 5-year survival in the three cohorts.

development. On the other hand, OS_C5 had the highest
differentiation potential and are likely osteoblastic stem cells
(Figure 7g). Interestingly, the risk score was markedly increased in
the OS_C3 population (Figure 7h).

3.6 Co-expression network analysis of
single-cell data

We developed a co-expression network based on single-cell data
after determining 7 as the ideal soft threshold (Figure 8a). As shown
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in the UMAP diagram in Figure 8b, there were nine cell modules
with unique distribution characteristics (Figure 8b). The hub genes
in the nine modules were as follows: OS_C3-M1 - IL11, SFRP2,
PLAUR, S100A6, INHBA, TUBB2A; OS_C3-M2 - LGALSS3,
PHLDAI, CAVI1, COL6A2, GAPDH, COL6A3; OS_C3-M3 and
OS_C3-M4 - FNDCI1, GJA1l, MMP2, CYP1B1, C1S, CXCL12;
OS_C3-M5 - CCDC102B, THY1, MCAM, IGFBP7, RGS5,
NDUFA4L2; OS_C3-M6 - SULF2, MFAP5, FBLN1, SFRP4,
SPONI1, RARRES2; OS_C3-M7 - EMCN, CCL2, STAB1, MS4A7,
C1QB, IGSF6; OS_C3-M8 - NFKBIA, KLF4, MGST1, PODN,
PRELP, NEGR1; OS_C3-M9 - MCM3, GLO1, TMEM158, TYMS,
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FIGURE 4

Multi-omics analysis based on EMT signature. (@) Heatmap showing the correlation between EMT signature and immune-related molecules. (b) Heatmap
showing the correlation between EMT signature and immune cell-related effectors. (c) Boxplot showing the scores of anti-cancer immunity cycles between
low-risk and high-risk groups. (d) Heatmap showing the difference between the EMT signature and immune infiltrating cells via TIMER, QUANTISEQ,
CIBERSORT, MCPCOUNTER, XCELL, and EPIC algorithms. (e, f) Butterfly plots showing the correlation of EMT signature with immunotherapy-associated
pathways (e) and target therapy-associated pathways (f) in TARGET-OS.

CDK4, NRAS (Figure 8c). The PPI network of the hub genes in ~ ECM2 was elevated in tumor tissues of the majority of cancer types,
different modules is shown in Figure 8d, and their functional = whereas AMPH was frequently demonstrated. FAP was most
pathways are outlined in the bubble plot in Figures 8e, f. significantly upregulated in kidney chromophobe (KICH) and
cholangiocarcinoma (CHOL) tissues (Figure 9c). As shown in the

forest plot in Figure 9d, the model genes had no obvious effect on

3.7 Pan-cancer analysis of model genes the prognosis of most cancers. However, COL3A1 may have a
negative impact on the prognosis of adrenocortical carcinoma

The expression levels of seven model genes ranked from highto ~ (ACC), KICH, kidney renal clear cell carcinoma (KIRC), kidney
low were as follows: ECM2, FAP, FBLN1, AMPH, COL3Al, renal papillary cell carcinoma (KIRP), brain lower grade glioma
CYP7B1, and GPC3 (Figure 9a). While most of the genes were  (LGG), etc. FBLN1 appeared to be a risk factor for thyroid
positively correlated, only GPC3 and FAP showed positive  carcinoma (THCA) and a protective factor for uveal melanoma
correlation with all model genes. In addition, the relationship ~ (UVM). FAP showed a similar effect on the prognosis of THCA and
between FAP and ECM was most significant (r = 0.32, Figure 9b). ~ UVM as FBLN1, and was also associated with favorable prognosis
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score, TLS levels, and Merck18 score between two EMT score groups.

of pancreatic adenocarcinoma (PAAD). CYP7BI was a negative
prognostic factor for ACC, while GPC3 correlated with unfavorable
prognosis of UVM and rectum adenocarcinoma (READ). ECM2
and AMPH were associated with the prognosis of KIRC, and
AMPH was a protective factor in PAAD and sarcoma (SARC)
(Figure 9d). We analyzed the expression levels of key model genes
among the different immune subtypes, and detected similar trends.
Specifically, the expression levels of COL3A1, CYP7B1, and GPC3
were generally low in the six immune subtypes (C1-C6), while the
expression levels of ECM2, FAP, FBLN1, and AMPH were high
(Figure 9e). The model genes exhibited strong positive correlations
with both immune scores and stromal scores across the majority of
cancers, and COL3A1 was significantly correlated with elevated
immune scores and increased stromal scores in CHOL (Figure 9f).
In contrast, the association between model genes and RNAss was
predominantly negative, and that between model genes and DNAss
was positive (Figure 9g).
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3.8 GPC3 plays a tumorigenic role in
osteosarcoma

The construction of GPC3 si-RNA was performed and
transfected into the MG-63 cell line to verify its knockdown
efficiency. The results indicated that Si-GPC3-1 and Si-GPC3-1
exhibited good knockdown efficiency (p < 0.001, Figure 10A). The
clone formation experiment verified the effect of GPC3 on the
proliferation of the MG-63 cell line, showing that the knockdown of
GPC3 significantly inhibited the proliferation of MG-63 (p < 0.001,
Figure 10B). Western Blot experiments revealed significant changes
in the expression of EMT-related pathway proteins following the
knockdown of GPC3, with E-Cadherin protein levels significantly
increased and N-Cadherin and Vimentin significantly decreased (p
< 0.001, Figure 10C). Through the Transwell experiment, the
proliferative ability of GPC3 on osteosarcoma cells was verified,
revealing that after knocking down GPC3, the migration and
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invasion abilities of osteosarcoma cells significantly
declined (Figure 11).

4 Discussion

OS is the most common primary malignant bone tumor in
children and adolescents (2), and is routinely treated through
surgery and chemotherapy. However, the 5-year survival rate is
only about 60% (5, 6), and drops to 25% in patients with metastasis.
The limited efficacy of current treatments warrants the development
of novel therapeutic strategies to improve survival rates of OS
patients (14). EMT is a process wherein cells lose their epithelial
characteristics, and attain mesenchymal attributes like increased
motility and invasiveness (15). It is involved in embryonic
development, fibrosis, wound healing, inflammatory responses,
and tumor metastasis (16), and may even contribute to MDR
(17). The role of EMT is somewhat ambiguous in OS as it
originates from mesenchymal cells. In fact, high expression of
mesenchymal adhesion molecules can hinder the migration and
spread of OS cells. Furthermore, BM-MSCs promote the migration
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and invasion of OS cells by upregulating cytokines such as IL-6 and
IL-8 in the TME (21). Nevertheless, the mechanisms underlying
EMT and MET in OS require additional investigation to address the
heterogeneity among sarcoma subtypes, and discover new
therapeutic strategies.

We identified two distinct clusters (C1 and C2) in the TARGET-
OS cohort based on eleven EMT-related genes. C2 exhibited better
prognosis compared to C1, while the latter had higher average age,
and earlier onset of disease. The impact of age on the prognosis of OS
remains uncertain, necessitating additional research. Interestingly, C1
showed greater infiltration of aDCs, B cells, CD8+ T cells, and T cells,
which is often associated with a favorable prognosis, while C2 was
associated with a more immunosuppressive landscape. The
HALLMARK-related pathways were also downregulated in C2
compared to Cl. Nevertheless, the prognostic impact of other
clinical factors, such as the tumor type, stage, patients age,
comorbidities, etc., cannot be excluded.

The EMT-related DEGs were divided into 10 gene modules
through WCGNA. The brown module showed the strongest
negative correlation with C2 and the strongest positive correlation
with Cl, indicating that the genes in this module may be potential
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Single-cell analysis of EMT signature. (@) UMAP visualization of OS scRNA-seq data. (b) Violin plots showing the markers of each cell type. (c) Abundance of
cell types across different samples. (d) The positive ratio of EMT signature in each cell type. (e) Distribution of the signature scores across all cell types. The
signature score was calculated by the AddModuleScore() function implemented in the Seurat package based on the genes derived from the prognostic
model. (f) GSEA reveals significantly altered pathways in osteoblastic cells with high signature scores compared to those with low scores. (g) Boxplots
showing the predicted cellular potency and absolute developmental potential of the seven osteoblastic cell subsets. (h) Distribution of the signature scores

across the seven osteoblastic cell subsets.

prognostic biomarkers and therapeutic targets for OS. The hub genes
of the brown module were mainly associated with the ECM, which
not only provides structural support to cells, but also regulates cellular
communication, migration, adhesion, proliferation and
differentiation. Furthermore, ECM proteins such as collagen,
fibronectin, laminin, and proteoglycans have been linked to the
metastasis of OS cells (22). We further extracted seven candidate
genes from the intersection of hub genes and DEGs to establish a
prognostic model for OS. The model was applied to the TARGET-
0S8, GSE21257 and GSE16091 datasets, and each cohort was classified
into high-risk and low-risk categories. The high-risk group had worse
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prognosis compared to the low-risk group across all cohorts, which
was indicative of the predictive ability of the model. Furthermore,
four common immune regulatory factors and effector genes linked to
tumor-related immune cells were observed to be expressed at
heightened levels in the low-risk group in the TARGET-OS cohort,
which suggests a relationship between the overall survival risk score
and the immune profile. It remains to be ascertained whether these
immune-related genes can predict patients prognosis and response to
immunotherapy. Furthermore, the anti-cancer immune cycle scores
in the low-risk group exceeded that in the high-risk group, which is
significant for cancer diagnosis, treatment, and prognosis. Consistent
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with this, the low-risk group had a greater abundance of anti-tumor  that in the low-risk group. This is indicative of lower infiltration of

immune cells, whereas the high-risk group had a more fibroblasts and T cells, and a higher abundance of M2 macrophages in
immunosuppressive profile. The greater understanding of the  the high-risk group, which correspond to an immunosuppressive TME
immune characteristics of different risk groups can aid in the  that is less responsive to immunotherapy. In contrast, the low-risk
group had elevated scores for CD8 T cells, GEP, TLS, and Merck18.
The increased infiltration of CD8+ T cells and other lymphocytes in the

low-risk cohort suggested enhanced immune activity that may results

development of personalized treatment methods.

According to the TIDE scores, the high-risk group showed a
greater probability of immune escape compared to the low-risk
group. Thus, patients in the high-risk group would likely respond  in favorable outcomes. The immune characteristics associated with the
poorly to immune checkpoint inhibitors and other immunotherapies. ~ two risk categories can serve as valuable indicators for evaluating
Furthermore, the CAF score, exclusion score, dysfunction score, and  patient prognosis and response to immunotherapy, and offer insights

TAM-M2 score were all elevated in the high-risk group compared to  into the immune escape mechanisms employed by OS cells. We
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applied the EMT model to six independent immunotherapy cohorts,
and found that the high-risk group had worse prognosis compared to
the low-risk group in every dataset. In addition, the risk scores of
patients that responded poorly to immune checkpoint inhibitors were
also significantly higher than that of responders, thus confirming that
EMT may be associated with poor prognosis in OS. Furthermore, the
EMT signature can be used to select patients that are more likely to
respond to immunotherapy, potentially resulting in improved
treatment outcomes and survival rates.

We identified 7 major cell categories and 19 cell groups from the
scRNA-Seq data of six OS samples. The osteoblasts and MSCs shared
markers including COL1A1, CPE, and COLA1A2, which offers
insights into the differentiation of osteoblasts and the regulatory
mechanisms. Furthermore, monocytes and osteoblasts were the
predominant populations, and may play an important role in the
pathogenesis of OS. The osteoblasts were divided into the high-score
and low-score subgroups according to the median EMT score. The
low-score cells were enriched in pathways related to adhesion,
cytoskeleton, and PI3K-Akt signaling, while pathways related to
metabolism and tumor development were upregulated in the high-
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score cells. The potential of these pathways as therapeutic targets for OS
treatment need to be explored further. Dimensionality reduction
clustering of the osteoblast population revealed seven subpopulations,
of which OS_C3 was identified to be in the terminal stage of
development due to its lowest differentiation potential, and the
OS_C5 was identified as a stem cell population due to its highest
differentiation potential. The C3 subpopulation was most abundant,
indicating that it may be involved in the development of OS, and even
have diagnostic or therapeutic value. Through hdWGCNA, we
obtained nine modules from the C3 subpopulation, and clustered
them to determine the distribution and mutual relationships of the
cells. OS_C3-M1 and OS_C3-M2 showed high similarity, as did
OS_C3- M4 and OS_C3-M5. In addition, OS_C3-M3 has higher
similarity with OS_C3-M8 and OS_C3-M9. The hub genes of these
modules showed strong interactions, and were mainly associated with
metabolism, structural integrity, proliferation, differentiation, adhesion,
migration, immune responses, inflammatory reactions, and signal
transduction. The varying expression levels of these genes may
influence the progression of OS, indicating their potential as
therapeutic targets.
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GPC3 functions as an oncogene in OS. (A) Bar graph showing GPC3 mRNA expression in different OS cell lines. (B) Bar graph showing GPC3 mRNA
expression in OS cell lines after gene knockdown. (C) Line graph showing absorbance of U20S cells in the CCK8 assay. *** typically indicates p < 0.001.
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FIGURE 11

Transwell migration and invasion assays demonstrated that knockdown of GPC3 significantly inhibited the migration and invasive capacities of
osteosarcoma cells compared to control groups. Quantification of migrated and invasive cells confirmed a substantial reduction following GPC3 silencing
(P < 0.05). These findings suggest that GPC3 promotes both migration and invasion in osteosarcoma cells, highlighting its potential as a therapeutic target.
*** indicates P < 0.001; ** indicates P < 0.01.
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Among the seven model genes, FBLNI, FAP, and ECM2
exhibited the highest expression levels in the OS samples. FBLN1
is an extracellular glycoprotein involved in the regulation of cell
morphology, growth, adhesion, and movement. It functions as a
tumor suppressor in prostate cancer and breast cancer, and the
inactivation of FBLN1 has been linked to the progression of gastric
cancer (23). FAP is a surface serine protease that is upregulated in
reactive stromal fibroblasts, and has been detected in 90% of cancers
(24). EMC2, a member of the endoplasmic reticulum membrane
protein complex (EMC) family, is associated with ferroptosis and
highly expressed in tumors like COAD, LUSC, and BRCA (25). FAP
and EMC2 showed the strongest correlation, suggesting similar
functions in the formation, remodeling, and degradation of the
ECM. Pan-cancer analysis of these genes showed high expression of
all seven genes in CHOL, and upregulation of EMC2 in most
tumors, including OS. The remodeling and breakdown of ECM are
conducive to the invasion and metastasis of cancer cells.
Furthermore, FBLN1, FAP, ECM2, and AMPH were upregulated
in the immune subtypes, which is indicative of the complex
interactions among the immune cells and other components in
the TME. The above genes may be considered as potential
therapeutic targets and prognostic markers for OS< and warrant
further investigation. COL3A1 was strongly correlated with the
infiltration of immune cells and matrix cells in CHOL, while GPC3
and AMPH were strongly correlated with the immune infiltration in
UCS. Furthermore, FAP and AMPH were related to stromal
infiltration and stemness in most tumors, indicating a key role in
tumor occurrence and development.

COL3AL, also known as type III collagen, is abundant in blood
vessels (26) and plays a key role in breast cancer metastasis. Fibroblasts
expressing high levels of EMP1 and COL3A may be involved in the
metastatic processes of breast cancer, kidney cancer, and prostate
cancer (27). GPC3 is a cell surface oncofetal protein that is
overexpressed in 70% of hepatocellular carcinoma (HCC) cases, and
promotes tumor growth by regulating the Wnt/Frizzled signaling
complex (28). AMPH is predominantly expressed in neuronal
synapses, and may play a role in exocytosis and in the dynamic
organization of membrane-associated cytoskeleton. Aberrant
expression of AMPH has been linked to dysregulated actin
distribution, which affects entry into quiescence (29). CYP7B1, also
known as cytochrome P450, acts on hydroxylated steroids such as
dehydroepiandrosterone, 25-hydroxycholesterol, and 27-
hydroxycholesterol. Abnormal expression of CYP7B1 may lead to
neonatal liver failure and progressive neurodegeneration in adults
(30). The function of GPC3 in OS is ambiguous at present.
Knocking down GPC3 in OS cell lines inhibited their proliferation,
indicating that GPC3 has an oncogenic function in OS.

5 Conclusion

We established a prognostic model for OS based on the genes
related to EMT. The EMT-based model predicted the prognosis,
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immune landscape, and immunotherapy responses on OS patients,
and may prove to be valuable for the development of personalized
treatment strategies.
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