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Glypican-3 regulated epithelial
mesenchymal transformation-
related genes in osteosarcoma:
based on comprehensive tumor
microenvironment profiling
Jiaming Zhang and Wei Wang*

Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of
Technology, Liaoning Cancer Hospital and Institute, Liaoning, Shenyang, China
Introduction: Osteosarcoma (OS) is the most common primary bone

malignancy, predominantly affecting children and adolescents. Current

treatment approaches have limited efficacy, with a 5-year survival rate of

approximately 60%. Epithelial-mesenchymal transition (EMT) plays a key role in

the onset, progression, and metastasis of OS, potentially influencing

patient prognosis.

Methods:We screened EMT-related genes frommultiple transcriptomic datasets

of OS and performed unsupervised consensus clustering of EMT-related gene

sets. Key EMT-related genes were identified using weighted gene co-expression

network analysis (WGCNA) and intersected with differentially expressed genes

(DEGs) between OS and normal tissue samples. The least absolute shrinkage and

selection operator (LASSO) algorithm was applied to screen candidate genes for

developing a prognostic model. Single-cell RNA-Seq (scRNA-Seq) analysis was

conducted on OS samples to identify cell populations expressing model genes.

Functional validation was performed using si-GPC3 in the MG-63 cell line.

Results: The EMT-based prognostic model demonstrated strong predictive

capacity across several validation cohorts. The model effectively predicted

immune-related features and immunotherapy responses in high-risk and low-

risk patient groups. Seven primary cell types were identified from scRNA-Seq

data of OS samples, with the osteoblast population showing the highest

proportion of cells positive for model genes. The OS_C3 subpopulation

exhibited significantly higher scores and included nine gene modules

associated with metabolism, structural integrity, proliferation, differentiation,

adhesion, migration, immune responses, inflammatory reactions, and signal

transduction. The model genes also demonstrated prognostic value across

various cancer types. Knockdown of GPC3 in MG-63 cells resulted in

decreased proliferation and migration ability.
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Conclusion: This study provides new insights into the potential mechanisms of

EMT in OS and its impact on the tumor immunemicroenvironment and response

to immunotherapy. These findings may pave the way for novel personalized

treatment strategies for OS patients.
KEYWORDS

osteosarcoma, epithelial-to-mesenchymal, prognostic model, immune characteristics,
gene expression analysis
1 Introduction

Osteosarcoma (OS) is the most prevalent primary bone

malignancy (1), and is more common in children and young

people (2). About 5.2 children per million are diagnosed with OS

each year (3), and patients 10 to 20 years of age account for about

60% of OS cases (4). The high incidence of OS in adolescents is

largely attributed to puberty (1). The 5-year survival rate of OS

patients following surgery and chemotherapy is only 60% (5, 6).

Several etiological factors of OS have been identified, including

chemical agents such as beryllium and methylcholanthrene,

physical agents such as radiation, and viruses such as Kaposi’s

sarcoma-associated herpesvirus (KSHV) (7). OS originates from

mesenchymal cells and can induce osteoblast differentiation,

resulting in the formation of malignant bone-like tissues (2). High-

grade OS consists of osteoblastic cells, chondroblastic cells,

fibroblastic cells, teleangiectatic cells, giant cells, small cells and

sclerotic tissue (8), and has been classified into more than 20

histological subtypes. OS is common in the epiphyses of long bones

of the limbs, such as the distal femur, proximal tibia, and proximal

humerus (5), and frequently metastasizes to the lungs, distant bones

and lymph nodes (9). The 5-year survival rate of patients with

metastatic OS is only 25%, which reflects worsening prognosis (10).

The typical symptoms of OS include pain, local swelling, and limited

joint movement. In addition, pathological fractures may occur in a

small fraction of patients (11). Currently, primary OS is treated

through surgical intervention combined with perioperative

neoadjuvant chemotherapy (including high-dose methotrexate,

doxorubicin and cisplatin) (12). However, these conventional

therapies are often ineffective due to distant metastasis and drug

resistance (13). Furthermore, immunotherapeutic strategies such as

immune checkpoint inhibitors, adoptive cell transplantation, and

cancer vaccines, have limited efficacy (14). Therefore, it is crucial to

identify novel therapeutic targets to reach a higher survival rate for

patients suffering from OS remains a top priority.

Epithelial-mesenchymal transition (EMT) is process wherein

epithelial cells attain the motility and invasive capacity of

mesenchymal cells due to changes in the expression of cell

adhesion and cytoskeletal proteins (15). EMT plays a key role in

embryogenesis, fibrosis, wound healing, inflammation, and cancer

initiation and progression (16, 17). In addition, EMT facilitates
02
distant metastasis of tumor cells (18), and may also induce

multidrug resistance (MDR) through the ABC transporter ATP

binding box (19). However, given the mesenchymal origin of

sarcomas, the role of EMT in these tumors may differ from that

seen in epithelial tumors. For instance, the overexpression of

mesenchymal factors like cadherins can impede OS cells from

migrating and metastasizing (20). On the other hand, bone

marrow-derived mesenchymal stem cells (BM-MSCs) facilitate the

mesenchymal-to-amoeboid transition (MAT) of OS cells by secreting

cytokines like IL-6 and IL-8, p thereby enhancing their capacity for

migration and invasion (21). Therefore, the role of EMT and

mesenchymal-epithelial transition (MET) in OS need further study,

especially considering the heterogeneity among sarcoma subtypes.

To this end, we screened EMT-related genes from multiple

transcriptomic datasets of OS, and constructed a prognostic model

using the hub genes. The EMT-based model could predict the

prognosis, immune landscape, and immunotherapy response of OS

patients across several independent cohorts. Our findings provide

new insights into the role of EMT in the progression of OS, along

with its possible impact on the tumor microenvironment (TME),

which may have implications for the development of more effective

treatment strategies.
2 Methods

2.1 Data acquisition and preparation

Bulk RNA sequencing (Bulk RNA-seq) data was retrieved from

the Therapeutically Applicable Research to Generate Effective

Treatments (TARGET, https://ocg.cancer.gov/programs/target),

Genotype-Tissue Expression (GTEx, www.gtexportal.org/home/

index.html), Gene Expression Omnibus (GEO, https://

www.ncbi.nlm.nih.gov/geo/), and Tumor Immunotherapy Gene

Expression Resource (TIGER, http://tiger.canceromics.org/)

databases. The GTEx dataset included 395 normal muscle and

bone tissue samples (controls), while the TARGET (n = 88),

GSE21257 (n = 53) and GSE16091 (n = 34) datasets included OS

samples. In addition, datasets of other tumor types, including

Rose2021UC (n = 87), Mariathasan2018UC (n = 298),

Liu2019SKCM (n = 121), Braun2020RCC (n = 172),
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Gide2019SKCM (n = 73) and Van2015SKCM (n = 42), were

obtained from the TIGER database. The GSE162454 dataset

comprising of single-cell RNA sequencing (scRNAseq) data from

six OS patients was retrieved from the GEO database. All data had

undergone preprocessing, and the samples with survival duration of

0 days were excluded. EMT-related genes were downloaded from

the GOBP_EPITHELIAL_TO_MESENCHYMAL_TRANSITION

and HALLMARK_EP ITHEL IAL_MESENCHYMAL_

TRANSITION datasets in Molecular Signatures Database

(MSigDB, https://www.gsea-msigdb.org/gsea/msigdb), and from

dbEMT 2.0 (http://dbemt.bioinfo-minzhao.org/index.html). Since

all data for this study were obtained from public databases, ethical

approval was not necessary. The procedures of data collection and

analysis adhered closely to the applicable regulations.
2.2 Consensus clustering

The EMT-related genes that were common to all three databases

were identified using Venn diagram. Unsupervised clustering was

performed on these intersecting genes using the R package

“ConsensusClusterPlus”. The TARGET-OS samples were

categorized into k clusters (where k ranges from 2 to 9), each with

distinct gene expression patterns. The optimal number of clusters

was determined based on the proportion of fuzzy clustering, the

cumulative distribution function (CDF) curve, and the consensus

score matrix. The specific criteria are as follows: (1) The maximum k

value appears before the inflection point of the proportion of

ambiguous clustering (PAC) line graph; (2) The CDF curve is

smooth and the downward slope is minimal; (3) The consensus

score matrix shows the characteristics of “high cohesion and low

coupling”. The optimal clusters were further subjected to

dimensionality reduction using Principal Component Analysis

(PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE).

The reliability of the selected k value was evaluated by investigating

the degree of independence among various clusters in a two-

dimensional spatial distribution. The overall survival in the two

clusters, and in subgroups stratified by age and clinical stage (I/II and

III/IV) were analyzed using the Kaplan-Meier (KM) method. The

tumor immune characteristics and infiltration of 30 immune

populations in both clusters were evaluated using the ESTIMATE

algorithm from the “IOBR” R package using four indicators: tumor

purity, immune score, stromal score, and ESTIMATE score.
2.3 Weighted gene co-expression network
analysis

WGCNA was conducted on the intersecting genes using the

“WGCNA” R package to identify the hub genes associated with

EMT. A correlation matrix was constructed after excluding the

genes with low expression levels or similar expression levels in all

samples, and then converted into an adjacency matrix using the

power function. The optimal power value (b value) was determined

following two conditions: (1) this network is infinitely close to a
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scale-free network, that is, r^2 is close to 1; (2) connectivity

information is retained as much as possible. The Topological

Overlap Matrix (TOM) was then constructed to form a co-

expression network, and the intersecting genes were hierarchically

clustered to form a clustering tree. The modules were classified

using the Dynamic Tree Cut method, and those that displayed

similar expression patterns were grouped together. The distinct

modules were color coded, and their correlation with the EMT

clusters was visualized by plotting heat maps. The hub genes were

extracted from modules with the strongest connection with the

consensus clusters using the following criteria: gene significance

(GS) > 0.4 and module membership (MM) > 0.6. The hub genes

were functionally annotated by Gene Ontology (GO) analysis, and

the most significantly enriched molecular function (MF), cellular

component (CC), and biological process (BP) terms were selected.
2.4 Construction and validation of the
prognostic model

The differentially expressed genes (DEGs) between the OS

tissues and para-tumor tissues within the TARGET-OS dataset

were screened, and intersected with the module hub genes using

Venn diagrams. The candidate model genes independently

correlated to the overall survival were identified multivariate

Cox regression analysis. LASSO regression was then performed

to screen the genes for constructing a prognostic model. The

features were selected through the optimal l corresponding to the

smallest binomial deviance. The prognostic model was applied to

the training TARGET-OS cohort, and the external validation

cohorts GSE21257 and GSE16091. Each cohort was stratified

into the high-risk and low-risk groups according to the median

risk score, and the survival trends were compared by the Kaplan-

Meier method. The predictive ability of the model for 1-, 3-, and 5-

year survival was evaluated by the receiver operating characteristic

(ROC) analysis.
2.5 Multi-omics analysis based on
prognostic models

Twenty-one immunomodulatory molecules, including

receptors, inhibitory molecules, stimulatory molecules, and

chemokines, were retrieved from the TISIDB database (http://

cis.hku.hk/TISIDB/). The differential expression of these

molecules across risk groups, and between CD8+ T cells, Th1

cells and macrophages within each risk category were analyzed.

Additionally, we assessed and quantified the activity levels of seven

crucial stages within the anti-cancer immunity cycles across various

risk groups, followed by a comparison of the scores presented in a

box plot. The CIBERSORT, EPIC, MCP-counter, quanTIseq,

TIMER, and xCell algorithms in the “IOBR” R package were used

to measure the infiltration of different immune cell types in the two

risk groups. The correlation between the EMT model and pathways

related to immunotherapy and targeted therapy were also analyzed.
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2.6 Predictive value of prognostic models
in immunotherapy

The Tumor Immune Dysfunction and Exclusion (TIDE, http://

tide.dfci.harvard.edu/) database was used to predict immunotherapy

response and immune escape in the high-risk and low-risk groups

by calculating TIDE scores, CAF scores, Exclusion scores,

Dysfunction scores, Myeloid-Derived Suppressor Cell (MDSC)

scores, Tumor-Associated Macrophage M2 (TAM.M2) scores,

CD8 scores, Gene Expression Profile (GEP) scores, Tertiary

Lymphoid Structure (TLS) scores, and Merck18 scores. The

predictive model was applied to six real-world immunotherapy

cohorts, and the overall survival of the high-risk and low-risk

groups in each dataset was determined by the Kaplan-Meier

method. Each cohort was divided into the responsive (R) and

non-responsive (NR) groups, and the association between the risk

score and immunotherapy response was analyzed in each group.
2.7 Single-cell analysis

The scRNA-Seq data from GSE162454 was analyzed using the

“Seurat” package. The cells with fewer than 300 genes, and those with

mitochondrial genes exceeding 10% of the overall expressed genes were

excluded prior to dimensionality reduction and clustering. In addition,

possible duplicates and lower-order multiplets that appeared during the

encapsulation process were also removed, along with cell pairs that

remained unsorted during the sample preparation phase. After

integrating multiple samples using the “harmony” R package, the

UMAP algorithm was used to downscale the filtered dataset. The

cells were classified into specific populations based on the “Seurat”

package, and their distribution patterns were visualized by plotting a

UMAP diagram. The expression levels of 19 cell type-specific markers

were measured in the six sample cohorts to determine the relative

abundance of the immune cell types. Furthermore, the expression levels

of the model genes were also analyzed in the individual cells using the

“AddModuleScore” function. Based on the EMT gene expression score,

all cells classified as a specific type were divided them into the high-

score and low-score groups. The pathways associated with these groups

were identified through gene-set enrichment analysis (GSEA). Each cell

type was divided into subgroups following a second round of

dimensionality reduction clustering. The predicted cellular potency

and absolute developmental potential of these subgroups were

determined using the cytotrace2 algorithm. To identify the

subpopulations associated with EMT, the expression levels of

particular model genes were analyzed in individual cells, and the

scores of different subpopulations were visualized through

UMAP plots.
2.8 Co-expression network analysis of
single-cell data

The population with highest EMT scores were subjected to

hdWGCNA to identify co-expressed cellular modules and hub genes
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associated with EMT. To create a resilient scale-free network topology,

the variations in scale-freeness and connectivity of the co-expression

network were examined across different soft thresholds. The cell

modules were detected using the dynamic tree cutting technique and

the UMAP dimensionality reduction was used to determine cellular

distribution and the connections among distinct modules. After

calculating the Module Eigengenes (ME) of each module, the hub

genes in each module were identified based on the characteristic gene

connectivity (KME). Protein-protein interaction (PPI) networks were

constructed for each module, and the functional pathways and

biological processes associated with the hub genes were derived from

the GO-BP 2023 entries and theWikiPathway_2023_Human database.
2.9 Pan-cancer analysis

The expression levels of the model genes were analyzed in 18

cancers, and correlation coefficients of each gene pair were

calculated. The differential expression of model genes between the

tumor and para-tumor tissues in each cancer type by calculating the

logFoldChange (logFC), and their prognostic significance in 33

cancer types was determined through Cox analysis. In addition, the

expression levels of the model genes were also analyzed in different

immune subtypes. Finally, the relationships among the model

genes, immune scores, matrix scores, RNA stemness scores

(RNAss), and DNA stemness scores (DNAss) were evaluated.
2.10 Cell culture and transfection

Human OS cell lines (Mg63) and the human normal osteoblast cell

line Nhost were obtained from The Cell Bank at the Chinese Academy

of Sciences, and cultured in Dulbecco’s Modified Eagle’s Medium

(DMEM) supplemented with 10% fetal bovine serum (FBS; BI, Israel),

100 U/ml of penicillin (HyClone, USA). and 100 µg/ml of streptomycin

(HyClone, USA). The cells were maintained in a humidified incubator

at 37°C under 5% CO2, and passaged every 24 h. The U2OS and 143B

cells were transfected with GPC3-specific and control siRNAs

(designed and produced by Sangon, China). The cells were harvested

using trypsin (KeyGEN, China), washed once with PBS, and seeded

into 6-well plates in 2 ml complete medium at the density of 1×105

cells/well. The siRNA construct was mixed with the transfection agent

PolyFast (catalog number HY-K1014,MCE, USA) in the specified ratio

as per the manufacturer’s instructions. Following incubation at room

temperature for 15 minutes, the mixture was centrifuged at low speed

for 1 minute and evenly pipetted into the corresponding wells. The

culture medium was changed 6 h after transfection, and the

experiments were performed 48 h after transfection.
2.11 Total RNA extraction and RT-qPCR

The cultured cells were harvested and lysed with Trizol (Takara,

Japan) on ice for 5 minutes. Following sequential addition of 200 ml
chloroform (SINOPHARM, China), and equal amounts of isopropanol
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(SINOPHARM, China) and anhydrous ethanol (SINOPHARM,

China), the lysate was thoroughly mixed, centrifuged at low

temperature, and kept on ice for 15 minutes. The organic phase was

removed, and the solution was left to dry for 20 minutes. The RNA

precipitate was reconstituted in 20 ml DEPC-treated water, and the

concentration was measured using a Nanodrop2000 instrument

(Thermo, USA). The RNA was reverse transcribed into cDNA using

the PrimeScript RT Kit (TaKaRa, Japan) according to the

manufacturer’s guidelines, and the cDNA samples were pre-mixed

with the SYBR GreenER Supermix (TaKaRa, Japan) kit. RTqPCR was

performed on the 7500 Real-Time PCR System (Thermo Fisher

Scientific, USA) following the manual instructions, and the reaction

conditions were as outlined in the SYBR GreenER Supermix Kit. The

relative expression of GPC3 was calculated using the 2–DDCt method,

and normalized to that of b-actin. The primer sequences are as follows:

b-actin: Forward: 5’ – CCTGGCACCCAGCACAAT - 3’, Reverse: 5’ –

GGGCCGGACTCGTCATAC - 3’; GPC3: Forward: 5’-CG

GAATTCCTTGGTGGTGGCGATGCT-3 ’ , Reverse : 5 ’-

TGAAAGGTCGGGATCCCCCGAGGTTGTGAAAGGT -3’.

Scrambled siRNA (SCR) and two siRNA duplexes designed to target

the GPC-3 gene (21 nt long double-stranded RNA oligonucleotides

with dTdT overhangs and sequences as follows: sense,

GUGCUUUGCCUGGCU ACAU (dTdT) , an t i s en s e ,

AUGUAGCCAGGCAAAGCAC (dTdT)were obtained from Bioneer

(Daejeon, Korea). Negative control (NC; si-NC group; 5’-

TTCTCCGAACGTGTCACGTTT-3’).
2.12 Cell assay of GPC3 in osteosarcoma

By comparing the number and size of different cell clones, the

impact of GPC3 on cellular proliferation capacity is evaluated. Total

protein is extracted from osteosarcoma cells, and after separation

through SDS-PAGE electrophoresis, the proteins are transferred to

a PVDF membrane. Immunoblotting analysis is performed using

specific antibodies against GPC3 and other proteins related to cell

proliferation pathways (such as CTNNB1) to detect the expression

level of GPC3 and its effect on relevant signaling pathways. The

Transwell chamber is utilized to assess the invasive capacity of

osteosarcoma cells. Cell suspension is added to the upper chamber

of the Transwell, while the lower chamber contains culture medium

with chemokines. After a certain incubation period, the cells are

fixed and stained, followed by observation and counting of the

number of cells that have migrated through the chamber membrane

using a microscope, thereby evaluating the influence of GPC3 on

the invasive ability of osteosarcoma cells. Through these

experimental methods, we are able to comprehensively assess the

function of GPC3 in osteosarcoma cells, including its effects on cell

proliferation, clone formation, and invasive capability.
2.13 Statistical analysis

Pearson or Spearman correlation coefficients were calculated to

evaluate the relationship among variables, depending on the
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distribution of data. Paired t test was used to compare continuous

variables with normal distribution, and the Mann-Whitney U test was

employed in case normality was not satisfied. The categorical variables

were compared by the Chi-square test or Fisher’s exact test. Survival

curves were generated using the Kaplan-Meier method, and the log-

rank test was used to determine statistical significance. P-value less than

0.05 was considered statistically significant. All statistical analyses were

performed using R software version 4.1.3. Unless stated otherwise, the

“ggplot2” package was used to create the graphs.
3 Results

3.1 Consensus clustering

As shown in the Venn diagram in Figure 1a, eleven EMT-

related genes were common to the GOBP, HALLMARK and

dbEMT2.0 databases. Consensus clustering of these genes (k =2)

revealed two sample clusters (C1 and C2) in the TARGET-OS

dataset (Figures 1b, c). As shown in the PCA and TSNE plots in

Figure 1d, the two clusters were independent. Furthermore, C1 and

C2 had distinct prognostic profiles and clinical characteristics. C1

was associated with lower OS (p = 0.013, Figure 1e) and older age

compared to C2. In addition, the proportion of clinical stage I & II

cases (84.6%) exceeded that of stage III & IV cases (15.4%) in C1,

whereas C2 had a higher proportion of individuals diagnosed with

stage III&IV OS (53.3%) compared to those with stage I&II tumors

(46.7%) (p = 0.041, Figure 1f). Furthermore, C2 exhibited lower

immune infiltration compared to C1, which is indicative of an

immunosuppressive TME (Figure 1g). The immune score and

ESTIMATE score of C2 were higher, and the stromal score was

lower compared to that of C1. On the other hand, there was no

significant difference in the tumor purity of the two clusters

(Figure 1h). The downregulation of HALLMARK-related

pathways was more obvious in C2 (Figure 1i).
3.2 WGCNA

By analyzing the scale independence and average connectivity

results, we selected b = 4 as the optimal soft threshold, at which the

network exhibited good scale-free properties and appropriate

connectivity (Figure 2a). After dynamic cutting and merging, 10

different gene modules were generated (Figure 2b). The brown

module showed the strongest correlation with C2, and had a total

of 101 hub genes (p < 0.001, r = -0.8, Figures 2c, d). The top

enriched GO terms for the hub genes were extracellular matrix

(ECM) organization, extracellular matrix structural constituent,

extracellular matrix structural constituent conferring tensile

strength, collagen-containing extracellular matrix, basement

membrane, and other extracellular matrix. In addition, pathways

related to heparin binding, integrin binding, collagen binding,

external encapsulating structure organization, extracellular structure

organization, endoplasmic reticulum lumen, and collagen trimer

showed significant enrichment (p < 0.001, Figure 2e).
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3.3 Construction and validation of the
prognostic model

There were 34 intersecting genes between the hub genes and

DEGs in TARGET-OS (Figure 3a), of which PTN, PTGFR, TOX,

POSTN, FAP, LOXL1, and ITGA11 were identified as independent

prognostic protective factors for OS (Hazard Ratio < 1) in the

multivariate regression model (Figure 3b). To minimize the

binomial deviance, we selected the l corresponding to the lowest

point of the cross-validation curve, i.e., l = 0.04, and further extracted

the model genes. Seven genes, including COL3A1, FBLN1, FAP,

GPC3, CYP7B1, ECM2, and AMPH, were used to construct the

prognostic model (Figure 3c). The prognosis of the high-risk group

was significantly worse than that of the low-risk group across three

independent cohorts. Furthermore, the area under the ROC curve

(AUC) of the prognostic model for 1-, 3-, and 5-year survival rates

were all > 0.6, indicating good predictive ability (Figures 3d–i).
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3.4 Immune-related analysis based on the
prognostic model

Given the variations in the expression levels of immune-related

genes between the risk groups, we performed a targeted analysis of

immunomodulatory molecules, including receptors, inhibitory

molecules, stimulatory molecules, and chemokines. The genes

related to anti-tumor effector immune cells (CD8 T cells, Th1

cells and macrophages) were upregulated in the low-risk group,

whereas the high-risk group had a higher abundance of

immunosuppressive genes (p < 0.05, Figures 4a–d). In addition,

the prognostic model was correlated to pathways involved in

immunotherapy and targeted therapy (Figures 4e, f).

The TIDE algorithm was used to compare the immunotherapy

response in the risk categories. As shown in Figure 5a, 92.7% of the

patients in the high-risk group and 92.7% in the low-risk group

were classified as non-responders to immune checkpoint blockade.
FIGURE 1

Consensus clustering by EMT-related genes. (a) Consensus EMT-related genes acquired from GO_BP, HALLMARK, and dbEMT 2.0. (b) The PAC
score for each k (indicated by colors). The CDF curves of the consensus matrix for each k. (c) The consensus score matrix of all samples when k = 2.
A higher consensus score denotes higher similarity. (d) PCA and t-SNE analysis. (e) Survival analysis of the EMT-related clusters C1 and C2. (f) The
distribution of age and clinical stages in C1 and C2. (g) Immune cell infiltration in C1 and C2. (h) Tumor Purity, Stromal Score, Immune Score, and
ESTIMATE Score in C1 and C2. (i) HALLMARK-related pathways in C1 and C2.
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The overall percentage of non-responding patients was 74.5% (see

Figure 5a). The TIDE score (Figure 5b), CAF score (p < 0.001,

Figure 5c), Exclusion score (p < 0.001, Figure 5d), Dysfunction

score (Figure 5e), and TAM.M2 score (p < 0.01, Figure 5g) in the

high-risk group exceeded that in the low-risk group, which was

indicative of greater immune evasion in the former. Increased CAF

infiltration in the high-risk group is consistent with poor prognosis,

whereas higher Exclusion score signifies more pronounced rejection

of immune cells and suboptimal response to immunotherapy, and

high Dysfunction score is indicative of the functional suppression of

tumor-specific T cells. Increased infiltration of MDSCs and TAM-

M2 in the TME may enhance the immunosuppressive effect and

lower the efficacy of immunotherapy. However, the infiltration of

MDSCs was similar in the two risk groups (Figure 5f). In contrast,

the scores for CD8 T cells, GEP, TLS, and Merck18 were higher in

the low-risk group (p < 0.05, Figures 5h–k), suggesting enhanced

immune activity which is likely linked to an improved response to

immunotherapy and a more favorable prognosis. We applied the

prognostic model on six independent, real-world immunotherapy

cohorts, and observed significantly worse prognosis in the high-risk

group compared to the low-risk group. In addition, the NR group

had a higher risk score than the R group, indicating that the EMT-

based model can the prognosis and immunotherapy response in OS

patients to a certain extent (p < 0.001, Figures 6a–f).
Frontiers in Immunology 07
3.5 Single-cell analysis

After quality control and sample de-batch integration, 49,744 cells

were retained and used for single-cell analysis. We identified 19 distinct

populations at a resolution of 0.6, which were classified into sevenmain

categories, including osteoblastic cells, macrophages, monocytes, T

cells, B cells, mesenchymal stem cells (MSC), and endothelial cells

(Figure 7a). The osteoblastic cells and MSCs share markers like

COL1A1, CPE, and COLA1A2 (Figure 7b). As shown in Figure 7c,

the proportion of these different cell types varies significantly among

the six data sets. Furthermore, the model genes were expressed in 92.%

of the osteoblastic cells and 91.7% of the MSCs, which significantly

exceeded that for other cell types (Figure 7d). The distribution of the

risk score in different cell types followed similar trends (Figure 7e).

GSEA of osteoblastic cells showed upregulation of pathways related to

cytoskeleton in muscle cells, focal adhesion, and Pl3K-Akt signaling in

the high-scoring cells, while metabolic and cancer-related pathways

upregulated in the low-scoring population (Figure 7f). The UMAP

algorithm was applied again to osteoblastic cells, and seven

subpopulations were identified (OS_C0 to OS_C6). To further

explore the possible developmental trajectories of osteoblastic cells,

we analyzed the differences in differentiation potential among these

subpopulations. OS_C3 had the lowest differentiation potential,

indicating that these cells are likely in the terminal stage of
FIGURE 2

Characteristic genes in EMT clusters. (a) Network topology for different soft-threshold power. The left panel shows the impact of soft-threshold power
(power = 5) on the scale-free topology fit index; the right panel displays the impact of soft-threshold power on the mean connectivity. (b) Cluster
dendrogram of the co-expression modules. Each color indicates a module. (c) Module-trait heatmap showing the correlation between module eigengenes
and EMT clusters. (d) Correlation between module membership and gene significance in the brown module. Colored dots indicate the hub genes (MM > 0.6
& GS > 0.4). (e) Top five enriched GO terms of hub genes.
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development. On the other hand, OS_C5 had the highest

differentiation potential and are likely osteoblastic stem cells

(Figure 7g). Interestingly, the risk score was markedly increased in

the OS_C3 population (Figure 7h).
3.6 Co-expression network analysis of
single-cell data

We developed a co-expression network based on single-cell data

after determining 7 as the ideal soft threshold (Figure 8a). As shown
Frontiers in Immunology 08
in the UMAP diagram in Figure 8b, there were nine cell modules

with unique distribution characteristics (Figure 8b). The hub genes

in the nine modules were as follows: OS_C3-M1 - IL11, SFRP2,

PLAUR, S100A6, INHBA, TUBB2A; OS_C3-M2 - LGALS3,

PHLDA1, CAV1, COL6A2, GAPDH, COL6A3; OS_C3-M3 and

OS_C3-M4 - FNDC1, GJA1, MMP2, CYP1B1, C1S, CXCL12;

OS_C3-M5 - CCDC102B, THY1, MCAM, IGFBP7, RGS5,

NDUFA4L2; OS_C3-M6 - SULF2, MFAP5, FBLN1, SFRP4,

SPON1, RARRES2; OS_C3-M7 - EMCN, CCL2, STAB1, MS4A7,

C1QB, IGSF6; OS_C3-M8 - NFKBIA, KLF4, MGST1, PODN,

PRELP, NEGR1; OS_C3-M9 - MCM3, GLO1, TMEM158, TYMS,
FIGURE 3

Construct a robust EMT signature. (a) Venn diagram of module hub genes and DEGs from TARGET-OS bulk cohort. (b) Univariate cox regression
analysis of 34 genes in TARGET-OS cohort. (c) The selection of prognostic genes based on the optimal parameter l in the LASSO regression
analysis. (d-i) Kaplan-Meier curves showing the survival outcomes of patients in the two risk groups in three cohorts. Time-dependent ROC curves
were drawn to assess 1-, 3-, and 5-year survival in the three cohorts.
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CDK4, NRAS (Figure 8c). The PPI network of the hub genes in

different modules is shown in Figure 8d, and their functional

pathways are outlined in the bubble plot in Figures 8e, f.
3.7 Pan-cancer analysis of model genes

The expression levels of seven model genes ranked from high to

low were as follows: ECM2, FAP, FBLN1, AMPH, COL3A1,

CYP7B1, and GPC3 (Figure 9a). While most of the genes were

positively correlated, only GPC3 and FAP showed positive

correlation with all model genes. In addition, the relationship

between FAP and ECM was most significant (r = 0.32, Figure 9b).
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ECM2 was elevated in tumor tissues of the majority of cancer types,

whereas AMPH was frequently demonstrated. FAP was most

significantly upregulated in kidney chromophobe (KICH) and

cholangiocarcinoma (CHOL) tissues (Figure 9c). As shown in the

forest plot in Figure 9d, the model genes had no obvious effect on

the prognosis of most cancers. However, COL3A1 may have a

negative impact on the prognosis of adrenocortical carcinoma

(ACC), KICH, kidney renal clear cell carcinoma (KIRC), kidney

renal papillary cell carcinoma (KIRP), brain lower grade glioma

(LGG), etc. FBLN1 appeared to be a risk factor for thyroid

carcinoma (THCA) and a protective factor for uveal melanoma

(UVM). FAP showed a similar effect on the prognosis of THCA and

UVM as FBLN1, and was also associated with favorable prognosis
FIGURE 4

Multi-omics analysis based on EMT signature. (a) Heatmap showing the correlation between EMT signature and immune-related molecules. (b) Heatmap
showing the correlation between EMT signature and immune cell-related effectors. (c) Boxplot showing the scores of anti-cancer immunity cycles between
low-risk and high-risk groups. (d) Heatmap showing the difference between the EMT signature and immune infiltrating cells via TIMER, QUANTISEQ,
CIBERSORT, MCPCOUNTER, XCELL, and EPIC algorithms. (e, f) Butterfly plots showing the correlation of EMT signature with immunotherapy-associated
pathways (e) and target therapy-associated pathways (f) in TARGET-OS.
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of pancreatic adenocarcinoma (PAAD). CYP7B1 was a negative

prognostic factor for ACC, while GPC3 correlated with unfavorable

prognosis of UVM and rectum adenocarcinoma (READ). ECM2

and AMPH were associated with the prognosis of KIRC, and

AMPH was a protective factor in PAAD and sarcoma (SARC)

(Figure 9d). We analyzed the expression levels of key model genes

among the different immune subtypes, and detected similar trends.

Specifically, the expression levels of COL3A1, CYP7B1, and GPC3

were generally low in the six immune subtypes (C1-C6), while the

expression levels of ECM2, FAP, FBLN1, and AMPH were high

(Figure 9e). The model genes exhibited strong positive correlations

with both immune scores and stromal scores across the majority of

cancers, and COL3A1 was significantly correlated with elevated

immune scores and increased stromal scores in CHOL (Figure 9f).

In contrast, the association between model genes and RNAss was

predominantly negative, and that between model genes and DNAss

was positive (Figure 9g).
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3.8 GPC3 plays a tumorigenic role in
osteosarcoma

The construction of GPC3 si-RNA was performed and

transfected into the MG-63 cell line to verify its knockdown

efficiency. The results indicated that Si-GPC3–1 and Si-GPC3–1

exhibited good knockdown efficiency (p < 0.001, Figure 10A). The

clone formation experiment verified the effect of GPC3 on the

proliferation of the MG-63 cell line, showing that the knockdown of

GPC3 significantly inhibited the proliferation of MG-63 (p < 0.001,

Figure 10B). Western Blot experiments revealed significant changes

in the expression of EMT-related pathway proteins following the

knockdown of GPC3, with E-Cadherin protein levels significantly

increased and N-Cadherin and Vimentin significantly decreased (p

< 0.001, Figure 10C). Through the Transwell experiment, the

proliferative ability of GPC3 on osteosarcoma cells was verified,

revealing that after knocking down GPC3, the migration and
FIGURE 5

Predictive value of the EMT signature for immunotherapy response. (a) Distribution of immunotherapy responders in the EMT clusters as predicted
by the TIDE. (b-k) Box plots showing the TIDE score, CAF score, Exclusion score, Dysfunction score, MDSC score, TAM-M2 score, GEP levels, CD8
score, TLS levels, and Merck18 score between two EMT score groups.
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invas ion abi l i t ies of osteosarcoma cel ls s ignificantly

declined (Figure 11).
4 Discussion

OS is the most common primary malignant bone tumor in

children and adolescents (2), and is routinely treated through

surgery and chemotherapy. However, the 5-year survival rate is

only about 60% (5, 6), and drops to 25% in patients with metastasis.

The limited efficacy of current treatments warrants the development

of novel therapeutic strategies to improve survival rates of OS

patients (14). EMT is a process wherein cells lose their epithelial

characteristics, and attain mesenchymal attributes like increased

motility and invasiveness (15). It is involved in embryonic

development, fibrosis, wound healing, inflammatory responses,

and tumor metastasis (16), and may even contribute to MDR

(17). The role of EMT is somewhat ambiguous in OS as it

originates from mesenchymal cells. In fact, high expression of

mesenchymal adhesion molecules can hinder the migration and

spread of OS cells. Furthermore, BM-MSCs promote the migration
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and invasion of OS cells by upregulating cytokines such as IL-6 and

IL-8 in the TME (21). Nevertheless, the mechanisms underlying

EMT andMET in OS require additional investigation to address the

heterogeneity among sarcoma subtypes, and discover new

therapeutic strategies.

We identified two distinct clusters (C1 and C2) in the TARGET-

OS cohort based on eleven EMT-related genes. C2 exhibited better

prognosis compared to C1, while the latter had higher average age,

and earlier onset of disease. The impact of age on the prognosis of OS

remains uncertain, necessitating additional research. Interestingly, C1

showed greater infiltration of aDCs, B cells, CD8+ T cells, and T cells,

which is often associated with a favorable prognosis, while C2 was

associated with a more immunosuppressive landscape. The

HALLMARK-related pathways were also downregulated in C2

compared to C1. Nevertheless, the prognostic impact of other

clinical factors, such as the tumor type, stage, patients age,

comorbidities, etc., cannot be excluded.

The EMT-related DEGs were divided into 10 gene modules

through WCGNA. The brown module showed the strongest

negative correlation with C2 and the strongest positive correlation

with C1, indicating that the genes in this module may be potential
FIGURE 6

Predictive value of the EMT signature in real-world immunotherapy cohorts. (a-f) Kaplan–Meier curves showing the overall survival in low-risk and
high-risk groups in six immunotherapy cohorts (left panels). The Box plots illustrate the link between risk score and response in these cohorts
(right panels).
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prognostic biomarkers and therapeutic targets for OS. The hub genes

of the brown module were mainly associated with the ECM, which

not only provides structural support to cells, but also regulates cellular

communication, migration, adhesion, proliferation and

differentiation. Furthermore, ECM proteins such as collagen,

fibronectin, laminin, and proteoglycans have been linked to the

metastasis of OS cells (22). We further extracted seven candidate

genes from the intersection of hub genes and DEGs to establish a

prognostic model for OS. The model was applied to the TARGET-

OS, GSE21257 and GSE16091 datasets, and each cohort was classified

into high-risk and low-risk categories. The high-risk group had worse
Frontiers in Immunology 12
prognosis compared to the low-risk group across all cohorts, which

was indicative of the predictive ability of the model. Furthermore,

four common immune regulatory factors and effector genes linked to

tumor-related immune cells were observed to be expressed at

heightened levels in the low-risk group in the TARGET-OS cohort,

which suggests a relationship between the overall survival risk score

and the immune profile. It remains to be ascertained whether these

immune-related genes can predict patients prognosis and response to

immunotherapy. Furthermore, the anti-cancer immune cycle scores

in the low-risk group exceeded that in the high-risk group, which is

significant for cancer diagnosis, treatment, and prognosis. Consistent
FIGURE 7

Single-cell analysis of EMT signature. (a) UMAP visualization of OS scRNA-seq data. (b) Violin plots showing the markers of each cell type. (c) Abundance of
cell types across different samples. (d) The positive ratio of EMT signature in each cell type. (e) Distribution of the signature scores across all cell types. The
signature score was calculated by the AddModuleScore() function implemented in the Seurat package based on the genes derived from the prognostic
model. (f) GSEA reveals significantly altered pathways in osteoblastic cells with high signature scores compared to those with low scores. (g) Boxplots
showing the predicted cellular potency and absolute developmental potential of the seven osteoblastic cell subsets. (h) Distribution of the signature scores
across the seven osteoblastic cell subsets.
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with this, the low-risk group had a greater abundance of anti-tumor

immune cells, whereas the high-risk group had a more

immunosuppressive profile. The greater understanding of the

immune characteristics of different risk groups can aid in the

development of personalized treatment methods.

According to the TIDE scores, the high-risk group showed a

greater probability of immune escape compared to the low-risk

group. Thus, patients in the high-risk group would likely respond

poorly to immune checkpoint inhibitors and other immunotherapies.

Furthermore, the CAF score, exclusion score, dysfunction score, and

TAM-M2 score were all elevated in the high-risk group compared to
Frontiers in Immunology 13
that in the low-risk group. This is indicative of lower infiltration of

fibroblasts and T cells, and a higher abundance of M2 macrophages in

the high-risk group, which correspond to an immunosuppressive TME

that is less responsive to immunotherapy. In contrast, the low-risk

group had elevated scores for CD8 T cells, GEP, TLS, and Merck18.

The increased infiltration of CD8+ T cells and other lymphocytes in the

low-risk cohort suggested enhanced immune activity that may results

in favorable outcomes. The immune characteristics associated with the

two risk categories can serve as valuable indicators for evaluating

patient prognosis and response to immunotherapy, and offer insights

into the immune escape mechanisms employed by OS cells. We
FIGURE 8

The cell module identified by hdWGCNA method in cells with high EMT signature. (a) Analysis of network topology for different soft-threshold
power. A power of 7 was select for as the optimal threshold. (b) UMAP of the identified 9 cell modules of the OS_C3 cells. (c) The hub genes of
each cell module. (d) The PPI network of the hub genes of each cell module. (e, f) The top six enriched GO_BP terms and WikiPathways of the hub
genes in each cell module.
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applied the EMT model to six independent immunotherapy cohorts,

and found that the high-risk group had worse prognosis compared to

the low-risk group in every dataset. In addition, the risk scores of

patients that responded poorly to immune checkpoint inhibitors were

also significantly higher than that of responders, thus confirming that

EMT may be associated with poor prognosis in OS. Furthermore, the

EMT signature can be used to select patients that are more likely to

respond to immunotherapy, potentially resulting in improved

treatment outcomes and survival rates.

We identified 7 major cell categories and 19 cell groups from the

scRNA-Seq data of six OS samples. The osteoblasts and MSCs shared

markers including COL1A1, CPE, and COLA1A2, which offers

insights into the differentiation of osteoblasts and the regulatory

mechanisms. Furthermore, monocytes and osteoblasts were the

predominant populations, and may play an important role in the

pathogenesis of OS. The osteoblasts were divided into the high-score

and low-score subgroups according to the median EMT score. The

low-score cells were enriched in pathways related to adhesion,

cytoskeleton, and Pl3K-Akt signaling, while pathways related to

metabolism and tumor development were upregulated in the high-
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score cells. The potential of these pathways as therapeutic targets for OS

treatment need to be explored further. Dimensionality reduction

clustering of the osteoblast population revealed seven subpopulations,

of which OS_C3 was identified to be in the terminal stage of

development due to its lowest differentiation potential, and the

OS_C5 was identified as a stem cell population due to its highest

differentiation potential. The C3 subpopulation was most abundant,

indicating that it may be involved in the development of OS, and even

have diagnostic or therapeutic value. Through hdWGCNA, we

obtained nine modules from the C3 subpopulation, and clustered

them to determine the distribution and mutual relationships of the

cells. OS_C3-M1 and OS_C3-M2 showed high similarity, as did

OS_C3- M4 and OS_C3-M5. In addition, OS_C3-M3 has higher

similarity with OS_C3-M8 and OS_C3-M9. The hub genes of these

modules showed strong interactions, and were mainly associated with

metabolism, structural integrity, proliferation, differentiation, adhesion,

migration, immune responses, inflammatory reactions, and signal

transduction. The varying expression levels of these genes may

influence the progression of OS, indicating their potential as

therapeutic targets.
FIGURE 9

Pan-cancer analysis of the EMT signature. (a) Boxplot showing the pan-cancer expression levels of the signature genes. (b) The correlation between
signature genes. (c) Heatmap showing the differential expression of signature genes between tumor and normal tissues in each cancer type. (d) Forest map
showing the correlation between EMT signature and patient prognosis on a pan-cancer scale. (e) Box plot showing expression levels of signature genes in
different immune subtypes. (f, g) Association of EMT signature with the Estimate Score, Immune Score, DNAss and RNAss in multiple tumors.
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FIGURE 10

GPC3 functions as an oncogene in OS. (A) Bar graph showing GPC3 mRNA expression in different OS cell lines. (B) Bar graph showing GPC3 mRNA
expression in OS cell lines after gene knockdown. (C) Line graph showing absorbance of U2OS cells in the CCK8 assay. *** typically indicates p < 0.001.
FIGURE 11

Transwell migration and invasion assays demonstrated that knockdown of GPC3 significantly inhibited the migration and invasive capacities of
osteosarcoma cells compared to control groups. Quantification of migrated and invasive cells confirmed a substantial reduction following GPC3 silencing
(P < 0.05). These findings suggest that GPC3 promotes both migration and invasion in osteosarcoma cells, highlighting its potential as a therapeutic target.
*** indicates P < 0.001; ** indicates P < 0.01.
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Among the seven model genes, FBLN1, FAP, and ECM2

exhibited the highest expression levels in the OS samples. FBLN1

is an extracellular glycoprotein involved in the regulation of cell

morphology, growth, adhesion, and movement. It functions as a

tumor suppressor in prostate cancer and breast cancer, and the

inactivation of FBLN1 has been linked to the progression of gastric

cancer (23). FAP is a surface serine protease that is upregulated in

reactive stromal fibroblasts, and has been detected in 90% of cancers

(24). EMC2, a member of the endoplasmic reticulum membrane

protein complex (EMC) family, is associated with ferroptosis and

highly expressed in tumors like COAD, LUSC, and BRCA (25). FAP

and EMC2 showed the strongest correlation, suggesting similar

functions in the formation, remodeling, and degradation of the

ECM. Pan-cancer analysis of these genes showed high expression of

all seven genes in CHOL, and upregulation of EMC2 in most

tumors, including OS. The remodeling and breakdown of ECM are

conducive to the invasion and metastasis of cancer cells.

Furthermore, FBLN1, FAP, ECM2, and AMPH were upregulated

in the immune subtypes, which is indicative of the complex

interactions among the immune cells and other components in

the TME. The above genes may be considered as potential

therapeutic targets and prognostic markers for OS< and warrant

further investigation. COL3A1 was strongly correlated with the

infiltration of immune cells and matrix cells in CHOL, while GPC3

and AMPHwere strongly correlated with the immune infiltration in

UCS. Furthermore, FAP and AMPH were related to stromal

infiltration and stemness in most tumors, indicating a key role in

tumor occurrence and development.

COL3A1, also known as type III collagen, is abundant in blood

vessels (26) and plays a key role in breast cancer metastasis. Fibroblasts

expressing high levels of EMP1 and COL3A may be involved in the

metastatic processes of breast cancer, kidney cancer, and prostate

cancer (27). GPC3 is a cell surface oncofetal protein that is

overexpressed in 70% of hepatocellular carcinoma (HCC) cases, and

promotes tumor growth by regulating the Wnt/Frizzled signaling

complex (28). AMPH is predominantly expressed in neuronal

synapses, and may play a role in exocytosis and in the dynamic

organization of membrane-associated cytoskeleton. Aberrant

expression of AMPH has been linked to dysregulated actin

distribution, which affects entry into quiescence (29). CYP7B1, also

known as cytochrome P450, acts on hydroxylated steroids such as

dehydroepiandrosterone, 25-hydroxycholesterol, and 27-

hydroxycholesterol. Abnormal expression of CYP7B1 may lead to

neonatal liver failure and progressive neurodegeneration in adults

(30). The function of GPC3 in OS is ambiguous at present.

Knocking down GPC3 in OS cell lines inhibited their proliferation,

indicating that GPC3 has an oncogenic function in OS.
5 Conclusion

We established a prognostic model for OS based on the genes

related to EMT. The EMT-based model predicted the prognosis,
Frontiers in Immunology 16
immune landscape, and immunotherapy responses on OS patients,

and may prove to be valuable for the development of personalized

treatment strategies.
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21. Pietrovito L, Cañizares-Pérez A, Farsi E, Caporalini C, Basile MS, Iantomasi T,
et al. Bone marrow-derived mesenchymal stem cells promote invasiveness and
transendothelial migration of osteosarcoma cells via a mesenchymal to amoeboid
transition. Mol Oncol. (2018) 12:659–76. doi: 10.1002/mol2.2018.12.issue-5

22. Cui J, Dean D, Hornicek FJ, Chen Z, Duan Z. The role of extracelluar matrix in
osteosarcoma progression and metastasis. J Exp Clin Cancer Res. (2020) 39:178.
doi: 10.1186/s13046-020-01685-w

23. Cheng YY, Jin H, Liu X, Siu JM, Wong YP, Ng EK, et al. Fibulin 1 is
downregulated through promoter hypermethylation in gastric cancer. Br J Cancer.
(2008) 99:2083–7. doi: 10.1038/sj.bjc.6604760

24. Hartmann KP, Yao X, Song L, Zhou P, Shi H, Xu C, et al. FAP-retargeted Ad5
enables in vivo gene delivery to stromal cells in the tumor microenvironment.Mol Ther.
(2023) 31:2914–28. doi: 10.1016/j.ymthe.2023.08.018

25. Liu X, Yao X, Song L, Zhou P, Shi H, Xu C, et al. The ncRNA-mediated
overexpression of ferroptosis-related gene EMC2 correlates with poor prognosis and
tumor immune infiltration in breast cancer. Front Oncol. (2021) 11:777037.
doi: 10.3389/fonc.2021.777037

26. Doherty EL, Alafifi A, Elser G, Nguyen M, Brady SE, Zhao NC, et al. Patient-
derived extracellular matrix demonstrates role of COL3A1 in blood vessel mechanics.
Acta Biomater. (2023) 166:346–59. doi: 10.1016/j.actbio.2023.05.015

27. Du H, Wu X, Yang Z, Chen L, Fu K, Chen X, et al. An integrated analysis of bulk
and single-cell sequencing data reveals that EMP1(+)/COL3A1(+) fibroblasts
contribute to the bone metastasis process in breast, prostate, and renal cancers.
Front Immunol. (2023) 14:1313536. doi: 10.3389/fimmu.2023.1313536

28. Li D, Li N, Zhang YF, Fu H, Feng M, Schneider D, et al. Persistent polyfunctional
chimeric antigen receptor T cells that target glypican 3 eliminate orthotopic
hepatocellular carcinomas in mice. Gastroenterology. (2020) 158:2250–2265.e20.
doi: 10.1053/j.gastro.2020.02.011

29. Yamamoto R, Yamamoto Y, Munechika R, Saito A, Tochimoto M, Wakui K,
et al. Genetic mapping of the human amphiphysin gene (AMPH) at 7p14-p13 excludes
its involvement in retinitis pigmentosa 9 or dominant cystoid macular dystrophy. Am J
Hum Genet. (1995) 57:970–2. doi: 10.1016/0002-9297(95)90036-5

30. Stiles AR, McDonald JG, Bauman DR, Russell DW. CYP7B1: one cytochrome
P450, two human genetic diseases, and multiple physiological functions. J Biol Chem.
(2009) 284:28485–9. doi: 10.1074/jbc.R109.042168
frontiersin.org

https://doi.org/10.1038/s41572-022-00409-y
https://doi.org/10.1002/advs.202302272
https://doi.org/10.1097/JS9.0000000000001340
https://doi.org/10.1097/JS9.0000000000001340
https://doi.org/10.1186/s12943-024-02105-9
https://doi.org/10.1200/JCO.2014.59.4895
https://doi.org/10.1200/JCO.2014.59.4895
https://doi.org/10.1186/s12951-023-01961-9
https://doi.org/10.1186/s12951-023-01961-9
https://doi.org/10.1073/pnas.2016653118
https://doi.org/10.1016/S0959-8049(02)00037-0
https://doi.org/10.3390/ijms21155207
https://doi.org/10.3390/cells10071668
https://doi.org/10.3238/arztebl.m2023.0079
https://doi.org/10.1038/s41413-024-00359-z
https://doi.org/10.1186/s13287-018-0780-x
https://doi.org/10.1186/s13287-018-0780-x
https://doi.org/10.3390/ijms241512520
https://doi.org/10.1186/s13045-022-01347-8
https://doi.org/10.1002/jcp.v232.12
https://doi.org/10.1172/JCI39104
https://doi.org/10.1038/s41388-021-01868-5
https://doi.org/10.1016/j.drup.2020.100715
https://doi.org/10.1002/ijc.v104:2
https://doi.org/10.1002/mol2.2018.12.issue-5
https://doi.org/10.1186/s13046-020-01685-w
https://doi.org/10.1038/sj.bjc.6604760
https://doi.org/10.1016/j.ymthe.2023.08.018
https://doi.org/10.3389/fonc.2021.777037
https://doi.org/10.1016/j.actbio.2023.05.015
https://doi.org/10.3389/fimmu.2023.1313536
https://doi.org/10.1053/j.gastro.2020.02.011
https://doi.org/10.1016/0002-9297(95)90036-5
https://doi.org/10.1074/jbc.R109.042168
https://doi.org/10.3389/fimmu.2025.1566061
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Glypican-3 regulated epithelial mesenchymal transformation-related genes in osteosarcoma: based on comprehensive tumor microenvironment profiling
	1 Introduction
	2 Methods
	2.1 Data acquisition and preparation
	2.2 Consensus clustering
	2.3 Weighted gene co-expression network analysis
	2.4 Construction and validation of the prognostic model
	2.5 Multi-omics analysis based on prognostic models
	2.6 Predictive value of prognostic models in immunotherapy
	2.7 Single-cell analysis
	2.8 Co-expression network analysis of single-cell data
	2.9 Pan-cancer analysis
	2.10 Cell culture and transfection
	2.11 Total RNA extraction and RT-qPCR
	2.12 Cell assay of GPC3 in osteosarcoma
	2.13 Statistical analysis

	3 Results
	3.1 Consensus clustering
	3.2 WGCNA
	3.3 Construction and validation of the prognostic model
	3.4 Immune-related analysis based on the prognostic model
	3.5 Single-cell analysis
	3.6 Co-expression network analysis of single-cell data
	3.7 Pan-cancer analysis of model genes
	3.8 GPC3 plays a tumorigenic role in osteosarcoma

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


