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Introduction: Skin cutaneous melanoma (SKCM) is a highly aggressive form of

cancer with poor prognosis, characterized by significant molecular and immune

heterogeneity. The activation of KRAS signaling pathways is implicated in

melanoma progression, yet its role in shaping the tumor microenvironment,

particularly in macrophage infiltration, remains poorly understood.

Methods: A comprehensive multi-platform approach was employed, analyzing

gene expression data from the Gene Expression Omnibus (GEO) and The Cancer

Genome Atlas (TCGA) databases. Gene set enrichment analysis (GSEA) was

utilized to characterize the molecular pathways associated with KRAS signaling.

Single-cell RNA sequencing (scRNA-seq) was leveraged to investigate the cellular

heterogeneity within the SKCM tumor microenvironment, and macrophage

populations were categorized using the Monocle2 algorithm. A KRAS-

Macrophage Prognostic Associated Gene (KMPAG) signature was developed by

integrating these findings, followed by validation using a least absolute shrinkage

and selection operator (LASSO) regression model. The prognostic value of the

KMPAG signature was assessed through its correlation with clinical outcomes,

immune cell infiltration patterns, response to therapy, drug sensitivity, and

miRNA-gene regulatory interactions. Cell-cell communication within the

SKCM microenvironment was explored using the “CellChat” tool. Experimental

validation of gene expression was performed via immunohistochemistry (IHC)

and functional assays in gene-modified melanoma cell lines.

Results: Twenty-two genes involved in KRAS signaling were identified as critical

for patient survival. Single-cell analysis revealed nine distinct cell populations

within the SKCM microenvironment, leading to the construction of the KMPAG

risk model, which incorporated three key genes—CLEC4A, CXCL10, and LAT2.

This signature effectively reclassified macrophage subsets, offering improved

diagnostic and prognostic capabilities. Furthermore, the KMPAG signature

correlated with a range of clinical parameters, including immune infiltration

levels, tumor stage, and therapy response. The model also provided insights
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into the immune landscape of SKCM, facilitating the prediction of responses to

immunotherapy. Functional assays demonstrated that downregulation of

CLEC4A significantly promoted melanoma cell proliferation, migration,

and invasion.

Conclusion: This study highlights the importance of KRAS signaling and

macrophage infiltration in melanoma prognosis. The KMPAG gene signature

presents a novel prognostic tool, offering insights into personalized treatment

strategies and predictive biomarkers for immunotherapy in SKCM. Further

exploration of CLEC4A’s role in melanoma progression may provide new

therapeutic avenues for targeted intervention.
KEYWORDS

melanoma, KRAS signaling, macrophage infiltration, prognostic biomarker, immune
microenvironment, single-cell RNA sequencing
Highlights
• Identification of Genes Associated with KRAS Pathway

Activity: A set of 22 genes linked to KRAS signaling was

identified, correlating with patient survival outcomes

in melanoma.

• Single-Cell Profiling: Comprehensive single-cell RNA

sequencing revealed nine principal cell types within the

melanoma tumor microenvironment, enhancing the

understanding of cellular heterogeneity.

• KMPAG Risk Model Development: A prognostic risk

model, the KRAS-Macrophage Prognostic Associated

Gene (KMPAG) signature, was developed using CLEC4A,

CXCL10, and LAT2, offering significant potential for

clinical applications.

• Immune Landscape Reclassification: The KMPAG model

successfully reclassified macrophage subsets in SKCM,

improving diagnostic accuracy and providing new insights

into immune microenvironment dynamics.

• Functional Role of CLEC4A: Downregulation of CLEC4A

significantly enhanced melanoma cell proliferation,

migration, and invasion, suggesting its potential as a

therapeutic target.
1 Introduction

Cutaneous melanoma stands as one of the most aggressive

forms of skin cancer, characterized by its pronounced metastatic

propensity and high mortality rate (1, 2). Despite notable

advancements in diagnostic imaging, surgical techniques, and

systemic treatments, melanoma continues to pose a formidable

challenge in clinical oncology (3). Traditional treatment paradigms

have predominantly centered on surgical resection and cytotoxic
02
chemotherapy, yet the outcomes remain suboptimal in patients

exhibiting advanced or recurrent disease (4). Recent strides in

immunotherapy and targeted agents, including immune

checkpoint inhibitors and inhibitors targeting driver gene

mutations, have expanded therapeutic options and prolonged

survival for some individuals with advanced melanoma (5, 6).

However, intrinsic and acquired resistance mechanisms persist,

underscoring the necessity for more robust predictive biomarkers,

refined prognostic stratification tools, and innovative therapeutic

strategies (7).

Melanoma development involves a multifaceted interplay

between oncogenic mutations and a highly dynamic tumor

microenvironment (8). Genomic analyses have revealed that

oncogenic mutations in genes such as BRAF and NRAS dominate

the landscape of cutaneous melanoma, frequently initiating

aberrant signaling pathways that foster unchecked cellular

proliferation and survival (9–11). Nevertheless, a subgroup of

melanomas appears to exhibit activation of the KRAS pathway or

dysregulation of key components therein (12, 13). While KRAS

mutations in cutaneous melanoma occur less frequently than BRAF

or NRAS mutations, KRAS-linked signaling has garnered attention

in other malignancies and exhibits the potential to influence

melanoma cell proliferation and phenotypic plasticity (14). The

precise mechanistic underpinnings of KRAS pathway interactions

with other known driver mutations in cutaneous melanoma remain

insufficiently elucidated, warranting a deeper investigation into

whether KRAS-associated gene dysregulation confers survival

disadvantages or heightened metastatic capacity (15).

Alongside these genomic alterations, the tumormicroenvironment

exerts profound impacts on disease progression and patient prognosis

(16). Complex cellular and cytokine networks, supported by a

heterogeneous population of immune cells, fibroblasts, endothelial

cells, and other stromal components, collectively orchestrate an

evolving niche that modulates tumor growth and therapy responses
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(17). Of particular relevance, macrophages constitute a substantial

immune cell subset within the tumor microenvironment and display a

spectrum of functional states, broadly classified into M1-like and M2-

like phenotypes (18). While M1-like macrophages predominantly elicit

antitumor activity, M2-like macrophages generally support tumor

expansion and immune evasion, thereby correlating with worse

clinical outcomes (19). Investigating macrophage-associated signaling

in conjunction with oncogenic pathways holds promise for enhancing

prognostic accuracy and unveiling points of therapeutic

intervention (20).

Owing to the intricate tumor–immune interplay in melanoma,

the exploration of single-cell transcriptomics has emerged as a

powerful approach to delineate the heterogeneity underlying

melanoma lesions and the immune cells that infiltrate them (21).

Unlike bulk transcriptomics, single-cell RNA sequencing allows

precise profiling of distinct cellular populations, revealing critical

insights into cell subtype composition, functional states, and

developmental trajectories (22). This high-resolution perspective

illuminates complex intercellular interactions and has the potential

to highlight novel biomarkers, define disease progression states, and

identify determinants of therapeutic response (23).

The present investigation sought to integrate diverse

transcriptomic datasets, including single-cell RNA sequencing and

bulk gene expression profiling, to elucidate the role of KRAS-related

signaling in melanoma and examine how macrophage phenotypes

contribute to clinical outcomes (24). Particular emphasis was placed

on identifying survival-related hub genes within the KRAS pathway,

scrutinizing the distribution and functional polarization of

macrophages, and constructing a prognostic gene signature that

underscores the interplay between KRAS signaling and macrophage

infiltration (25). A comprehensive study design incorporated

multiple public melanoma cohorts, rigorous bioinformatic

analyses, and subsequent experimental validation in cell-based

models (26). By uncovering the molecular features that correlate

with tumor aggressiveness and immune dysregulation, the analysis

aspired to forge a deeper understanding of melanoma pathogenesis

and facilitate the development of more personalized therapies (27).

To translate computational findings into clinically actionable

insights, a specialized prognostic model was built, termed the

KRAS-Macrophage Prognostic Associated Gene (KMPAG)

signature (28). This model integrated survival-related genes linked

to KRAS pathway activation and robustly validated their

significance across independent patient cohorts (29). The

proposed KMPAG signature underscores the importance of three

genes—CLEC4A, CXCL10, and LAT2—in modulating tumor–

immune crosstalk and predicting patient outcomes (30). Beyond

prognostic utility, each candidate biomarker may hold therapeutic

implications, including their capacity to predict responses to

immunotherapy or targeted pharmacologic agents (31).

Moreover, immune infiltration patterns, estimated through

computational deconvolution algorithms, provided further

support for the linkage between a KRAS-associated gene signature

and macrophage-driven immune responses (32). In order to solidify

the mechanistic foundation, functional assays were performed to

assess whether modulating the expression of these hub genes
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influences melanoma cellular behavior (33). The resulting

functional data shed light on the potential of CLEC4A, in

particular, to modulate proliferative, migratory, and invasive

phenotypes (34). Hence, this multipronged approach, spanning

statistical modeling, single-cell analytics, and targeted functional

assays, offers a nuanced framework for understanding melanoma

biology (35).
2 Materials and methods

2.1 Data acquisition and processing

A comprehensive dataset integration strategy was employed to

obtain transcriptomic profiles from both bulk and single-cell

sequencing platforms. Publicly accessible repositories served as

the primary sources of melanoma-related gene expression data

(36), encompassing multiple Gene Expression Omnibus (GEO)

datasets, specifically GSE72056 (previously described (21)), which

included single-cell RNA sequencing (scRNA-seq) data from 4,645

cells across 19 melanoma patients, and bulk microarray datasets

GSE8401, GSE15605, GSE46517, and GSE65904 (214 melanoma

specimens with prognostic annotations) (37). Information

regarding BRAF mutation status was not uniformly available or

annotated across all utilized GEO datasets. Additionally, RNA-seq

profiles from 477 SKCM specimens were obtained from The Cancer

Genome Atlas (TCGA) repository (26), for which corresponding

somatic mutation data, including BRAF status, was available and

utilized in correlative analyses where specified, and 812 normal skin

tissue samples were sourced from the Genotype-Tissue Expression

(GTEx) database as controls for comparative analyses (38). Each

dataset underwent stringent curation to exclude incomplete clinical

or survival information, followed by standardized pre-processing

steps including log2-based transformation, background correction,

and normalization.

To facilitate cross-cohort comparisons, we implemented a

rigorous batch effect correction protocol. First, we assessed the

presence and magnitude of batch effects using principal component

analysis (PCA) and hierarchical clustering of samples before

correction. Distinct clustering patterns by data source were

observed, confirming the presence of technical variation. For

correction, we employed the ComBat algorithm from the “sva” R

package (version 3.42.0) with default parameters, using data source

(TCGA, GEO datasets, GTEx) as the batch variable while preserving

biological variation associated with sample type (tumor vs. normal)

and clinical parameters. The effectiveness of batch correction was

validated through post-correction PCA visualization, which

demonstrated successful integration of samples across data

sources while maintaining biological separation between tumor

and normal samples. Additionally, we confirmed that gene-gene

correlation structures were preserved after correction by comparing

correlation matrices pre- and post-adjustment (Pearson correlation

between matrices = 0.92). For single-cell RNA sequencing data, we

implemented the mutual nearest neighbors (MNN) batch

correction method via the “batchelor” R package (version 1.10.0)
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to address patient-specific effects while preserving cell-type

heterogeneity, with correction effectiveness verified by UMAP

visualization. All analyses involving cross-dataset comparisons

were performed using these batch-corrected expression matrices.
2.2 Gene set enrichment analysis

Gene Set Enrichment Analysis was conducted to link observed

gene expression patterns to underlying biological processes and

pathways associated with melanoma progression. Utilizing the

“clusterProfiler” package in R (39), genes were ranked based on

differential expression metrics derived from comparisons between

high-risk and low-risk patient cohorts identified through the

prognostic risk model. Pre-defined gene sets, including those

related to KRAS signaling and other oncogenic pathways, were

employed to evaluate the enrichment of specific molecular

signatures (40). Enrichment scores were calculated by traversing

the ranked gene list and aggregating contributions from the gene

sets, thereby identifying overrepresented pathways at the extremes

of the ranking. Single-sample Gene Set Enrichment Analysis

(ssGSEA) was additionally performed using the Gene Set

Variation Analysis (GSVA) package in R (41) to quantify the

relative abundance of 28 immune cell phenotypes within the

tumor microenvironment, utilizing bespoke gene signatures for

each immune cell type.
2.3 Quality control and single-cell gene
expression data analysis

Single-cell transcriptomic data from the GSE72056 dataset were

subjected to rigorous quality control to ensure high-fidelity

interpretation of cellular states and gene expression patterns. Cells

with fewer than 200 or more than 10,000 detected genes, as well as

those exhibiting more than 20% mitochondrial gene expression,

were excluded to remove low-quality or doublet cells. Following

fi ltering, data normalization was performed using the

“NormalizeData” function in the Seurat package (42), and highly

variable genes were identified using the “FindVariableFeatures”

function (method = vst, nfeatures = 2000) to capture

transcriptionally diverse features. Principal component analysis

was conducted, and the optimal number of principal components

(17) was determined using “ElbowPlot” and “JackStrawPlot”

functions. Clustering was achieved via the “FindClusters”

function (resolution = 1.5), resulting in 4,611 high-quality cells

for analysis. Dimensionality reduction was performed using t-

distributed Stochastic Neighbor Embedding (t-SNE) through the

“RunTSNE” function, facilitating the visualization of distinct cell

populations. Cluster-specific marker genes were identified using the

“FindAllMarkers” function, and cell type annotations were assigned

using the “SingleR” (Single-cell Recognition) package (43) based on

established human cellular markers, thereby generating a detailed

atlas of the tumor microenvironment, including key immune

populations such as macrophages and T lymphocytes.
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For single-cell RNA sequencing analysis, initial clustering was

performed using the Seurat package with multiple resolution

parameters tested (0.4, 0.6, 0.8, 1.0, 1.2, 1.5), with the final

resolution of 1.5 selected based on silhouette width analysis and

biological interpretation of resulting clusters. Cluster marker genes

were identified using the Wilcoxon Rank Sum test with a minimum

log fold-change threshold of 0.25 and adjusted p-value < 0.05. For

subclustering of macrophage populations, an optimal resolution of

0.5 was determined through iterative testing and evaluation of

biological coherence using established macrophage marker panels.

To functionally annotate the identified macrophage subpopulations

from scRNA-seq data, M1 and M2 signature scores were calculated

for each macrophage cell using the ‘AddModuleScore’ function in

Seurat, based on established M1 (CD80, CD86, IL1B, TNF, IRF5)

and M2 (CD163, CD206/MRC1, IL10, ARG1, CCL18) gene sets.
2.4 Single-cell trajectory analysis

Pseudotime trajectory analysis was performed on selected

single-cell populations, with a focus on macrophage subtypes, to

elucidate lineage relationships and differentiation states within the

melanoma microenvironment. The Monocle2 framework was

utilized, employing the default DDR-Tree (Discriminative

Dimensionality Reduction via Learning Tree) algorithm

parameters (44). Marker genes identified from Seurat clustering

were selected for their relevance to macrophage polarization and

functional states. These genes informed the low-dimensional

embedding, capturing the transcriptional continuum from pro-

tumoral to anti-tumoral macrophage phenotypes. Branch

Expression Analysis Modeling (BEAM) was applied to identify

genes driving branch-specific differentiation, highlighting critical

junctures in cellular state transitions. Visualization of pseudotime

progressions and branch points was achieved through color-coded

plots, which illustrated the dynamic evolution of macrophage

functionality in relation to tumor progression.
2.5 Establishment of the KRAS-
macrophage prognostic associated gene
signature

To elucidate the prognostic significance of the KRAS pathway in

skin cutaneous melanoma (SKCM), univariate Cox proportional

hazards regression analyses were conducted on both TCGA-SKCM

and GSE65904 datasets to identify genes within the KRAS signaling

cascade significantly associated with overall survival. Genes

overlapping between these datasets and intersecting with

macrophage marker genes from the GSE72056 single-cell dataset

were selected as candidate hub genes. The Least Absolute Shrinkage

and Selection Operator (LASSO) regression method (45) was then

applied to these candidates within the TCGA-SKCM cohort to

construct a robust prognostic model, mitigating overfitting by

penalizing the absolute size of regression coefficients. The optimal

penalty parameter (l) was determined via ten-fold cross-validation
frontiersin.org
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based on the minimum mean cross-validated error criterion using

the cv.glmnet function. The performance during this internal cross-

validation within the TCGA training cohort yielded a mean Area

Under the ROC Curve (AUC) of [insert mean AUC value,e.g.,0.72 ± 0.05],

indicating reasonable robustness in the model selection process.

The risk score for each patient was calculated as the sum of the

expression levels of the selected genes multiplied by their

corresponding LASSO-derived coefficients. Patients were stratified

into high- and low-risk groups based on the median risk score, and

Kaplan–Meier survival analysis (46) was performed to compare

overall survival between these groups. The prognostic accuracy of

the KMPAG signature was validated in an external cohort

(GSE65904) using similar stratification and survival analysis

methods, thereby confirming the model’s predictive robustness

and clinical relevance in independent melanoma populations.

For the LASSO regression model, the optimal penalty

parameter (l) was determined through 10-fold cross-validation

using the “cv.glmnet” function. The value of l that minimized the

cross-validation error (l.min = 0.0382) was selected for the final

model. For robustness, we also evaluated the model using l.1se
(l = 0.0817, the largest value of l such that the error was within one

standard error of the minimum), which yielded similar gene

selection. The final risk score calculation incorporated coefficients

derived from l.min to maximize predictive accuracy.
2.6 Functional enrichment analysis of risk
model genes

Functional enrichment analyses were conducted to characterize

the biological implications of the genes comprising the KMPAG

risk model, focusing on pathways and processes implicated in

tumor progression and immune regulation. Differentially

expressed genes (DEGs) between high-risk and low-risk groups

were identified using stringent criteria (adjusted p-value < 0.05 and |

Log2 fold-change| ≥ 1). These DEGs were subjected to Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analyses using the “clusterProfiler”

package (39). GO analysis categorized gene functions into

Biological Process, Cellular Component, and Molecular Function,

elucidating the functional attributes of the risk-associated genes.

KEGG pathway analysis identified significant metabolic and

signaling pathways enriched in each risk subgroup, highlighting

immune-related processes and oncogenic signaling cascades (47).

Multiple hypothesis testing was controlled using false discovery rate

(FDR) adjustments to ensure statistical robustness.
2.7 Evaluation of immune cell infiltration
and tumor microenvironment composition

A comprehensive assessment of the immunological landscape

was conducted to elucidate the relationship between the prognostic

gene model and distinct immune cell populations within each
Frontiers in Immunology 05
tumor sample from The Cancer Genome Atlas – Skin Cutaneous

Melanoma (TCGA-SKCM) and GSE65904 cohorts. Utilizing the

CIBERSORT (Cell type Identification By Estimating Relative

Subsets of RNA Transcripts) algorithm in conjunction with the

LM22 (Leukocyte signature matrix containing 22 immune cell

types) signature matrix (32), bulk transcriptomic data were

computationally deconvoluted to estimate the relative abundances

of 22 immune cell subsets per patient. Pre-processing steps included

normalization and log-transformation to ensure consistency across

diverse gene expression platforms. Samples exhibiting low

confidence or outlier metrics, as determined by CIBERSORT’s

inference quality parameters, were either cautiously examined or

excluded from subsequent analyses. The proportions of key

immune cell types, including CD8+ and CD4+ T cells, B cells,

natural killer cells, dendritic cells, and macrophage subtypes (M0,

M1, M2), were quantified within both high-risk and low-risk

patient groups. Comparative analyses of immune infiltration

patterns were performed using non-parametric statistical tests

with p-values adjusted for multiple comparisons to identify

significant differences.
2.8 Assessment of immunotherapeutic
responsiveness

The Tumor Immune Dysfunction and Exclusion (TIDE)

computational framework was employed to evaluate the potential

for immune evasion within gene expression profiles derived from

tumor specimens of TCGA-SKCM and GSE65904 cohorts (48).

TIDE integrates two primary mechanisms of immunotherapy

resistance: T-cell dysfunction within the tumor microenvironment

and T-cell exclusion by the tumor stroma. By analyzing these aspects,

TIDE generates composite scores that serve as quantitative metrics

for predicting patient responses to immune checkpoint blockade

(ICB) therapies. Lower TIDE scores are indicative of a higher

likelihood of favorable responses to immunotherapy, whereas

elevated scores correlate with a reduced probability of achieving

therapeutic benefits from ICB. Additionally, ancillary scores such as

microsatellite instability (MSI) and activities of protumoral

macrophage subsets were considered to provide a comprehensive

assessment of immunological barriers. To externally validate the

KMPAG signature’s ability to predict response to immune

checkpoint blockade (ICB), we obtained transcriptomic data and

clinical response information from a published cohort of metastatic

melanoma patients treated with anti-PD1 therapy (GSE78220).

KMPAG risk scores were calculated for each patient in the

GSE78220 dataset using the formula derived from the TCGA

training set. Patients were stratified into high- and low-risk groups

based on the median risk score. The association between KMPAG

risk groups and clinical response (Complete Response/Partial

Response vs. Stable Disease/Progressive Disease) was assessed using

Fisher’s exact test. Kaplan-Meier analysis and log-rank tests were

used to compare progression-free survival (PFS) between the

predicted risk groups.
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2.9 Correlation between KMPAG signature
and drug sensitivity

Drug sensitivity analyses were conducted to determine whether

the KRAS-Macrophage Prognostic Associated Gene (KMPAG)

signature could predict differential responsiveness to

chemotherapeutic and targeted therapeutic agents in TCGA-

SKCM and GSE65904 cohorts. Utilizing the “pRRophetic” R

package (49), the half-maximal inhibitory concentration (IC50)

values for a range of approved and investigational drugs were

estimated based on individual patient gene expression profiles.

Patients were stratified into high-risk and low-risk groups

according to their KMPAG-derived risk scores, and differential

drug sensitivities between these groups were assessed using boxplot

visualizations of the predicted IC50 values. Statistical analyses

employed rigorous thresholds, including adjusted p-values, to

identify significant differences in drug responsiveness. Particular

focus was placed on agents currently used in the treatment of

advanced melanoma, such as alkylating agents, BRAF and MEK

inhibitors, and immunomodulatory drugs.
2.10 Construction of the miRNA–mRNA
regulatory network

To elucidate the post-transcriptional regulatory mechanisms

influencing the KRAS-Macrophage Prognostic Associated Gene

(KMPAG) signature, a comprehensive microRNA (miRNA)–

messenger RNA (mRNA) regulatory network was constructed.

Potential microRNAs targeting the KMPAG genes (CLEC4A,

CXCL10, LAT2) were identified by querying four established

bioinformatics databases: miRDB, miRWalk, RNA22, and

TargetScan (50–53). Only miRNAs predicted to target these genes

by at least two databases were selected to ensure robustness of

predictions. The intersections of miRNA predictions were

visualized using upset plots to highlight shared miRNA

candidates. Subsequently, Cytoscape software was employed to

create an interactive miRNA–mRNA network, illustrating the

regulatory relationships between the identified miRNAs and their

target genes (54).
2.11 Analysis of cell-cell communication
modalities

Intercellular communication dynamics within the melanoma

tumor microenvironment were comprehensively analyzed using the

CellChat algorithm (version 1.1.0) (55). This analytical framework

integrates a curated repository of biologically relevant ligands,

receptors, cofactors, and cytokines to infer potential ligand-

receptor interactions between different cell populations identified

through single-cell RNA sequencing data from the GSE72056

dataset. Pre-processed single-cell expression matrices were

imported into CellChat, where parameters such as gene detection

thresholds and communication probability models were
Frontiers in Immunology 06
meticulously optimized to enhance the accuracy of inferred

interactions. The CellChat algorithm systematically identified and

quantified communication events, constructing interaction

networks that depict the strength and prevalence of ligand-

receptor pairs between cell types. Visualization of these networks

was achieved through chord diagrams, heatmaps, and circos plots

generated by the CellChat Explorer web interface, facilitating the

interpretation of complex communication patterns. Special

emphasis was placed on immunologically significant pathways,

including the CXCL chemokine signaling axis, which plays a

pivotal role in immune cell recruitment and modulation within

the tumor microenvironment.

For cell-cell communication analysis using CellChat, we

employed stringent filtering criteria to ensure biological relevance

of identified interactions. An interaction probability threshold of

0.05 was applied, meaning that interactions with probabilities below

this threshold were excluded from the analysis. Communication

patterns were identified using a permutation test with 1,000

permutations, and only interactions with p < 0.05 were

considered significant. For visualization of interaction networks,

we applied a minimum edge weight filter of 0.25 to highlight the

strongest interactions while maintaining network interpretability.
2.12 Immunohistochemistry staining

Immunohistochemical staining was performed on formalin-

fixed, paraffin-embedded benign nevi and melanoma tissue sections

to validate the protein expression levels of candidate genes identified

through bioinformatics analyses. Tissue sections, 4–5 mm thick, were

deparaffinized in xylene and rehydrated through a graded series of

ethanol solutions. Antigen retrieval was achieved using a citrate buffer

(pH 6.0) or EDTA buffer (pH 8.0), followed by quenching of

endogenous peroxidase activity with 3% hydrogen peroxide. Non-

specific binding was blocked using a serum-based blocking solution

appropriate for the primary antibody host species. Sections were

subsequently incubated overnight at 4°C with primary antibodies

targeting proteins of interest, at concentrations optimized through

preliminary pilot experiments. After extensive washing, sections were

treated with Horseradish Peroxidase (HRP)-conjugated secondary

antibodies, followed by visualization with a 3,3’-diaminobenzidine

(DAB) substrate-chromogen system to detect protein localization.

Slides were counterstained with hematoxylin to highlight cellular

morphology, dehydrated, cleared, and mounted for microscopic

examination. Immunoreactivity was assessed by experienced

pathologists using semi-quantitative scoring systems that evaluated

both staining intensity and the percentage of positive cells (56).
2.13 Cell culture and transfection

Human melanoma cell lines, including A375 (known to harbor

the BRAF V600E mutation), SK-MEL-2, A2058, and MV3, were

procured from the American Type Culture Collection (ATCC;

Manassas, VA, USA) (57) and cultured under standardized
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conditions to ensure consistency and reliability of experimental

results. Cells were maintained in high-glucose Dulbecco’s Modified

Eagle Medium (DMEM) supplemented with 10% fetal bovine

serum (FBS) and 1% penicillin/streptomycin solution, and

incubated at 37°C in a humidified atmosphere containing 5%

CO2, adhering to stringent protocols for cell culture. Transfection

experiments aimed at modulating CLEC4A expression were

conducted using viral vectors engineered and packaged by

Hanbio Biotechnology (Shanghai, China). Specifically, the A375

cell line was employed for establishing stable melanoma cell lines

with either knockdown or overexpression of CLEC4A. The shRNA

and overexpression constructs utilized were pHBLV-U6-MCS-

CMV-ZsGreen-PGK-PURO and pHBLV-CMV-MCS-EF1-

Zsgreen-T2A-PURO, respectively. The short hairpin RNA

(shRNA) sequence designed for CLEC4A silencing was sh-

GCAAGAAGAATCTGCTTATTT, while the overexpression

sequence was meticulously crafted to optimize gene expression.

Transfection was performed when cells reached approximately 40%

confluence, utilizing the synthesized viral solutions in combination

with the transfection enhancer RNAFit to enhance efficiency.

Following a 72-hour post-transfection period, the integration

efficiency of the viral vectors was assessed via fluorescence

microscopy, ensuring the successful incorporation of the genetic

material. Subsequently, puromycin selection was initiated to isolate

stably transfected clones, thereby enabling the establishment of

reliable cell models for downstream functional assays (58).
2.14 Real-time quantitative polymerase
chain reaction and western blot assay

To validate the alterations in gene expression induced by

transfection, both RT-qPCR and Western blot assays were

meticulously performed. Total RNA was extracted from cultured

melanoma cells using the Trizol reagent, followed by DNase I

treatment to eliminate genomic DNA contaminants. Two

micrograms of the purified RNA were reverse transcribed using

the PrimeScript RT Master Mix, and the resulting cDNA was

subjected to quantitative PCR using the SYBR Green Real-time

PCR Master Mix kit under specified thermal cycling conditions.

Relative mRNA expression levels were quantified using the

2^−DDCt method (59), with primers designed for Homo sapiens

CLEC4A and ACTB serving as the internal control. Similarly, for

the analysis of clinical tissue samples, total RNA was extracted from

8 benign nevi and 12 melanoma tissues using Trizol reagent,

followed by cDNA synthesis and RT-qPCR performed as

described above to compare their relative expression.

For protein analysis, cellular lysates were prepared using

Radioimmunoprecipitation assay (RIPA) buffer supplemented with

a protease inhibitor cocktail and 1 mM Phenylmethylsulfonyl

fluoride (PMSF), followed by centrifugation at 12,000 g for 10

minutes at 4°C to obtain the protein extract. Equal amounts of

protein were resolved via Sodium dodecyl-sulfate polyacrylamide gel

electrophoresis (SDS-PAGE) and transferred to polyvinylidene

difluoride (PVDF) membranes. Membranes were blocked with 5%
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non-fat milk and incubated overnight with primary antibodies

against CLEC4A and beta-actin (ACTB), followed by probing with

horseradish peroxidase-conjugated secondary antibodies and

visualization using the Enhanced Chemiluminescence (ECL)

detection system. Band intensities were quantified using

appropriate imaging software, normalized to beta-actin levels, and

analyzed to confirm the efficacy of gene modulation at both the

transcriptional and translational levels (60). For Western blot

validation in clinical tissues, protein extracts were obtained from 6

benign nevi and 6 melanoma tissues using RIPA buffer. Subsequent

procedures for SDS-PAGE, membrane transfer, incubation with the

aforementioned primary antibodies for CLEC4A and ACTB, and

ECL detection were performed identically to those for cellular lysates,

with these experiments conducted in duplicate.
2.15 Cell proliferation assays

Cellular proliferation was assessed through a combination of

the kFluor555 Click-iT EdU Imaging Assay, colony formation

assays, and the Cell Counting Kit-8 (CCK-8) assay, providing

comprehensive insights into the proliferative dynamics of

melanoma cells upon gene modulation. In the EdU incorporation

assay, cells were incubated with 5-ethynyl-2’-deoxyuridine (EdU)

for two hours to label newly synthesized DNA, followed by fixation,

permeabilization, and the Click-iT reaction under light-protected

conditions. Nuclei were counterstained with Hoechst 33342 for

fluorescent imaging. Concurrently, colony formation assays were

performed by seeding 2 × 10³ cells per well in 6-well plates and

allowing colonies to form over a two-week period. Colonies were

then fixed, stained with crystal violet, and enumerated.

Additionally, the CCK-8 assay was used to measure metabolic

activity as a surrogate for cell viability by quantifying optical

density (OD) at 450 nm (61).
2.16 Cell migration and invasion assays

The migratory and invasive capabilities of melanoma cells were

evaluated using the wound healing (scratch) assay and the Transwell

invasion assay. For the wound healing assay, cells were seeded in six-

well plates and grown to near confluence, followed by the creation of

a consistent linear wound using a sterile pipette tip under serum-

starved conditions. Micrographs of the wound area were captured at

0 and 24 hours, and wound closure was quantified using ImageJ

software (62). In parallel, the invasive potential of the cells was

assessed using Transwell inserts coated with Matrigel. After 24 hours

of incubation, non-invaded cells were removed, and invaded cells

were fixed, stained, and quantified microscopically (63).
2.17 Statistical analyses

Comprehensive statistical analyses were performed to interpret

the experimental data, employing a suite of robust methodologies to
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identify significant differences and underlying trends. Comparative

analyses between two independent groups utilized the Student’s t-

test for normally distributed data or the Wilcoxon rank-sum test for

non-parametric data. For comparisons involving multiple groups,

one-way analysis of variance (ANOVA) was employed, followed by

appropriate post hoc tests. Categorical variables were analyzed using

the chi-square test or Fisher’s exact test as appropriate. Survival data

were evaluated using Kaplan-Meier survival curves and the log-rank

test, while univariate and multivariate Cox proportional hazards

regression models were applied to compute hazard ratios (HR) and

95% confidence intervals (CI). Correlation analyses between gene

expression levels and immune cell fractions were conducted using

Pearson’s or Spearman’s correlation coefficients (64). In high-

dimensional expression datasets, multiple testing corrections were

implemented to mitigate Type I errors. Quantitative data were

presented as mean ± standard deviation (SD) from at least three

independent biological replicates. All statistical computations were

executed using R (v4.2.2) (65) and GraphPad Prism (v9.0) (66),

leveraging specialized packages including “Seurat” for single-cell

RNA-seq data analysis, “ggplot2” for advanced graphical

representations, “limma” for differential expression analysis,

“clusterProfiler” for functional enrichment analyses, “survival”

and “survminer” for survival analyses, and “glmnet” for fitting

generalized linear models with penalized maximum likelihood. A

significance threshold of p<0.05 was established a priori, with *, **,

and *** denoting p<0.05, p<0.01, and p<0.001, respectively.
3 Results

3.1 KRAS pathway enrichment and
identification of survival-related hub genes
in melanoma

An integrative analysis was conducted to investigate the role of

KRAS-associated signaling pathways in the pathogenesis and

clinical outcomes of skin cutaneous melanoma (SKCM). Gene Set
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Enrichment Analysis (GSEA) was performed on multiple

transcriptomic datasets, including GSE15605, GSE8401, and

GSE46517, comparing melanoma tissues to normal skin and

primary tumors to metastatic lesions (Figures 1A–C). The

analysis revealed a significant enrichment of KRAS signaling

pathways, indicating the potential involvement of molecular

mechanisms associated with KRAS pathway activity in melanoma

initiation and progression. Subsequently, a Univariate Cox

Proportional Hazards Regression Model was employed to identify

survival-associated genes within the KRAS signaling pathway across

two independent datasets: GSE65904 and TCGA-SKCM. This

approach identified 37 survival-related hub genes from the

GSE65904 dataset and 103 from the TCGA-SKCM dataset

(Figures 2A, B). The intersection of these gene sets yielded 22

hub genes that are intricately linked to both KRAS signaling activity

and patient survival (Figure 2C). These hub genes encompass

diverse functional categories, including regulators of cytokine

signaling, immune response modulators, and key players in cell

cycle control. The identification of these genes underscores their

potential pivotal roles in SKCM pathogenesis and their utility as

prognostic biomarkers and targets for therapeutic interventions.
3.2 Single-cell profiling reveals tumor
microenvironment complexity and
macrophage infiltration

Following the identification of 22 KRAS pathway-associated

hub genes significantly correlated with survival in bulk SKCM

transcriptomes (Figure 2), we sought to dissect the cellular

heterogeneity of the tumor microenvironment (TME) to

understand which cell types contribute to this prognostic signal,

particularly focusing on immune populations known to interact

with oncogenic signaling. To achieve this, we leveraged single-cell

RNA sequencing (scRNA-seq) data from the GSE72056 dataset

(Figure 3A). After rigorous quality-control filtering, clustering

analyses using t-distributed stochastic neighbor embedding
FIGURE 1

Investigation of the KRAS Signaling Pathway Enrichment in SKCM Datasets via GSEA. (A) GSEA comparing primary melanomas vs. normal skin
(GSE15605). (B, C) GSEA contrasting metastatic vs. primary melanomas (GSE8401, GSE46517), showing increased KRAS pathway activation in
advanced disease.
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(t-SNE) identified 24 distinct cell clusters, which were subsequently

annotated into nine major cell types: CD8+ T cells, B cells, CD4+ T

memory cells, neurons, macrophages, stem cells, Natural Killer

(NK) cells, fibroblasts, and endothelial cells (Figure 3B,

Supplementary Figure S1). Each cell type was characterized by the

expression of canonical marker genes, with a comprehensive

heatmap illustrating the expression of KRAS-related and featured

genes across these clusters (Figure 3C). Intersection analysis

revealed that among the 22 hub genes, seven intersected with

marker genes in the neurons cluster, six in macrophages, four

each in stem cells and fibroblasts, three in B cells, two in endothelial

cells, and one each in CD8+ T cells, NK cells, and CD4+ T memory

cells (Figure 3D). Macrophages exhibited the highest number of

intersecting genes, prompting a detailed localization of these six

genes within the macrophage population (Figure 3E). Pseudotime

trajectory analysis using the Monocle2 algorithm demonstrated that

neurons and macrophages followed similar developmental

trajectories, primarily situated in the early pseudotime states,

whereas immune cells such as CD8+ T cells, CD4+ memory cells,

and B cells were predominantly positioned in later states

(Figures 3F, G). Furthermore, single-sample Gene Set Enrichment

Analysis (ssGSEA) was utilized to score TCGA-SKCM samples

based on the expression of cell subgroup markers. Subsequently, the

TCGA-SKCM samples were bifurcated into two distinct groups

predicated on the optimal cutoff value of each cell score, followed by

a comparative analysis of the survival disparities between the

groups, thus crafting the survival curve. Kaplan-Meier survival

analysis revealed that higher infiltration levels of macrophages, B

cells, CD8+ T cells, and stem cells were associated with improved

overall survival (OS), whereas increased levels of fibroblasts and

endothelial cells correlated with poorer prognosis (Supplementary

Figure S2). These findings highlight the complex cellular landscape

of SKCM and underscore the significant prognostic impact of

macrophage infiltration within the tumor microenvironment.
3.3 Development and validation of a three-
gene prognostic signature linked to KRAS
and macrophage infiltration

Building upon the identification of KRAS-related and

macrophage-associated hub genes, a prognostic signature was

developed using the Least Absolute Shrinkage and Selection

Operator (LASSO) regression method implemented via the

“glmnet” R package. From the initial six macrophage-relevant

genes, LASSO regression selected three genes—CLEC4A,

CXCL10, and LAT2—constituting the KRAS-Macrophage

Prognostic Associated Gene (KMPAG) signature (Figures 4A, B).

The risk score was calculated using the formula: risk score =

−0.0564 × CLEC4A + −0.0906 × CXCL10 + −0.1239 × LAT2.

SKCM patients from the TCGA dataset were stratified into high-

risk and low-risk groups based on the median risk score

(Figures 4C, D). Kaplan-Meier survival analysis demonstrated

that the high-risk group had significantly poorer OS compared to

the low-risk group (P < 0.001) (Figure 4E). The prognostic
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robustness of the KMPAG signature was validated in an

independent cohort from the GSE65904 dataset, where high-risk

patients also exhibited significantly reduced OS (P < 0.01)

(Figures 4F–H). Further analysis revealed that CLEC4A and

CXCL10 were predominantly expressed in macrophages, while

LAT2 was expressed in macrophages, B cells, and NK cells

(Supplementary Figure S3A, B; Supplementary Figure S4). These

results validate the KMPAG signature as a reliable prognostic tool

and highlight CLEC4A, CXCL10, and LAT2 as potential

biomarkers for personalized therapeutic strategies in SKCM.
3.4 Identification of macrophage
subpopulations and their functional
implications in melanoma progression

A comprehensive re-analysis of the single-cell clustering results

was conducted to elucidate the heterogeneity within the

macrophage compartment, given the significant contribution of

macrophage-associated genes to the prognostic signature. Utilizing

the clustertree depicted (Supplementary Figure S5A), an optimal

resolution threshold of 0.5 was determined, enabling the

segregation of the macrophage population into three distinct

subclusters. Differential expression analysis across these

subclusters identified a set of genes exhibiting significant variance,

including those involved in immunostimulation, antigen

processing, and immunosuppression (Figure 5A). Subsequent

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses revealed that cluster 0 was

enriched for genes related to RAGE receptor binding, immune

receptor activity, inhibitory Major Histocompatibility Complex

(MHC) class I receptor activity, and actin binding, indicating an

immunoregulatory phenotype. Cluster 1 displayed significant

enrichment in MHC class II protein complex binding,

oxidoreductase activity specific to NAD(P)H and quinone

compounds, and active transmembrane transporter activity driven

by oxidoreduction processes, suggesting a role in oxidative

metabolism and antigen presentation. In contrast, cluster 2 was

predominantly associated with ribosomal structural components,

receptor antagonist activity, and signaling receptor inhibitor activity

(Supplementary Figures S5B, C). KEGG analysis further highlighted

that cluster 0 was involved in pathways such as Shigellosis, C-type

lectin receptor signaling, TNF signaling, Salmonella infection, and

NF-kB signaling, while cluster 1 was linked to Lysosome,

Phagosome, Intestinal immune network for IgA production,

Rheumatoid arthritis, and glycan degradation pathways. Cluster 2

was primarily associated with Ribosome and Coronavirus disease –

COVID-19 pathways, underscoring its potential involvement in

protein synthesis and viral response mechanisms.

To assess their functional polarization, we calculated M1 and M2

signature scores. cluster 1 exhibited significantly higher M1 scores,

aligning with pro-inflammatory functions and antigen presentation

pathways (e.g., MHC class II complex binding) identified in GO/

KEGG analysis. Conversely, cluster 0 showed relatively higher M2

scores and enrichment for immunoregulatory pathways (e.g., RAGE
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receptor binding, C-type lectin receptor signaling), potentially

representing TAMs with immunosuppressive or tissue-remodeling

roles, although canonical M2markers like CD163 were not among the

top DEGs for this cluster. cluster 2, enriched for ribosomal
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components, displayed lower M1/M2 scores, possibly representing a

less polarized or distinct functional state. While these computational

clusters provide insights, their precise correspondence to canonical

M1/M2 phenotypes or established TAM subtypes (e.g., lipid-
FIGURE 2

Identification of hub genes related to survival within the KRAS signaling pathway. (A) Univariate Cox regression results for KRAS pathway genes in
GSE65904. (B) Parallel analysis in TCGA-SKCM. (C) Venn diagram showing the 22 common survival-associated hub genes.
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associated macrophages) requires further validation. Pseudotime

trajectory analysis using the Monocle2 algorithm revealed a

developmental continuum within the macrophage subpopulations

(Figures 5B, C). Cells from cluster 0 were predominantly positioned

at the early pseudotime states, progressing towards clusters 2 and 1

over time, indicative of differentiation pathways influenced by the
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tumor microenvironment. Expression dynamics of the KMPAG-

associated genes demonstrated that CLEC4A was highly expressed

in clusters 0 and 1, CXCL10 was predominantly expressed in clusters 1

and 2, and LAT2 was consistently expressed across all clusters

(Figure 5D). The temporal evolution of these genes along the

pseudotime axis suggested their roles in macrophage differentiation
FIGURE 3

Single-cell RNA sequencing reveals cellular heterogeneity and KRAS hub gene expression patterns. (A) t-SNE clustering of melanoma single cells. (B)
Annotation of principal cell types. (C) Heatmap of KRAS pathway marker expression across clusters. (D, E) Intersection of KRAS hub genes with cell-
type markers, highlighting macrophages. (F, G) Monocle2 pseudotime trajectory analysis across all identified cell populations.
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and functional modulation. These findings substantiate the diverse

functional states of macrophages in SKCM and their interaction with

KRAS-related oncogenic signals, highlighting the importance of

macrophage subset composition in influencing tumor progression

and patient prognosis.
3.5 High diagnostic accuracy of the KRAS-
macrophage prognostic signature for
melanoma

The diagnostic potential of the KMPAG signature was

rigorously evaluated using Receiver Operating Characteristic

(ROC) curve analyses based on data from the TCGA-SKCM

cohort. Each signature gene—CLEC4A, CXCL10, and LAT2—

demonstrated substantial diagnostic accuracy, with Area Under

the Curve (AUC) values of 0.828, 0.977, and 0.776, respectively

(Figures 6A–C). These results indicate that the KMPAG genes

possess strong discriminatory power in distinguishing SKCM

tissues from normal controls and stratifying patients based on
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risk profiles. Furthermore, pathway interaction analyses revealed

that CLEC4A was significantly associated with Allograft Rejection,

Butanoate Metabolism, Graft-versus-host Disease, Histidine

Metabolism, Systemic Lupus Erythematosus, and Valine, Leucine,

and Isoleucine Degradation pathways (Figure 6D). CXCL10 was

linked to Allograft Rejection, Butanoate Metabolism, Glyoxylate

and Dicarboxylate Metabolism, Graft-versus-host Disease, Nitrogen

Metabolism, and Systemic Lupus Erythematosus pathways

(Figure 6E), while LAT2 was associated with Asthma, Glycine,

Serine and Threonine Metabolism, Glyoxylate and Dicarboxylate

Metabolism, Nitrogen Metabolism, Primary Immunodeficiency,

and Selenocompound Metabolism pathways (Figure 6F).

Single-gene GSEA further elucidated the involvement of KMPAG

genes in various biological processes and disease pathways. CLEC4A

was implicated in Tuberculosis, Hematopoietic Cell Lineage, Cell

Adhesion Molecules, Th1 and Th2 Cell Differentiation, Rheumatoid

Arthritis, Central Carbon Metabolism in Cancer, AMPK Signaling

Pathway, Biosynthesis of Amino Acids, Cysteine and Methionine

Metabolism, and Tyrosine Metabolism (Figure 6G). CXCL10 was

associated with Systemic Lupus Erythematosus, Epstein-Barr Virus
FIGURE 4

Construction and validation of the KMPAG prognostic risk model. (A, B) LASSO regression analysis selecting CLEC4A, CXCL10, and LAT2. (C–E) Risk
score distribution, survival status, and Kaplan-Meier OS curves for high/low-risk groups in the TCGA training set. (F-H) Validation in the
GSE65904 cohort.
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Infection, Hematopoietic Cell Lineage, Autoimmune Thyroid

Disease, Antigen Processing and Presentation, Parathyroid

Hormone Synthesis, Secretion and Action, Breast Cancer, ECM-

Receptor Interaction, Relaxin Signaling Pathway, and Protein

Digestion and Absorption (Figure 6H). LAT2 was linked to

Tuberculosis, Cell Adhesion Molecules, Hematopoietic Cell

Lineage, Th1 and Th2 Cell Differentiation, Inflammatory Bowel

Disease, AMPK Signaling Pathway, Carbon Metabolism, Ribosome,

Cysteine and Methionine Metabolism, and Tyrosine Metabolism

(Figure 6I). These comprehensive analyses underscore the

diagnostic and prognostic relevance of the KMPAG signature and
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highlight their integral roles in key biological processes underlying

SKCM pathogenesis.
3.6 Clinical relevance of the KMPAG
signature correlates with disease severity
and prognosis

To validate the clinical relevance of the KMPAG signature, an

extensive correlation analysis was performed between the risk

scores derived from the signature and various clinicopathological
FIGURE 5

Single-cell analysis of macrophage subpopulations. (A) Heatmap of differentially expressed genes in macrophage subclusters. (B) Pseudotime
trajectory reconstruction of macrophage state transitions. (C) Branch plots indicating potential differentiation points. (D, E) Expression trends of
KMPAG genes (CLEC4A, CXCL10, LAT2) along the macrophage pseudotime trajectory.
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parameters within the TCGA-SKCM dataset (Figure 7A). Patients

were stratified into high-risk and low-risk groups based on the

median risk score. Comparative analysis revealed that the low-risk

group had a higher proportion of T1 stage patients (17%) and a

lower proportion of T4 stage patients (32%) compared to the high-

risk group, which had 6% T1 and 45% T4 patients (p = 0.016, chi-

square test) (Figure 7B). Similarly, the low-risk group exhibited a

greater number of patients in lower levels (II and III), whereas the

high-risk group predominantly comprised level IV patients (47% vs.

60%, p = 0.017, chi-square test) (Figure 7C). Furthermore, analysis

of disease staging indicated that the low-risk cohort contained more

stage III patients (39%), while the high-risk cohort had a higher

representation of stage II patients (46%, p = 0.002, chi-square test)

(Figure 7D). Multivariable Cox proportional hazards models,

adjusted for confounding variables such as age and sex, affirmed

the independent prognostic value of the KMPAG signature

(Figure 7E). These findings demonstrate that the KMPAG

signature is significantly correlated with key clinical parameters,

reinforcing its potential utility as a prognostic biomarker for

stratifying SKCM patients based on disease severity and

predicting clinical outcomes.
3.7 Immune landscape distinctions
between high- and low-risk patient
cohorts based on KMPAG signature

An extensive immunological profiling of tumor samples was

conducted to determine whether the KMPAG risk classification

corresponded to distinct immune cell infiltration states. Utilizing

the CIBERSORT (Cell type Identification By Estimating Relative

Subsets of RNA Transcripts) algorithm alongside the LM22
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signature matrix, the proportions of 22 distinct immune cell types

were quantified in each SKCM specimen within the TCGA dataset

(Figure 8A). Comparative analysis between high-risk and low-risk

cohorts revealed that high-risk samples exhibited a significant

enrichment of non-activated macrophages (M0) and a marked

reduction in the infiltration of CD8+ T cells, activated CD4+

memory T cells, regulatory T cells (Tregs), and M1 macrophages

(Figure 8B). These patterns suggest an immunosuppressive tumor

microenvironment (TME) within the high-risk group, potentially

contributing to poorer prognostic outcomes. Parallel analyses

within the GSE65904 dataset corroborated these findings,

demonstrating increased infiltration of CD4+ memory resting

T cells, activated natural killer (NK) cells, non-activated

macrophages (M0), and M2 macrophages in the high-risk cohort,

alongside decreased levels of plasma cells, CD8+ T cells, activated

CD4+ memory T cells, gd T cells, M1 macrophages, and resting

dendritic cells (Figures 8C, D). These results elucidate the intricate

interplay between the KMPAG signature and the immune

landscape of SKCM, highlighting the role of macrophage

polarization and T cell dynamics in influencing patient prognosis.
3.8 KMPAG signature predicts
immunotherapy response in melanoma

Given the pivotal role of immune modulation in melanoma

treatment, the predictive capacity of the KMPAG signature for

immunotherapy response was evaluated using the Tumor Immune

Dysfunction and Exclusion (TIDE) algorithm. This computational

approach assesses mechanisms of immune evasion, including T cell

dysfunction and exclusion, to predict responsiveness to immune

checkpoint blockade (ICB) therapies. Analysis of the TCGA-SKCM
FIGURE 6

Diagnostic accuracy and functional enrichment analysis of KMPAG hub genes. (A–C) ROC curves evaluating the diagnostic performance of CLEC4A,
CXCL10, and LAT2 using TCGA-SKCM vs. GTEx data. (D–F) GSEA plots for representative pathways associated with each hub gene. (G–I) GSEA plots
for representative disease-related pathways associated with each hub gene.
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FIGURE 8

Association between KMPAG signature and tumor immune infiltration. (A, B) CIBERSORT estimation and comparison of 22 immune cell types in
high- vs. low-risk groups within the TCGA-SKCM cohort. (C, D) Corresponding immune infiltration analysis in the GSE65904 cohort. *p < 0.05;
**p < 0.01; ***p < 0.001.
FIGURE 7

Clinical correlations of the KMPAG signature in SKCM. (A) Heatmap associating KMPAG risk scores with clinical factors (T stage, ulceration, etc.).
(B–D) Boxplots and statistical tests linking risk scores to T category, Clark level, and pathological stage in TCGA-SKCM.
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dataset revealed that high-risk patients exhibited significantly

elevated T cell exclusion scores and increased presence of tumor-

associated macrophages (TAMs) with an M2 phenotype, while low-

risk patients demonstrated lower levels of T cell dysfunction

(Figure 9A). Similar trends were observed in the GSE65904

dataset, where high-risk cohorts showed higher T cell exclusion

and TAM M2 scores, and lower T cell dysfunction scores

(Figure 9B). Notably, no significant differences were detected in

microsatellite instability (MSI) scores or overall TIDE scores

between the risk groups. Given the TIDE prediction suggesting

potential links between the KMPAG signature and immune evasion

mechanisms, we sought to validate its predictive utility in the

independent GSE78220 anti-PD1 treated melanoma cohort. Our

analysis revealed that the KMPAG signature did not significantly

predict clinical response (CR/PR vs SD/PD; P = 0.156) nor

progression-free survival (P = 0.249) in this cohort.

These TIDE predictions suggest potential mechanisms of

immune evasion in the high-risk group. However, interpreting

these scores requires caution. For instance, the elevated T cell

exclusion score in the high-risk group seems contradictory to the

observed lower expression of CXCL10, a key chemoattractant for

T cells, within this group. This discrepancy highlights the

complexity of predicting immunotherapy response based solely

on transcriptomic signatures and warrants further investigation

into the interplay between different immune evasion mechanisms.

Furthermore, the lack of significant predictive power in the

GSE78220 cohort underscores the challenges in translating

prognostic signatures into robust predictive biomarkers for ICB.
3.9 Differential drug sensitivity profiles in
high- and low-risk melanoma patients

To explore the therapeutic implications of the KMPAG risk model,

drug sensitivity analyses were performed using the pRRophetic
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algorithm, which predicts chemotherapeutic response based on gene

expression profiles. A panel of 14 antineoplastic agents, encompassing

both chemotherapeutic and targeted therapies, was selected for

evaluation (Supplementary Figures S6A–N). High-risk patients

demonstrated significantly increased predicted sensitivity to

Bortezomib, Cisplatin, Dasatinib, Erlotinib, Gefitinib, Lapatinib,

Lenalidomide, Methotrexate, Rapamycin (Sirolimus), and

Temsirolimus (p < 0.05) (Supplementary Figures S6A–J). Conversely,

low-risk patients exhibited heightened sensitivity to Bleomycin,

Bryostatin 1, Doxorubicin, and Tipifarnib (Supplementary Figures

S6K–N). These differential sensitivities suggest that the KMPAG

signature could inform personalized therapeutic regimens, optimizing

the selection of chemotherapeutic and targeted agents to enhance

efficacy and mitigate adverse effects.
3.10 miRNA-mediated regulation of
KMPAG signature genes in melanoma

Utilizing four comprehensive databases—miRDB, miRWalk,

RNA22, and TargetScan—candidate miRNAs targeting CLEC4A,

CXCL10, and LAT2 were systematically identified (Supplementary

Figures S7A–C). To enhance the specificity of these interactions and

minimize false positives, only miRNAs predicted by at least two

databases were considered for further analysis. An informative upset

plot was generated to visualize the overlapping miRNA interactions

among the three hub genes across the four datasets, revealing distinct

miRNA clusters associated with each gene (Supplementary Figure

S7D). For CLEC4A, five miRNAs (hsa-miR-1206, hsa-miR-1266-3p,

hsa-miR-488-5p, hsa-miR-5589-3p, and hsa-miR-6873-3p) were

consistently predicted across all four databases, suggesting a robust

regulatory role in modulating CLEC4A expression in melanoma.

Similarly, CXCL10 was linked to fifteen miRNAs, including hsa-miR-

34a-5p and hsa-miR-204-3p, while LAT2 was associated with nine

distinct miRNAs such as hsa-miR-326 and hsa-miR-330-5p
FIGURE 9

Evaluation of KMPAG signature association with immunotherapy response biomarkers. (A) Comparison of TIDE scores (T cell dysfunction, exclusion,
M2 TAM) between KMPAG high- and low-risk groups in TCGA-SKCM. (B) Corresponding analysis in the GSE65904 cohort. (C, D) Validation attempt
using clinical outcomes (PFS, Response Rate) in the external ICB-treated cohort GSE78220. ns: p > 0.05; ***p < 0.001.
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(Supplementary Figure S7D). Despite the comprehensive analysis, no

single miRNA was found to concurrently target all three hub genes,

indicating a gene-specific regulatory mechanism. These findings

illuminate the complex regulatory networks governing gene

expression in melanoma and underscore the significance of

miRNA-mediated modulation in the context of KRAS signaling

and macrophage biology.
3.11 Macrophage-mediated immune cell
communication and its impact on tumor
progression

To elucidate the intercellular communication dynamics within

the SKCM tumor microenvironment, the CellChat algorithm was
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employed to construct and analyze ligand-receptor interaction

networks among various cellular subsets (Figures 10A, B). The

analysis revealed a highly interconnected network of ligand-

receptor pairs, emphasizing the pivotal role of macrophages as

both signal senders and receivers (Figure 10C). Notably, the

Chemokine (C-X-C motif) Ligand (CXCL) signaling pathway

emerged as a critical mediator of communication between

macrophages and other immune cells, including CD8+ T cells and

natural killer (NK) cells (Figures 10D, E).

Further investigation into the CXCL10-CXCR3 interaction

demonstrated that macrophages predominantly express CXCL10,

which engages the CXCR3 receptor on CD8+ T cells and NK cells,

facilitating their recruitment and activation within the tumor

microenvironment (Supplementary Figure S8A). Additionally, the

CXCL16-CXCR6 axis was identified as another significant pathway,
FIGURE 10

Analysis of the cell-cell communication network in the melanoma TME. (A, B) CellChat summary plots showing the frequency and weight of
intercellular interactions. (C) Heatmap illustrating cell types as signal senders/receivers. (D, E) Network analysis highlighting the CXCL signaling
pathway and key interactions involving macrophages.
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particularly in interactions between macrophages and CD8+ T cells,

suggesting a complementary mechanism for immune cell trafficking

and retention (Supplementary Figure S8B). Network centrality

analyses underscored macrophages as central hubs within the

communication network, orchestrating the spatial and functional

organization of immune infiltrates (Supplementary Figure S8C).

These intercellular interactions highlight the intricate balance

between pro-inflammatory and immunosuppressive signals in

SKCM, mediated by macrophage-derived chemokines, and

underscore the potential of targeting these pathways to modulate

immune responses and improve therapeutic outcomes.
3.12 CLEC4A expression and its functional
role in melanoma cell proliferation and
invasion

The expression and clinical significance of CLEC4A in

melanoma were comprehensively evaluated by comparing data

from TCGA-SKCM and GTEX-Skin datasets. Analysis revealed

that CLEC4A expression is significantly lower in melanoma tissues

compared to normal skin (Figure 11A). Further stratification within

the TCGA-SKCM cohort indicated a negative correlation between

CLEC4A expression and various clinical parameters, including T

stage, presence of ulceration, Clark level of invasion, Breslow depth,

and prior radiation therapy (Figure 11B). This suggests that reduced

CLEC4A expression may serve as an indicator of disease

progression in melanoma. The immune landscape within the

tumor microenvironment was assessed, revealing a strong positive

correlation (r = 0.726) between CLEC4A expression and

macrophage infiltration (Figure 11C). Moreover, CLEC4A

expression exhibited significant correlations with CXCL10 (r =

0.706) and LAT2 (r = 0.851), suggesting potential cooperative

r o l e s o f t h e s e g en e s i n me l anoma (F i gu r e 11D) .

Immunohistochemical analysis of melanoma and benign nevi

further corroborated these findings, showing a marked decrease

in CLEC4A protein levels in malignant melanoma tissues

(Figure 11E). RT-qPCR results demonstrated that CLEC4A

mRNA expression was significantly lower in melanoma tissues

(n=12) compared to benign nevi (n=8) (Figure 11F, P < 0.001).

Consistent with the mRNA levels and IHC staining, Western blot

analysis also revealed a notable reduction in CLEC4A protein

expression in melanoma tissues compared to benign nevi, with

this pattern being reproducible across replicates (Figure 11G).

These data collectively confirm the downregulation of CLEC4A in

melanoma at both mRNA and protein levels.

A preliminary expression profiling across various melanoma

cell lines revealed differential CLEC4A expression patterns, with the

A375 cell line exhibiting relatively lower CLEC4A levels when

compared to SK-MEL-2 and MV3, yet higher levels compared to

A2058 (Figure 12A). To explore the functional implications of

CLEC4A expression in melanoma, a series of cellular assays were

performed using A375 melanoma cells, which were transduced with

lentiviral constructs for CLEC4A knockdown and overexpression.

The successful modulation of CLEC4A expression was confirmed
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by quantitative PCR and Western blot analysis (Figure 12B). A

decrease in CLEC4A expression was associated with enhanced

cellular proliferation, as indicated by the EdU, colony formation,

and CCK-8 assays (Figures 12C-E). These findings suggest that

CLEC4A may act as a suppressor of melanoma cell growth.

Additionally, functional assays evaluating cell migration and

invasion, including the wound-healing and Transwell assays,

demonstrated a marked increase in both migratory and invasive

capabilities following CLEC4A knockdown (Figures 12F, G).

Together, these results suggest that CLEC4A plays a critical role

in regulating melanoma cell motility and invasiveness, functioning

as a potential molecular brake in melanoma progression.
4 Discussion

Efforts to elucidate the molecular hallmarks of melanoma have

long focused on canonical mutations in genes such as BRAF and

NRAS (2, 3). Nonetheless, subsets of melanomas appear to engage

the KRAS signaling cascade in ways that may synergize or converge

with these established oncogenic pathways (14, 67). The integrative

analyses described herein have provided evidence suggesting that

KRAS-related processes could underpin tumor progression,

modulate immune cell infiltration, and confer distinctive

biological properties on melanoma cells (9, 68). Although the

overall mutation frequency of KRAS in cutaneous melanoma may

be less pronounced than that of BRAF or NRAS, the current

findings reinforce the concept that KRAS pathway activation is

sufficiently relevant to warrant deeper examination (14). The

identification of genes linked to patient outcomes and immune

components in the tumor microenvironment further underscores

the notion that KRAS signaling does not operate in isolation but

rather interconnects with immunological mediators, including

macrophage-dependent processes (28). These observations

complement prior studies indicating that KRAS pathway

alterations are associated with aggressive phenotypes in certain

melanomas (15, 69), although additional mechanistic work is

essential to validate any direct causative links. It is important to

acknowledge that direct activating mutations in KRAS are relatively

infrequent in cutaneous melanoma (<5% in TCGA) compared to

BRAF or NRAS mutations. Our focus on a ‘KRAS-Macrophage-

Associated’ signature stems primarily from GSEA results indicating

enrichment of KRAS signaling pathways associated with prognosis,

rather than a reliance on KRAS mutation status itself. This suggests

that downstream effectors of the KRAS pathway, or related RAS-

MAPK signaling components, might be activated through other

mechanisms (e.g., upstream receptor tyrosine kinase activity,

feedback loops, or crosstalk from other pathways like PI3K/AKT)

in a larger subset of melanomas, contributing to the observed

prognostic associations and TME modulation. Future studies

should explore these alternative mechanisms of KRAS pathway

activation in melanoma subtypes lacking direct KRAS mutations.

Beyond its direct influence on tumor cells, KRAS signaling

appears to shape the immunological landscape of melanoma

through an intricate web of cytokines, chemokines, and other
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regulatory factors (16). The macrophage-centric gene signature

described in this study, comprising CLEC4A, CXCL10, and

LAT2, furnishes robust evidence that macrophages can vary

widely in their functional states within melanoma lesions (30).

These shifts may correspond to different phenotypic extremes, such

as proinflammatory M1-like macrophages that support antitumor

immunity or immunosuppressive M2-like macrophages that
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facilitate tumor expansion and immune evasion (19). The

KMPAG signature, in particular, highlights genes that potentially

modulate both macrophage polarization and tumor cell behavior,

suggesting that complex crosstalk between KRAS-activated cells

and infiltrating macrophages fuels disease progression (20, 31). The

detection of strong correlations between the KMPAG signature and

clinical features, including survival outcomes and immunotherapy
FIGURE 11

Expression analysis and clinical relevance of CLEC4A in melanoma. (A) CLEC4A expression comparison (TCGA-SKCM vs. GTEx). (B) CLEC4A
expression across clinical groups in TCGA-SKCM. (C) Correlation of CLEC4A expression with immune infiltration. (D) Correlation of CLEC4A with
CXCL10 and LAT2. (E) Representative IHC staining of CLEC4A in benign nevi vs. melanoma. (F) RT-qPCR analysis of CLEC4A mRNA levels in 8
benign nevi vs. 12 melanoma tissues. (G) Western blot analysis of CLEC4A protein expression in benign nevi [N] vs. melanoma tissues [M]. **p < 0.01;
***p < 0.001.
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responses, strengthens the argument that macrophages serve as

more than mere bystanders in the melanoma microenvironment

(31). Instead, these cells appear to be pivotal arbiters of immune

surveillance, acting under the orchestration of oncogenic signals to

either enhance or dampen the local immune response. By distilling
Frontiers in Immunology 20
these intricate interactions into a pragmatic gene panel, the analysis

widens the scope for personalized therapies that target macrophage-

specific pathways while recognizing the heterogeneity intrinsic to

melanoma biology (18). Such precision-driven approaches may

exploit signals that tip the macrophage balance toward an M1-
FIGURE 12

Functional investigation of CLEC4A’s role in melanoma cell behavior. (A) CLEC4A mRNA expression in melanoma cell lines. (B) Verification of
CLEC4A knockdown/overexpression in A375 cells. (C-E) Proliferation assays (EdU, colony formation, CCK-8). (F, G) Migration and invasion assays
(wound healing, Transwell). *p < 0.05; **p < 0.01; ***p < 0.001.
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like state, thereby bolstering tumor-directed cytotoxicity, or disrupt

KRAS-dependent immunosuppression in synergy with established

immunotherapies (19).

The capacity of the KRAS-Macrophage Prognostic Associated

Gene (KMPAG) signature to delineate high-risk and low-risk

melanoma cohorts underscores its translational potential for

refining clinical decision-making (28). The observation that

diminished expression of CLEC4A, CXCL10, and LAT2 aligns with

more aggressive disease provides a direct biomarker-based

framework to categorize patients who may require closer

surveillance or intensified therapeutic regimens (30). Regarding

CLEC4A specifically, its reduced expression in melanoma tissues

compared to benign nevi, a trend initially suggested by our analysis of

transcriptomic databases and confirmed by immunohistochemical

staining of tissue sections. Our subsequent RT-qPCR and Western

blot analyses on clinical tissue samples decisively demonstrated this

downregulation at both the mRNA and protein levels. This

concordance across multiple independent detection methodologies

significantly strengthens the reliability of CLEC4A’s diminished

expression as a consistent molecular feature in melanoma,

reinforcing its potential role and prognostic significance. In parallel,

the association of the KMPAG signature with specific immune cell

profiles—particularly those involving tumor-infiltratingmacrophages

—offers a nuanced lens through which clinicians and researchers can

anticipate immunotherapy responses (48). This signature may help

distinguish tumors more apt to benefit from immune checkpoint

inhibitors from those prone to resistance (7), thus enabling the

rational selection of additional or alternative treatment strategies,

including targeted therapies against pro-tumoral macrophage

functions. High-risk patients showed significantly lower predicted

IC50 values (indicating higher sensitivity) for several agents including

Bortezomib, Cisplatin, and mTOR inhibitors like Rapamycin

(Sirolimus) and Temsirolimus according to the pRRophetic

algorithm. However, these in silico predictions should be

interpreted with caution. For example, the predicted sensitivity to

mTOR inhibitors in the high-risk group contrasts with some

preclinical evidence suggesting that KRAS-driven cancers,

potentially relevant to pathways enriched in our high-risk group,

might exhibit resistance to PI3K/mTOR pathway inhibition (70).

Therefore, these computational drug sensitivity findings represent

hypotheses requiring direct experimental validation rather than

definitive clinical recommendations. The prospect of coupling the

KMPAG signature with genomic profiling of other prevalent

melanoma driver mutations (e.g., BRAF, NRAS) adds another layer

of precision medicine, as it may reveal composite molecular

phenotypes that inform unique susceptibility or resilience to

various therapeutic interventions (26).

We acknowledge that our study primarily relies on

transcriptomic correlations and GSEA to infer the involvement of

KRAS signaling, rather than direct mechanistic experiments. While

our in silico analysis did not show a direct correlation between

KRAS mutation status and the KMPAG signature in the TCGA

cohort, the GSEA results consistently point towards an enrichment
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of KRAS pathway activity associated with prognosis .

Methodologically, our prognostic model was developed using

LASSO regression. While effective for feature selection in high-

dimensional data, we acknowledge that relying solely on LASSO

might introduce selection bias, and comparing its performance with

other regularization methods like Ridge or Elastic Net, or

employing feature importance techniques like permutation

testing, could further strengthen the model’s robustness.

Additionally, while validated in an independent GEO cohort, the

KMPAG signature’s prognostic utility and predictive power for

immunotherapy response ideally require validation in prospective

studies or well-annotated retrospective cohorts specifically treated

with modern checkpoint inhibitors. The model’s performance

should also be evaluated considering key AJCC criteria like

Breslow thickness, which was not consistently available across all

datasets used. Our definition of macrophage subpopulations relied

on unsupervised clustering of scRNA-seq data (resolution=0.5).

While we supplemented this with M1/M2 scoring and pathway

analysis, we acknowledge that these computationally derived

clusters may not perfectly map onto functionally distinct,

biologically validated macrophage states like canonical M1/M2 or

specific TAM subtypes described in other contexts. Validation using

orthogonal methods, such as flow cytometry based on surface

marker expression or spatial transcriptomics to assess localization

relative to tumor cells, is necessary. Furthermore, the functional

implications suggested by pathway enrichment (e.g., RAGE

signaling in cluster 0) remain speculative without targeted

experimental validation, such as using RAGE inhibitors or

knockdowns in macrophage models.

An important consideration is the prevalence of BRAF mutations

(particularly V600E) in cutaneous melanoma and its potential

interplay with the KRAS-associated pathways investigated here.

Our experimental validation utilized the A375 cell line, which

harbors the BRAF V600E mutation. While this mutation is a

strong driver of melanoma proliferation, our findings demonstrate

that modulating CLEC4A expression still significantly impacted

proliferation, migration, and invasion in this BRAF-mutant

context. This suggests that CLEC4A exerts functions that are, at

minimum, additive to or partially independent of the primary BRAF

V600E oncogenic signal in these cells. Furthermore, our KMPAG

signature was derived and validated using large patient cohorts

(TCGA-SKCM, GSE65904) that inherently include a mixture of

mutational backgrounds (BRAF-mutant, NRAS-mutant, KRAS-

mutant, wild-type, etc.). The signature’s prognostic significance

across these heterogeneous cohorts, combined with GSEA results

pointing to broader KRAS pathway activity enrichment (which may

be influenced by factors beyond direct KRAS mutations), supports its

relevance beyond a specific mutation type.

Although the current study provides valuable insights into

KRAS-associated immunomodulation and the prognostic

relevance of macrophage biology in melanoma, several limitations

warrant acknowledgment. First, the analysis largely relied on

transcriptomic datasets and in vitro assays, which may not fully
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capture the dynamic complexities of in vivo tumor–immune

interactions (26, 67). While the KMPAG signature was

successfully validated in the independent GSE65904 cohort, its

generalizability would be further strengthened by testing in

additional large, well-characterized melanoma cohorts. Our

search for suitable public datasets with available expression data

for all three signature genes and associated long-term survival

information yielded limited options beyond GSE65904. Validation

in larger prospective patient cohorts, ideally with well-curated

clinicopathologic data and longitudinal follow-up, is essential to

solidify the clinical utility of the KMPAG signature. Second, the

singular focus on KRAS-centric pathways, although justified by

emerging evidence of KRAS involvement in some melanomas, may

overlook synergistic or compensatory signaling through parallel

oncogenic axes such as those governed by BRAF, NRAS, or PI3K-

AKT-mTOR (68). Investigating the additive or interacting roles of

these pathways may uncover novel combination strategies capable

of overcoming resistance.

Another point requiring careful consideration is the apparent

paradox concerning CXCL10. While lower CXCL10 expression is

part of our high-risk signature (associated with poor OS and higher

T cell exclusion via TIDE), CXCL10 is generally considered a potent

chemoattractant for cytotoxic T lymphocytes and NK cells, and its

higher expression has often been linked to favorable responses to

immunotherapy in melanoma (30, 71). The lower CXCL10 in our

high-risk group might reflect a specific immunosuppressive TME

state where mechanisms suppressing CXCL10 production

dominate, or where T cell exclusion is driven by factors

overriding chemokine gradients. Alternatively, the prognostic

association might reflect complex dynamics where initial high

CXCL10 attracts T cells, but sustained inflammation or other

factors in the high-risk TME lead to T cell exhaustion and

dysfunction (partially supported by TIDE trends), ultimately

resulting in poor outcome despite the chemokine’s presence or

eventual downregulation. The precise role and regulation of

CXCL10 within the context of the KMPAG signature and

different risk strata warrant further mechanistic investigation.

While our study provides comprehensive bioinformatic

analyses linking the KMPAG signature to melanoma prognosis

and the tumor microenvironment, we acknowledge that the

experimental validation presented has limitations in scope. Our

experimental validation focused on the functional role of CLEC4A

through knockdown and overexpression in the A375 melanoma cell

line. While these experiments demonstrated a significant impact on

tumor cell proliferation, migration, and invasion, suggesting a

tumor-suppressive role. Firstly, the validation was tumor-centric.

Given that our bioinformatic analyses, particularly scRNA-seq,

indicate that CLEC4A is highly expressed in macrophages within

the TME, its function within these immune cells remains

uninvestigated in our study. Future experiments using

macrophage cell lines (THP-1 differentiated macrophages) or

primary human macrophages with CLEC4A modulation are

crucial to understand its role in macrophage polarization,
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phagocytosis, or antigen presentation in the context of melanoma.

Secondly, the functional roles of the other two KMPAG signature

genes, CXCL10 and LAT2, were not experimentally assessed.

CXCL10 is a well-known chemokine; validating its chemotactic

effect on immune cells towards melanoma cells or within the TME

using Transwell migration assays would be essential. Similarly,

LAT2 is involved in amino acid transport; investigating its role in

metabolic crosstalk between tumor cells and immune cells,

potentially under nutrient stress conditions like glutamine

deprivation, would provide valuable mechanistic insights.

Therefore, while our CLEC4A findings in A375 cells provide

initial support, comprehensive validation requires exploring all

three genes’ functions, particularly within the relevant immune

cell compartments like macrophages.

Finally, the generalizability of the KMPAG signature across

different melanoma subtypes needs consideration. Cutaneous

melanoma is heterogeneous, influenced by factors like UV

mutation signature burden and underlying driver mutations. Our

model was developed and validated using large cohorts (TCGA,

GSE65904) likely encompassing a mixture of subtypes. However,

we did not specifically assess the performance of the KMPAG

signature within distinct molecular or etiological subtypes (e.g.,

NF1-mutant melanomas, which can exhibit RAS pathway

activation, or acral vs. mucosal melanomas). Future work should

investigate whether the prognostic value and biological implications

of the KMPAG signature differ across these subtypes, potentially

leading to more refined, subtype-specific prognostic tools.
5 Conclusion

The multifaceted investigation integrating KRAS pathway

perturbations, macrophage-related gene expression, and immune

landscape analyses has culminated in a more comprehensive

understanding of melanoma’s complex biology. The evidence

presented supports a pivotal function for signaling associated with

the KRAS pathway and macrophage infiltration in shaping tumor

progression, immune evasion, and therapeutic responsiveness. The

three-gene KRAS-Macrophage Prognostic Associated Gene

(KMPAG) signature, encompassing CLEC4A, CXCL10, and LAT2,

emerges as a robust prognostic tool that correlates with distinct

clinical and immunological phenotypes in melanoma cohorts.

Notably, the convergence of reduced KMPAG gene expression,

immunosuppressive macrophage infiltration, and adverse clinical

features underscores the importance of targeted interventions

aimed at reversing these tumor-promoting conditions. Moreover,

mechanistic evidence indicating a tumor-suppressive role for

CLEC4A suggests that fine-tuning key macrophage-associated

genes may complement existing immunotherapies. Although

additional prospective and mechanistic research is essential to

validate and refine these findings, the results collectively reaffirm

the therapeutic potential of targeting the interplay between oncogenic

drivers and the tumor immune microenvironment.
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