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Development and validation
of a 16-gene T-cell- related
prognostic model in non-small
cell lung cancer
Anbing Zhang1,2†, Huang Ting1,2†, Jun Ma1,2, Xiuqiong Xia1*,
Xiaoli Lao1,3, Siqi Li1 and Jianping Liang1,3*

1Department of Pulmonary and Critical Care Medicine, Zhongshan People’s Hospital,
Zhongshan, China, 2Shenzhen University Medical School, Shenzhen University, Shenzhen, China,
3Graduate School, Guangdong Medical University, Zhanjiang, China
Background: Non-small cell lung cancer (NSCLC) exhibits variable T-cell

responses, influencing prognosis and outcomes.

Methods: We analyzed 1,027 NSCLC and 108 non-cancerous samples from

TCGA using ssGSEA, WGCNA, and differential expression analysis to identify

T-cell-related subtypes. A prognostic model was constructed using LASSO Cox

regression and externally validated with GEO datasets (GSE50081, GSE31210,

GSE30219). Immune cell infiltration and drug sensitivity were assessed. Gene

expression alterations were validated in NSCLC tissues using qRT-PCR.

Results: A 16-gene prognostic model (LATS2, LDHA, CKAP4, COBL, DSG2,

MAPK4, AKAP12, HLF, CD69, BAIAP2L2, FSTL3, CXCL13, PTX3, SMO, KREMEN2,

HOXC10) was established based on their strong association with T-cell activity

and NSCLC prognosis. The model effectively stratified patients into high- and

low-risk groups with significant survival differences, demonstrating strong

predictive performance (AUCs of 0.68, 0.72, and 0.69 for 1-, 3-, and 5-year

survival in the training cohort). External validation confirmed its robustness. A

nomogram combining risk scores and clinical factors improved survival

prediction (AUCs>0.6). High-risk patients responded better to AZD5991-1720,

an MCL1 inhibitor, while low-risk patients showed improved responses to

IGF1R-3801-1738, an IGF1R inhibitor, suggesting that risk stratification may

help optimize treatment selection based on tumor-specific vulnerabilities.

qRT-PCR validation confirmed the differential expression of model genes in

NSCLC tissues, consistent with TCGA data.

Conclusion: We identified a 16-gene T-cell-related prognostic model for

NSCLC, which stratifies patients by risk and predicts treatment response, aiding

personalized therapy decisions. However, prospective validation is needed to

confirm its clinical applicability. Potential limitations such as sample size and

generalizability should be considered.
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Introduction

Non-small cell lung cancer (NSCLC) remains the leading cause of

cancer-related mortality worldwide, accounting for approximately

85% of all lung cancer cases (1, 2). Lung adenocarcinoma (LUAD)

and lung squamous cell carcinoma (LUSC) are the major subtypes of

NSCLC, constituting about 40% and 30% of cases, respectively (3).

The prognosis of NSCLC varies significantly, with a general 5-year

survival rate of around 24%, which decreases to about 6% in advanced

stages (4). Compared to other malignancies, such as breast cancer

(approximately 90%) (5) and prostate cancer (nearly 100%) (6),

NSCLC has markedly lower survival rates, underscoring the urgent

need for improved prognostic tools. Developing effective prognostic

tools is crucial for enabling personalized treatment approaches, which

can improve patient survival and quality of life. Current research

focuses on molecular signatures, such as gene mutations (7), protein

expression (8), and RNA profiles (9), as potential prognostic

biomarkers. However, these biomarkers often fail to fully capture

the influence of the tumor immunemicroenvironment, particularly T-

cell activity, which plays a crucial role in tumor progression and

response to therapy (10). The tumor immune landscape, especially T-

cell infiltration and function, is highly heterogeneous and poorly

reflected in existing molecular classifiers, limiting their clinical

predictive power (11). Furthermore, the clinical translation of

current prognostic markers remains challenging due to the

heterogeneity of the disease and variable patient responses to

treatment (12). Therefore, more reliable biomarkers that integrate

immune-related parameters are needed to improve prognosis

prediction and guide personalized treatment strategies.

Recent research on NSCLC has increasingly focused on the role of

the immune system, particularly T-cells, in influencing disease

progression and treatment outcomes (13). The effect of T-cells in

NSCLC is influenced by various T-cell-related genes, which regulate T-

cell activation, proliferation, and survival (14, 15). These genes include

those encoding cytokines, checkpoint proteins, and other molecules

involved in immune response (16–18). Current immunotherapies,

particularly immune checkpoint inhibitors (e.g., PD-1/PD-L1 and

CTLA-4 inhibitors), enhance T-cell-mediated antitumor activity by

blocking the pathways cancer cells use to evade immune detection (19,

20). Given the critical role of T-cells in NSCLC, T-cell-related gene

expression pattern have the potential to serve as prognostic markers,

helping to optimize treatment strategies and improve patient

stratification. Although studies have demonstrated the prognostic

significance of tumor-infiltrating T-cells, including CD4+, CD8+,

and FOXP3+ subsets, in NSCLC (21), these findings have primarily

relied on immunohistochemical assessments, which do not fully

capture the complexity of T-cell-related gene expression and its

prognostic implications. Consequently, integrating these immune

markers into computational prognostic models remains limited. To

address this gap, reliable biomarkers based on transcriptomic profiling

of T-cell-related genes are needed to enhance prognosis prediction and

guide personalized treatment strategies in NSCLC.

In this study, we analyzed NSCLC transcriptomic data from

public databases using weighted gene co-expression network

analysis (WGCNA), single-sample gene set enrichment analysis
Frontiers in Immunology 02
(ssGSEA), and least absolute shrinkage and selection operator

(LASSO) Cox to identify key T-cell-related genes and assess their

impact on patient prognosis. WGCNA (22) was employed to

identify co-expressed gene modules associated with T-cell

abundance, as determined by ssGSEA, uncovering T-cell-related

gene networks that influence NSCLC progression. ssGSEA

quantifies immune-related gene expression at the individual

sample level (23), capturing inter-patient variability in immune

infiltration. LASSO Cox regression, an extension of the Cox

proportional hazards model, was used to construct a prognostic

model by selecting the most relevant genes while minimizing

overfitting (24). Additionally, we explored the interactions

between these genes and the tumor immune microenvironment

to develop a robust T cell-related prognostic model. The objective

was to identify specific T cell-related genes and their expression

patterns in NSCLC that could serve as effective prognostic markers

and guide more personalized immunotherapy strategies.
Materials and methods

Data source and processing

Transcriptomic data of the LUAD and LUAC cohorts were

obtained from The Cancer Genome Atlas (TCGA) via the UCSC

Xena Browser. Each dataset included cancerous and adjacent non-

cancerous tissue samples with expression levels originally quantified

in Fragments Per Kilobase Million (FPKM). To standardize

expression levels across samples, the FPKM values were

transformed into Transcripts Per Million (TPM) using the formula:

TPMi =
FPKMi

ojFPKMj
· 106

 !

After transformation, expression profiles from different sources

were merged, and batch effects arising from technical variability

were corrected using the ComBat function from the sva package.

ComBat was chosen for its ability to mitigate systematic biases while

preserving true biological variability, ensuring comparability

between datasets. Additionally, transcriptome data from GEO

datasets (GSE50081, GSE31210, and GSE30219) were integrated

for validation. To maintain consistency in gene expression

representation, the median expression value was used when

multiple expression values existed for the same gene. These GEO

datasets complement TCGA data by introducing diverse patient

cohorts, thereby enhancing the robustness and generalizability of

the prognostic model. Overall survival time was uniformly recorded

in days across all datasets, ensuring consistency in survival analysis.

A summary of sample information is provided in Table 1.
ssGSEA

The GSVA package in R was used to perform single-sample

Gene Set Enrichment Analysis (ssGSEA) to calculate the

enrichment scores of 28 immune cell subtypes in the TCGA
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cohorts (25). ssGSEA allows for the transformation of gene

expression matrices into scores that reflect the degree of immune

cell presence in each sample. A previous study applied ssGSEA to

define immune cell infiltration clusters and develop an immune-

related prognostic model in osteosarcoma, supporting its reliability

in cancer prognosis (26). In this study, the ssGSEA-derived immune

cell abundance scores were utilized as phenotypic traits in WGCNA

to identify T-cell-related hub genes critical for NSCLC progression.

These scores also enabled the evaluation of tumor immune

microenvironment differences between risk groups, contributing

to the development of a prognostic model and the assessment of

immunotherapy response potential. Samples with p-values less than

0.05 were included in further analyses, and immune cell types with

zero abundance across all samples were excluded.
WGCNA

WGCNA was conducted using the WGCNA package to identify

T-cell-related genes, where immune cell abundances served as

phenotype traits. WGCNA helps detect clusters (modules) of co-

expressed genes and examines their associations with specific traits,

making it ideal for identifying genes linked to T-cell activity. Outliers

were removed by hierarchical clustering, and an optimal soft

threshold, a power parameter that enhances strong gene-gene

correlations while reducing noise, was determined to ensure the

network’s scale-free topology. Modules were assigned unique colors

and were further screened based on their correlation with phenotype.

Modules with a correlation coefficient ≥ 0.5 were selected for further

analysis (27). Hub genes within each module were identified based on

gene significance (GS) and module membership (MM) values. The

thresholds |GS| > 0.2 and |MM| > 0.8 indicate strong associations by

ensuring selected genes are significantly correlated with the

phenotype and highly connected within their module (28). T-cell-

related genes were identified through correlation analysis between

gene expression and T-cell abundance. Genes with a high correlation

coefficient (|correlation| > 0.5) and a significant p-value (< 0.05) were

considered T-cell-related genes and were then intersected with the

hub genes to identify T-cell-related hub genes. A correlation

threshold of 0.5 was selected to capture genes with a moderate to

strong association (29) with T-cell levels while avoiding overly

restrictive cutoffs that might exclude biologically relevant genes.

The p-value threshold of < 0.05 ensures statistical significance

while maintaining a sufficient gene pool for downstream analysis.
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Enrichment analysis

Functional enrichment analysis on T-cell-related hub genes was

performed using the ClusterProfiler package in R. This package

facilitates the identification of overrepresented Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways, providing insights into the biological processes and

pathways associated with these genes. P-values were adjusted

using the Benjamini-Hochberg method to control for false

discovery rates, ensuring robust results based on adjusted p-values.
Identification of T-cell-related differentially
expressed genes

DEGs in NSCLC were identified using the Limma package, which

is widely used for its ability to handle multiple comparisons and

model gene expression differences effectively. Genes with |logFC| >

0.5 and adjusted p-value < 0.05 were considered DEGs (30). These

genes were then cross-referenced with T-cell-related hub genes to

identify T-cell-related DEGs within the NSCLC datasets.
Consensus clustering

To classify T-cell-related NSCLC subtypes, consensus clustering

was performed using the ConsensusClusterPlus package. This

approach aggregates results from multiple iterations, ensuring robust

and stable clustering of samples based on the expression profiles of T-

cell-related DEGs. Euclidean distance was used for clustering, with 50

iterations and 80% subsampling per iteration. Parameters such as reps

= 50, pItem = 0.8, and distance = Pearson were set to enhance

clustering reliability. The optimal number of subtypes (k) was

determined by evaluating the Cumulative Distribution Function

(CDF) curve, which measures the relative change in area under the

CDF curve, ensuring a balance between stability and granularity.

Additionally, consensus heatmaps were examined for clear

boundaries between clusters, and delta area plots were used to assess

the improvement in clustering stability with increasing k values. The

optimal k was selected based onminimal fluctuations in the CDF curve

and relatively higher consensus scores, indicating robust cluster

separation. DEGs between these subtypes were further identified

using the Limma package, considering genes with |logFC| > 1 and

adjusted p-value < 0.05 as inter-subtype DEGs (31).
TABLE 1 Dataset information.

ID Platform Sample type
N (cancerous: non-
cancerous tissues)

Data type

TCGA
cancerous and adjacent non-
cancerous tissues

1135 (1027: 108) RNAseq

GSE50081 GPL570 cancerous tissue 173 mRNA array

GSE31210 GPL570 cancerous tissue 225 mRNA array

GSE30219 GPL570 cancerous tissue 190 mRNA array
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Gene set variation analysis

Differential analysis of GO and KEGG pathways across T-cell-

related NSCLC subtypes was conducted using the GSVA package.

GSVA enables a non-parametric, unsupervised assessment of gene

set variation, which is ideal for comparing pathway activities across

subtypes. Pathways with an adjusted p-value < 0.05 were considered

significantly different.
Construction of a prognostic gene model

Patients from the TCGA cohorts were randomly divided into

training and testing sets in a 7:3 ratio. The glmnet package was

employed to conduct LASSO Cox regression analysis on the

expression profiles of inter-subtype DEGs within the training set.

Unlike traditional univariate or multivariate Cox regression models,

LASSO Cox regression employs L1 regularization to address

multicollinearity, automatically selecting the most relevant genes

and improving model stability. This feature is particularly beneficial

when working with high-dimensional datasets, such as gene

expression data, by reducing the risk of overfitting and enhancing

predictive accuracy (32). The optimal penalty parameter l was

determined based on the minimum criterion, and genes with non-

zero coefficients were retained as optimal variables. The risk score was

calculated using the weight coefficients and gene expression levels,

providing a quantifiable measure for prognostic evaluation (33):

RiskScore  =o
n

i
coefi� genei
Protein-protein interaction networks

To explore the interactions among model genes and other genes

with similar functions, PPI networks were constructed using

GeneMANIA (http://www.genemania.org). GeneMANIA is a

robust tool that integrates data from multiple sources, allowing

for the visualization of gene-gene interactions, including physical

interactions, co-expression, and shared pathways. This helps in

identifying potential functional relationships and interactions that

could provide deeper insights into the biological roles of the

model genes.
Nomogram construction and evaluation

Univariate and multivariate Cox analyses were conducted on

risk scores and clinical variables such as age, smoking history, and

tumor stage to identify independent prognostic factors. The results

were visualized using forest plots generated by the “forestplot”

package in R, which clearly displays the hazard ratios and

confidence intervals, highlighting which factors independently

affect prognosis. A nomogram was constructed using the “rms”

package to combine these independent prognostic factors,
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providing a user-friendly graphical tool for predicting individual

patient outcomes. The nomogram was assessed through calibration

curves (using the calibrate function from “rms”), which compare

predicted versus observed outcomes.
Prediction of immunotherapy response

To estimate how patients in the TCGA cohorts would respond

to anti-PD-1/PD-L1 and anti-CTLA4 immunotherapy, the Tumor

Immune Dysfunction and Exclusion (TIDE) tool (http://

tide.dfci.harvard.edu) was used. TIDE is a computational method

that predicts immune evasion mechanisms, helping to assess which

patients are more likely to benefit from specific immunotherapy

treatments. This can be critical in personalizing treatment strategies

for patients based on their predicted response.
GSEA

To identify enriched Hallmark pathways in high-risk patients,

GSEA was conducted on the Hallmark gene set using the

“clusterProfiler” package in R. GSEA helps in identifying whether a

predefined set of genes shows statistically significant, concordant

differences between two biological states, providing insights into the

molecular pathways that are active in high-risk versus low-risk

groups. Pathways with an adjusted p-value < 0.05 were considered

significant, indicating their potential relevance in the disease context.
Drug sensitivity prediction

Drug sensitivity was assessed using the calcPhenotype function

from the “oncoPredict” package. Gene expression matrices and

drug treatment information from the Genomics of Drug Sensitivity

in Cancer (GDSC2) and CTRP V2 databases (https://osf.io/c6tfx/).

The “oncoPredict” package allowed for the prediction of drug

response by modeling IC50 values for the TCGA cohorts based

on expression profiles. This analysis aids in identifying which

patients might respond better to certain drugs, thus guiding more

personalized therapy choices. The correlation between IC50 values

and risk scores was then analyzed to identify potential drug

candidates for different risk groups.
Quantitative real-time polymerase chain
reaction

The study included eight lung adenocarcinoma samples, which

were obtained from tumor tissues and adjacent paracancerous tissues

of hospitalized patients at Zhongshan People’s Hospital. Participants

were selected based on the following inclusion criteria: individuals

aged 18 to 85 years with a confirmed pathological diagnosis of lung

adenocarcinoma, who had not undergone any immunotherapy,

chemotherapy, or radiotherapy before enrollment. Additionally,
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participants needed to have good organ function and be free of

significant complications or chronic illnesses. The exclusion criteria

ruled out patients with severe immune deficiencies (such as HIV

infection or those undergoing immunosuppressive therapy),

individuals with autoimmune conditions, organ transplant

recipients, as well as pregnant or breastfeeding women. All patients

were required to sign an informed consent form prior to enrollment,

confirming their understanding of the study’s purpose and potential

risks. Total RNA was extracted from lung cancer tissue and adjacent

paracancerous tissue samples using Trizol reagent (Invitrogen, USA).

Reverse transcription was performed using PrimeScript™ RT reagent

Kit (TAKARA, RR047A), and cDNA amplification was carried out

using SYBR® Premix Ex TaqTM II (TAKARA, RR820A) on an

Applied Biosystems™ 7500 (Thermo Fisher, Singapore, 4351104).

Primer sequences used are summarized in Supplementary Table S1,

and GAPDH was used as an internal reference. The relative

expression of the target genes was calculated by the 2-DDCt method,

providing a quantifiable measure of gene expression differences

between cancerous and adjacent paracancerous tissues.
Statistical analysis

Statistical analyses were conducted using R (v4.3.1). The

distribution of T-cell subsets in different risk groups was visualized

using a t-distributed stochastic neighbor embedding (t-SNE) analysis.

The R packages “survival” and “survminer” were employed for

survival analysis and visualization, while the “timeROC” package

was used for time-dependent receiver operating characteristic (ROC

analysis. Heatmaps were visualized using the “pheatmap” package.

ROC curves were generated using the “pROC” package. Differential

expression analysis was performed using the Limma package with an

empirical Bayes approach, applying a threshold of |logFC| > 0.5 and

adjusted p-value < 0.05. Survival analysis was conducted using

Kaplan-Meier estimates with the log-rank test. LASSO Cox

regression was used for prognostic modeling, with l optimized

through cross-validation to prevent overfitting. Univariate and

multivariate Cox regression identified independent prognostic

factors, with hazard ratios and confidence intervals visualized using

forest plots. For correlation analysis, Pearson correlation was applied

under the assumption of linear relationships, and Wilcoxon rank-

sum tests were used where normality was not assumed. t-tests were

performed for differential analysis between groups. Model

performance was assessed using time-dependent ROC curves and

calibration plots to evaluate predictive accuracy and clinical utility.

Statistical significance was set at p < 0.05. Unless otherwise specified,

all results were visualized using “ggplot2” or “plot”.
Results

Identification of T-cell-related hub genes
in NSCLC

To identify T-cell-related hub genes in NSCLC, we performed

ssGSEA and WGCNA on 1027 cancer tissue samples from the
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TCGA NSCLC cohorts. We computed enrichment scores of 28

immune cell subtypes for each sample using ssGSEA, using these

scores as phenotypic data in WGCNA. Two outliers were identified

and excluded based on hierarchical clustering and standardized

connectivity scores, ensuring that extreme data points did not

distort network construction (Figure 1A). A soft threshold of 0.9

was applied to establish a scale-free network topology (Figure 1B). A

total of 29 modules were identified (Figure 1C). Among them, five

modules with a correlation coefficient ≥ 0.5 with the phenotype

were selected for further analysis, including the turquoise, light

yellow, black, purple, and white modules (Figure 1D). Hub genes

within these modules were identified based on the criteria of |GS| >

0.2 and |MM| > 0.8. Additionally, genes showing |correlation| > 0.5

with T-cell abundance and a p-value < 0.05 were classified as T-cell-

related genes (Figure 1E). These genes were then intersected with

the hub genes to determine T-cell-related hub genes associated

with NSCLC.
Identification and characterization of T-
cell-related DEGs in NSCLC

To identify T-cell-related DEGs associated with NSCLC, we

analyzed 1027 cancer tissue samples and 108 non-cancerous tissue

samples in the TCGA NSCLC cohorts. Differential gene expression

analysis revealed 2,063 DEGs (865 upregulated and 1,198

downregulated genes) in the cancer group compared to the

control group (Figure 2A, Supplementary Table S2). Expression

profiles of the top 40 DEGs in each sample are shown in Figure 2B.

Intersecting of T-cell-related hub genes with DEGs identified 80 T-

cell-related DEGs. GO enrichment analysis revealed that these

DEGs were significantly enriched in 15 biological process terms

(e.g., leukocyte-mediated immunity, leukocyte activation involved

in immune response, and cell activation involved in immune

response), 5 cellular component terms (e.g., plasma membrane

external side, secretory granule membrane, and tertiary granule

membrane), and 6 molecular function terms (e.g., immune receptor

activity, cytokine receptor activity, and integrin binding)

(Figure 2C, Supplementary Table S3).
Identification of T-cell-related subtypes in
NSCLC via consensus clustering

To identify T-cell-related NSCLC subtypes, we performed

consensus clustering analysis on the TCGA cohort (n=1,135) using

the expression profiles of 80 T-cell-related DEGs. The analysis

indicated an optimal division into two subgroups, as demonstrated

by minimal fluctuations in the consensus index of the CDF curves and

relatively higher consensus scores when patients were clustered into

two categories (Figures 3A–C). Immune microenvironment analysis of

different subtypes showed significant differences in 20 immune cell

types between these clusters (Figure 3D). Group 1 exhibited

significantly higher or trending higher infiltration of most immune

cell types, including activated CD8+ T cells, central memory CD4+ T

cells, dendritic cells, and NK cells, suggesting an immune-active
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phenotype with enhanced antitumor immunity. In contrast, Group 2

showed an increase only in memory B cells, indicating a relatively

immune-suppressed or less inflamed tumor microenvironment.

Furthermore, GSVA for GO and KEGG pathways revealed

differential functional profiles between the patient subtypes

(Figure 3E, Supplementary Tables S4, S5).
Development of a T-cell prognostic gene
signature for NSCLC

To construct a prognostic model based on T-cell-related genes,

we initially identified 5,766 DEGs, with 2860 upregulated and 2906

downregulated in Cluster1 compared to Cluster2 (Figure 4A). Then,

we sought to identify genes associated with prognosis among the

inter-subtype DEGs. The TCGA cohorts were randomly divided

into a training set and a validation set in a 7:3 ratio. A LASSO Cox

regression analysis conducted in the training set identified 16 genes,

including LATS2, LDHA, CKAP4, COBL, DSG2, MAPK4,

AKAP12, HLF, CD69, BAIAP2L2, FSTL3, CXCL13, PTX3, SMO,

KREMEN2, and HOXC10 (Figures 4B, C). Multivariable Cox
Frontiers in Immunology 06
analysis showed that LDHA, COBL, MAPK4, BAIAP2L2, PTX3,

and HOXC10 were associated with poorer prognosis in NSCLC (all

hazard ratios > 1 and P < 0.05), while CXCL13 (hazard ratio = 0.72,

P = 0.005) was linked to better outcomes (Figure 4D). PPI network

of these genes highlighted functional interplay in NSCLC

pathogenesis (Figure 4E), and all these genes exhibited significant

differences in gene expression between cancerous and non-

cancerous samples (Figure 4F).
Prognostic assessment of T-cell gene
signature in TCGA cohorts

Then, we calculated individual risk scores for each patient by

integrating the LASSO coefficients with the expression levels of the

16 genes, according to the formula: (0.102) × LATS2 + (0.483) ×

LDHA + (0.068) × CKAP4+ (0.036) × COBL + (0.043) × DSG2+

(0.097) × MAPK4 + (0.038) × AKAP12 + (-0.029) × HLF + (-0.045)

× CD69 + (0.027) × BAIAP2L2 + (0.111) × FSTL3 + (-0.115) ×

CXCL13 + (0.055) × PTX3 + (0.044) × SMO + (0.015) × KREMEN2

+ (0.001) × HOXC10. Patients from the TCGA training and testing
FIGURE 1

Identification of T-cell-related hub genes in non-small cell lung cancer (NSCLC) patients. The transcriptomic data of the lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUAC) cohorts from The Cancer Genome Atlas (TCGA) were acquired, consisting of 1027 cancer tissue
samples and 108 non-cancerous tissue samples. ssGSEA and WGCNA were performed on 1027 cancer tissue samples to identify T-cell-related hub
genes in NSCLC patients. (A) Quality control and preprocessing of TCGA cancer tissue samples. Two outliers were excluded. (B) Determination of
the soft-thresholding power for WGCNA set at 0.9 to ensure a scale-free network. (C) Visualization of the gene clustering process and the
identification of co-expression modules, with colors indicating the distinct modules. (D) The enrichment scores of 28 immune cell subtypes were
estimated via ssGSEA. Heatmap represents the correlation between module eigengenes and immune cell enrichment scores, with the color intensity
reflecting the strength of correlation. Five modules (turquoise, light-yellow, black, purple, and white) with a correlation coefficient ≥ 0.5 with the
phenotype were identified as core modules. (E) T-cell-related genes were identified through correlation analysis between gene expression and T-
cell abundance. Genes with |gene significance (GS)| > 0.2 and |module membership (MM)| > 0.8 were considered hub genes. A scatter plot illustrates
the correlation between GS related to effector memory CD8 T-cells and MM in the turquoise module in NSCLC samples.
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FIGURE 2

Transcriptomic and Gene Ontology (GO) analysis in the TCGA NSCLC cohorts. (A) A volcano plot illustrates the differential expression between
cancer and non-cancerous tissue samples, with upregulated genes in red, downregulated genes in blue, and non-significant genes in grey. Key
significantly altered genes are labeled. (B) A heatmap displays the expression patterns of the top 40 genes in each sample. Expression levels are
color-coded from blue (low expression) to red (high expression), distinguishing between non-cancerous (blue bar) and cancer (orange bar) samples.
(C) The GO enrichment analysis results are categorized by biological process (orange), cellular component (green), and molecular function (blue),
with the number of genes represented on the x-axis and the enriched GO terms on the y-axis.
FIGURE 3

Consensus clustering and immune profile analysis in NSCLC. (A) Representative image of a consensus matrix for k = 2. (B) Determination of the
optimal number of clusters (k) by delta area plot. The lowest delta area corresponds to k = 2. (C) Consensus cumulative distribution function (CDF)
curves for different numbers of clusters (k = 2 to 6), demonstrating the stability of the two-cluster solution. (D) Comparison of the infiltration levels
of 20 immune cell types between NSCLC subgroups. *P < 0.05, **P < 0.05, ***P < 0.01, ***P < 0.001. (E) GSVA-based heatmap illustrates the
functional enrichment of T-cell-related DEGs across NSCLC subgroups for GO and KEGG pathways. Color intensity represents enrichment scores.
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cohorts were stratified into high-risk and low-risk groups based on

the median risk score (Figures 5A, B). Kaplan-Meier survival

analysis confirmed that patients in the high-risk group had

significantly poorer prognosis than those in the low-risk group

(Figures 5C, D). ROC curve analysis demonstrated moderate

predictive performance, with area under the curve (AUC) values

of 0.68, 0.72, and 0.69 at one, three, and five years, respectively, in

the training cohort (Figure 5E). In the validation cohort, the AUCs

were 0.56, 0.62, and 0.57 at one, three, and five years, respectively

(Figure 5F). Compared to traditional prognostic factors such as

TNM staging and molecular markers like TP53 and Ki-67 (12), the

16-gene model demonstrated moderate predictive accuracy.

Integrating clinical parameters may further enhance its

prognostic utility.

To further illustrate the distribution of T-cell subsets in these

risk strata, we conducted a t-SNE analysis. This analysis revealed a

dichotomy between the high-risk and low-risk categories

(Supplementary Figure S1A). Specifically, Cluster2 exhibited

significantly higher risk scores than Cluster1 (Supplementary

Figure S1B). In the Sankey diagram, a notable portion of the

samples from Cluster1 was assigned to the high-risk group, with

a consequential flow toward the “Alive” outcome. Conversely,

Cluster2 showed a significant representation in the high-risk

group, which predominantly correlated with the “Dead” status
Frontiers in Immunology 08
(Supplementary Figure S1C). This visualization effectively

highlights the relationship between cluster classification, risk

assessment, and survival outcomes.
Prognostic validation of T-cell gene
signature in external GEO cohorts

To validate the predictive reliability of the T-cell gene signature,

we calculated risk scores for the validation cohorts using the same

formula, and samples from external GEO cohorts GSE50081,

GSE31210, and GSE30219 were divided into high-risk and low-

risk groups (Figures 6A–C). We found that patients in the high-risk

group had significantly poorer prognosis compared to those in the

low-risk group (Figures 6D–F). Furthermore, in the external

validation sets, the time-dependent ROC curves for predicting 1,

3, and 5-year overall survival based on the risk scores yielded

moderate AUC values, with AUCs between 0.56 to 0.59 in

GSE50081 (Figure 6G), above 0.7 in GSE31210 (Figure 6H), and

between 0.62 to 0.66 in GSE30219 (Figure 6I). These results

demonstrate that the T-cell gene signature maintains predictive

value across independent patient cohorts, reinforcing its robustness

and potential applicability in diverse clinical settings. The variability

in AUC values among datasets highlights potential differences in
FIGURE 4

Prognostic model development and validation for T-cell-related genes in NSCLC. (A) A volcano plot displays DEGs between T-cell-related NSCLC
subtypes, with upregulated genes in red and downregulated genes in blue. (B) LASSO Cox regression analysis was conducted to select the most
prognostically relevant genes. (C) A bar graph presents the corresponding coefficients of the selected genes. (D) Multivariable Cox analysis shows
hazard ratios and p-values for the selected genes, indicating their prognostic significance. (E) Protein-protein interaction network highlights the
interactions between proteins encoded by the prognostic genes. (F) Boxplots demonstrate the significant differential expression of the prognostic
genes between cancer and non-cancerous tissues in NSCLC. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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FIGURE 5

Prognostic evaluation of T-cell-related gene signature. (A, B) Upper panel: Risk score distribution in the TCGA training and testing sets, respectively.
The dotted line indicates the median risk score threshold for high-risk (red) and low-risk (gray) stratification. Lower panel: Scatter plots correlating
individual patient risk scores with survival status. Red dots represent deceased patients, and gray dots represent those who are alive. (C, D) Kaplan-
Meier survival curves demonstrate the prognosis of high-risk and low-risk patients in the TCGA training and testing sets, respectively. (E, F) Time-
dependent receiver operating characteristic (ROC) curves for 1, 3, and 5-year overall survival predictions in the TCGA training and testing
sets, respectively.
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FIGURE 6

External validation of the T-cell-related gene signature risk score. (A–C) Upper panel: Risk score distribution across external GEO cohorts GSE50081,
GSE31210, and GSE30219. The dotted line indicates the median risk score threshold for high-risk (red) and low-risk (gray) stratification. Lower panel:
Scatter plots correlating individual patient risk scores with survival status. Red dots represent deceased patients, and gray dots represent those who
are alive. (D–F) Kaplan-Meier survival curves for GSE50081, GSE31210, and GSE30219, respectively, demonstrate significant survival differences
between the high-risk and low-risk groups. (G–I) Time-dependent ROC curves for 1, 3, and 5-year overall survival predictions in GSE50081,
GSE31210, and GSE30219. The area under the curve (AUC) values provide moderate prognostic accuracy across all time points for the three cohorts.
Frontiers in Immunology frontiersin.org10

https://doi.org/10.3389/fimmu.2025.1566597
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1566597
cohort characteristics, sample sizes, and treatment heterogeneity,

further underscoring the need for broader validation in

prospective studies.
Clinical significance of the risk score and
development of the predictive model

To investigate the clinical significance of the risk score, we stratified

TCGA cohorts by age, sex, stage, and TNM classification. Across these

subgroups, high-risk groups consistently exhibited significantly poorer

survival compared to their low-risk counterparts (all P < 0.001;

Supplementary Figures S2, S3). Tumors with higher TNM

classifications (M1, T3-T4, N1-N3) tended to have elevated risk

scores compared to their lower TNM counterparts (M0, T1-T2, N0)

(all P < 0.05; Supplementary Figure S3G).

Subsequently, we conducted univariate and multivariate Cox

regression analyses to identify independent prognostic clinical

factors. Univariate Cox regression analysis revealed significant

associations between the risk score, age, stage, and TNM

classification with patient survival (all P < 0.05; Figure 7A).

Multivariate Cox regression confirmed the risk score as an

independent prognostic factor (P < 0.001), along with age > 65

(P = 0.007) and T3-T4 classification (P = 0.023; Figure 7B). Then,

we created a nomogram that incorporates the risk score and clinical

factors (age, sex, smoking status, stage, TNM classification) to

predict 1, 3, and 5-year survival probabilities for patients

(Figure 7C). Calibration plots showed strong agreement between

observed and nomogram-predicted survival probabilities at each

time point (Figures 7D–F). Furthermore, the ROC curve analysis

for 1, 3, and 5 years confirmed the model’s robust predictive

accuracy for clinical application (all AUCs > 0.6; Figure 7G).
T-cell-related risk score is associated with
tumor immune microenvironment in
NSCLC

To investigate the potential relationship between risk score and

the tumor immune microenvironment, we utilized the ssGSEA

algorithm to assess immune cell infiltration levels and compared

them with the risk score. We observed significant differences in 15

immune cell types, with elevated levels of central memory CD8 T-

cells, natural killer T-cells, and neutrophils notably higher in the

high-risk group (Figure 8A). Furthermore, the TIDE algorithm

revealed a lower proportion of immune therapy responders among

patients with high-risk scores compared to non-responders

(Figure 8B). Evaluation using the ESTIMATE algorithm unveiled

notably higher stromal scores in the high-risk group, while immune

scores and ESTIMATE scores were significantly greater in the low-

risk group (Figure 8C). Correlation analysis identified varying

associations between model genes and immune checkpoint genes,

as well as among model genes (Figures 8D, E). The distribution of

TIDE scores highlighted significantly elevated T-cell exclusion,

myeloid-derived suppressor cells (MDSCs), and cancer-associated
Frontiers in Immunology 11
fibroblasts (CAFs) in the high-risk group, while immune

checkpoints and T-cell dysfunction scores were reduced

compared to the low-risk group (Figure 8F). The results of the

GSEA showed that, among the Hallmark pathways, there were

notable enrichments in “epithelial mesenchymal transition”,

“hypoxia”, “IL2 STAT5 signaling”, “inflammatory response”,

“KRAS signaling up”, “MTORC1 signaling”, “P53 pathway”, and

“TNFA signaling via NFKB” in the high-risk group (Supplementary

Figure S4, Supplementary Table S6). These data suggest that high-

risk patients may exhibit augmented immune cell infiltration levels,

decreased response to immune therapy, and alterations in immune

checkpoint expression compared to low-risk patients.
Differential drug sensitivity prediction in
high- and low-risk patients

To evaluate drug sensitivity among patients at different risk

levels, we employed the “oncoPredict” R package. Our analysis

revealed significant differences in drug responses between high- and

low-risk groups (Supplementary Figures S5A–F). Furthermore,

these distinctions in drug responsiveness correlated with risk

scores (Supplementary Figures S5G–L). For example, AZD5991-

1720 exhibited enhanced response in high-risk patients, positively

correlating with risk score (Supplementary Figures S5D, J).

Conversely, IGF1R-3801-1738 demonstrated improved response

in the low-risk group, negatively correlating with risk score

(Supplementary Figures S5E, K). Complete drug prediction results

are provided in Supplementary Table S7.
Validation of model gene alteration in
clinical NSCLC samples

To validate model gene alterations in clinical NSCLC samples,

we compared the relative expression levels of these genes between

tumor and adjacent normal tissues from four NSCLC patients. The

results of the qRT-PCR analysis showed that BAIAP2L2, CKAP4,

CXCL13, DSG2, HOXC10, KREMEN2, LDHA, and SMO were

upregulated in tumor samples compared to normal tissue.

Conversely, AKAP12, CD69, COBL, FSTL3, HLF, LATS2,

MAPK4, and PTX3 were downregulated in tumor samples

relative to normal tissue (Figure 9). These findings are consistent

with the expression patterns observed in the TCGA cohorts.
Discussion

In this study, we investigated the role of T-cell-related genes in

non-small cell lung cancer (NSCLC) and their potential

implications for prognosis and treatment strategies. Through

integrative analysis of large-scale transcriptomic data from

TCGA, we identified T-cell-related DEGs and characterized T-

cell-related subtypes in NSCLC. Additionally, we developed a 16-

gene prognostic signature based on T-cell-related genes and
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validated its predictive power in both internal and external cohorts.

Our analysis also revealed significant associations between the T-

cell-related risk score and the tumor immune microenvironment, as

well as differential drug sensitivities between high- and low-risk

patients. Validation of gene expression in clinical samples showed

that all 16 model genes were differentially expressed between tumor

and normal tissues, consistent with trends observed in the TCGA

dataset. These findings provide valuable insights into the role of T-

cell-related genes in NSCLC pathogenesis, prognosis, and potential

therapeutic strategies.

This study identified a 16-gene signature that is closely linked to

NSCLC prognosis and immune microenvironment composition.

Key genes include LDHA, MAPK4, HOXC10, and CXCL13, each of

which plays a role in critical processes such as metabolism, signal

transduction, and immune response. LDHA, known for its role in
Frontiers in Immunology 12
glycolysis under hypoxia, is overexpressed in LUAD and associated

with poor outcomes (34). Inhibiting LDHA has been shown to

enhance T-cell-mediated immunity by reducing lactate buildup in

the tumor microenvironment (35). Unlike other identified

biomarkers, CXCL13 showed a positive association with

improved outcomes. This chemokine promotes immune cell

recruitment and the formation of tertiary lymphoid structures,

which enhance antitumor immunity and improve survival in

NSCLC (36–38). This distinction highlights the dual role of the

immune microenvironment in cancer, in which CXCL13 enhances

immune surveillance, while LDHA contributes to immune evasion.

Lactate from LDHA-overexpressing tumors may suppress

CXCL13-mediated immune cell recruitment, creating a “cold”

tumor microenvironment. Targeting LDHA could reduce lactate

accumulation, potentially synergizing with CXCL13-boosting
FIGURE 7

Prognostic evaluation of T-cell gene signature risk score with clinical parameters in patient survival analysis. (A) Univariate Cox regression analysis
was performed to evaluate the association of clinical factors and the risk score with patient survival. (B) Multivariate Cox regression analysis identified
the risk score, age > 65, and T3-T4 stage as independent prognostic factors. (C) A nomogram incorporating the risk score and clinical factors was
created to predict 1, 3, and 5-year patient survival probabilities, with total points corresponding to predicted outcomes. (D–F) Calibration curves for
the nomogram’s 1, 3, and 5-year overall survival predictions. (G) ROC curves were generated to evaluate the nomogram’s predictive accuracy for 1,
3, and 5-year overall survival, with AUC values indicating the model’s discriminative ability.
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FIGURE 8

Association between risk score and tumor immune microenvironment in NSCLC. (A) Comparison of the levels of immune cell infiltration in the
tumor microenvironment between high- and low-risk groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. (B) TIDE algorithm analysis was
performed to differentiate between the immune therapy responders and non-responders in different risk groups. (C) Comparison of stromal,
immune, and ESTIMATE scores between high- and low-risk groups. *P < 0.05, **P < 0.01, ****P < 0.0001. (D) A heatmap was generated to show the
correlation between model genes and immune checkpoint genes. (E) Correlation matrix plotting was performed to visualize the pairwise correlation
coefficients among model genes. (F) Comparison of TIDE scores between different risk groups. ns, not statistically significant (p ≥ 0.05).
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strategies to convert “cold” tumors into “hot” ones, enhancing

immune responses and ICI efficacy. This dual approach warrants

experimental validation in preclinical models.

Other genes, including MAPK4 and HOXC10, further illustrate

the diverse roles of T-cell-related genes in NSCLC progression.

MAPK4, a kinase involved in cellular signal transduction, has been

linked to angiogenesis and tumor growth, with higher expression

correlating with poor prognosis (39). Similarly, HOXC10, a

transcription factor, promotes tumor progression by inducing cell

proliferation and inhibiting apoptosis (40, 41). It also facilitates

immune evasion by upregulating immunosuppressive factors, such

as PD-L2, which inhibit T-cell-mediated tumor clearance (42, 43).

These genes are not only potential prognostic biomarkers but also

represent potential therapeutic targets, offering opportunities for

more effective immunotherapy approaches in NSCLC.

The identified 16-gene T-cell-related signature offers substantial

clinical value by stratifying NSCLC patients into high- and low-risk

groups, each with distinct survival outcomes and therapeutic

responses. High-risk patients, characterized by elevated expression

of genes like LDHA and HOXC10, showed significantly poorer

survival and reduced responsiveness to immune checkpoint

inhibitors (ICIs) targeting PD-1/PD-L1. In contrast, low-risk

patients with higher expression of CXCL13 were associated with

better survival and potentially enhanced response to ICIs. This

stratification allows for more personalized therapeutic approaches,

highlighting those more likely to benefit from immunotherapy.

Moreover, the relationship between gene expression and drug

sensitivity enhances the clinical utility of this signature. High-risk

patients showed greater sensitivity to AZD5991, an MCL1 inhibitor,

which targets apoptosis resistance driven by metabolic stress and

immune suppression (44), suggesting that these patients may

benefit from combining MCL1 inhibitors with checkpoint

blockade to counteract T-cell exhaustion. In contrast, low-risk

patients responded better to IGF1R inhibitors, possibly due to

IGF1R’s role in maintaining tertiary lymphoid structures and
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activating T-cells (45). These patients might benefit significantly

from immunotherapy (e.g., anti-PD-1), supported by their higher

immune scores. This differentiation suggests tailored therapeutic

pathways based on patient risk profiles.

Furthermore, classifying NSCLC patients into distinct T-cell-

related subtypes has significant clinical implications. High-risk

patients with increased infiltration of immunosuppressive cells

(e.g., MDSCs, CAFs) may benefit from combination therapies

incorporating immune-modulating agents alongside ICIs to

overcome resistance. Conversely, low-risk patients with enhanced

immune activation may respond favorably to ICIs alone or

immune-stimulatory interventions. These findings support a

tailored approach to immunotherapy selection, optimizing

treatment strategies based on immune subtype classification. By

integrating the 16-gene signature with existing biomarkers, such as

PD-L1, clinical decision-making can be refined. High-risk patients

with elevated LDHA may be prioritized for metabolic-targeted

therapies (e.g., LDHA inhibitors combined with chemotherapy),

while low-risk patients with elevated CXCL13 could be directed

toward immunotherapy. These findings support a tailored approach

to treatment selection, enhancing the effectiveness of personalized

therapies in NSCLC. Therefore, the 16-gene signature serves not

only as a prognostic tool but also as a guide for optimizing and

personalizing treatment strategies in NSCLC.

Our study adds to the understanding of T-cells and immune-

related biomarkers in NSCLC. Previous investigations have often

focused on the predictive value of PD-1/PD-L1 expression for

immunotherapy responses, our approach extends beyond these

conventional markers. By identifying a broader panel of T-cell-

related genes, we provided deeper insights into how these genes

influence both prognosis and immune responses in NSCLC.

Notably, genes such as COBL (involved in cytoskeletal

organization) (46) and FSTL3 (linked to immune cell infiltration)

(47) were included in our analysis, underscoring the complexity and

heterogeneity of the immune microenvironment in NSCLC. This
FIGURE 9

Comparative analysis of gene expression levels between control and tumor samples. qRT-PCR was performed to determine model gene expression
in NSCLC tumor samples and control samples. *p < 0.05, **p < 0.01; n = 4.
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comprehensive perspective provides a deeper understanding of the

varied roles of T-cell biology in influencing patient outcomes and

therapeutic responses. Additionally, our findings complement

recent studies highlighting the importance of the tumor immune

microenvironment in shaping NSCLC treatment outcomes. For

instance, BAIAP2L2 was found to negatively correlate with immune

checkpoint expression, suggesting that certain genes may actively

suppress immune responses, facilitating immune evasion by

tumors. This aligns with the growing recognition of the need for

combination therapies that target both immune escape mechanisms

and traditional oncogenic pathways (48), which could be explored

in future research.

Despite these promising results, our study has limitations. First,

we relied on retrospective data from publicly available datasets, which

may introduce selection bias and limit the generalizability of our

findings. Although we validated our model in multiple external

cohorts, prospective clinical validation is necessary to confirm its

utility in real-world clinical settings. Additionally, while our model

demonstrated robust performance in predicting patient outcomes, the

underlying biological mechanisms linking these genes to NSCLC

prognosis and immunotherapy response require further investigation.

Future studies should focus on validating our 16-gene signature

in larger, multi-center clinical trials to assess its predictive value

across diverse patient populations. Investigating the functional roles

of the identified genes in modulating immune responses in NSCLC

through in vitro and in vivo experiments would also be valuable.

Moreover, given the dynamic nature of the tumor immune

microenvironment, longitudinal studies assessing gene expression

changes over time and in response to treatment would provide a

deeper understanding of how T-cell-related genes impact disease

progression and therapeutic outcomes.
Conclusion

In conclusion, our study identified distinct T-cell-related subtypes

in NSCLC and developed a robust prognostic gene signature. These

findings provide insights into the immune microenvironment and

provide a potential tool for patient risk stratification and treatment

planning. The 16-gene signature can be used to stratify NSCLC

patients into high-risk and low-risk groups, guiding treatment

decisions such as using immune checkpoint inhibitors,

chemotherapy, or targeted therapies. Furthermore, incorporating

this gene signature into clinical practice could help identify patients

most likely to benefit from personalized immunotherapies, potentially

improving survival outcomes. Integrating this signature into clinical

decision support systems could enhance oncologists’ ability to make

informed, data-driven treatment choices based on a patient’s genetic

and immune profile. However, further prospective validation and

clinical studies are necessary to fully realize the clinical implications of

these results and their potential role in personalized treatment

strategies for NSCLC.
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