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Multiomics analysis unveils key
biomarkers during dynamic
progress of IAV infection in mice
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Wen Wen1,2,3, Ping Wang1,2,3* and Shijun Xu1,2,3*

1State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of
Traditional Chinese Medicine, Chengdu, China, 2School of Pharmacy, Chengdu University of
Traditional Chinese Medicine, Chengdu, China, 3Institute of Material Medica Integration and
Transformation for Brain Disorders, Chengdu University Traditional Chinese Medicine,
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Introduction: Influenza infection is a significant threat to public health, and

identifying dynamic biomarkers that influence disease progression is crucial for

effective intervention.

Methods: We conducted a comprehensive evaluation of physiological and

pathological parameters in Balb/c mice infected with H1N1 influenza over a

14-day period. We employed the DIABLO multi-omics integration method to

analyze dynamic changes in the lung transcriptome, metabolome, and serum

metabolome from mild to severe stages of infection.

Results: Our analysis highlighted the critical importance of intervention within

the first 6 days post-infection to prevent severe disease. We identified several

novel biomarkers associated with disease progression, including Ccl8, Pdcd1,

Gzmk, kynurenine, L-glutamine, and adipoyl-carnitine. Additionally, we

developed a serum-based influenza disease progression scoring system.

Discussion: This study provides new insights into the molecular mechanisms

underlying influenza progression and identifies potential targets for therapeutic

intervention. The developed scoring system serves as a valuable tool for early

diagnosis and prognosis of severe influenza.
KEYWORDS

influenza A virus, multiomics integration, disease severity prediction, L-
glutamine, biomarker
Background

Influenza A virus (IAV) is a negative-sense RNA virus that has emerged as a significant

global public health threat, characterized by high mortality and morbidity rates (1, 2). The

timely diagnosis and accurate prediction of the infection process are crucial for mitigating

influenza-related mortality and severe illness. Mouse models have been instrumental in
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elucidating the biomarkers associated with severe IAV infections.

Numerous studies have identified various disease severity

biomarkers and therapeutic targets in mouse models of influenza,

such as C-reactive protein, serum amyloid A, d-alanine, itaconate,

spermidine, and C-X-C motif chemokine ligand 17 (3–8). However,

the dynamic research on viral infection remains limited.

Understanding the evolving dynamics of the host response to

IAV infection provides valuable insights for developing effective

interventions to improve disease outcomes and reduce mortality

rates (9).

Multi-omics analysis techniques have shown significant potential

in uncovering biomarkers at the transcriptional, translational, and

metabolic levels during viral infections (10). These techniques have

highlighted their value for clinical diagnosis and management of

respiratory infections (11, 12). For instance, transcriptomics and

metabolomics analyses of lung alterations on days 7 and 9 post-

influenza infection in mice have identified ARG1 as a regulator of

Th1 cells (13). Macro-genomic and metabolomic analyses of cecum

and serum changes on days 7 and 14 post-infection have revealed

indole-3-propionic acid as a protective metabolite against influenza

(14). Additionally, microbiome-metabolome association analyses of

oropharyngeal swab samples have demonstrated that a specific

combination of three sphingolipid metabolites exhibits high

diagnostic efficacy (15). Multi-omics analysis of blood has also

identified serum metabolites, such as 3-ureidopropionate,

polyamine, uric acid, and tryptophan, as predictors of COVID-19

severity (16, 17). However, these studies have primarily focused on

fixed time points and have not yet comprehensively analyzed the

dynamic changes in lung transcriptomics, metabolomics, and serum

metabolomics during influenza infection.

The detection of these identified biomarkers in easily accessible

and readily collectible biological samples is essential for facilitating

their application in the diagnosis and management of these diseases.

While numerous studies have identified influenza-associated

biomarkers across a broad spectrum of sample types, including

lung, bronchoalveolar lavage fluid, trachea, intestinal tissues, and

oropharyngeal swabs (14, 18, 19), the clinical applicability of these

biomarkers is often hindered by the invasiveness, complexity, or

instability associated with their collection. In contrast, blood is the

most accessible source of samples that can be used to examine the

health condition of a given organism (16, 20).

To address the gap in our understanding of viral infection

dynamics within murine models, our study systematically examined

changes in lung transcriptomics, metabolomic characteristics, and

serum metabolomics in IAV-infected mice at multiple critical time

points using a multi-omics approach. We placed particular

emphasis on the biological alterations occurring during the

transition from mild clinical symptoms to severe infection—a

pivotal phase that is crucial for predicting disease progression and

regression. By employing the advanced DIABLO analytical method

to integrate and correlate the aforementioned multi-omics data, we

successfully identified key biomarkers associated with influenza

infection, including Ccl8, Pdcd1, Gzmk, kynurenine, L-glutamine,

and adipoyl-carnitine. Moreover, we developed an influenza
Frontiers in Immunology 02
progression scoring system, which enables early diagnosis of

severe influenza.
Materials and methods

Virus

The influenza virus was generously provided by Professor

Yang Falong’s team from the Southwest Minzu University. The

virus was identified as the mouse lung-adapted strain A/Fort

Monmouth/1/1947 (H1N1) following sequencing by Shengong

Biology. The virus was propagated in 9–10 day-old SPF-grade

embryonated eggs as described (21, 22). Viral potency was

ascertained using a hemagglutination assay with 0.5% chicken

red blood cells, and the viral titer was stored at −80°C after

aliquoting at a titer of ≥27.
Lethal dose 50%

The virus solution was diluted in PBS at 10-fold increments to

achieve a range of concentrations (10–1 to 10-6). Groups of mice (n

= 6 per group) were intranasally inoculated with 30 mL of each viral

dilution. Mice were monitored twice daily for 14 days to record

survival rates (23). The LD50 was calculated using the Reed &

Muench method (24).
Animal experiments

Female Balb/c mice, aged 6–8 weeks and specific pathogen-free,

were purchased from Beijing Huafukang Animal Co., Ltd. A total of

64 mice were randomly allocated into experimental groups (6–8

mice per group), including viral infection groups and PBS vehicle

groups. Mice were housed in an environment with a 12-hour light-

dark cycle, at a temperature of 24°C ± 2°C, and a relative humidity

of 50% ± 5%, alongside unrestricted availability to nourishment and

hydration. All animal experiments received sanction from the

Animal Ethics Committee of the Industrial Antimicrobial

Research Institute at Chengdu University (Approval No:

SIIA20230601). All the experiments were carried out in Biosafety

Level II laboratory.

After anesthesia with pentobarbital, the virus group was

intranasally inoculated with a virus suspension diluted to

0.4×LD50 with PBS, with a volume of 30 ml per mouse, the

vehicle group was administered an equivalent volume of PBS via

the same route. Body weight was recorded daily, and clinical

symptoms of the mice were monitored and scored (25). On days

4, 6, 8, 10, and 14 post-infection, blood samples were collected at

sacrifice. Subsequently, the lung, thymus and spleen tissues were

immediately dissected, washed in pre-cooled 4°C physiological

saline, dried on filter paper, and weighed. The organ index was

calculated as (wet organ weight/body weight) × 100% (25).
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Lung histopathology

After ocular bleeding and cervical dislocation, the superior lobe of

the right lung was extracted, washed with PBS to eliminate blood

contamination, and then immersed in 4% paraformaldehyde for

fixation. After 72 hours of fixation, the tissue was dehydrated

through a gradient series, was embedded in paraffin, sectioned at

approximately 5 μm thickness, and stained with hematoxylin and

eosin (H&E) for slide scanning and review. Pathologists conducted

blind scoring based on criteria (26, 27), which included five key

indicators: pulmonary edema, alveolar/interstitial hemorrhage,

degree of alveolar damage or necrosis, atelectasis, and thickening of

the interlobular septa, and the extent of inflammatory leukocyte

permeation in the parenchyma. The scoring criteria were divided into

grades 0 to 4, where 0 indicates no lesion (normal); 1 indicates mild

lesions, with less than 25% of the lung involved; 2 indicates moderate

lesions, with 25-50% of the lung involved; 3 indicates severe lesions,

with 75% of the lung involved; and 4 indicates very severe lesions,

with 75-100% of the lung involved. All histopathological results were

assessed according to this standard.
Quantitative PCR analysis

At designated times post-infection, the middle and lower lobes

of the right lung lobe were harvested and preserved in liquid

nitrogen for later use. Quantitative Polymerase Chain Reaction

(qPCR) was employed to ascertain the comparative mRNA levels of

the H1N1 virus in lung tissue of mice. Total RNA was extracted

according to the instructions of the Animal Total RNA Isolation Kit

(Chengdu Fuji, catalog number: R.230701), and the viral M gene

was amplified using a qPCR assay kit (Saiveier, catalog number:

G3337-100). Gene expression values were normalized to a-Tubulin
gene expression using the 2−DDCT method (28). qPCR was used to

detect inflammatory factors in lung tissue of mice, and the

operation was the same as the determination of lung virus titer.

The primer sequences are listed in Table 1.
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Enzyme-linked immunosorbent assay

Enzyme-linked immunosorbent assay (ELISA) kit was utilized

to quantify the concentrations of Interleukin-6 (IL-6), Interleukin-1

beta (IL-1b) and Tumor Necrosis Factor-alpha (TNF-a) in serum

of mice (Novus Biologicals (USA), article numbers: VAL604G,

VAL601 and VAL609).
Transcriptome sequencing and differential
gene analysis

We collected lung tissues from vehicle and virus-infected mice

at 4, 6, 8, and 10 days post-infection (n=6 per group), with the inner

halves of the left lung lobes used for transcriptome analysis. Total

RNA extraction and other experimental details were conducted by

Novogene (Beijing, China) and RNA integrity and quantity were

assessed using an Agilent 2,100 bioanalyzer. After RNA extraction,

cDNA was reverse-transcribed and then refined to secure double-

stranded DNA templates for the assembly of sequencing libraries.

The harvested DNA was processed for end-repair, adapter

attachment, and PCR amplification to produce sequencing

libraries. The fabricated cDNA libraries were subjected to

Illumina sequencing followed by rigorous data quality control.

The size and concentration of the libraries were evaluated using

Qubit 2.0 and Agilent 2,100 to ensure library quality and

sequencing accuracy. Sequences were mapped to the reference

genome employing the HISAT2 software, and gene expression

levels were quantified with the featureCounts tool (version

1.5.0-p3).

We used the Python programming language to generate line

charts depicting the expression of all genes in both the virus and

vehicle groups of mice at 4, 6, 8, and 10 days post-infection. Cosine

similarity, a fundamental metric for evaluating similarity between

two entities based on the cosine of the angle between vectors, is

widely used in fields like pattern recognition and medical

diagnostics (29). Taking the stability of gene expression in the

vehicle group at each time point as a reference (assuming that gene

expression changes approximate a straight line) and that there is no

significant difference within the group, we utilized the cosine

similarity method (with a threshold of cos(q) < 0.5) to quantify

differences in gene expression trends and identify genes with

significantly different expression patterns from the vehicle group,

namely differentially expressed genes (DEGs). This method can

objectively identify genes with significantly changed expression

patterns post-infection, providing a basis for further biological

analysis and interpretation.
Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway assessments were executed using the

Novogene online platform (https://magic.novogene.com) with R

(Version 3.0.3) and the cluster Profiler package, with the threshold
TABLE 1 Sequences of the primers.

Gene name Primer sequence

a-Tubulin-F ATCACAGGCAAGGAGGATGC

a-Tubulin-R GCACTGGTCAGCCAGCTT

M-F CTTCTAACCGAGGTCGAAACGTA

M-R GGTGACAGGATTGGTCTTGTCTTTA

IL-6-F TAGTCCTTCCTACCCCAATTTCC

IL-6-R TGGTCCTTAGCCACTCCTTC

TNFa-F GTGCCTATGTCTCAGCCTCTTCTC

TNFa-R CCGATCACCCCGAAGTTCAGTAG

IL-1b-F CTGGTGTGTGACGTTCCCATTA

IL-1b-R CCGACAGCACGAGGCTTT
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for statistical importance established at P < 0.05 to ensure the

reliability of the identified biological processes and pathways in

statistical terms.
Lung and serum untargeted metabolomics
assays

We analyzed the lung and serum metabolomes of vehicle and

virus-infected mice at 4, 6, 8, and 10 days post-infection (n=6 per

group). The outer halves of the left lung lobes were ground in a

mortar with liquid nitrogen, then processed with precooled

methanol: water solution. After incubation and centrifugation, the

liquid layer was dried under vacuum, and an internal standard was

added. The supernatant was used for mass spectrometry testing.

Serum samples were treated similarly, with methanol added,

vortexed, and centrifuged before drying under vacuum and

adding the internal standard for mass spectrometry analysis.

The Q Exactive mass spectrometer and Acquity BEH C18

column (2.1 mm × 100 mm, 1.7 μm) were used for analysis.

Detection was performed by scanning positive and negative ions

simultaneously using an electrospray ionization (ESI) The mobile

phase consisted of 0.1% aqueous formic acid (A) and acetonitrile

(B), with gradient elution (0–2 min, 5-10% B; 2–5 min, 10-15% B;

5–7 min, 15-25% B; 7–22 min, 25-85% B; 22–25 min, 85% B), The

flow rate was at 0.3 mL/min, column temperature of 30°C, and

injection volume of 5 μL. ESI conditions were set as follows: spray

voltage of ±3.5 kV, sheath gas, auxiliary gas, and sweep gas flow

rates were 35, 15, and 1 arb, respectively, and the ion transfer tube

temperature was 300°C. The scan mode was full scan/data-

dependent secondary scan, with primary and secondary

resolutions of 70,000 and 17,500, respectively, a scan range of 75-

1,100 m/z, and a collision energy gradient of 20, 40, 60 eV.

The data were preprocessed using Mzmine software (version

3.4.27), including denoising, baseline correction, peak alignment,

peak identification, and normalization. In addition, leveraging

precise mass measurements, secondary fragments, and isotope

distribution, metabolites were identified using the HMDB and

ChemSpider databases, utilizing the data on exact mass, fragment

spectra, and isotopic distribution.
Differential metabolite screening

Following the DEGs screening method, cosine similarity was

used to screen for differential metabolites (DMs).
Integrated multi-Omics data analysis

The DIABLO has proven effective in integrating datasets from

various biological sources and in identifying biomarkers across

metabolomics, transcriptomics, and proteomics (30–33). The

DIABLO R package of mixOmics (version 6.19.4) (34) was used

to integrate lung transcriptome, metabolome, and serum
Frontiers in Immunology 04
metabolome data. Lung transcriptome data (2,203 DEGs, 47

samples) and lung metabolome data (108 DMs, 47 samples), as

well as serum metabolome data (28 DMs, 47 samples) were

preprocessed. Data analysis was conducted using the mixOmics R

Bioconductor package (35).
Development of influenza progression
scoring system

We selected serum metabolomic features with high weight

coefficients (WC) in Comp 1 and 2 to construct the formula for

the influenza disease progression scoring system. The formula for

the system is as follows: influenza course score = WC × metabolite

A concentration +WC × metabolite B concentration. Subsequently,

the serum metabolite concentration of the vehicle and virus groups

at 4, 6, 8, and 10 days post-infection were substituted into the

established scoring formula for fitting, to evaluate the reliability of

the scoring system and quantify the relationship between metabolite

concentration and disease risk.
Statistical analysis

Data processing and analysis were meticulously conducted

using GraphPad Prism 8 statistical software (version 8.0) and

Origin statistical software. Results are presented as mean ± SEM.

For normally distributed data, one-way ANOVA followed by

Tukey’s HSD post-hoc test was used. For non-normally

distributed data, Kruskal-Wallis H test with Dunn’s post-hoc test

was applied. p < 0.05 was considered statistically significant.
Results

Dynamic assessment of A/FM/1/47 (H1N1)
infection in Balb/c mice

Common indicators for assessing the pathogenicity of influenza

virus in mice include weight loss, ruffled fur, shivering, hunched

posture, hypothermia, and reduced activity (22), among which

weight loss is the key indicator for measuring morbidity (36, 37).

Initial symptoms such as piloerection and hunching were observed

at 4 days post-infection (4 dpi). However, there were no notable

alterations in body temperature, weight, or food intake at this stage.

As the infection progressed to 6 dpi, significant physiological

changes became evident. By 8 dpi to 10 dpi, infected mice

exhibited approximately 15% body weight loss (Figure 1a), a

marked increase in clinical symptom scores (Figure 1b), a

reduction in body temperature of approximately 1.5°C

(Supplementary Figure 1a), a substantial decrease in food

consumption by around 70% (Supplementary Figure 1b), and the

proportion of congested and edematous areas of the lungs is as high

as 80% (Supplementary Figure 1c). In addition, compared with the

vehicle group, the lung index increased by approximately 56% from
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4 dpi to 8 dpi (Figure 1c), the thymus index decreased by about 45%

at 10 dpi, and the spleen index increased by approximately 22% at

10 dpi (Supplementary Figures 1d, e). By 14 dpi, these indices had

still not fully recovered compared with the vehicle group.

In summary, the results showed that the physiologic and

pathologic indices of the mice deteriorated significantly from 6

dpi (Figure 1, Supplementary Figure 1). Therefore, it is

recommended to intervene within 6 dpi to avoid progression to

severe infection.
Dynamics of viral replication and
inflammatory response in mice

Viral virulence and excessive host inflammatory response are

major drivers of disease progression (38, 39). Through qPCR
Frontiers in Immunology 05
analysis, we detected viral replication in lung tissue, revealing a

substantial increase in lung viral load at 4 dpi, which escalated

approximately 1000-fold compared to the vehicle group. By the 8

dpi, the viral load surged to approximately 30,000 times the

baseline, followed by a gradual decline to near-normal levels

between the 10 dpi and 14 dpi (Figure 1d).

In comparison to the vehicle group, during the early phase of

infection (4 dpi), serum levels of IL-1b (P < 0.0001) (Figure 1e) and

lung tissue levels of IL-1b (P < 0.05) (Supplementary Figure 1f)

exhibited approximately a twofold increase, while lung tissue levels

of IL-6 also doubled (P < 0.01) (Supplementary Figure 1g). Notably,

serum levels of IL-6 surged by approximately 100 times (Figure 1f).

The expression of TNF-a in serum peaked at 8 dpi, reaching about

four times the level observed in the vehicle group, and remained

elevated at 14 dpi (P < 0.05) (Figure 1g). Conversely, TNF-amRNA

expression levels in lung tissue increased 1.5-fold versus vehicle
FIGURE 1

Dynamic changes in pathophysiology of mice following 14 days of IAV infection. (a) Changes in body weight of mice post-infection with the virus for
14 days (n = 8 for vehicle, n = 7 for IAV). (b) Clinical symptom scores of mice infected with influenza virus for 14 days (n = 8 for vehicle, n = 7 for
IAV). (c) Dynamic changes in the lung index of mice (n = 6). (d) qPCR analysis of the viral load in lung tissue of mice over a 14-day period post-IAV
infection (n = 6). (e, f, g) ELISA assessment of serum IL-1b, IL-6, and TNF-a levels (n=6-8). (h) H&E staining of lung histopathology in mice; Scale
bars, 500µm and 50µm, respectively. (i) Statistics of histopathologic scores of mouse lungs (n = 6). Data are presented as mean ± SEM. *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001 vs. the vehicle group. ns, no statistical significance.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1566690
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lei et al. 10.3389/fimmu.2025.1566690
group at 6 dpi (P < 0.05), but showed significant downregulation at

other timepoints (Supplementary Figure 1h).

The results of H&E staining of lung tissues showed significant

peribronchiolar lymphocytic infiltration observed from 4 dpi

(indicated by the red arrow) (Figure 1h). As the infection

progressed to 10 dpi, there was a marked escalation in

inflammatory cell presence, resulting in damage to both the

alveolar and interstitial structures of the lungs, accompanied by

interstitial hemorrhage (indicated by the green arrow). The

pathological score reached its zenith at this stage (Figure 1i). Even

at 14 dpi, the inflammation and damage within the lungs remained

pronounced, with the emergence of fibrotic changes (indicated by

the black arrow) (Figures 1h, i).
Dynamic transcriptomic changes in mouse
lung tissue following IAV infection

We performed transcriptional analysis of lung tissue from

vehicle and viral groups of mice at 4, 6, 8,10 days post-infection
Frontiers in Immunology 06
and successfully extracted 56,181 clean reads after implementing

strict quality control procedures (Figure 2a). We screened 9,158

DEGs, whose expression patterns changed significantly after viral

infection, based on the FPKM values of 56,181 transcripts using

cosine similarity (cos(q) < 0.5) as a criterion. The count values of

9,158 DEGs were further screened using the criteria of no

significant difference in gene expression levels in the vehicle

group at different times and in samples within the group, and

2,203 DEGs were finally identified (Figure 2b), which showed

significant expression differences at different stages of

viral infection.

The outcomes of the principal component analysis (PCA) of 2,203

DEGs clearly indicated a distinct differentiation between the viral

groups and the vehicle groups at various stages of infection

(Figure 2c). Then, GO enrichment and KEGG analysis were

performed on the 2203 DEGs. The biological process (BP) analysis

of GO enrichment analysis indicates that DEGs are mainly enriched in

areas such as “immune responses”, “protein phosphorylation” and

“immune system process” (Figure 2d). In the cellular components (CC)

analysis of GO, these DEGs are mainly located in “extracellular region”,
FIGURE 2

Transcriptomic changes in lung tissue of mice post-IAV infection. (a) Schematic of the sample collection and data analysis workflow. (b) Heatmap of
DEGs in lung tissue at 4, 6, 8, and 10 dpi between virus-infected and vehicle groups. (c) PCA plot of DEGs in lung tissue at 4, 6, 8, and 10 dpi. (d)
Bubble charts of GO functional analysis for DEGs at 4, 6, 8, and 10 dpi (e) Bubble charts of KEGG pathway analysis for DEGs at 4, 6, 8, and 10 dpi.
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“chromosomal region”. Regarding molecular function (MF) analysis,

the results indicate that “nucleoside binding”, “purine nucleoside

binding”, “GTP binding”, and “endopeptidase activity” are the most

relevant items in DEGs (Figure 2d). KEGG pathway analysis shows

that DEGs are closely related to “Cytokine-cytokine receptor

interaction”, “NOD-like receptor signaling pathway”, “JAK-STAT

signaling pathway” and “Thl and Th2 cell differentiation” (Figure 2e).
Dynamic metabolomic changes in mouse
lung tissue and serum following IAV
infection

Influenza virus infection and the associated host responses

significantly alter host metabolism, which in turn affects the

overall health and progression of the organism (40). We analyzed

lung tissue and serum metabolism in mice at different time points
Frontiers in Immunology 07
after viral infection by liquid chromatography-tandem mass

spectrometry (LC-MS/MS) (Figure 2a). This analysis resulted in

the identification of 1,317 annotated metabolites in lung tissues,

including 1,009 metabolites detected under positive electrospray

ionization (ESI (+)) conditions and 308 under negative electrospray

ionization (ESI (-)) conditions. We identified 108 DMs in lung

tissue (Figure 3a), with PCA analysis revealing distinct separations

between the virus-infected group and the vehicle group at different

stages of infection (Figure 3b). The DMs in lung tissue were

significantly enriched in the tryptophan metabolism pathway

upon activation, with notable metabolites including kynurenine,

5-hydroxyindoleacetic acid, formylkynurenine, and N-

acetylserotonin (P = 0.0414). (Figure 3c). Additionally, the DMs

were also enriched in “alpha linolenic acid and linoleic acid

metabolism”, “purine metabolism” and “beta-alanine metabolism”.

In serum, we identified 1,062 metabolites, including 555 under

ESI (+) and 507 under ESI (-). We identified 28 DMs in serum
FIGURE 3

Metabolomic changes in lung of mice post-IAV infection. (a) Heatmap of DMs peak area content in lung tissue at 4, 6, 8, and 10 dpi between virus-
infected and vehicle groups. (b) PCA plot of lung DMs at 4, 6, 8, and 10 dpi. (c) Functional enrichment bubble diagrams for lung DMs at 4, 6, 8, and
10 dpi. The line chart on the right shows the peak area concentrations of metabolites enriched in the most significant pathways.
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(Figure 4a). PCA demonstrated the distinction between the virus-

infected groups and vehicle groups at various stages of infection in

serum (Figure 4b). The DMs in serum were significantly enriched in

pathways related to the Warburg effect, with enriched metabolites

such as malic acid and glutamine (P = 0.0177) (Figure 4c). The

enrichment of metabolic pathways such as “malate-aspartate

shuttle”, “transfer of acetyl groups into mitochondria”, and “citric

acid cycle further” indicates the host’s adaptation to increased

energy demands during infection. Moreover, the enrichment of

pathways like “phenylacetate metabolism”, “aspartate metabolism”,

and “amino sugar metabolism” (Figure 4c) suggests a heightened

requirement for amino acids by the host to facilitate immune

responses and cellular repair processes during the infection.
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DIABLO analysis identifies dynamic
biomarkers of IAV infection

The sample scatterplot shows a strong correlation between lung

transcriptomics and both lung and serum metabolomics, with

Pearson’s correlation coefficients of 0.87 and 0.86, respectively

(Figure 5a). Furthermore, a substantial correlation was identified

between lung and serum metabolomics (Pearson’s r = 0.76),

highlighting the significant interrelationships among the

transcriptomic and metabolomic datasets within the samples

(Figure 5a). Correlation circle plots further elucidated the

interconnectedness of the three datasets, highlighting the

contributions of key variables to each component (Figure 5b).
FIGURE 4

Metabolomic changes in serum of mice post-IAV infection. (a) Heatmap of DMs peak area content in serum at 4, 6, 8, and 10 dpi between virus-
infected and vehicle groups. (b) PCA plot of serum DMs at 4, 6, 8, and 10 dpi between virus-infected and vehicle groups. (c) Functional enrichment
bubble diagrams for serum DMs at 4, 6, 8, and 10 dpi. The line chart on the right shows the peak area concentrations of metabolites enriched in the
most significant pathways.
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Here, comp1 and comp2 reflect the key variables associated with

primary and secondary biological effects, respectively. In Comp1,

Ccl8 exhibited the highest loading weight in lung transcriptomics

(loading weight = 0.78), followed by Pdcd1, Gzmk, and Cpz. In lung

metabolomics, kynurenine had the highest loading weight (loading

weight = 0.77), followed by 2-oxindole-3-acetic acid, while adipoyl-

carnitine was the most significant in serum metabolomics (loading

weight = 0.45), followed by isopropanol and triacetic acid lactone

(Figure 5c). In Comp2, Xdh exhibited the highest weight (loading

weight = − 0.75), followed by Ly6c1 (Figure 5d). Avocadene 2-

acetate (loading weight = − 0.50) and L-glutamine (loading weight =

− 0.47) in lung metabolomics, L-glutamine (loading weight = −
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0.93) in serum metabolomics. Notably, malic acid emerged as the

sole key feature during the early stage of infection at 4 dpi.

Additionally, Figures 5e, f illustrate the dynamic changes of the

highest-weight molecular features in each dataset of comp1 and

comp2, respectively.

The DIABLO analysis was ultimately depicted through circos

plots (Figure 6a) and network interaction diagrams (Figure 6b). The

Ccl8 demonstrated significant positive correlations with a variety of

serum and lung metabolites, including docosahexaenoic acid, tiglyl

glycine, LPC O-16:0, kynurenine, and 2-oxindole-3-acetic acid

(Figure 6a). Notably, L-glutamine exhibited considerable

prominence among both serum and lung metabolites, revealing
FIGURE 5

Multiomics integration and molecular characterization using DIABLO. (a) DIABLO scatter plot displaying the first principal components and
correlations of integrated lung transcriptomic, lung metabolomic, and serum metabolomic datasets, with the upper triangle showing the first
component of each omics dataset and the lower triangle showing the Pearson correlations between components. (b) Correlation circle plot
highlighting the contribution of each selected variable in the lung transcriptomic, lung metabolomic, and serum metabolomic datasets. Important
variables with greater impact on the components are positioned further from the center of the circle, while less influential variables are closer to the
center. (c) Pyramid bar chart displaying significant features in each dataset for Component 1. (d) Pyramid bar chart for Component 2. (e) Line plots
of the expression of high-weighted features in the three datasets of component 1. (f) Line plots of the expression of high-weighted features in the
three datasets of component 2.
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unique positive correlations with genes such as Xdh, H2-T24, Ly6c1

and Slfn5, which were distinctly illustrated in the network

interaction diagram (Figure 6b). The cluster thermogram showed

the expression of 75 features identified in two principal

components (Figure 6c).

The influenza progression scoring system formula = 0.45 ×

(adipoyl-carnitine concentration) + 0.43 × (isopropanol

concentration) + 0.37 × (triacetic acid lactone concentration) −

0.93× (L-glutamine concentration), we incorporated the metabolite

levels measured at 4, 6, 8, and 10 dpi into the curve-fitting analysis.

The resulting R² value of 0.98 indicates that the scoring system

accurately predicts and assesses relevant indicators, reflecting an

exponential progression of influenza, suggesting that the condition

had entered the severe stage when the serum score was elevated by

about 2.5-fold and that the condition had entered the critical stage

when the score was elevated by about 5-fold (Figure 6d).
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Discussion

The identification of biomarkers for IAV infection is crucial for

mitigating the incidence of severe illness and mortality associated

with the disease. Advances in bioinformatics and experimental

methodologies have positioned comprehensive multi-omics

analysis as a pivotal tool for uncovering disease markers and

predicting therapeutic targets (41). DIABLO is a multi-omics

integration method that maximizes the shared or relevant

information among multiple omics datasets (35). As the first

multivariate integrative classification method to construct

predictive models, DIABLO demonstrates remarkable flexibility in

handling various experimental designs (34). It excels in both

classical single-time-point studies and dynamic, repeated-

measures studies (42). Currently, DIABLO has been widely

applied to identify key biomarkers and construct models across
FIGURE 6

Visualization and analysis of key features from multiomics correlation. (a) Circos plot (cutoff: 0.8) illustrating positive (red) and negative (black)
correlations among variables in the lung transcriptomic, lung metabolomic, and serum metabolomic datasets. The outer ring shows the relative
abundance of each feature for each group. (b) Correlation network plot presenting an alternative visualization of the inter-omics variable
correlations, with each color representing a type of variable. Comp1 reflects the primary source of variation in the data, Comp2 reveals secondary
sources of variation. (c) Clustered heatmap of significant multi-omics features identified between the virus and Vehicle groups at two principal
components across four infection time points, with samples represented as rows (47 samples) and each omics selected feature as columns. (d)
Disease progression scoring curve fitting plots at different infection times.
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diverse fields (43–45). In this study, by leveraging DIABLO to

integrate and analyze the dynamic changes in the lung

transcriptome and metabolome as well as the serum metabolome

of mice, we successfully identified specific genes and metabolites

associated with influenza progression, including Ccl8, Pdcd1, Gzmk,

kynurenine, adipoyl-carnitine, and L-glutamine.

The physiological parameters observed in mice within 14 days

post-IAV infection align with findings from previous studies (46).

We observed that the lung viral load and pathological damage in

mice progressively increased, peaking at 8–10 dpi and then

gradually declined (Figures 1d, i). In contrast, pro-inflammatory

cytokines in the lungs and serum, including IL-6 and IL-1b,
exhibited a significant initial increase at 4 dpi, followed by a

sustained and gradual decrease as the infection progressed

(Figures 1e, f), this indicates that the kinetics of inflammation

and virus-induced lung damage are distinct (47). Additionally,

decreased levels of TNF-a in lung tissues (Supplementary

Figure 1h) were associated with increased tight junction

permeability, which in turn exacerbated immunopathological

changes and tissue remodeling in the lungs (48, 49). In the later

stages of infection, elevated serum expression of TNF-a (Figure 1g)

indicated the persistence and exacerbation of the systemic

inflammatory response, suggesting that reducing serum TNF-a
levels could potentially alleviate lung inflammation (50).

Our study identified a strong positive correlation between

disease severity and several features in comp1, including the

genes Ccl8, Pdcd1, and Gzmk, as well as the metabolites

kynurenine and adipoyl-carnitine. Ccl8, a chemokine, is closely

associated with the pathological degree of lung inflammation in the

early stages of influenza infection (51) and serves as an indicator of

lung inflammation and immune overreaction in COVID-19 (52).

Pdcd1, involved in T cell function regulation, delays viral clearance

and increases mortality in IAV-infected mice, making it a potential

target for treating immune escape during IAV infection (53). Gzmk

inhibits influenza virus replication by disrupting the importin a1/b
heterodimer in the host cell’s nuclear transport complex, suggesting

its potential as an antiviral therapeutic target (54). Kynurenine, a

metabolite derived from host tryptophan, is positively correlated

with the severity of influenza (Figure 5e), and a high kynurenine/

tryptophan ratio is associated with adverse outcomes in influenza

(55). IAV infection induces the synthesis of kynurenine, which

inhibits T cell differentiation and weakens the antiviral immune

response (56). Adipoyl-carnitine, an O-acylcarnitine-like

metabolite of fatty acid b-oxidation (57), is a potential marker for

distinguishing colorectal cancer (58), and may indicate increased

energy demand in host cells during IAV infection (59).

Highly weighted features identified in Comp2 include the genes

Xdh, H2-T24, and Ly6c1, as well as the metabolites avocadene 2-

acetate and L-glutamine (Figure 5d). Correlation network analysis

revealed a significant correlation between L-glutamine and several

key genes, particularly Xdh, H2-T24, and Ly6c1 (Figure 6b). Xdh is

primarily involved in purine metabolism in vivo, and its

upregulation during influenza virus infection leads to the
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accumulation of reactive oxygen species, exacerbating lung tissue

damage (60). H2-T24 is crucial for the antiviral immune response

and is implicated in various immunological and inflammatory

disorders (61, 62). Ly6c1, identified through transcriptomic

analyses as a potential biomarker specific to fibroblasts, warrants

further investigation into its biological functions (63). L-glutamine,

an amino acid metabolite, is essential for maintaining host immune

homeostasis (64, 65), and its serum levels like viral loads, peak at

8dpi and then gradually decline (Figures 1d, f). Viruses are known

to reprogram host L-glutamine metabolism to enhance their

replication and induce ferroptosis in host cells (66, 67), suggesting

that targeting L-glutamine metabolism could serve as a potential

antiviral strategy (68). Avocadene 2-acetate, a long-chain fatty

alcohol metabolite, peaks and then declines on day 8 post-

infection (Figure 5f), and has antiviral properties (69), indicating

a possible association with viral replication.

In serum metabolite enrichment analysis, the Warburg effect

(aerobic glycolysis) was significantly enriched, with related

metabolites including malic acid and L-glutamine (Figure 4f). The

Warburg effect is a common metabolic program during viral

infection (70) and is a hallmark of H1N1 and COVID-19 diseases

(71, 72). We found that malic acid levels gradually decreased as the

infection progressed (Figure 4f), and high levels of malic acid have

been shown to correlate with the severity of COVID-19 (73).

Therefore, malic acid could serve as a marker and potential

therapeutic target for monitoring the course of IAV infection.

Additionally, while triacetic acid lactone and isopropanol have not

received substantial attention in the context of virus infection

research, their potential implications warrant further investigation.

Moreover, genes such as Cpz, Prc1, and Zgrf1, as well as metabolites

like oleoyl-L-carnitine, 5-hydroxyindoleacetic acid, and CMPF, were

underweighted in the DIABLO analyses but are associated with the

infection process, highlighting their potential as biomarkers.
Limitations of the study

Despite providing novel insights into influenza progression via

multi-omics integration, this study has certain limitations. Firstly,

the identified biomarkers (e.g., Ccl8, Pdcd1, kynurenine, L-

glutamine) and the influenza risk scoring system remain

unvalidated experimentally. Future research should validate their

reliability and utility using in vitro and in vivomodels. Secondly, the

study exclusively used female mice, neglecting potential sex-specific

differences in male mice. Additionally, the study focused solely on

the acute infection phase (4–10 days) without examining the

recovery phase (e.g., 14 days or later), which is crucial for

understanding the full infection course. Furthermore, the data

presented here are from a single experiment with a limited

sample size, which may affect the reproducibility and

generalizability of the findings. Future work should address these

limitations through comprehensive validation, extended time-point

analyses, and additional experiments to ensure data reproducibility.
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Conclusions

In summary, this study reveals that the first 6 days post-

infection is a critical window for intervention to prevent severe

disease progression. We identified a range of potential biomarkers,

including genes such as Ccl8, Pdcd1, Gzmk, and metabolites like

kynurenine, adipoyl-carnitine, L-glutamine, which can be used for

monitoring influenza risk. Additionally, the developed influenza

disease progression scoring system can aid in the early diagnosis

and prognosis of severe cases.
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SUPPLEMENTARY FIGURE 1

Dynamic changes in pathophysiology of mice following 14 days of IAV
infection (a) Variations in body temperature of mice post-infection with the

virus for 14 days (n = 8 for the vehicle group, n = 7 for the IAV group). (b)
Changes in food intake of mice during the 14-day period of infection (n = 8
for vehicle, n = 7 for IAV). (c) Representative anatomical images of lung tissue

at different stages of IAV infection in mice. (d) Dynamic changes in the spleen
index of mice (n = 6). (e) Dynamic changes in the thymus index of mice (n =

6). Data are presented as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001 vs. the vehicle group. (f, g, h) qPCR analysis of IL-1b, IL-6, and
TNF-a relative mRNA expression in lung tissue at 4, 6, 8, 10, and 14dpi

(n=6-8).
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Domıńguez NR, Páez-Franco JC, et al. Redefining COVID-19 severity and prognosis:
The role of clinical and immunobiotypes. Front Immunol. (2021) 12:689966.
doi: 10.3389/fimmu.2021.689966
frontiersin.org

https://doi.org/10.7554/eLife.68864
https://doi.org/10.1186/1465-9921-8-75
https://doi.org/10.1186/1465-9921-8-75
https://doi.org/10.1016/j.ajpath.2011.09.003
https://doi.org/10.1016/j.ajpath.2011.09.003
https://doi.org/10.1371/journal.pone.0102967
https://doi.org/10.1371/journal.pone.0102967
https://doi.org/10.1016/j.virol.2010.02.020
https://doi.org/10.1007/s12079-020-00574-3
https://doi.org/10.1128/jvi.02851-13
https://doi.org/10.1038/cdd.2011.178
https://doi.org/10.1038/cdd.2011.178
https://doi.org/10.1111/irv.12677
https://doi.org/10.1111/febs.13966
https://doi.org/10.1016/j.clnu.2019.10.025
https://doi.org/10.3164/jcbn.22-110
https://doi.org/10.1016/j.scitotenv.2022.159801
https://doi.org/10.1016/j.scitotenv.2022.159801
https://doi.org/10.3390/ph11030073
https://doi.org/10.1007/s002510050670
https://doi.org/10.3969/j.issn.1673-4254.2018.08.01
https://doi.org/10.3969/j.issn.1673-4254.2018.08.01
https://doi.org/10.4049/immunohorizons.2100114
https://doi.org/10.4049/immunohorizons.2100114
https://doi.org/10.1186/s41110-016-0016-8
https://doi.org/10.1038/onc.2009.358
https://doi.org/10.1038/onc.2009.358
https://doi.org/10.1038/ncomms9873
https://doi.org/10.1016/j.freeradbiomed.2023.05.004
https://doi.org/10.1016/j.freeradbiomed.2023.05.004
https://doi.org/10.1042/cs20201042
https://doi.org/10.1039/d1fo00693b
https://doi.org/10.1039/d1fo00693b
https://doi.org/10.1016/j.redox.2024.103112
https://doi.org/10.1038/ncomms5436
https://doi.org/10.1038/s41598-021-90192-9
https://doi.org/10.3389/fimmu.2021.689966
https://doi.org/10.3389/fimmu.2025.1566690
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Multiomics analysis unveils key biomarkers during dynamic progress of IAV infection in mice
	Background
	Materials and methods
	Virus
	Lethal dose 50%
	Animal experiments
	Lung histopathology
	Quantitative PCR analysis
	Enzyme-linked immunosorbent assay
	Transcriptome sequencing and differential gene analysis
	Functional enrichment analysis
	Lung and serum untargeted metabolomics assays
	Differential metabolite screening
	Integrated multi-Omics data analysis
	Development of influenza progression scoring system
	Statistical analysis

	Results
	Dynamic assessment of A/FM/1/47 (H1N1) infection in Balb/c mice
	Dynamics of viral replication and inflammatory response in mice
	Dynamic transcriptomic changes in mouse lung tissue following IAV infection
	Dynamic metabolomic changes in mouse lung tissue and serum following IAV infection
	DIABLO analysis identifies dynamic biomarkers of IAV infection

	Discussion
	Limitations of the study

	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


