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Introduction: BCG vaccination can have heterologous or non-specific effects

(NSE) that confer resistance against pathogens other than its target Mycobacterium

tuberculosis, but the underlying mechanisms are not fully understood.

Methods: We conducted a systematic review synthesising existing literature on

immune mechanisms mediating the heterologous/NSE of BCG. Searches were

conducted using MEDLINE and Scopus.

Results: 1032 original records were identified, of which 67 were deemed eligible.

Several potentially relevant immune pathways were identified, although there

may be variation by pathogen. Recent studies have focused on trained immunity

whereby innate cells, or the hematopoietic stem and progenitor cells fromwhich

they are derived, undergo epigenetic and metabolic reprogramming allowing

them to respond more effectively to antigen exposures unrelated to the original

stimulus. However, other processes such as granulopoiesis and cross-reactive

adaptive immunity may also play a role. Heterologous immunity and NSEsmay be

influenced by several endogenous and exogenous variables.

Discussion: Wediscuss the quality of available data, the importance of understanding

mechanismsofheterologousprotection, and its implications for vaccination strategies.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/view/

CRD42023400375, identifier CRD42023400375.
KEYWORDS

BCG, heterologous effects of vaccination, trained immunity, T cells, humoral
immunity, tuberculosis
1 Introduction

The Bacillus Calmette–Guérin (BCG) vaccine has been the only licensed vaccine for

tuberculosis (TB) since 1921 (1). It is the most widely used vaccine to date, has a well-

established safety profile, and confers protection against severe forms of TB and associated

mortality in infants (2), although efficacy against adult pulmonary TB is highly variable.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1567111/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1567111/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1567111/full
https://www.crd.york.ac.uk/PROSPERO/view/CRD42023400375
https://www.crd.york.ac.uk/PROSPERO/view/CRD42023400375
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1567111&domain=pdf&date_stamp=2025-05-19
mailto:rachel.tanner@biology.ox.ac.uk
https://doi.org/10.3389/fimmu.2025.1567111
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1567111
https://www.frontiersin.org/journals/immunology


Torracinta et al. 10.3389/fimmu.2025.1567111
Mounting evidence suggests that BCG may also confer protection

against non-mycobacterial infections (3). Calmette, co-developer of

BCG, first noted a four-fold reduction in infant mortality in

preliminary studies, surpassing expectations if protection were

against TB alone. The British government observed a similar

phenomenon following the universal introduction of BCG in

1953 (4, 5). Subsequent epidemiological and observational studies

have supported heterologous benefits across different populations; a

World Health Organisation (WHO) review of 17 birth cohorts

found that BCG reduces infant mortality by five to ten deaths per

thousand children in the first three years of life (6). This trend has

been replicated across different study designs, including systematic

reviews of randomised control trials (RCTs) alone (7) or cohort,

case-control studies, and RCTs together (8), as well as recent gold-

standard blinded RCTs (9, 10) reporting beneficial effects against

heterologous infections during the neonatal period in particular.

BCG immunotherapy has been used to treat non-invasive

bladder cancer for decades, though the mechanisms remain

unclear (11). Additionally, a growing body of literature has

suggested that BCG could confer protective benefits against a

range of maladies running the gamut from infectious disease (e.g.,

malaria (12), influenza (13) and HIV-1 (14)); autoimmune disease

(e.g., asthma (15) and type 1 diabetes (16)); as well as diseases of

later life (e.g., lung cancer (17) and Alzheimer’s (18)), although

much evidence remains to be validated. The recent COVID-19

pandemic sparked interest in the potential of BCG to protect

against COVID-19 until specific vaccines were available. A large

RCT found that BCG did not reduce risk of COVID-19, but the

pandemic underscored the need to better understand heterologous

immunity (19).

While the terms ‘heterologous effects’ and ‘non-specific effects’

are often used interchangeably, the latter implies the exclusion of

antigen cross-reactivity and we will henceforth use ‘heterologous

effects’ to encompass both antigen-independent NSE and potential

cross-reactivity by cells of the adaptive arm of the immune system.

The immune mechanisms mediating the heterologous effects of

BCG have been under investigation for over 60 years (20). Studies

on macrophage activation using BCG stimuli from the 1960s

supported the idea that BCG induces non-specific antibacterial

immunity (21, 22). Recently, BCG has been key to unravelling the

concept of ‘trained immunity’, whereby the innate immune system

retains memory via long-term reprogramming. Upregulation of

innate cells and their functional mechanisms by BCG can enhance

non-specific protection against unrelated secondary infections (23).

In summary, the idea that BCG vaccination confers

heterologous protection against diseases other than TB – despite

some uncertainties (24, 25) – is now widely accepted, with many

studies exploring the mechanism(s) by which such protection

occurs. A better understanding of such heterologous effects could

support the development of low-cost interventions to reduce all-

cause mortality in infants and could be central to rapid responses

against new emerging pathogens during the lag-phase of vaccine

development (26). Therefore, we conducted the first systematic

review of literature describing the immune mechanism(s)

mediating the heterologous effects of BCG.
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2 Methods

A systematic review of the literature on immune mechanisms

mediating the heterologous effects of BCG vaccination

was performed in accordance with the Preferred Reporting

Items for Systematic reviews and Meta-Analyses (PRISMA)

(Supplementary Table 1) (27). The study protocol was registered

with PROSPERO prior to commencement on 13th March 2023 (ID

CRD42023400375). Amendments to the initial protocol were

published on 11th June 2024 and 7th April 2025 (28).
2.1 Data sources and search strategy

Searches were conducted in the MEDLINE database via

PubMed and through Scopus on 6th March 2023. Relevant

literature reviews were also screened for additional references.

References were then compiled, de-duplicated, and screened using

Rayyan, an online web tool for systematic reviews (29). The full

search strategy and terms are provided in Supplementary Table 2.

Eligible studies were imported into EndNote 20 for further review.

To ensure the review was not outdated at time of submission, a

further search was performed in PubMed using the same strategy

and criteria but with a date filter of records published between 6th

March 2023 and date of second search (26th September 2024). As

this was not part of the core systematic review, additional papers

identified are included in the discussion section.
2.2 Study selection and eligibility criteria

Studies were considered eligible if they evaluated the potential

immune mechanisms of heterologous effects of BCG vaccination in

protecting against infectious diseases other than TB in i) persons,

cohorts or populations immunised with BCG (or biological samples

thereof), ii) preclinical models whereby animals were immunised

with BCG (or biological samples thereof), or iii) relevant in vitro

models. Eligibility also required exposure to, or stimulation with,

heterologous pathogens or their antigens in vivo or in vitro. Any

experimental design, formulation, strain, dose and route of

administration of the BCG vaccine was accepted.

Studies that described or observed the heterologous effects of

BCG vaccination but did not evaluate the potential underlying

immune mechanisms, or did so only in silico, were excluded. This

review does not include studies that solely examine the role of BCG

as an immunotherapy for bladder cancer or other tumours; the

effect of BCG vaccination on non-infectious disease; the impact of

BCG vaccination on other immunisations; or the Mantoux/

Tuberculin test. Other exclusion criteria were i) studies in

languages other than English, ii) pre-prints or studies that were

otherwise not peer-reviewed, iii) studies for which abstracts or full

papers were not available, and iv) background articles or reviews

containing no original data. Records were screened by at least two

authors to determine eligibility. In case of disagreement, a third

author screened the record and a consensus was reached.
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2.3 Data extraction

Data was collected manually from eligible papers by both NG

and LT and reviewed by LT. Data was collected, where available and

according to relevance, on: i) study groups analysed (species,

geographical region, cohorts, age, sample size, interventions); ii)

BCG vaccination strain, dose and route of administration; iii)

outcomes associated with heterologous protection (or surrogates

thereof); iv) immune parameters measured; and v) any associations

between immune parameters measured and heterologous

protection (or surrogates thereof).
2.4 Risk of bias and quality assurance

Risk of meta-biases was reduced by predefining the eligibility

criteria, using broad and inclusive search terms, multiple databases,

and with no restriction on date of eligibility (up to date of search).

To evaluate the quality of the included studies, a quality assurance

framework was applied based on previous tools developed by

Tanner et al. (30), the ‘Quality Assessment of Controlled

Intervention Studies’ tool developed by the National Heart, Lung

and Blood Institute (NHLBI) and the ‘Quality Assessment Tool for

in vitro Studies’ (QUIN) (31). Articles were assigned scores ranging

from 0 to 12, classified into the following categories: 0-2 (poor), 3-5

(fair), 6-8 (good), 9-10 (very good), and 11-12 (excellent).
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3 Results

3.1 Identification of studies and their
characteristics

Searches identified 1032 unique records, of which 161 were

sought for full-text screening. Of these, 147 studies were retrievable

and were full text screened, while 14 studies could not be retrieved.

67 articles were deemed eligible and included in the review

(Figure 1) (27).

Of the 80 records excluded after full-text review, 27 were

excluded because they did not consider immune mechanism(s)

underlying heterologous effects. 22 articles were deemed out of the

scope of this review. 14 articles did not discuss heterologous effects

in detail. Five articles were related to cross-reactivity of vaccines.

Four in silico papers were excluded, as were three review articles.

Three non-English papers, one pre-print and an experimental

protocol were also excluded.

Data extracted from eligible papers is detailed in Supplementary

Table 3. 38 used human volunteers, 26 were animal studies and

three used both human and animal samples. In our independent

quality assessment (QA) of the included research, 11 studies (~16%)

were deemed ‘excellent’, the majority of which (seven) were

concerned with causes of variation in the heterologous effects of

BCG vaccination. Two ‘excellent’ studies were concerned with

trained innate immunity, and one each with neutrophils and T
FIGURE 1

PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) flow diagram of search process and publication selection.
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cells. 14 studies (~21%) were deemed ‘very good’, 38 (~57%) were

‘good’, and four (~6%) were of ‘fair’ quality. Each of these categories

was proportionately spread across the different mechanistic

categories. None of the included studies were deemed ‘poor’

(Supplementary Table 4, Supplementary Figure 1).

In the follow-up search, 57 new records were returned of which

15 were deemed eligible.
3.2 Immune mechanisms mediating the
heterologous effects of BCG vaccination

Our review suggests that BCG vaccination likely confers

heterologous immunity through various mechanisms that differ

by context and population, and that its heterologous effects are

potentially influenced by several external factors (Figure 2). This

review will consider each pathway in turn.

3.2.1 Innate Immunity
3.2.1.1 Trained immunity

The concept of trained immunity – that innate cells could retain

memory conferring an improved response against secondary
Frontiers in Immunology 04
exposures – had long been demonstrated in other species (32).

This is distinct from the well-understood adaptive immune memory

in which antigen-specific memory T and B cells are formed allowing

for a faster and more efficient immune response upon subsequent

exposure to the same pathogen. Instead, in trained immunity,

innate cells undergo long-lasting changes that make them more

responsive to subsequent, often unrelated, exposures.

3.2.1.1.1 Monocytes and macrophages

In 2012, Kleinnijenhuis et al. first comprehensively described

this phenomenon in humans post-BCG vaccination, though post-

BCG non-specific macrophage activation has been reported since

1961 (33–39). In the Kleinnijenhuis study, monocytes collected

from Dutch adults vaccinated with BCG produced more cytokines

(particularly IFN-g, IL-1b, and TNF-a) in response to secondary in

vitro exposure to unrelated pathogens such as Staphylococcus

aureus, as well as to Mycobacterium tuberculosis (M.tb) as

expected. This heterologous response was shown to be dependent

on functional NOD2 proteins as well as epigenetic H3K4me3

methylation. Transcriptomic analyses of gene polymorphisms

involved in autophagy also revealed that H3K4 trimethylation was

significantly increased in individuals bearing the ATG2B autophagy
FIGURE 2

Visual summary of results of this review. Results are synthesised into factors that may influence the NSE of BCG vaccination, immune mechanisms
associated with the NSE of BCG vaccination, and impacts of the NSE of BCG vaccination. NSE, non-specific effects; Th1, T helper 1; Th17, T helper
17. Created in BioRender.
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gene (40–43). Other cytokines produced by monocytes such as IL-

32 have also been implicated, particularly in the heterologous effects

against parasitic infections (44). Further in vitro studies have

demonstrated that similar trained immunity processes occur in

human cord blood adherent monocytes, which are more

representative of the monocyte processes of neonatal blood in

vivo (45).

It has been shown that b-glucan stimuli drive epigenetic

modifications for trained immunity through complex metabolic

changes in cells (49). Studies from the 1970s noted increased

metabolic rates and glycolysis in activated macrophages (50).

However, the detailed metabolic effects of BCG vaccination were

not reported until 2016, showing that BCG ligands detected by

pattern recognition receptors (PRRs) initiate cascades in

monocytes/macrophages that epigenetically upregulate glycolysis,

glutamine, and glutathione metabolism, along with oxidative

phosphorylation, likely via the Akt/mTOR pathway (51–53). If

glycolysis or glutaminolysis is inhibited (e.g., by metformin, an

mTOR prohibitor), epigenetic changes in H3K4me3 promoter sites

are reversed. This is because methylation is regulated by lysine

demethylases and histone methyltransferases, whose activity are

influenced by metabolites functioning as co-factors. These findings

point to an internal feedback loop within the epigenetic and

metabolic mechanisms of trained immunity (49). A separate

study of neonatal metabolomes found that BCG vaccination alters

plasma lipid metabolism and these changes are correlated with

blood cytokine responses to later stimulation with multiple Toll-like

receptor (TLR) agonists (54). This study, the first of its kind

incorporating comprehensive metabolomics in a resource-limited

setting, presents a promising new lipid metabolic mechanism that

may mediate heterologous effects in early life.

Finally, although hepcidin-mediated hypoferremia, effectively a

limit on iron availability for pathogens, has been hypothesised as a

metabolic pathway of trained immunity, studies have been unable

to demonstrate this effect following BCG vaccination (9, 55). A

lesser-known study of protein and zinc-deficient guinea pigs found

that BCG vaccination still conferred heterologous effects (56),

indicating that these metabolites may not play a mechanistic role,

and lipid or glucose-based pathways seem most pertinent given

their circulating levels are known predictors of trained immunity in

humans (57). Other studies have investigated the role of nitric oxide

production in trained immunity, but found no effect (58).

3.2.1.1.2 Natural killer cells

Experiments in natural killer (NK) cells have also demonstrated

that BCG vaccination leads to trained immunity and increased

secretion of the proinflammatory cytokines IL-1b, TNF-a, and
IFN-g following heterologous stimulation, indicating that this

phenomenon occurs across several innate cell types (46–48).

3.2.1.1.3 Neutrophils

Early studies suggested BCG vaccination confers heterologous

immunity even in granulocytopenic mouse models, suggesting a

limited role for neutrophils in this phenomenon (59). However, a

1990s study found that BCG vaccination in mice enhanced the ability
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of macrophages and T cells to recruit neutrophils to infection sites

weeks later (60), and granulopoiesis is induced through G-CSF

stimulation (61). BCG vaccination is now thought to prevent

neonatal sepsis mechanistically through rapid granulopoiesis (62). A

study analysing hematopoietic stem cell transcriptomes of healthy

human volunteers inoculated with BCG found that the genes that are

most differentially expressed at three months post-vaccination are

those implicated in neutrophil activation and degranulation pathways,

ultimately skewing the myeloid lineage toward granulopoiesis. This

may drive a phenotypic change marked by increased activation

markers and reduced immunosuppression markers (63). Further

studies have found BCG stimulation increases production of the

antimicrobial chemokine IL-8 and the serine protease elastase in

neutrophils upon ex vivo exposure to secondary pathogenic stimuli

(64). In summary, BCG boosts neutrophil production, activates

resting cells, and enhances their antimicrobial function.

As discussed, trained immunity in other innate cells occurs

through complex metabolic and epigenetic changes (45). Similarly,

neutrophil activation in this context likely involves these

pathways. Neutrophils primarily use glycolysis for energy, and ex

vivo-stimulated neutrophils show increased glycolytic rates

following BCG vaccination, along with elevated H3K4me3

modifications at promoters of glycolysis-regulating genes such as

phosphofructokinase and mTOR (64). Neutrophils only survive for

a few days, yet both the epidemiological and laboratory-based

epigenetic data point to months-long heterologous effects,

meaning some of these modifications must be to neutrophil

precursors, a process supported by current laboratory data on

neutrophil activation using b-glucan (65). Further in vitro work

similar to the metabolomics studies recently attempted in

peripheral blood mononuclear cells (PBMCs) (43, 57) measuring

epigenetic modifications could therefore be of interest in the context

of neutrophils.

3.2.2 Adaptive immunity
3.2.2.1 T cells

BCG may also confer longer-term heterologous effects through

adaptive immune mechanisms. Given the degenerative nature of T

cell recognition, the conformational shifts a T cell receptor (TCR)

undergoes to recognise a peptide/major histocompatibility complex

(MHC) complex, and the conserved nature of many microbial

antigens, specific memory T cells may in fact be activated by

unrelated pathogens through cross-reactivity (66). However, such

a phenomenon fails to explain the increased responses to pathogens

such as Candida albicans or Staphylococcus aureus observed

following BCG vaccination despite a lack of shared or similar

epitopes. Alternatively, BCG-induced proinflammatory cytokine

release by lymphocytes may act non-specifically to activate

bystander macrophages resulting in a state of temporarily

heightened innate immunity, although this effect wanes rapidly.

Effector and memory CD8+ T cells can be non-specifically activated

by IL-12 and IL-18 during early secondary infection, independent of

TCR signalling, leading to IFN-g secretion that affects innate cells.

This provides a plausible explanation for longer-lived T cell-

mediated heterologous effects (67).
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In 1984, Orme et al. noted the emergence of a splenic T cell

population that was temporally associated with the development of

an acquired capacity for non-specific resistance to secondary

facultative intracellular bacterial pathogens including Listeria

monocytogenes following intravenous (IV) inoculation of mice

with high-dose BCG (68). Further studies suggested BCG-related

non-specific resistance to Listeria was lower in T cell-deficient than

in intact mice (69, 70). Furthermore, Mathurin et al. found that

BCG vaccination rendered mice partially resistant to infection with

vaccinia virus; an effect which was lost after CD4+ T cell depletion

or inhibition of TCR signalling (71). Nonetheless, the anti-malarial

protection from BCG vaccination diminishes after CD8+, but not

CD4+, T cell depletion (72). Although non-specifically activated,

certain immune mechanisms may be more relevant for some

infections than others.

Interestingly, in mice vaccinated with BCG, protection against

experimental cerebral malaria after Plasmodium berghei infection

has been linked to lower levels of proinflammatory mediators in the

brain compared to mice infected without BCG vaccination (73).

BCG vaccination was also associated with altered T cell phenotypes

in the blood and spleen, and a reduced influx of T cells into the

brain, which can otherwise have major pathogenic roles. The

authors concluded that preventing experimental cerebral malaria

results from the anti-inflammatory and T cell inhibitory functions

of BCG, rather than from the hypothesised reduction in

parasitaemia due to trained innate immunity (73). Such

immunosuppressive functions were described over 40 years ago,

including early studies describing non-specific T cell suppressor

activity following IV inoculation of mice with high-dose BCG

(74, 75).

Delaying BCG vaccination to 8 weeks of age does not affect

overall T cell proliferation or cytokine polyfunctionality. However,

infants vaccinated at birth show a significantly higher frequency of

IL-2+ CD8+ T cells in response to Bordetella pertussis compared to

unvaccinated infants (76). A larger multi-site study comparing BCG

strains noted that infants vaccinated with BCG-Denmark mounted

significantly higher magnitudes and polyfunctionality of CD4+ T cell

responses to in vitro stimulation with Tetanus toxoid and B. Pertussis

antigens compared to those vaccinated with BCG-Bulgaria or BCG-

Russia (77). In healthy healthcare workers exposed to SARS-CoV-2,

BCG vaccination was associated with enhanced central and effector

memory CD4+ and CD8+ T cell subsets overall as long as 3 months

later (78), although a study of Danish infants found minimal subset

differences (78, 79). BCG may also enhance heterologous Th1 and

Th17 immune responses for as long as 1 year after vaccination (80).

Non-specific cellular cytotoxicity has been poorly studied, but an

early paper measuring cytotoxicity against a non-specific target noted

marked changes in NK cell, and to a lesser extent, T cell cytotoxicity

following BCG vaccination (81).

3.2.2.2 B cells

Memory B cells are prone to activation by polyclonal

stimulation, and it has long been suggested that mycobacterial

antigens or T cell cytokines could activate pathogen-specific

memory B cells in a non-specific manner, leading to expansion of
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antibody-secreting cells (82). Early work noted that sera from BCG

vaccinated rabbits contained antibodies that bound to radiolabelled

antigens from both unrelated and homologous test antigens (83). A

recent study by Kimuda et al. found that active TB disease was

linked to higher titres of antibodies specific to RSV and measles

virus, but BCG vaccination did not affect antibodies against

heterologous pathogens in the same way (84). Additional research

is needed to clarify how adaptive immunity contributes to the

heterologous effects of BCG and the associated mechanisms.
3.3 Causes of variation

Some of the studies in this systematic review are large RCTs

characterising heterologous effects of BCG vaccination in vivo (9,

55, 85–88). The largest trial in Ugandan infants prospectively

measured all-cause infectious morbidity, providing compelling

evidence for heterologous effects (9). However, RCTs paint a

muddled picture of the immune parameters that could

mechanistically explain this phenomenon. In Uganda, BCG was

associated with some minor epigenetic changes in PBMCs, but

significant effects on cytokine production were not observed

following stimulation with Escherichia coli and Candida albicans

(9). Similarly, stimulation of cells with E. coli and C. albicans did not

increase rates of cytokine secretion in Dutch infants (85). However,

a retrospective study of low birth weight infants in Guinea-Bissau

found that both very low and very high cytokine responses to

Lipopolysaccharide (LPS) and Phytohemagglutinin (PHA) stimuli

were associated with high mortality, and a balanced production was

preferable (86). Two Australian studies found only decreased IFN-g
and IL-6 following stimulation with heterologous antigens (87, 88).

Given that heterologous effects in vitro are reproducible, what is

causing these observed variations? What are the difficulties inherent

to eliciting mechanistic trends in vivo? This review identified several

factors that may explain the population-level variation observed in

the heterologous effects of BCG.

3.3.1 Sex differences
There is some evidence suggesting that heterologous vaccine

responses can be sex-differential (89). Two Australian infant BCG

trials found a significant interaction between sex and macrophage

migration inhibitory factor, as well as other cytokine secretion,

following heterologous stimulation. Meanwhile, two trials in

Guinea-Bissau found smaller, but still notable, variation in

cytokine profiles in response to TLR agonists between sexes (86–

88, 90). A separate trial measuring BCG and hepatitis B co-

vaccination in neonates reported that males produced more IFN-g
and TNF-a, and less MCP-1 in response to heterologous pathogens

compared with females (91). Finally, a trial of 307 healthy adults

found that BCG down-regulates systemic inflammation alongside

enhanced cytokine responses, but mainly in male cohorts, likely due

to circulating testosterone levels (92). The mechanisms underlying

the sex differential effects in heterologous immunity are largely

unknown, and small demographic imbalances in study populations

may drive observed variation.
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3.3.2 Vaccine strain and method of delivery
A number of studies suggest that the BCG strain affects

heterologous effects; specifically, slow growth and live batches

elicit stronger cytokine responses in monocytes, while exact

dosage seems less critical (47, 93–95). Additionally, an early 1980s

study found significant variation between freeze dried and fresh

liquid vaccines given either intradermally or IV (96). A recent

Guinean trial found that BCG-Russia does not enhance innate

immunity in the same way as BCG-Denmark, and BCG-Russia

induces only short-lived effects on CD8+ T-cell reactivity to C.

albicans (97). BCG-Russia is among the most widely used vaccine

strains worldwide (98) but few studies used it within this review,

and further research into BCG-Russia and its descendant strains is

warranted. Not all included studies were methodologically clear

about the BCG strain used or the preparation or immunisation

methods, which should be addressed going forward, especially

considering pertinent recent developments in new routes of

delivery such as aerosolised BCG (99). Finally, a small trial of

inactivated gamma-irradiated BCG vaccine found that it did not

confer protective heterologous immunity to endotoxins, suggesting

that inactivated alternatives to BCG are unlikely to deliver the same

benefits as live strains (100).

3.3.3 Exogenous factors
Local environmental factors may confound the outcomes

measured. Although broadly-speaking the protection BCG confers

against TB increases with distance from the equator, heterologous

effects appear to stratify in the opposite direction, possibly through

priming from maternal vaccination in neonates or enhanced

immunity resulting from continual exposure to circulating

mycobacteria (25). Other research suggests that BCG might

influence how the immune system responds to different neonatal

vaccines (101). It is possible that the opposite effect occurs, whereby

variations in individual vaccine status and the surrounding

pathogenic environment result in different heterologous outcomes

(91, 102, 103).

Several individual factors are posited as causes of variation, such

as age at time of vaccination and sampling – the studies in this

review often sampled either exclusively infants or adults. BCG

vaccination RCTs in the elderly indicate that both innate

immunity and adaptive mechanisms contribute to heterologous

effects, especially against respiratory viruses (104, 105). However,

neonatal cells respond to BCG in a fundamentally distinct way to

those of adults and demonstrate shifting cytokine and epigenetic

profiles throughout development (9, 91, 106, 107). Immune

ontogeny is therefore likely a strong factor causing variability in

heterologous immunity (108).

Research also indicates that differential levels of circulating

Vitamin A metabolites down-regulate trained immunity

epigenetically (109), but increased release of muramyl dipeptide, a

potent adjuvant, is conversely associated with a strengthened

inflammatory response (110). Finally, increasing evidence

indicates that individual circadian rhythms and gut microbiota

such as Roseburia may impact heterologous effects (111–113). For

example, early morning vaccination produces superior cytokine
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production upon heterologous stimulation compared to evening

vaccination (114). There is a need to better measure, control and

stratify potential exogenous and endogenous confounders to fully

validate heterologous mechanisms in vivo.
4 Discussion

This review is the first to systematically synthesise literature

pertaining specifically to the immune mechanisms mediating the

heterologous effects of the BCG vaccine and has identified several

pathways that are likely non-mutually exclusive. It is now clear that

BCG vaccination induces ‘training’ of innate cells including

monocytes, NK cells, and neutrophils (and their precursors) via a

complex interplay of metabolic and epigenetic changes conferring

immunity for a year or longer. BCG may also induce heterologous

reactivity of T and B cells that is not well understood. The quality of

the studies included was generally ‘good’ or ‘very good’, although

many were limited in their sample size. Some of the more robust

preclinical studies or clinical trials of the heterologous effects of

BCG vaccination were excluded as they failed to investigate the

immune mechanisms involved. Those that did so almost exclusively

focused on one mechanism (in the majority of cases this was trained

innate immunity). A priority going forward should thus be a more

comprehensive immunological analysis of samples from large in

vivo studies of BCG; particularly using novel systems approaches to

better understand the integration of different immune pathways.

Of the studies included herein, trained immunity in innate cells

has been studied in the greatest depth and outcomes are, at least in

vitro, most consistent. Recent research has also elucidated

modulation of upstream pathways, focusing on hematopoietic

stem and progenitor cells (115). In contrast, there is a paucity of

research on the relevance of adaptive mechanisms, particularly

humoral responses; much is decades old with inconsistency in

results. It is important to note that different immune mechanisms

(or relative contributions thereof) may underlie the heterologous

effects observed against different pathogens, and in some cases these

may be regulatory (73). Immune parameters mediating protection

vary by pathogen life history and infection stage, and pathogens

differ in their ability to evade the protective effects of heterologous

immunity through strategies such as intracellular survival, antigenic

variation, and immune modulation – which may also manifest

differently in in vitro vs. in vivo settings. While cross-reactivity of

adaptive cells is plausible for some pathogens that share molecular

patterns or antigenic similarities with mycobacteria, it is a relatively

rare phenomenon, and BCG epitopes associated with such

protection are yet to be described (118). Trained innate immunity

may be a more broadly applicable mechanism, yet also appears not

to be universal.

Follow-up studies should make use of more recent technologies

to gain a clearer understanding of the role of adaptive immunity (if

any) in the heterologous effects of BCG vaccination, and the

mechanisms by which this is mediated, including antigen

identification. If, as suggested, M.tb infection can enhance

heterologous antibody titres (84, 116), then it is of interest why
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even large doses of BCG, only attenuated by about ~9.5kb of DNA

(117), appear unable to do so. Ideally such studies should be

performed in vivo to avoid the pitfalls of the artificial in vitro

environment. However, as discussed, a number of factors may

influence the heterologous effects of BCG vaccination in vivo

including the microbiome, circadian rhythms, BCG strain/

formulation used, and age or sex of the individual. While difficult

to implement in real-life settings, future research should aim to

minimise variation and control for confounders to better delineate

mediators and ensure comparability between studies. Advances in

ex vivo immune organoid technology may provide an opportunity

to better model the complexity of immunological outcomes

following vaccination in a more controlled environment (119).

This review has several strengths and limitations. Using

inclusive search terms, no limit on year of publication,

and systematic methods increased the likelihood of being

comprehensive and unbiased, although several older articles of

interest were ultimately inaccessible for abstract or full text

review. This review was also limited by excluding articles

concerning the effects of BCG on cancer or other immunisations.

Although of interest for understanding mechanisms of heterologous

immunity, the interactions of BCG with neoplastic cells or

attenuated pathogens (or their antigens) may be different to the

induction of trained immunity towards secondary live infections.

Future research on this topic may be relevant to understanding

heterologous immunity to whole live pathogens. In silico studies

(albeit small in number) were excluded to ensure the review was

focussed on empirical evidence derived from experimental studies

involving biological systems and to avoid the introduction of

heterogeneity/bias associated with combining data across

fundamentally different methodologies. However, in silico studies

may become increasingly significant in future research with

advances in artificial intelligence. Additionally, pre-prints and

non-English articles were omitted, possibly overlooking

contributions from underrepresented authors or regions.

The field is evolving rapidly, prompting us to re-execute the

search for relevant records published over the 18 months since the

initial search, identifying 15 new eligible papers that reinforce

existing hypotheses and suggest new research directions. In vitro

models of the heterologous effects of BCG are being further

optimised (120), and new translational models have been

proposed including pigs, although findings in this species did not

corroborate the innate immunological responsiveness to BCG seen

in humans and may require further optimisation (121). Notably, the

role of enhanced lung immunity in mediating innate protection

against heterologous respiratory bacterial infections has been

highlighted, with a key role for enhanced neutrophilia that

appears to be independent of centrally trained circulating

monocytes (122). Additional studies have reported extensive

reprogramming of lung immune cells (123), and a biphasic innate

response with robust antigen-specific Th1 cell responses in the

lungs following IV BCG vaccination in hamsters and mice

respectively (124). Interestingly, the latter study noted a central

role for CD4+ T cell feedback on tissue myeloid and epithelial cells

to imprint prolonged and broad innate antiviral resistance (124).
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While the role of humoral immunity remains neglected, a recent

NHP study found that BCG vaccination failed to enhance antibody

titres against a range of heterologous pathogen antigens (116),

consistent with the findings of Kimuda et al. (84).

Investigations of exogenous factors have expanded to consider

how seasons influence trained immunity. Kilic et al. found that BCG

vaccination during winter induced a stronger increase in pro-

inflammatory cytokine production by PBMCs and NK cells

following stimulation with heterologous pathogen stimuli three

months later, compared to BCG vaccination in spring. Although

BCG had minimal impact on the monocyte transcriptome,

vaccination resulted in notable season-dependent epigenetic

alterations in both monocytes and NK cells (125). The

researchers suggest that BCG vaccination in winter may enhance

trained immunity due to the activation and reprogramming of

immune cells, especially NK cells (125). Other cell types besides

monocytes, macrophages, and NK cells can contribute to trained

immunity and the heterologous effects of BCG. Research shows that

gd T cells exhibit innate memory in response to BCG vaccination in

healthy volunteers when stimulated by heterologous bacterial and

fungal stimuli (126). Samuel et al. have also reported evidence of

innate training in bovine gd T cells following subcutaneous BCG

administration and subsequent in vitro stimulation with E. coli LPS

and PAM3CSK4 (127).

Specht et al. found that the genetic background of hosts affects

BCG-induced antibodies that cross-react with the SARS-CoV-2 spike

protein in mice (128). A more sophisticated multi-omics analysis of

over 300 healthy individuals identified genetic and epigenetic

predictors of baseline immunity and immune response, finding that

BCG vaccination enhanced the innate immune response more-so in

individuals with a dormant immune state at baseline. The authors

note that epigenetic cell states function as an ‘endophenotype’

integrating signals from genotype and environment, linking them

to personal immune profiles (129). A further multi-omics analysis

showed that linoleic acid metabolism was correlated with the trained

immunity-inducing capacity of different BCG strains, and could act

as an adjuvant to enhance BCG-induced trained immunity (130).

However, despite stimulation of granulopoiesis, administration of

another potential adjuvant, the nitrogen-containing bisphosphonate

alendronate, alongside BCG, was associated with reduced cytokine

production by PBMCs against heterologous stimuli one month later

in healthy individuals (131).

Recent technologies have created opportunities to enhance our

understanding of monocyte functions, interactions, and gene

regulation in an in vivo setting, which could be vital for

comprehending clinical conditions. In a single cell transcriptional

analysis of the host immune response to in vivo trained immunity

by BCG, monocytes and CD8+ T cells showed heterologous

transcriptional responses to LPS, with active crosstalk between the

two cell types. IFN-g was shown to play an important role in

amplifying the trained immunity response, and STAT1 found to be

one of the important transcription factors for trained immunity in

all identified monocyte subpopulations (132). Finally, and

significantly, it has been shown that BCG alters both the

epigenetics and chromatic accessibility of hematopoietic stem and
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progenitor cells, and these effects are directly correlated with

enhanced IL-1b secretion by descendant paired PBMCs following

stimulation with C. albicans – strong evidence to support the

concept that upstream progenitor modulation is implicated in the

development of long-term trained innate immunity (115).

Kandasamy et al. (8), in a review of vaccine heterology, argue

that a central challenge to understanding heterologous effects is that

conventional immunological measurements produce limited

mechanistic insight into the association between vaccination and

immune outcomes observed epidemiologically. The mechanisms by

which BCG protects against TB itself are still being uncovered (133)

and future research requires improved models of vaccine-mediated

immunity, such as controlled human or non-human primate

infection models (2, 134). However, the innovative studies

discussed also point to further discovery possibilities in designs

and tools already available, such as metabolomic and epigenetic

profiling techniques (43).
4.1 Conclusion

This systematic review synthesises current literature on the

immune mechanisms mediating the heterologous effects of BCG

vaccination. It reveals a deep and sometimes obscure history of

experimental research on the impact of BCG on heterologous

immunity, extending over eight decades. It finds the greatest

quantity and quality of evidence for mechanisms of trained innate

immunity, particularly in monocytes, NK cells and neutrophils,

while the role of cross-reactive adaptive responses (in particular

humoral immunity) is less clear and less well-studied.

It is striking that the BCG vaccine, painstakingly developed

under the shadow of World War I (135), remains the only vaccine

against the world’s leading cause of infectious disease mortality

(136). Remarkably, the mechanisms of BCG-mediated protection

remain unclear and defy traditional divides of innate versus

adaptive immunity and the belief that immune memory is limited

to the adaptive arm. Further research into this seemingly humble

vaccine is therefore highly warranted.
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bacillus calmette–guérin-induced trained innate immunity in infants identifies
epidermal growth factor, IL-6, platelet-derived growth factor-AB/BB, and natural
killer cell activation. Front Immunol. (2017) 8. doi: 10.3389/fimmu.2017.00644

108. Angelidou A, Diray-Arce J, Conti M-G, Netea MG, Blok BA, Liu M, et al.
Human newborn monocytes demonstrate distinct BCG-induced primary and trained
innate cytokine production and metabolic activation in vitro. Front Immunol. (2021)
12. doi: 10.3389/fimmu.2021.674334

109. Arts RJW, Blok BA, van Crevel R, Joosten LAB, Aaby P, Benn CS, et al. Vitamin
A induces inhibitory histone methylation modifications and down-regulates trained
immunity in human monocytes. J Leukocyte Biol. (2015) 98:129–36. doi: 10.1189/
jlb.6AB0914-416R

110. Mourits VP, Koeken VACM, de Bree LCJ, Moorlag SJCFM, Chu WC, Xu X, et al.
BCG-induced trained immunity in healthy individuals: the effect of plasma muramyl
dipeptide concentrations. J Immunol Res. (2020) 2020:1–8. doi: 10.1155/2020/5812743

111. Otasowie CO, Tanner R, Ray DW, Austyn JM, Coventry BJ.
Chronovaccination: Harnessing circadian rhythms to optimize immunisation
strategies. Front Immunol. (2022) 13. doi: 10.3389/fimmu.2022.977525

112. Ciabattini A, Olivieri R, Lazzeri E, Medaglini D. Role of the microbiota in the
modulation of vaccine immune responses. Front Microbiol. (2019) 10. doi: 10.3389/
fmicb.2019.01305
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