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Background: The rapid development of COVID-19 vaccines highlighted the

transformative potential of artificial intelligence (AI) in modern vaccinology,

accelerating timelines from years to months. Nevertheless, the specific roles

and effectiveness of AI in accelerating and enhancing vaccine research,

development, distribution, and acceptance remain dispersed across various

reviews, underscoring the need for a unified synthesis.

Methods: We conducted an umbrella review to consolidate evidence on AI’s

contributions to vaccine discovery, optimization, clinical testing, supply-chain

logistics, and public acceptance. Five databases were systematically searched up

to January 2025 for systematic, scoping, narrative, and rapid reviews, as well as

meta-analyses explicitly focusing on AI in vaccine contexts. Quality assessments

were performed using the ROBIS and AMSTAR 2 tools to evaluate risk of bias and

methodological rigor.

Results: Among the 27 reviews, traditional machine learning approaches—

random forests, support vector machines, gradient boosting, and logistic

regression—dominated tasks from antigen discovery and epitope prediction to

supply‑chain optimization. Deep learning architectures, including convolutional

and recurrent neural networks, generative adversarial networks, and variational

autoencoders, proved instrumental in multiepitope vaccine design and adaptive

clinical trial simulations. AI‑driven multi‑omic integration accelerated epitope

mapping, shrinking discovery timelines by months, while predictive analytics

optimized manufacturing workflows and supply‑chain operations (including

temperature‑controlled, “cold‑chain” logistics). Sentiment analysis and

conversational AI tools demonstrated promising capabilities for real‑time

monitoring of public attitudes and tailored communication to address vaccine

hesitancy. Nonetheless, persistent challenges emerged—data heterogeneity,

algorithmic bias, limited regulatory frameworks, and ethical concerns over

transparency and equity.

Discussion and implications: These findings illustrate AI’s transformative potential

across the vaccine lifecycle but underscore that translating promise into practice

demands five targeted action areas: robust data governance and multi‑omics
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consortia to harmonize and share high‑quality datasets; comprehensive regulatory

and ethical frameworks featuring transparent model explainability, standardized

performance metrics, and interdisciplinary ethics committees for ongoing

oversight; the adoption of adaptive trial designs and manufacturing simulations

that enable real‑time safety monitoring and in silico process modeling;

AI‑enhanced public engagement strategies—such as routinely audited chatbots,

real‑time sentiment dashboards, and culturally tailored messaging—to mitigate

vaccine hesitancy; and a concerted focus on global equity and pandemic

preparedness through capacity building, digital infrastructure expansion, routine

bias audits, and sustained funding in low‑resource settings.

Conclusion: This umbrella review confirms AI’s pivotal role in accelerating vaccine

development, enhancing efficacy and safety, and bolstering public acceptance.

Realizing these benefits requires not only investments in infrastructure and

stakeholder engagement but also transparent model documentation,

interdisciplinary ethics oversight, and routine algorithmic bias audits. Moreover,

bridging the gap from in silico promise to real‑world impact demands large‑scale

validation studies and methods that can accommodate heterogeneous evidence,

ensuring AI‑driven innovations deliver equitable global health outcomes and

reinforce pandemic preparedness.
KEYWORDS

artificial intelligence, machine learning, vaccine development, epitope prediction,
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1 Introduction

Recent global health crises, particularly the COVID-19

pandemic, have underscored the urgency of fast-tracking vaccine

development, optimization, and distribution (1).Traditional vaccine

research and development (R&D) pipelines, spanning several years

or even decades, are challenged by complex processes such as

antigen discovery, epitope prediction, adjuvant formulation, and

rigorous clinical trial designs (2–4). While the speed and scale of

COVID-19 vaccine development have demonstrated the promise of

artificial intelligence (AI) in modern immunology (5–7), this

acceleration resulted from multiple convergent factors: massive

funding, preexisting mRNA platforms, overlapping trial phases,

and global collaboration—not solely from AI. Nevertheless, AI-

based methods—from rapid epitope mapping to adaptive clinical

trial designs—have helped shorten certain phases from years to

months, illustrating a potential paradigm shift in how vaccines are

conceived, tested, and produced (8–12).

Despite these advances, the integration of AI within the vaccine

R&D continuum faces ongoing barriers: heterogeneity of

immunological datasets, ethical and regulatory uncertainties, and

interpretability issues in advanced AI models (13, 14). As global

health initiatives stress equitable access and preparedness for future
02
pandemics (15, 16), researchers and policymakers need a robust,

evidence-based appraisal of AI’s contributions—balanced with

realistic expectations about its limitations. Regulatory and ethical

concerns loom large, including transparency, fairness, and

explainability of complex AI algorithms. Regulators such as the

FDA and EMA are formulating guidelines for safe and effective AI

adoption in healthcare contexts, though standardized frameworks

for AI in vaccinology are still emerging (17–19). In parallel, issues of

intellectual property, data privacy, and consent frameworks

necessitate careful navigation to maintain public trust in AI

solutions (20).

Although various systematic and narrative reviews have

explored AI’s role in vaccine research, development, and

dissemination, the evidence base is scattered across different

disease targets, computational approaches, and review types. A

high-level synthesis of these disparate findings is needed to unify

insights, highlight overarching trends, and pinpoint persistent

knowledge gaps. We build on existing large-scale reviews but

extend the discussion to cover regulatory, logistical, and equity-

focused perspectives that are often underrepresented. By integrating

multiple sources, this umbrella review aims to guide strategic

decisions on high-value AI tools, ethical best practices, and

regulatory alignment in vaccine development.
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1.1 Aim

The aim of this umbrella review is to synthesize the existing

evidence on the role of artificial intelligence (AI) in accelerating and

enhancing vaccine research, development, distribution, and acceptance.
1.2 Research questions
Fron
1. What specific AI techniques are most commonly applied in

vaccine research and development?

2. How effective are AI-driven methodologies in enhancing

various stages of vaccine development compared to

traditional approaches?

3. What are the primary ethical, logistical and regulatory

challenges associated with integrating AI in vaccine

research and distribution?
2 Methods

2.1 Study design

This umbrella review was conducted to consolidate high-level

evidence on AI in vaccine research, development, distribution, and

acceptance (21). The design followed an umbrella review format,

chosen to integrate data from systematic, scoping, narrative, and

rapid reviews, as well as meta-analyses that focused on AI-based

methodologies applied to various vaccine platforms, diseases, and

healthcare settings The methodology adhered to the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses
tiers in Immunology 03
(PRISMA) 2020 guidelines to ensure methodological rigor, clarity,

and replicability (22).
2.2 SPIDER framework

The SPIDER tool (Sample, Phenomenon of Interest, Design,

Evaluation, Research type) provided the structural basis for defining

inclusion criteria (23). This approach facilitated a comprehensive

scope of relevant reviews, capturing a wide range of AI applications

in vaccine contexts across multiple populations and research

designs. (See Table 1: SPIDER Tool Components).
2.3 Inclusion and exclusion criteria

A set of inclusion and exclusion criteria ensured that only

reviews directly addressing AI in vaccine research, distribution

logistics, and public acceptance were considered. See Table 2.

Inclusion and Exclusion Criteria).
2.4 Information sources and search
strategy

Searches were carried out in PubMed/MEDLINE, Scopus, Web

of Science, Embase, and IEEE Xplore to capture all relevant reviews

within the established parameters. The time frame was set to

capture all relevant reviews published from inception up to

January 2025. The Search terms included keywords for AI

(machine learning, deep learning, etc.) AND vaccine-related
TABLE 1 SPIDER tool components.

Component Description

S (Sample) Vaccine researchers, healthcare professionals, epidemiologists, AI specialists, regulatory entities, and communities affected by infectious
diseases or cancer. Included reviews had to focus on at least one of these stakeholder groups.

PI (Phenomenon of Interest) Integration of AI (machine learning, deep learning, NLP) in vaccine research, development, distribution, and acceptance.

D (Design) Systematic, scoping, narrative, rapid reviews, literature reviews, and meta-analyses.

E (Evaluation) Vaccine efficacy, safety, development timelines, ethical/regulatory concerns, and public acceptance issues informed by AI-
based interventions.

R (Research types) Reviews covering quantitative, qualitative, or mixed-methods studies relevant to AI-driven vaccine development.
TABLE 2 Inclusion and exclusion criteria.

Criteria Inclusion Exclusion

Publication Design Systematic, scoping, narrative, rapid reviews, literature reviews,
meta-analyses

Primary research articles, opinion pieces, editorials, conference and abstracts.

Focus Reviews explicitly covering AI in vaccine R&D, distribution,
or acceptance

Reviews lacking AI or focusing exclusively on drug discovery without
vaccine relevance

Population Human vaccines (infectious diseases, cancer) across
diverse demographics

Veterinary vaccine reviews, or those with no human vaccine context

Language Publications in English Non-English publications
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terms (vaccine development, epitope prediction, immunogenicity).

(See Table 3: Search Terms). The initial number of retrieved

references and subsequent exclusions are now detailed in the

PRISMA flow diagram (Figure 1).
2.5 Selection process

The records identified through database searches were imported

into Rayyan, a systematic review screening tool. Two independent
Frontiers in Immunology 04
reviewers conducted title and abstract evaluations. Any discrepancies

were resolved through discussion or by a third reviewer if necessary.
2.6 Data extraction

Data were extracted using a standardized form that was

developed and pilot-tested by the review team. Each eligible

review was examined for its publication characteristics,

methodological approach, AI applications, vaccine platforms,

disease targets, and reported outcomes.
FIGURE 1

PRISMA flow diagram.
TABLE 3 Search terms.

Search Component Example Search Terms

AI Concepts “Artificial Intelligence” OR “AI” OR “Machine Learning” OR “Deep Learning” OR “Natural Language Processing”

Vaccine-Related Terms “Vaccine Development” OR “Epitope Prediction” OR “Antigen Discovery” OR “Adjuvant Optimization” OR “Clinical Trials”

Disease/Pathogen Focus “COVID-19” OR “Influenza” OR “HIV” OR “Dengue” OR “Cancer Vaccines” OR “Malaria”

Public Acceptance/Ethical “Vaccine Hesitancy” OR “Public Sentiment” OR “Ethical Considerations” OR “Regulatory Framework” OR “Data Privacy”

Review Design “Systematic Review” OR “Scoping Review” OR “Narrative Review” OR “Rapid Review” OR “Literature Review” OR “Meta-Analysis”
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2.7 Data synthesis

Given the methodological heterogeneity of the included reviews

—which encompassed systematic, narrative, scoping, and rapid

reviews—a thematic analysis approach was employed to

synthesize both qualitative and quantitative data (24).
2.8 Risk of bias and quality of assessment

Risk of bias was assessed using the Risk of Bias in Systematic

Reviews (ROBIS) tool (25), chosen for its capacity to evaluate

different review types, including narrative and scoping reviews.

Although primarily intended for systematic reviews, ROBIS offers

distinct advantages for appraising diverse methodologies by

examining bias across study eligibility criteria, identification and

selection processes, data collection and appraisal, and synthesis of

findings. Its structured yet adaptable framework allowed us to

emphasize transparency and thematic consistency rather than

strict meta-analytic components, an important consideration

given the methodological variability in the included evidence. We

evaluated the methodological quality of each included review using

the AMSTAR 2 tool (26), originally designed for systematic reviews

of healthcare interventions but here adapted to encompass non-

systematic approaches such as narrative, scoping, and rapid reviews.
3 Results

This umbrella review encompassed 27 reviews published

between 2020 and 2024. The included reviews employed a variety

of review methodologies, comprising systematic reviews, narrative

reviews, mini reviews, rapid reviews, scoping reviews, and an

analytical review. Predominant AI techniques utilized across these

studies included machine learning (ML), deep learning (DL), neural

networks, natural language processing (NLP), generative models,

and network approaches. AI applications identified in the reviewed

literature spanned drug design and repurposing, vaccine candidate

identification and optimization, epitope prediction, molecular

docking, diagnostic and prognostic evaluations, vaccine

communication, and public health strategies. The vaccines

addressed encompassed mRNA vaccines, peptide-based vaccines,

vector-based vaccines, and protein subunit vaccines, targeting

diseases such as COVID-19, dengue, influenza, HIV, multidrug-

resistant bacteria, and various cancers including Triple-Negative

Breast Cancer (TNBC). Detailed characteristics of each included

study are provided in Supplementary Appendix 1.
3.1 Risk of bias and quality assessment

Among the 27 included reviews examined via our adapted

ROBIS framework (See Supplementary Appendix 2: Risk of Bias),

one was judged to have a high overall risk of bias, while the

remaining 26 were deemed moderate risk. No reviews received a
Frontiers in Immunology 05
low overall risk rating. Floresta et al. (2022) (27) exhibited high

concern across three critical domains—Eligibility Criteria, Study

Selection, and Data Collection & Appraisal—due to the lack of

systematic inclusion and exclusion criteria, omission of gray or

non-English literature, and absence of a formal bias assessment.

Although it offered valuable thematic insights into AI-driven drug

design, these multiple methodological omissions significantly

compromised confidence in its findings.

Based on our adapted application of AMSTAR 2, the 27 included

reviews were distributed across four confidence categories: High (n =

6), Moderate (n = 7), Low (n = 7), and Critically Low (n = 7). (See

Supplementary Appendix 3: Quality Assessment of included reviews)

Overall, the most frequent limitations across the Low and Critically

Low reviews were the absence of a registered protocol, non‐

systematic search methods, and lack of any formal risk‐of‐bias

evaluation. By contrast, the High confidence reviews better adhered

to established review standards and more consistently addressed

external validation, algorithmic bias, and comprehensive search

strategies. The Moderate confidence group occupied an

intermediate space: while methodologically sounder than the Low/

Critically Low reviews, each had at least one notable gap—often

pertaining to reporting transparency or limited exploration of ethical/

regulatory concerns. In reconciling the mismatch that arose between

ROBIS and AMSTAR 2, we clarify that ROBIS primarily measures

risk of bias for systematic methods, while AMSTAR 2 also accounts

for reporting standards and overall quality. This explains why a

review might be “moderate” under ROBIS but “critically low” under

AMSTAR 2 if it lacks protocol registration or formal risk-of-

bias assessment.
3.2 Thematic synthesis

Our thematic analysis revealed four primary themes: (1) AI

Applications in Vaccine Development, (2) Evaluating Impact on

Efficacy, Safety, Timelines, (3) Ethical, Logistical, and Regulatory

Challenges, and (4) AI-Driven Public Acceptance and

Communication. Table 4 presents a summary of the key findings

aligned with the themes.

3.2.1 Mapping the landscape of AI applications in
vaccine development
3.2.1.1 Diversity of AI methods

All included reviews emphasize ML as the fundamental AI

approaches transforming vaccine development. Classical ML

techniques—such as random forest (28–32), SVMs (28, 30, 31, 33,

34), gradient boosting (XGBoost) (32, 35), and logistic regression

(31)—were employed for tasks including candidate ranking, epitope

scoring, and logistic optimization.

Random forest algorithms were among several ML methods

employed to expedite vaccine candidate prioritization through

comprehensive analyses of immunogenicity and safety profiles

(28–31). While not uniquely emphasized, they contributed

alongside other methods in evaluating COVID-19 vaccine

candidates. Specifically, studies by Floresta et al. (2022) (27),
frontiersin.org
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Wang et al. (2021) (29), Lv et al. (2021), and Kaushik et al. (2023)

(31) underscored the combined capability of ML techniques—

including random forests and neural networks—to rapidly

identify promising vaccine candidates with enhanced safety and

immune response profiles.

Additionally, multiple ML methods, including SVMs, random

forests, and neural networks, significantly contributed to epitope

scoring. These approaches advanced the identification of epitopic

regions capable of eliciting robust immune responses (30, 32).

Gradient boosting algorithms, especially XGBoost, and logistic

regression models proved instrumental in refining vaccine logistics

and candidate selection processes. These methods effectively

utilized clinical and biological datasets to accurately predict

outcomes, enhancing efficiency and decision-making accuracy

(36, 37).

Deep Learning (DL) architectures also played a substantial role,

particularly convolutional neural networks (CNNs) and recurrent

neural networks (RNNs), due to their proficiency in pattern

recognition and large-scale data analysis, essential for extracting

insights from extensive vaccine-related datasets (27, 31–33, 35, 38–

43). Additionally, generative adversarial networks (GANs) and

variational autoencoders emerged prominently for novel

immunogen design, offering innovative methods to simulate and

create potential vaccine candidates (32, 33, 37, 41). Recent

developments highlight transformer-based models, known for their

superior ability to process sequential biological data, significantly

enhancing predictive accuracy in vaccine antigen design.

3.2.1.2 Vaccine platforms and pathogens

mRNA vaccines were frequently discussed, reflecting their

prominent role in the COVID-19 pandemic response (28, 42, 43).

Beyond mRNA, AI technologies were effectively applied across

various vaccine platforms, including viral vectors, protein

subunits, peptide-based, and DNA-based vaccines. The scope of

pathogens addressed through AI spans influenza, dengue, HIV,

multidrug-resistant bacteria, and cancer-specific vaccines. These

diverse applications reflect AI’s versatility in handling complexities

and unique challenges associated with different pathogens,

indicating its broad utility (28, 30, 33, 37, 43–48). Furthermore,

AI’s adaptability has expanded to emerging infectious diseases,
Frontiers in Immunology 06
demonstrating rapid efficacy in response to recent outbreaks.

Studies explicitly highlighted AI-driven vaccine designs for

pathogens such as the Zika virus and Ebola, emphasizing its

critical role in pandemic preparedness (35, 44).

3.2.1.3 Multi-omic integration

A prominent subtheme was the use of multi-omic datasets—

inc lud ing genomic , t ranscr ip tomic , pro teomic , and

immunopeptidomic data—to facilitate the rapid identification of

potential antigens (30, 32, 33, 40, 44, 46, 47). For example, multiple

reviews described the application of AI in analyzing large viral or

tumor datasets to pinpoint structurally conserved epitopes with

minimal off-target reactivity (28, 33, 46). Such integrative strategies

were reported to accelerate target identification in pathogens with

complex genomic architectures such as SARS-CoV-2 and in tumor

subtypes such as TNBC, improving the likelihood of finding

immunogenic epitopes (30, 38, 43, 47). Additionally, such multi-

omic strategies contributed significantly to personalized vaccine

design, tailoring immune responses to individual genetic and

molecular profiles, further optimizing vaccine efficacy and safety

(33). While single-cell multi-omics represents a promising

direction, current reviews primarily emphasized general multi-

omic integration strategies without explicitly highlighting single-

cell approaches prominently.

3.2.2 Evaluating the impact of AI on vaccine
efficacy, safety, and timelines
3.2.2.1 Accelerated development timelines

One of the most striking outcomes highlighted across nearly all

reviews is how AI drastically reduced vaccine development

timelines—a phenomenon most visibly demonstrated by the

quick turnaround of COVID-19 vaccines (27, 29, 49). By aiding

adaptive clinical trial designs, which incorporate real-time analytics

to guide dose adjustments and participant stratification, AI

reportedly cut the conventional years R&D cycle down to months

in certain pandemic scenarios (37, 39, 44). Moreover, advanced

supply chain simulations and downstream process optimizations—

such as high-throughput purification—further shortened time-to-

market in real-world deployments (50), illustrating that AI’s impact

extends beyond epitope selection into every operational facet of
TABLE 4 Summary of key findings on AI in vaccine development.

Aspect AI Techniques/Applications Key Findings Challenges/Considerations

Antigen & Epitope
Prediction

Machine learning, deep learning, reverse
vaccinology, epitope mapping

Rapid identification of vaccine targets;
optimized candidate selection

Data heterogeneity;
model interpretability

Vaccine Design Multiepitope vaccine design, peptide vaccine
design, mRNA optimization

Accelerated design timelines;
enhanced immunogenicity

Integration of multi-omics data;
formulation challenges

Delivery &
Optimization

Nanoparticle design, supply chain modeling Improved delivery efficiency and
vaccine stability

Regulatory hurdles; scalability issues

Clinical & Public
Engagement

AI-driven clinical trial optimization,
sentiment analysis

Enhanced patient selection; real-time
monitoring of public sentiment

Ethical concerns; data privacy
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vaccine manufacturing. Enhanced AI algorithms have recently

enabled even finer predictive modeling for clinical trial outcomes,

significantly improving the strategic planning and efficiency of

vaccine development pipelines (37, 39).

3.2.2.2 Enhanced efficacy via epitope prediction

Many reviews underscored the role of epitope prediction

in improving vaccine efficacy. Tools such as NetMHCpan,

DeepVacPred, MARIA, and Vaxign-ML were cited for their

ability to correctly rank immunodominant epitopes with high

accuracy (27, 30, 32, 39–41). Studies employing these algorithms

reported improved immunogenicity in early proof-of-concept

experiments, especially in mRNA vaccines targeting the SARS-

CoV-2 spike protein (27, 28, 42). Beyond COVID-19, epitope-

focused ML pipelines demonstrated promise in designing peptide-

based vaccines for HIV and malaria (44, 46), as well as for

identifying tumor-specific neoantigens in TNBC (47). Current

advancements have integrated AI-driven molecular simulations to

further validate and optimize predicted epitopes, ensuring higher

clinical translatability.

3.2.3 Ethical, logistical, and regulatory challenges
Across the literature, ethical questions around data privacy,

algorithmic bias, and transparency were among the cited concerns

(32, 33, 51). Reviews highlighted scenarios where AI might

inadvertently exacerbate health inequities if training datasets

underrepresent certain ethnic or geographic populations (32, 33).

Cold-chain logistics emerged as a central issue for temperature-

sensitive platforms such as mRNA vaccines (32, 51).

Regulatory pathways for AI-driven vaccine development

remain largely uncharted (37, 44), calling for standardized

frameworks and global data-sharing initiatives to ensure AI

models are validated effectively and equitably. Recent dialogue

emphasizes enhancing regulatory agility and international

collaboration to overcome ethical and logistical barriers, ensuring

equitable global deployment of AI-powered vaccine solutions

(34, 48).
3.2.4 AI-Driven vaccine acceptance and
communication

A subset of reviews analyzed vaccine hesitancy and public

sentiment NLP approaches (34, 49, 51). By monitoring social

media platforms, AI algorithms captured real-time shifts in public

sentiment, identified regional “hot spots” of misinformation, and

flagged the types of concerns most correlated with reluctance (34,

51). For instance, review linked anxieties over novel mRNA vaccine

technology to spikes in social media negativity (34). Chatbots and

conversational agents emerged as tools to mitigate hesitancy by

providing on-demand, personalized vaccine information (51).

Beyond direct communication, AI-based forecasting models were

used to guide public health strategies, such as predicting outbreak

hotspots, resource allocation, and targeted messaging campaigns

(52). These communication-focused AI solutions reflect a broader

push to integrate vaccine R&D with public engagement—
Frontiers in Immunology 07
addressing not only the scientific aspects but also societal factors

that influence acceptance and coverage rates.
4 Discussion

The integration of AI into vaccine development has emerged as

a transformative force, reshaping the traditional paradigms of

immunization research and deployment. This umbrella review

consolidates evidence from multiple reviews, illustrating AI’s

expansive role across the vaccine lifecycle—from initial antigen

discovery to public acceptance and pandemic preparedness. The

findings reveal not only the profound capabilities of AI in

accelerating vaccine innovation but also highlight critical

challenges that must be addressed to fully harness its potential.

Across the reviewed literature, AI emerged as a transformative

tool in vaccine research and development. For example, one

systematic review demonstrated that machine learning techniques

enable rapid identification of key vaccine targets – most notably

within the SARS-CoV-2 spike protein – thereby streamlining

candidate selection (29). Similarly, another study illustrated how

deep learning tools facilitate the design of multiepitope vaccines by

integrating complex datasets (35). Additional evidence emphasized

the efficiency of AI-driven peptide vaccine design through precise

epitope prediction (30). while a complementary review

showcased the application of AI in reverse vaccinology to

prioritize vaccine candidates (32). Collectively, these findings

underscore AI’s promise in expediting vaccine development and

enhancing immunogenicity, while also highlighting challenges such

as data heterogeneity and model interpretability that warrant

further investigation.
4.1 Comprehensive AI integration across
vaccine development

A predominant theme identified is AI’s pervasive application

across various stages of vaccine development. ML, DL, NLP, and

network-based models have been instrumental in transforming

traditional vaccine R&D processes. Classical ML techniques such

as random forests, support vector machines (SVMs), gradient

boosting, and logistic regression are foundational for tasks like

candidate ranking, epitope scoring, and logistic optimization.

Concurrently, DL architectures, including CNNs and RNNs, excel

in pattern recognition and large-scale data mining, facilitating high-

throughput epitope discovery and novel immunogen design

through GANs and variational autoencoders. However, the rapid

COVID-19 vaccine timeline was multifactorial, with AI acting as

one component among several such as government funding,

established mRNA technology, and concurrent clinical trials.

Similar integrations have been observed in broader biomedical

research, where AI techniques are employed for drug discovery and

genomics. For instance, CNNs and RNNs are extensively used in

protein structure prediction and genomics, paralleling their

application in vaccine epitope prediction (53–55). However,
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vaccine-specific applications of AI, particularly in multi-omic

integration for immunogenicity, remain more specialized,

reflecting the unique challenges of vaccine development

compared to other biomedical fields (56, 57).
4.2 Accelerated timelines and enhanced
efficacy

AI’s capacity to drastically reduce vaccine development

timelines is one of its most celebrated impacts. The rapid

development of COVID-19 vaccines, accelerated from years to

months, exemplifies this phenomenon. Nevertheless, attributing

the entire COVID-19 acceleration to AI overstates its role.

Although AI facilitated real‐time data analysis and rapid epitope

predictions, it was government investment, established mRNA

platforms, and overlapping clinical trial phases that collectively

contributed to reducing the traditional development timeline from

years to months. Additionally, AI’s role in high-throughput process

development (HTPD) and supply chain optimization has

streamlined downstream operations, ensuring rapid scaling and

distribution of vaccine candidates.

This acceleration mirrors advancements in oncology, where AI

has similarly reduced the time required for biomarker discovery and

personalized treatment development (58, 59). However, vaccine

development benefits uniquely from AI’s ability to integrate diverse

data streams—from genomic sequences to clinical trial data—

enabling a more holistic and expedited R&D process. Unlike

oncology, which often involves highly individualized treatment

protocols, vaccine development benefits from AI’s capacity to

generalize across populations, enhancing both speed and scalability.

Furthermore, AI-enhanced epitope prediction tools such as

NetMHCpan, DeepVacPred, MARIA, and Vaxign-ML have

significantly improved the accuracy of T-cell and B-cell epitope

predictions. These tools target highly conserved and immunogenic

regions, thereby increasing vaccine efficacy and safety by ensuring

robust immune responses while minimizing adverse effects.

Comparable improvements in epitope prediction have been

noted in studies focused on autoimmune diseases and infectious

diseases beyond COVID-19 (Garcia et al., 2022). However, the

integration of AI in predicting immunogenicity for cancer vaccines,

such as those targeting TNBC, demonstrates AI’s versatile

application in both preventive and therapeutic vaccine strategies.
4.3 Ethical, logistical, and regulatory
challenges

Despite AI’s transformative potential, several ethical, logistical,

and regulatory challenges persist. Ethical concerns such as data

privacy, data quality issues, algorithmic biases, and integration

challenges—affect vaccine development outcomes. For instance,

data heterogeneity can lead to inconsistent model performance,

potentially compromising the reliability of AI-driven predictions.

Algorithmic biases, arising from underrepresented populations in
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training datasets, may result in inequitable vaccine efficacy across

different demographic groups. Additionally, integration challenges,

including interoperability with existing healthcare systems and the

need for specialized expertise, can hinder the seamless application

of AI technologies in real-world vaccine development scenarios.

Addressing these limitations is crucial for ensuring that AI

contributions are both effective and equitable.

These ethical concerns are echoed in broader AI applications

within healthcare, where similar issues of bias and data privacy are

prevalent (60). However, in vaccine development, the stakes are

particularly high due to the global scale and public health

implications. Unlike more individualized healthcare applications,

vaccines must be universally effective and accessible, necessitating a

higher standard for ethical AI deployment.

Logistically, managing cold-chain requirements for

temperature-sensitive vaccines like mRNA formulations remains a

significant hurdle (61). AI-driven supply chain tools offer solutions

for optimizing distribution routes and reducing wastage, but these

require high-quality, real-time data to be effective (62). Regulatory

frameworks for AI-driven vaccine development are still nascent,

with limited guidelines from regulatory bodies such as the FDA and

EMA (63). The lack of standardized protocols for AI validation in

vaccine-related approvals presents a barrier to widespread

adoption (64).
4.4 AI-driven vaccine acceptance and
communication

AI’s role extends beyond technical aspects into public health

communication and vaccine acceptance. Sentiment analysis and NLP

approaches have been employed to monitor and analyze public

sentiment, identifying misinformation and addressing vaccine

hesitancy. AI-driven chatbots and conversational agents provide

real-time, personalized information, mitigating fears and

misconceptions about vaccines. These tools facilitate better public

understanding and trust, essential for achieving high vaccination

coverage rates. NLP-based sentiment analysis detects misinformation

surges and hesitancy trends, yet vaccine decisions often reflect

complex socio-cultural factors beyond online sentiment. Some

reviews suggest chatbots or automated counseling tools, but the

long-term impact on actual uptake is not well established (65).

Furthermore, AI-based forecasting models guide public health

strategies by predicting outbreak hotspots, optimizing resource

allocation, and enabling targeted messaging campaigns (66, 67).

However, the long-term impact of these AI interventions on

sustained vaccination behavior and public trust remains

uncertain, highlighting the need for longitudinal studies to

evaluate their effectiveness over time.

the integration of AI in real-time public sentiment analysis and

communication strategies for vaccines represents a more dynamic

application, requiring continuous adaptation to evolving public

perceptions and misinformation trends (68, 69).

The successful application of AI in the rapid development of

COVID-19 vaccines underscores its potential for future pandemic
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preparedness and outbreak response (70). AI’s ability to rapidly

identify and validate vaccine targets, streamline clinical trial

processes, and optimize manufacturing and distribution can be

replicated for emerging pathogens.
4.5 Strengths

This umbrella review consolidates findings from diverse review

types (systematic, scoping, narrative, rapid) to provide a

comprehensive synthesis of AI applications in vaccine research,

development, distribution, and acceptance. By leveraging established

tools such as ROBIS and AMSTAR 2 for risk-of-bias and quality

assessment, it offers a robust, methodologically transparent appraisal

of included evidence. Furthermore, the thematic analysis approach

facilitates in-depth exploration of emergent subtopics—such as

personalized vaccine design and AI-driven public sentiment analysis

—across multiple pathogens and vaccine platforms.
4.6 Limitations

Restricting the inclusion to English-language publications may

limit global generalizability, particularly for regions where non-

English studies predominate. The methodological heterogeneity of

the included reviews, which vary from fully systematic to narrative,

introduces variability in both reporting quality and analytical rigor.

Additionally, the lack of meta-analytic syntheses in the reviews

impedes quantitative assessment of pooled outcomes. Moreover,

several AI solutions discussed in the included reviews are still in

pilot or in silico phases, and their real‐world applicability has yet to

be validated in large‐scale clinical trials. Finally, the rapid evolution

of AI research raises the possibility that relevant work published

after the search cut-off may not be captured. These limitations

underscore the need for cautious interpretation of the results and

highlight the importance of future research employing more

standardized and inclusive methodologies.
5 Recommendations

5.1 Establish robust data governance and
multi-omics integration

To accelerate AI-driven vaccine research, it is imperative to

establish robust data governance frameworks and integrate multi-

omics data. This can be achieved through the formation of global

data-sharing consortia, which facilitate public–private partnerships

and international collaborations. By pooling genomic, proteomic,

and clinical trial data under harmonized standards, stakeholders

can ensure interoperability across diverse vaccine platforms.

Implementing standardized data protocols for collection, storage,

and sharing will further guarantee data integrity and consistency

across various research initiatives.
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Investing in secure and scalable cloud infrastructures is essential

to support large-scale multi-omics analyses. These infrastructures

should incorporate encryption and layered access controls to

safeguard data privacy effectively. Additionally, promoting the use

of federated learning models will allow AI algorithms to train on

decentralized data sources. This approach not only addresses data

sovereignty concerns but also enhances collaborative research

efforts without compromising data privacy, particularly in low-

and middle-income countries.

To mitigate algorithmic bias, it is crucial to embed regular bias

audits within AI pipelines. These audits should be conducted by

multidisciplinary teams to ensure comprehensive evaluations.

Furthermore, training datasets must include under-represented

ethnicities and geographic regions to broaden the applicability of

AI models and reduce potential biases. By ensuring diverse and

inclusive data representation, AI-driven vaccine development can

achieve more equitable and effective outcomes, fostering greater

public trust and acceptance.
5.2 Strengthen regulatory and ethical
frameworks for AI in vaccine development

Close collaboration among regulatory bodies (e.g., WHO, FDA,

EMA) is vital for clear guidelines on AI-driven clinical trials, data

validation, and safety oversight. Transparency requirements

regarding model architecture, performance metrics, and

interpretability should be standardized before approval.

Ethical review boards (analogous to IRBs) can oversee

algorithmic explainability and data governance, while public

consultation forums address broader concerns about privacy,

digital rights, and data misuse. Global collaboration is crucial for

harmonizing legal frameworks, reducing administrative delays—

especially during health emergencies.

Concretely, implementing robust bias auditing frameworks

and ensuring diverse, representative datasets will enhance AI

fairness. Interdisciplinary ethics committees provide additional

oversight, maintaining public trust through accountability and

transparent communication.
5.3 Leverage AI to expedite vaccine
timelines and enhance efficacy

Real-time data analytics integrated into clinical trials can

dramatically shorten development timelines. Adaptive trial

designs, guided by AI, allow prompt dose adjustments and

participant stratification. Continuous safety monitoring ensures

early identification of adverse events, reducing attrition and

improving resource use.

Investment in next-generation epitope prediction tools—

especially those based on deep learning—can refine candidate

selection while minimizing false positives. Rigorous preclinical

validation bridges in silico findings to clinical efficacy. Beyond
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discovery, AI-based manufacturing simulations help anticipate

production bottlenecks, streamline cold-chain logistics, and

optimize purification steps. Predictive analytics further aid in

forecasting vaccine demand, crucial in low-resource settings.
5.4 Build public trust and mitigate vaccine
hesitancy through AI-enhanced
communication

Real-time sentiment analysis, powered by NLP, can identify

misinformation trends and flag vaccine hesitancy hotspots. Sharing

anonymized data dashboards with public health authorities

supports targeted interventions. Chatbots and conversational

agents, if regularly audited, can offer accurate and personalized

information, reducing misinformation’s impact.

Community co-creation (involving healthcare workers, religious

leaders, civil society organizations) ensures that AI tools align with

cultural norms and address local concerns. Clear explanations of AI

methodologies help demystify the technology, fostering higher

vaccination rates and sustained community engagement.
5.5 Prioritize global health equity and
future pandemic preparedness

Digital infrastructure must be expanded in underserved regions

to ensure equitable access to AI-driven solutions. Investments in

internet connectivity, data literacy training, and computational

capacity empower local researchers to develop region-specific

interventions and bridge the technological divide.

Building local capacity via training programs and technology

transfer initiatives fosters long-term self-reliance. AI-driven tools

should be designed to run efficiently in resource-limited

environments, maximizing their impact in low-resource settings.

Equitable access to AI-based innovations is paramount to

ensure underserved populations benefit from advancements in

vaccine R&D. Data-sharing partnerships should also extend to

regions with fewer resources, enabling them to contribute data

and benefit from global health initiatives.

Robust dynamic surveillance systems, integrating real-time

epidemiological data with AI modeling, can provide early

warnings of emerging threats. Cross-border collaborations—

supported by pathogen surveillance networks—facilitate rapid-

response strategies during outbreaks. Sustained investment from

governments, philanthropic bodies, and industry should fund AI

and vaccine research, ensuring flexible, long-term resources that

can be swiftly redeployed during health emergencies.
6 Implications

The strategic integration of AI across the entire vaccine

continuum—from epitope prediction and clinical trial
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optimization to logistics and public engagement—can profoundly

transform global health outcomes. Some included reviews focus on

limited interventions—such as small chatbot trials or localized

sentiment analyses—and do not constitute conclusive evidence of

wide‐scale efficacy. Position AI as a promising but still-emerging

tool for pandemic preparedness, rather than a singular solution.

To realize the potential, robust data governance and ethically

aligned frameworks must be implemented alongside meaningful

stakeholder participation at each phase of vaccine development.

Such an approach ensures equitable representation, fosters public

trust, and balances accelerated innovation with rigorous safeguards for

privacy and safety. Collaboration among healthcare practitioners,

policymakers, technology developers, and local communities is

essential to streamline development timelines, optimize

manufacturing and distribution, and harness AI’s predictive

capabilities in outbreak surveillance. By upholding transparent

methodologies and cross-sector partnerships, AI-driven vaccine

initiatives can not only enhance current immunization efforts but

also bolster resilience against future pandemics, reinforcing health

security on a global scale.
7 Conclusion

The systematic integration of AI into vaccine research,

development, distribution, and acceptance has demonstrated

notable potential to accelerate discovery timelines, enhance efficacy

and safety, and amplify public engagement. By merging advancedML

with multi-omics datasets, stakeholders can pinpoint immunogenic

targets and streamline clinical trials. Nevertheless, ethical and

regulatory complexities persist—data privacy, algorithmic bias, and

equitable global access remain critical concerns. Our review

highlights the importance of transparent frameworks, multinational

collaboration, and community-driven participatory approaches to

fully harness AI’s transformative power. Investments in robust data

infrastructures, ethical oversight, and workforce capacity are

imperative to ensure these innovations benefit diverse populations.

With sustained commitment from governmental, industrial, and

academic sectors, AI holds the promise to redefine vaccine

development, strengthen pandemic preparedness, and revolutionize

global health outcomes.
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