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Machine learning combined
multi-omics analysis to explore
key oxidative stress features in
systemic lupus erythematosus
Hongwei Zhou, Xiaoqing Li, Yanyu Zhang, Feng Wei, Zhiyu Liu,
Yan Zhao, Xubo Zhuang, Xia Liu and Haizhou Zhou*

Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin,
Heilongjiang, China
Objective:Metabolic dysregulation and redox imbalance in immune cells are key

drivers of systemic lupus erythematosus (SLE) pathogenesis. This study explores

critical oxidative stress (OS) features and their interrelationships in

SLE pathogenesis.

Methods: Three transcriptomic datasets from the Gene Expression Omnibus

(GEO) were analyzed to identify SLE- and OS-associated pathways via Gene Set

Variation Analysis (GSVA). Multiple machine learning methods—including deep

learning (DL), random forest (RF), XGBoost, support vector machine (SVM), and

least absolute shrinkage and selection operator (LASSO)—were deployed to build

OS-related gene prediction frameworks. Immune infiltration was assessed using

CIBERSORT, and single-cell transcriptomic data from GEO elucidated gene

expression patterns in various immune cell subsets. Peripheral blood plasma

samples from confirmed SLE patients and healthy controls (HC) were analyzed

using liquid chromatography-mass spectrometry (LC-MS) for metabolomics

profiling and to evaluate OS and antioxidant stress (AOS) levels. Finally, real-

time quantitative PCR (RT-qPCR) was used to validate the expression differences

of key genes in peripheral blood mononuclear cells (PBMCs) from SLE patients

and HC.

Results: GSVA identified 15 metabolic pathways significantly linked to SLE, seven

of which were strongly associated with OS and energy metabolism. LC-MS

revealed substantial alterations in serum OS-related metabolites, clearly

distinguishing SLE patients from healthy controls. A comprehensive machine

learning approach pinpointed 10 OS-related genes; among these, six (ABCB1,

AKR1C3, EIF2AK2, IFIH1, NPC1, SCO2) showed robust predictive performance

and significant correlations with immune cell subsets. Single-cell analysis

confirmed these genes’ expression in diverse immune cell types, consistent

with the observed metabolic pathway disruptions. RT-qPCR verified

downregulation of ABCB1, AKR1C3, and NPC1 and upregulation of EIF2AK2,

IFIH1, and SCO2 in SLE PBMCs. SLE patients exhibited higher OS levels and lower

AOS levels. Correlation analysis underscored strong relationships among key

genes, OS/AOS levels, and vital metabolites.
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Conclusion: This multi-omics and machine learning–based investigation

uncovered major disruptions in OS-related metabolic pathways and

metabolites in SLE, ultimately identifying six key genes with distinct expression

patterns across immune cell subsets. Their strong associations with OS/AOS

levels and crucial metabolites highlight their diagnostic and therapeutic potential,

laying a foundation for early detection and targeted treatment strategies.
KEYWORDS

systemic lupus erythematosus, oxidative stress, metabolomics, transcriptomics, single-
cell transcriptomic, machine learning
1 Introduction

Systemic Lupus Erythematosus (SLE) is an autoimmune disease

marked by heightened T and B cell activity and excessive

production of autoantibodies that attack healthy tissues and cells

(1). Emerging evidence highlights a close relationship between

metabolites and the onset and progression of autoimmune

diseases. For example, Luan et al. identified 26 blood metabolites

as biomarkers for rheumatoid arthritis using metabolomic analysis.

(2). Similarly, Li et al. applied Serum Metabolic Fingerprinting

(SMF) to identify four metabolites capable of distinguishing SLE

patients from healthy controls, validating their diagnostic potential

through machine learning algorithms (3). In addition to metabolic

dysregulation, redox imbalance is a hallmark of SLE (4). Reactive

Oxygen Species (ROS), a key indicator of cellular redox imbalance,

have been shown to correlate strongly with disease activity in SLE

patients (5). Metabolic pathways play a pivotal role in modulating

redox levels by providing substrates and regulating electron transfer

(6, 7). For instance, mitochondrial oxidative phosphorylation

generates ATP but simultaneously produces substantial amounts

of ROS (8), while glutathione scavenges ROS, shielding cells from

oxidative stress (OS) damage (9). Consequently, growing evidence

suggests that OS and metabolism-related indicators may serve as

promising diagnostic biomarkers and therapeutic targets for SLE.

Previous studies have highlighted the intricate associations between

SLE, OS, and metabolic abnormalities. Aberrant activation of the

glycolytic pathway in T cells of SLE patients has been shown to

promote an increase in Th17 cells while suppressing Treg

differentiation. This dysregulation activates multiple inflammatory

pathways and amplifies the release of inflammatory cytokines (10–

12). Additionally, CD4+ T cells in SLE patients exhibit elevated

phosphofructokinase activity, which correlates significantly with

disease activity, as measured by the SLEDAI score. Targeting

phosphofructokinase (PFKP) using the CaMK4 inhibitor KN93 or

CRISPR-Cas9-mediated knockdown reduces glycolytic activity and

OS levels. These interventions enhance Treg functionality and

stability, thereby mitigating SLE-like disease manifestations (13).

Furthermore, monocytes from SLE patients undergo metabolic

reprogramming characterized by simultaneous upregulation of
02
glycolysis and oxidative phosphorylation. This metabolic shift is

closely associated with elevated levels of type I interferon-alpha

(IFNa) stimulation, a hallmark feature in SLE pathogenesis (14).

The above studies underscore the importance of exploring key OS

mechanisms and associated metabolic pathways in the progression of

SLE. Such analyses not only deepen our understanding of SLE

pathogenesis but also offer valuable insights for clinical diagnosis and

treatment. However, comprehensive multi-omics integration focusing

specifically on OS—combined with stringent validation and advanced

algorithmic modeling—remains limited. To address these gaps, this

study utilized a multi-omics approach combined with various machine

learning algorithms to systematically unravel the intricate network

relationships among OS-related metabolic pathways, metabolites, and

key genes in SLE. The detailed workflow is illustrated in Figure 1. Gene

Set Variation Analysis (GSVA) was conducted on multiple SLE

transcriptomic datasets, alongside Liquid Chromatography-Mass

Spectrometry (LC-MS)-based metabolomics, to identify OS-related

pathways and metabolites. Five distinct machine learning methods

were then employed to construct and evaluate predictive models for

SLE, leading to the identification of 10 key feature genes. Immune

infiltration analysis and single-cell transcriptomic data further validated

the expression patterns and functional states of these genes across

various immune cell subsets. Finally, OS and antioxidant stress (AOS)

levels were measured. Subsequently, real-time quantitative polymerase

chain reaction (RT-qPCR) was used to validate the expression of key

genes, aiming to explore their intrinsic relationships in SLE patients

versus healthy controls. This comprehensive analysis revealed intrinsic

relationships among OS, AOS, and metabolic pathways, providing

novel theoretical insights into SLE pathogenesis and establishing a

foundation for future diagnostic and therapeutic innovations.
2 Methods

2.1 Data sources

Bulk transcriptome microarray datasets (GSE65391, GSE61635,

and GSE121239) and single-cell RNA-seq dataset (GSE135779) from

peripheral blood samples of SLE patients and healthy controls were
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obtained from the Gene Expression Omnibus (GEO, https://

www.ncbi.nlm.nih.gov/geo/). Details of these datasets are provided

in Table 1. A comprehensive list of OS-related genes was curated

from GeneCards (https://www.genecards.org/) by searching with

the keyword “oxidative stress” and applying a relevance score

threshold greater than 7, following previously described methods,

yielding a total of 1745 genes (15–17).
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2.2 Bulk transcriptomic analysis

2.2.1 Pathway-level feature identification
GSVA was performed using the gsva function in the GSVA

package (version 1.53.4) in R on the gene expression matrix.

Pathway information from the KEGG gene sets in the Molecular

Signatures Database (MSigDB, version 7.5.1; category C2,
FIGURE 1

The flowchart illustrating the investigation procedure of this study.
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subcategory KEGG) (18) was used to construct the pathway sets.

The limma package (version 3.60.6) was then applied to extract the

GSVA enrichment scores for each sample and conduct differential

analysis. Metabolic pathways with an adjusted p-value (adj.P.Val) <

0.05 and |Log2FC| > 0.1 were considered significantly different.

Gene Set Enrichment Analysis (GSEA) was also conducted using

the clusterProfiler package (version 4.12.6) to further evaluate

pathway-level enrichment patterns.

2.2.2 Feature selection, model construction and
validation

Using the limma package, differentially expressed genes

(adj.P.Val < 0.05, |log2FC| ≥ 0.5) between SLE patients and

healthy controls in the GSE65391 dataset were identified, yielding

a total of 1,536 differentially expressed genes. The resulting gene set

was then intersected with OS-related genes obtained from

GeneCards, yielding OS-related differential genes. These OS-

related differential genes were subsequently used for machine

learning model training. Specifically, dataset GSE65391 served as

the training set, while GSE61635 and GSE121239 served as test sets

1 and 2, respectively, for model development and validation.

A three-layer neural network was implemented as a deep

learning (DL) model using the R package tensorflow (version

2.16.0). The network included an input layer (124 genes), a

hidden layer (128 neurons) with ReLU activation, and an output

layer with a sigmoid activation function for binary classification.

Network weights were initialized using a normal distribution (mean

= 0, standard deviation = 0.05). The learning rate was 0.01, batch

size was 128, and the model was trained for up to 600 iterations.

Model performance was monitored by accuracy and loss during

training, then evaluated via confusion matrix, sensitivity, and

specificity after training. Gene importance was determined by

extracting the model’s weight matrix and summing the absolute

values of each gene’s weights. A random forest (RF) model was

constructed using the randomForest package (version 2.16.0) with

500 decision trees (n_trees = 500). Gene importance was

determined by the Gini index, selecting potential key genes. An

XGBoost model was trained using the xgboost package (version

1.7.8.1) with a learning rate (eta) of 0.2, a maximum depth

(max_depth) of 6, and 200 boosting rounds (nrounds = 200).

Gene importance was ranked based on each tree’s contribution to
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reducing the loss function. Using the R packages caret (version 6.0-

94), kernlab (version 0.9-33), and e1071 (version 1.7-16), Support

Vector Machine-Recursive Feature Elimination (SVM-RFE) was

conducted. Feature subset size ranged from 1–15 with a step of 2,

and 10-fold cross-validation was employed to evaluate model

performance. The optimal feature set was selected based on the

subset that yielded the lowest root mean squared error (RMSE), and

the most informative genes contributing to classification were

identified. Least Absolute Shrinkage and Selection Operator

(LASSO) regression was performed with the glmnet package

(version 4.1-8), using 10-fold cross-validation to determine the

penalty coefficient (l). The optimal feature genes were selected

based on the coefficient trajectory plot.

Key genes identified from themodels were further validated using

external datasets. Key gene expression differences were compared

between the training set and test sets 1 and 2 via the Wilcoxon test.

ROC analysis was performed using the pROC package (version

1.18.5). Protein–protein interactions among key genes were

assessed via the STRING database (https://string-db.org/), and the

Corrplot package (version 0.95) was used for correlation analysis.

2.2.3 Immune infiltration
Immune infiltration was evaluated using the CIBERSORT

algorithm, estimating the relative abundance of each immune cell

subset in the transcriptomic data (19).
2.3 LC-MS serum metabolomics analysis

2.3.1 Research subjects
Newly diagnosed SLE patients who met the 1997 American

College of Rheumatology (ACR) diagnostic criteria for SLE were

recruited from the Department of Rheumatology at the First

Affiliated Hospital of Harbin Medical University between July

2023 and January 2025 (20). All patients/participants provided

written informed consent to participate in this study. The

exclusion criteria were as follows: (1) presence of acquired

immunodeficiency syndrome (AIDS), active infections (including

tuberculosis, hepatitis B, or hepatitis C), hypogammaglobulinemia,

or a history of organ or hematopoietic stem cell transplantation; (2)

diagnosis of overlapping autoimmune syndromes, including but not
TABLE 1 Summary of the datasets used in this study.

Dataset
GPL

platform

Sample Sample
type

Age
median (Q1, Q3)

SLEDAI (SLE Patients)
median (Q1, Q3)

Year Data link
SLE HC

GSE65391 GPL10558 924 72
Whole
blood

14.8 (12.7, 16.8) 4 (2, 8) 2016
https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE65391

GSE61635 GPL570 99 30
Whole
blood

Not reported Not reported 2015
https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE61635

GSE121239 GPL13158 292 20 PBMC 47 (37, 55) 2 (0, 4) 2018
https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE121239

GSE135779 GPL20301 40 16 PBMC 17 (14, 18) 4 (2, 6) 2020
https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE135779
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limited to mixed connective tissue disease (MCTD), Sjögren’s

syndrome, systemic sclerosis, and rheumatoid arthritis; (3) history

or presence of malignancies, including hematologic malignancies

(e.g., lymphoma, leukemia) or solid tumors (e.g., lung, breast, or

gastrointestinal cancers); and (4) incomplete clinical data, defined

as missing essential information for disease activity assessment,

such as complement levels (C3, C4), autoantibody profiles (e.g.,

ANA, anti-dsDNA), documentation of clinical manifestations, or

recent medication history. Baseline demographic and clinical

characteristics of the enrolled SLE patients and healthy controls

are summarized in Table 2.

2.3.2 Serum sample collection and metabolite
extraction

From a total of 60 clinical samples, 12 pairs of SLE patients and

healthy controls were selected based on optimal matching of age,

sex, and BMI to ensure comparability. These matched samples were

subsequently used for LC-MS–based metabolomic analysis.

Peripheral blood samples were collected from all participants and

centrifuged at 3,700 rpm for 7 minutes at 4°C using a refrigerated

centrifuge to obtain serum. All samples were processed on ice, and

serum was separated within 30 minutes of collection to minimize

oxidation. The resulting serum was immediately stored at −80°C

until analysis. Before LC-MS analysis, 100 mL of serum was precisely

transferred into a 1.5 mL centrifuge tube and mixed with 400 mL of

extraction solution (acetonitrile: methanol = 1:1) containing 0.02

mg/mL L-2-chlorophenylalanine. After 30 s of vortexing, samples

were sonicated at 5°C and 40 kHz for 30 minutes. The extract was

then kept at −20°C for 30 minutes and centrifuged at 13,000 g and

4°C for 15 minutes; the supernatant was dried under nitrogen gas.

The residue was redissolved in 100 mL of solvent (acetonitrile:water

= 1:1) and sonicated under the same conditions for 5 minutes. After

a subsequent 10-minute centrifugation at 13,000 g and 4°C, the

supernatant was transferred into vials for LC-MS analysis.

2.3.3 LC-MS analysis
Samples were analyzed on a Thermo Fisher UHPLC-Q Exactive

HF-X system equipped with an HSST3 column. The injection

volume was 3 mL. Mobile phase A was 95% water + 5%

acetonitrile (containing 0.1% formic acid), and mobile phase B

was 47.5% acetonitrile + 47.5% isopropanol + 5% water (containing

0.1% formic acid). The ion source was set to ESI+/ESI−, scanning

over m/z 70–1050. Sheath gas was 50 psi, auxiliary gas was 13 psi,
Frontiers in Immunology 05
auxiliary gas heater temperature was 425°C, and spray voltages were

+3500 V/−3500 V. The ion transfer tube was maintained at 325°C.

Normalized collision energy (NCE) was set to 20–40–60 V. MS^1

and MS^2 resolutions were 60,000 and 7,500, respectively, and

data-dependent acquisition (DDA) was employed to obtain

metabolite information.

2.3.4 Identification of metabolite species and
data preprocessing

Raw data were preprocessed in Progenesis QI for peak

extraction, alignment, and retention time correction, generating a

data matrix characterized by retention time, m/z, and peak

intensity. MS and MS/MS information were matched against

HMDB, Metlin, and an in-house database for preliminary

metabolite identification.

Variables with missing values greater than 20% within any

experimental group were excluded, and remaining missing values were

imputed with the minimum value across all samples. Subsequently, data

normalization was conducted using sum normalization (total peak area)

to correct for variability related to sample loading or injection volume

differences. Features exhibiting a relative standard deviation (RSD)

greater than 30% in QC samples were removed to ensure analytical

reproducibility. Data were then transformed by log10 transformation to

approximate a normal distribution.

Quality control (QC) samples were prepared by pooling equal

volumes of extracts from all samples and injected periodically after

every 5–15 samples during the LC-MS run. QC samples were

evaluated by monitoring the total ion chromatogram (TIC)

consistency and RSD values of peak intensities.

2.3.5 Identification of differential metabolites
The R package ropls (version 1.6.2) was used for Principal

Component Analysis (PCA) and Orthogonal Partial Least Squares-

Discriminant Analysis (OPLS-DA). Model stability was evaluated

via seven-fold iterative cross-validation. Metabolites meeting OPLS-

DA VIP > 1, Student’s t-test p < 0.05, and ROC curve AUC > 0.7

were defined as significant differential metabolites.
2.4 Single-cell analysis

Single-cell data fromGSE135779 were merged, yielding 59 samples

(40 SLE, 16 HC) and a total of 295,200 cells. After filtering cells that had

200–2,000 genes expressed, the remaining data were normalized using

the Seurat package. The ElbowPlot function was used to determine the

dimensions for reduction, and highly variable genes were identified via

FindVariableFeatures. UMAP was then applied for dimensionality

reduction and cell type annotation. Further visualization was

conducted using the plot1cell package (21).
2.5 Measurement of OS and AOS levels

A hydrogen peroxide kit (Comin Biotechnology, Suzhou, China)

was used to measure H2O2 concentrations as an indicator of ROS
TABLE 2 Baseline characteristics of SLE patients.

Characteristic HC (n=30) SLE (n=30) P,value

Age, median (Q1, Q3)
43.00

(31.25, 50.75)
40.50

(30.00, 50.00)
0.473

Gender (Male/Female) 2/28 2/28 1.000

BMI, median (Q1, Q3)
23.41

(20.64, 26.63)
23.21

(20.81, 25.45)
0.595

SLEDAI, median
(Q1, Q3)

Not applicable 6.00 (2.00, 8.00)
Not

applicable
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levels. A total antioxidant capacity kit (ABTS method, Comin

Biotechnology, Suzhou, China) was employed to determine AOS levels.
2.6 RT-qPCR experiments

2.6.1 Isolation of peripheral blood mononuclear
cells

Whole blood samples were mixed 1:1 with PBS, then carefully

layered over an equal volume of Ficoll-Paque™ in a 15 mL

centrifuge tube. Samples were centrifuged at 450 g and room

temperature for 25 minutes. The white buffy coat (PBMCs)was

gently transferred to a new 15 mL tube, resuspended in PBS, and

centrifuged at 250 g for 10 minutes. After discarding the

supernatant, 500 mL Trizol was added, and the suspension was

stored in 1.5 mL EP tubes at −80°C.

2.6.2 RT-qPCR
Each sample tube received 100 mL chloroform, was mixed

thoroughly, and was left to stand for 5 minutes. The sample was

then centrifuged at 12,000 g and 4°C for 15 minutes, and the top

aqueous phase was transferred to a new tube. After adding 0.3 mL

isopropanol and mixing, samples were kept at 4°C for 10 minutes

and subsequently centrifuged at 12,000 g for 10 minutes. The

supernatant was discarded, and the pellet was washed with 0.5

mL of 75% ethanol (prepared with DEPC), then centrifuged at 7,500

g and 4°C for 5 minutes. Following supernatant removal, the pellet

was air-dried at room temperature for 3–5 minutes and dissolved in

20 mL RNase-free water to obtain the RNA solution.

An eight-tube strip was placed on ice, and each well received 2

mL of 5× RT Master Mix, 8 mL RNA solution, and 10 mL DEPC-

treated water. After mixing, reverse transcription was performed at

37°C for 15 minutes followed by 85°C for 5 seconds, then held at 4°

C to yield 20 mL cDNA. A 20 mL PCR reaction system was prepared

according to the manufacturer’s protocol (F488 SYBR qPCR MIX

10 mL, cDNA 2 mL, forward primer 0.4 mL, reverse primer 0.4 mL,
DEPC water 7.2 mL). Two-step PCR amplification was performed,

and relative gene expression levels were calculated using the 2−DDCT

method. GAPDH was used as the reference gene based on its

previously reported stability in PBMCs (22). The sequences of all

primers are listed in Supplementary Table 1.
2.7 Statistical analysis

All statistical analyses were performed using R software (version

4.4.1), with P < 0.05 considered statistically significant (*P < 0.05;

**P < 0.01; ***P < 0.001). Data conforming to a normal distribution

are presented as mean ± standard deviation (mean ± SD) and were

compared using Student’s t-test or one-way ANOVA. Non-

normally distributed data are expressed as median (interquartile

range) [M (P25–P75)] and were analyzed using the Mann–Whitney

U test. Correlation analyses were performed using Pearson’s

correlation coefficient for normally distributed data or Spearman’s

correlation coefficient for non-normally distributed data.
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3 Results

3.1 Large-scale transcriptome analyses
reveal metabolic pathway abnormalities in
SLE patients

To systematically investigate potential metabolic pathway

dysregulations in SLE patients, we first selected three

transcriptomic datasets (GSE65391, GSE61635, and GSE121239)

from the GEO database. Based on 186 metabolic pathways

cataloged in the KEGG database (involving 16,283 human genes

related to metabolism), GSVA was performed. By analyzing

differences in metabolic pathway activity across each dataset, we

aimed to identify key metabolic pathways closely tied to

SLE pathogenesis.

The results showed that in the GSE65391 dataset, 41 pathways

were downregulated and 22 pathways were upregulated (Figure 2A);

in GSE61635, 51 pathways were downregulated and 36 pathways were

upregulated (Figure 2B); and in GSE121239, 23 pathways were

downregulated and 14 pathways were upregulated (Figure 2C).

Subsequently, a Venn diagram was used to merge the upregulated

and downregulated pathways from each dataset, ultimately yielding 15

key metabolic pathways that were differentially expressed across

multiple datasets: Circadian Rhythm Mammal, Ribosome, N Glycan

Biosynthesis, Selenoamino Acid Metabolism, Mismatch Repair,

Citrate Cycle (TCA Cycle), Cysteine and Methionine Metabolism,

Parkinson’s Disease, Huntington’s Disease, Pyruvate Metabolism,

Spliceosome, Lysine Degradation, Purine Metabolism, Oxidative

Phosphory la t ion , and Complement and Coagulat ion

Cascades (Figure 2D).

Further analysis revealed that Oxidative Phosphorylation,

Cysteine and Methionine Metabolism, Purine Metabolism,

Pyruvate Metabolism, Citrate Cycle (TCA Cycle), Spliceosome,

and Complement and Coagulation Cascades were all closely

associated with OS and cellular energy metabolism (23–27).

Subsequent GSEA confirmed the abnormal changes in these key

pathways among SLE patients (Figure 2E). Taken together,

compared with healthy controls (HC), SLE patients exhibited

significant differences across multiple metabolic pathways,

particularly those related to OS and cellular metabolic processes.
3.2 LC-MS metabolomics indicates altered
OS-related key metabolites in SLE patients

To further validate potential abnormalities in OS-related

metabolic pathways in SLE, we conducted LC-MS–based

metabolomics on serum samples from SLE patients and HCs. A

total of 2,127 metabolites were detected, and PCA revealed that the

overall metabolic profiles of SLE and HC groups were markedly

distinct; moreover, intra-group variation among SLE patients was

higher than in the HC group (Figure 3A). This finding suggests that

SLE patients exhibit not only conspicuous differences from healthy

individuals in terms of metabolite composition but also substantial

heterogeneity within their own metabolic characteristics.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1567466
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2025.1567466
FIGURE 2

Differential metabolic pathways in SLE patients. (A–C) Bar plots displaying the differential metabolic pathways in SLE patients across different
datasets, with orange bars representing upregulated pathways and green bars representing downregulated pathways. (D) Venn diagrams showing the
key downregulated and key upregulated metabolic pathways. (E) GSEA enrichment plots and ridge plots providing additional insights into the
alterations of these key pathways in SLE.
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Further differential metabolite screening combined with ROC

analysis identified 577 metabolites as significantly altered (p < 0.05,

VIP > 1, AUC > 0.7) (Figure 3B, Supplementary Table 2). Among

these, key metabolites closely related to OS—such as L-glutamate,

5′-methylthioadenosine, a-tocopherol, and L-nervonic acid (28–

30)—showed significant changes in SLE patients (Figure 3C). In

addition, ROC analysis indicated strong predictive power for these

metabolites (Figure 3D). Taken together, the LC-MS metabolomics

results provide further support for the presence of OS-associated

metabolic disturbances in SLE.
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3.3 Identification of OS-related key genes
in SLE via machine learning

To identify SLE-related genes associated with OS, we intersected

the differentially expressed genes from the training set with the OS-

related gene set curated from GeneCards. This yielded 124 OS-

related differentially expressed genes, which were subsequently used

for model training and feature selection.

Figure 4A displays a schematic of the neural network model; after

600 iterations, the model’s accuracy stabilized above 0.98 (Figure 4B),
FIGURE 3

LC-MS metabolomics in SLE patients versus healthy controls. (A) PCA scatterplot illustrating distinct overall metabolic patterns in the SLE group
(brown circles) compared with the healthy control group (green circles). (B) Volcano plot of differential metabolites, where the x-axis denotes VIP
values and the y-axis denotes −log10(p-value). Circle size corresponds to AUC values; blue circles indicate selected differential metabolites.
(C) Boxplots of key OS-related metabolites in SLE patients versus healthy controls. (**P < 0.01, ***P < 0.001). (D) ROC curves assessing the
diagnostic performance of these key metabolites in distinguishing SLE from healthy controls.
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and a confusion matrix was used to visualize the model’s performance

(Figure 4C). To further validate the model’s robustness and the

accuracy of the identified key genes, we also employed RF

(Figures 4D,E), XGBoost (Figure 4F), SVM (Figure 4G), and LASSO

regression (Figures 4H–I) to analyze feature importance for the same

gene set. The top 40 OS-related genes identified by each method were

selected based on model performance and feature ranking. By

integrating the results from the five machine learning models, 10

genes consistently demonstrated high feature importance across all

methods (Figure 4J): ABCB1, AKR1C3, EIF2AK2, ELANE, FKBP5,

GADD45A, IFIH1, LCN2, NPC1, and SCO2.
3.4 Relationships among key genes and
their predictive performance in training
and test sets

We conducted a systematic analysis of the 10 selected key genes

(ABCB1, AKR1C3, EIF2AK2, ELANE, FKBP5, GADD45A, IFIH1,

LCN2, NPC1, SCO2) regarding their expression patterns and

interactions in both the training and test sets. As shown in

Figure 5A, AKR1C3, EIF2AK2, and NPC1 were downregulated in

SLE, whereas ELANE, FKBP5, GADD45A, IFIH1, LCN2, and SCO2

were upregulated. Further validation in the test sets revealed that,

except for ELANE, FKBP5, GADD45A, and LCN2, all other genes

showed significant differences in both Test Set 1 and Test Set 2

(Figures 5B,C). Protein–protein interaction analysis indicated how

these proteins interrelate (Figure 5D), and subsequent gene

correlation analysis revealed significant associations among them,

with IFIH1 and EIF2AK2 exhibiting the strongest correlation (r =

0.83) (Figure 5E). Additional ROC analysis assessed the predictive

performance of these genes in the validation sets, yielding AUC values

of 0.979 for SCO2, 0.960 for EIF2AK2, 0.939 for IFIH1, 0.886 for

ABCB1, 0.863 for NPC1, 0.713 for AKR1C3, 0.677 for LCN2, 0.643 for

GADD45A, 0.635 for FKBP5, and 0.540 for ELANE (Figure 5F).
3.5 Immune infiltration and the
relationships between key genes and
immune cells

To further elucidate the associations between these key genes

and immune cells, we performed immune infiltration analysis on

the target dataset. The results indicated extensive and significant

correlations between these genes and various immune cell types

(Figure 6A). Subsequently, six of the main key genes were selected

for more detailed immune infiltration evaluation (Figure 6B). The

results showed that each gene displayed distinct infiltration patterns

and expression levels across different immune cell types, suggesting

that these genes may play pivotal roles in SLE immunopathogenesis

by regulating immune cell activation or differentiation.
3.6 Single-cell data expression

To further clarify, at the single-cell level, the differences in immune

cells and key gene expression between SLE patients and HCs, we
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performed UMAP clustering on the integrated PBMCs single-cell

transcriptomic data. The analysis classified all cells into 11 clusters,

which were annotated based on highly variable genes as monocytes,

macrophages, naive CD4+ T cells (nCD4 T), naive CD8+ T cells (nCD8

T), effector memory CD4+ T cells (eCD4 T), effector memory CD8+ T

cells (eCD8 T), B cells, NK cells, erythrocytes, neutrophils,

megakaryocytes, and dendritic cells (DCs) (Figure 7A). A stacked bar

chart (Figure 7B) showed notable differences in the distribution of these

cell types between SLE patients and HCs, with naive CD4+ T cells,

naive CD8+ T cells, effector memory CD4+ T cells, effector memory

CD8+ T cells, monocytes, B cells, NK cells, and macrophages

accounting for the majority of total cells. Of particular note, the

proportions of naive CD4+ T cells and NK cells significantly

decreased in the SLE group, whereas the proportions of monocytes

and macrophages were markedly elevated.

Meanwhile, examining the activity of each immune cell type in key

metabolic pathways (Figure 7C) revealed certain heterogeneity in their

responses. Notably, changes in monocytes and macrophages within

these critical pathways were highly consistent with the GSVA results

from earlier transcriptomic analysis, further suggesting their potential

significance in the metabolic dysregulation of SLE.

Additionally, assessing the expression profiles of the

aforementioned key genes in various cell types revealed that ABCB1,

AKR1C3, and NPC1 were primarily expressed in NK cells and

downregulated in SLE; IFIH1 and SCO2 were mainly expressed in

monocytes and macrophages and were upregulated in SLE; and

GADD45A was mainly expressed in naive CD8+ T cells and effector

memory CD8+ T cells, exhibiting downregulation in SLE (Figure 7D).

These findings suggest a strong link between shifts in SLE-associated

cellular subpopulations and the expression patterns of key genes.
3.7 RT-qPCR validation of major key genes

To further validate the differential expression of major key genes in

SLE patients and HCs, we performed RT-qPCR on PBMCs from 12

SLE patients and 12 HCs. Compared with the HC group, ABCB1,

AKR1C3, and NPC1 were significantly downregulated in SLE patients,

whereas EIF2AK2, IFIH1, and SCO2 were significantly

upregulated (Figure 8A).
3.8 OS and AOS levels in SLE patients

Building upon the initial group of 12 SLE patients and 12 HCs, we

further selected serum samples from an additional 30 SLE patients and

30 HCs to measure OS and AOS levels, with H2O2 serving as the

primary indicator of OS. The results demonstrated that SLE patients

had significantly higher OS levels and markedly lower AOS levels

(Figure 8B), suggesting a redox imbalance in the pathogenesis of SLE.
3.9 Interconnections among key genes,
OS, and related metabolites

Drawing on the findings in Sections 4.2 and 4.8, we conducted an

integrated association analysis of key genes, OS, and related
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FIGURE 4

Screening of key genes using multiple machine learning algorithms and model performance evaluation. (A) Schematic diagram of the DL model
architecture, consisting of the input layer and two fully connected layers (Dense, output_layer). The input layer receives 124 genes as features,
culminating in a final prediction at the output layer. (B) Accuracy trend of the deep learning model over the training process. (C) Confusion matrix
visualization of the deep learning model and main performance metrics. “Epoch” denotes the number of training iterations. “Accuracy” is the final
accuracy, “Kappa” is the coefficient for consistency testing, and “Sensitivity” and “Specificity” represent the model’s sensitivity and specificity,
respectively. (D) Trend plot of RF model error versus the number of decision trees. (E) Gene importance rankings identified by the RF model, where
the x-axis shows importance scores and the y-axis lists genes. (F) Gene importance ranking from the XGBoost model, with the x-axis showing
importance scores and the y-axis listing genes. (G) Selection of key OS-related genes using SVM-RFE. The x-axis indicates the number of feature
genes, and the y-axis represents the cross-validation outcome. (H) Trajectory of coefficients in LASSO regression as the regularization strength
(L1Norm) changes. (I) Cross-validation error curve in the LASSO model, with vertical lines indicating possible optimal l ranges. (J) UpSet plot
displaying the overlapping sets of important genes identified across the five machine learning models.
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FIGURE 5

Correlations among key genes and their expression differences in the training and test sets. (A) Boxplots of the relative expression levels for 10 key
genes in SLE patients versus HCs in the training set. (B, C) Boxplots of the 10 key genes in Test Sets 1 and 2. (D) Protein–protein interaction network
illustrating the interactions among proteins corresponding to these key genes. (E) Pearson correlation matrix of the key genes. Color intensity
indicates the absolute value of the correlation coefficient (blue for positive correlation, orange for negative correlation). (F) ROC curves evaluating
the ability of the 10 key genes to distinguish SLE from HCs in the validation set, where the x-axis indicates specificity and the y-axis indicates
sensitivity. (ns” indicates “not significant, *P < 0.05, **P < 0.01, ***P < 0.001).
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metabolites. As shown in Figure 8C, correlations among six key genes

(AKR1C3, NPC1, ABCB1, EIF2AK2, IFIH1, SCO2), AOS levels, ROS

levels, and three key metabolites (L-glutamate, 5′-methylthioadenosine,

a-tocopherol) were evaluated in both HC and SLE groups. The six key

genes were significantly correlated with one another, consistent with
Frontiers in Immunology 12
the findings in Section 4.4. Specifically, AKR1C3 and ABCB1 were

positively correlated with AOS levels, whereas SCO2 was negatively

correlated with AOS levels, and AKR1C3 was negatively correlated

with OS levels, whereas EIF2AK2 was positively correlated with OS

levels. Thus, AKR1C3, which associates with both OS and AOS, likely
FIGURE 6

Associations of key genes with immune cell infiltration. (A) Heatmap showing correlations between the 10 key genes and various immune cell types.
Color ranges from green to red, indicating positive to negative correlations, with color intensity reflecting the absolute value of the correlation
coefficient. (B) Lollipop chart displaying the magnitude and significance of correlations between six major key genes and different immune cells. (*P
< 0.05, **P < 0.01, ***P < 0.001).
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FIGURE 7

Single-cell–level immune cell distribution, key metabolic pathway enrichment, and differential expression of key genes in SLE versus healthy
controls. (A) UMAP clustering of integrated single-cell transcriptomic data, where distinct colors and regions represent different cell types.
(B) Stacked bar plot showing differences in the relative distribution of cell types between the SLE group and healthy control group. (C) Heatmap of
GSVA analysis results at the single-cell level. (D) Bubble plot depicting the expression of six major key genes across different cell types and groups
(HC, SLE). The size of each bubble indicates the percentage of cells expressing the gene, and the bubble color intensity reflects the average
expression level.
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FIGURE 8

Expression of major key genes in SLE and HCs, and correlations with OS and metabolites. (A) Relative expression levels of six key genes (ABCB1,
AKR1C3, EIF2AK2, IFIH1, NPC1, SCO2) in PBMCs measured by RT-qPCR. Asterisks indicate statistical significance. (B) Serum levels of AOS and ROS in
the SLE and HC groups. (C) Correlation graph illustrating the relationships among the six key genes (AKR1C3, NPC1, ABCB1, EIF2AK2, IFIH1, SCO2),
ASL, ROS, and three key metabolites (L-glutamate, 5′-methylthioadenosine, a-tocopherol) in the HC and SLE groups. Density curves appear along
the diagonal; scatter plots with regression lines are shown below the diagonal; correlation coefficients (Corr) and significance levels are shown
above. (*P < 0.05, **P < 0.01, ***P < 0.001).
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plays a pivotal role in the mechanisms of OS and AOS during SLE

progression. Notably, the metabolite a-tocopherol not only correlated
with other OS-related metabolites but also showed significant

associations with these six genes and both OS and AOS levels,

indicating that a-tocopherol may exert an important influence in the

redox imbalance and key gene regulation of SLE.
4 Discussion

Metabolic patterns of immune cells under inflammatory

conditions are closely related to OS levels. Upon T-cell activation,

glycolysis is enhanced via the mTOR and HIF1a pathways, whereas B

cells rely more on mitochondrial function and oxidative metabolism

during plasma cell differentiation. Meanwhile, ROS can also modulate

immune cell signaling pathways such as NF-kB and HIF-1a, thereby
regulating both the intensity and duration of inflammatory responses

(31). Notably, recent studies suggest that such redox-sensitive signaling

processes may be spatially organized within lipid rafts—specialized

membrane microdomains rich in cholesterol and sphingolipids (32).

Lipid rafts facilitate the clustering of receptors and signaling molecules,

including NF-kB and PI3K, and may serve as a structural platform

linking OS with immune metabolic reprogramming (33). In recent

years, interventions targeting OS and cellular metabolism have

emerged as promising therapeutic approaches for SLE. Various

antioxidant agents—including luteolin, itaconic acid, and ethyl

pyruvate—have been reported to ameliorate clinical symptoms in

SLE (34–36). Nevertheless, the mechanisms of interaction between

OS and metabolic processes among different immune cells remain

insufficiently elucidated, necessitating more systematic studies to clarify

their role in disease pathogenesis and progression.

In this study, EIF2AK2 and IFIH1, two OS-related key genes highly

associated with SLE, displayed a significant positive correlation. This

correlation may exert a critical influence on SLE pathogenesis through

the JAK-STAT pathway. EIF2AK2 encodes the protein kinase R (PKR),

a core regulator of the stress response that is highly sensitive to OS

signals and regulated by STAT3. PKR interacts with multiple

inflammasomes (e.g., NLRP3, NLRP1, NLRC4, AIM2) to govern

cytokine release (37–39). Previous work has shown that circRNA

levels in PBMCs from SLE patients are markedly reduced, potentially

causing excessive PKR activation, which exacerbates OS and the

inflammatory response (40). Meanwhile, IFIH1 is an intracellular

receptor that recognizes viral RNA and induces type I interferons

and other inflammatory factors. Upon activation during infection,

IFIH1 can also promote STAT1 transcription, facilitating M1

polarization in macrophages and intensifying inflammation (41–43).

Hence, EIF2AK2 and IFIH1 may functionally contribute to the

pathogenesis and persistence of SLE by jointly driving oxidative stress

imbalance and sustained chronic inflammation through the regulation

of the JAK-STAT pathway and immune-inflammatory networks.

ABCB1 is a member of the ATP-binding cassette transporter

family. It encodes P-glycoprotein, whose primary function is to expel

intracellular toxins via ATP-driven transport (44). In SLE patients,

ABCB1 expression is decreased in both memory and activated B cells,

possibly contributing to B-cell dysfunction and disease activity (45, 46).
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Notably, ABCB1 plays a crucial role in tumor drug resistance, where

ROS can suppress P-glycoprotein function or alter its expression,

indirectly affecting the cytotoxicity of chemotherapeutics (44, 47).

Moreover, under hypoxic conditions, increased oxidative

phosphorylation can further activate the Hif1a-ABCB1 axis, thereby

enhancing P-glycoprotein function (48). Importantly, P-glycoprotein

can also be transcriptionally upregulated in response to oxidative stress

via stress-responsive factors such as Nrf2 and NF-kB, and contributes

to maintaining redox homeostasis by actively exporting lipid

peroxidation products and other ROS-generating compounds (49).

Therefore, reduced ABCB1 expression may not only be a downstream

consequence of oxidative stress, but also exacerbate redox imbalance by

impairing ROS clearance. This evidence supports a potential causal role

of ABCB1 dysregulation in sustaining oxidative stress in SLE. In the

present study, ABCB1 expression was similarly downregulated in SLE

patients’ B cells, though this decrease was more pronounced in NK

cells; concurrently, oxidative phosphorylation in NK cells was also

markedly reduced. Since oxidative phosphorylation is the principal

source of ATP, compromised NK-cell function in SLE may stem from

insufficient energy production, which in turn could lead to reduced

ABCB1 expression. These observations underscore the need for further

investigation into the precise role of ABCB1 in SLE pathogenesis,

particularly regarding its functional and signaling interactions in B cells

and NK cells.

This study is the first to report a strong association between

AKR1C3 and the OS/AOS balance in SLE patients, indicating that

AKR1C3 is closely linked to OS and AOS levels in SLE. AKR1C3 can

catalyze the production of testosterone and dihydrotestosterone,

thereby activating androgen receptor signaling (50). It is also an

integral component of the cellular defense system against OS,

functioning under high-OS conditions as an adaptive mechanism to

mitigate ROS-induced cellular damage and help maintain proliferative

capacity and metabolic function (51). Notably, studies have shown that

AKR1C3 overexpression can activate the Keap1–Nrf2–ARE pathway,

thereby enhancing the expression of antioxidant enzymes such as

glutathione peroxidases (GPXs) and glutathione synthesis enzymes,

ultimately reducing intracellular ROS levels. This positive feedback

mechanism allows AKR1C3 to act not only as a downstream target of

Nrf2 but also as an upstream enhancer of the Nrf2-mediated

antioxidant response. In the context of SLE, which is characterized

by chronic oxidative stress, the upregulation of AKR1C3 may serve as

an adaptive mechanism to enhance antioxidant defenses and limit

inflammation-induced oxidative injury (52).These findings provide a

starting point for subsequent studies on the regulatory pathways and

potential therapeutic value of AKR1C3 in SLE pathogenesis.

We further discovered that the key metabolite a-tocopherol is
closely connected to the redox state in SLE and to the levels of key

genes. a-Tocopherol, a fat-soluble vitamin with potent antioxidant

properties, curtails lipid peroxidation by scavenging ROS, thereby

mitigating cell damage induced by free radicals (28). In the present

study, it also exhibited strong correlations with critical genes and

metabolites. One investigation demonstrated that the a-tocopherol
derivative a-T-13′-COOH exerts regulatory effects on multiple

antioxidant pathways, particularly influencing the expression and

activity of enzymes such as superoxide dismutase (SOD), glutathione
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S-transferase (GST), and catalase (CAT), thereby bolstering a cell’s

ability to clear ROS. Additionally, a-tocopherol can modulate redox-

sensitive genes (e.g., Nrf2, Hmox1), prompting cells to adapt to OS and

mitigate oxidative damage. In RAW264.7 mouse macrophages, a-T-
13′-COOH quickly induces ROS generation, but the cells subsequently

adapt through enhanced antioxidant defenses (53). This evidence

further underscores the critical role of a-tocopherol in redox

homeostasis and immune regulation in SLE.

In SLE, anti-RLIP76 C-terminal antibodies are significantly elevated

and can induce endothelial cell apoptosis via OS, leading to vascular

dysfunction; however, antioxidant treatments such as a-tocopherol can
effectively diminish OS and cell apoptosis driven by these antibodies

(54). Furthermore, a-tocopherol indirectly regulates ABCB1 expression
and function by reducing ROS levels, thereby preserving the integrity of

the blood–brain barrier and preventing the buildup of toxic substances

(55). These antioxidant effects may have potential utility in safeguarding

the blood–brain barrier and slowing disease progression. Hence, a-
tocopherol plays a crucial role in modulating OS, maintaining cellular

homeostasis, and ameliorating immune dysfunction.

Notably, PCA based on LC-MS metabolomic data revealed

substantial inter-individual heterogeneity among SLE samples,

consistent with previous findings (56). Further inspection showed

that the SLE samples formed two relatively distinct subgroups in

principal component space, potentially driven by differences in

disease activity levels (57). Given that OS status is strongly influenced

by inflammatory burden and immune activation, metabolic profiles

may vary significantly across different activity states. This clinical

heterogeneity could critically impact the interpretation of OS-related

features. Although the present study primarily focused on population-

level analyses, the observed subgroup differentiation highlights the need

for future stratification studies that integrate comprehensive clinical

data. As larger cohorts and more detailed clinical information become

available, it may be possible to further elucidate OS characteristics

across SLE subtypes, thereby providing a theoretical basis for

personalized therapeutic strategies.

Collectively, this study systematically characterized OS–related

features in SLE, identifying several key genes and metabolites with

diagnostic and therapeutic potential. These findings were validated

across multiple omics layers and datasets, and linked to distinct

immune cell subsets. Compared with previous studies that focused

solely on transcriptomic data and machine-learning–based biomarker

screening (58–60), our study presents three notable innovations. First,

we employed a multi-omics framework that integrates bulk

Transcriptomic, single-cell transcriptomics, and LC–MS–based

metabolomics to achieve cross-validation. Second, we focused

specifically on OS and AOS balance, a disease-relevant mechanism

not emphasized in prior work. Third, we validated key genes through

both PBMC-based qPCR and metabolomic profiling, constructing a

gene–metabolite–immune network with translational implications.

These features distinguish our study from prior literature and

support its broader relevance to SLE pathogenesis.

Nonetheless, several limitations should be acknowledged. Further

mechanistic studies are needed to elucidate the precise roles of key

genes and the effects of targeting these genes or metabolites on disease

pathology. Although the sample size for LC-MS analysis was moderate,
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the significant metabolic alterations and clear separation between

groups in multivariate analyses suggest that the data were sufficient

to capture key metabolic signatures in SLE. Future studies with larger

cohorts will help validate these findings. In addition, some

heterogeneity in the public datasets remains a concern—for example,

all patients in GSE61635 were anti-RNP positive, and both GSE65391

and GSE135779 included pediatric samples, which may influence

generalizability. We addressed this issue by combining multiple

datasets and validating findings across data types to ensure

robustness. Notably, GSE65391 contains many samples from

adolescents approaching adulthood and has overall high data quality,

making it appropriate for model construction (61). Even so, we

acknowledge that such heterogeneity may influence generalizability.

Our findings should thus be interpreted as identifying shared OS-

related signals in SLE, rather than mechanisms specific to age group or

antibody subtype.
5 Conclusions

By integrating multi-omics data analyses, this study

systematically investigated key metabolic pathways and

differential metabolites in SLE patients, demonstrating a close

association between SLE and OS. Through a comprehensive

screening and rigorous validation using five machine learning

algorithms, six OS-related key genes highly correlated with SLE

(EIF2AK2, AKR1C3, ABCB1, NPC1, IFIH1, SCO2) were ultimately

identified and further confirmed in additional datasets for their

predictive performance and associations with immune cell subsets.

Subsequently, RT-qPCR experiments and measurements of OS and

AOS levels revealed abnormal expression of these genes in SLE

patient PBMCs and highlighted a dysregulated redox balance in SLE

patients. The tight interconnections among key genes, redox status,

and major metabolites, as uncovered in this study, provide essential

theoretical support for characterizing the OS features of SLE.
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