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Jingyu Wang1,2, Xingxing Shi1,2, Yanli Zhu1,2,
Zhijing Xie1,2 and Shijin Jiang1,2*

1College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China,
2Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai'an,
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The endoplasmic reticulum (ER), an elaborate cellular organelle that interweaves

the cytosol, nucleus, mitochondria and plasma membrane, is essential for cell

function and survival. Disruption of ER function can trigger unfolded protein

response (UPR), which is activated by ER stress (ERS). In this study, we

investigated the role of ERS in cell apoptosis induced by duck hepatitis A virus

type 1 (DHAV-1) infection. Our findings revealed that DHAV-1 infection led to the

activation of ERS. Specially, the expression of glucose-regulated protein 78

(GRP78) was upregulated, activating two pathways of UPR: the protein kinase

R-like ER kinase (PERK) pathway and the inositol-requiring enzyme 1(IRE1)

pathway. Consequently, phosphorylation of eukaryotic initiation factor 2 alpha

(p-eIF2a) was increased, and transcription factor 4 (ATF4) was up-regulated,

resulting in the induction of the apoptotic C/EBP homologous protein (CHOP).

DHAV-1-infected cells exhibited various apoptotic phenotypes, including growth

arrest, induction of the DNA damage-inducible protein 34 (GADD34), activation

of caspase-3, and suppression of antiapoptotic protein B cell lymphoma-2 (Bcl-

2). Importantly, inhibition of PERK or protein kinase R (PKR) activity suppressed

CHOP activation and DHAV-1 replication, indicating that the PERK/PKR-eIF2a
pathway played a crucial role in ERS-induced apoptosis. Collectively, our study

provides novel insights into the mechanism of DHAV-1-induced apoptosis and

reveals a potential defense mechanism against DHAV-1 replication.
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Introduction

Duck viral hepatitis (DVH) is a highly contagious and acute disease that poses a

significant threat to ducklings, with a high mortality rate, significantly impacting the

poultry industry (1). The main pathogen responsible for DVH is duck hepatitis A virus

(DHAV), which belongs to the Avihepatovirus genus in Picornaviridae family. DHAV
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consists of three genetically distinct genotypes and serotypes:

DHAV-1, DHAV-2 and DHAV-3 (2–4). DHAV-1, being the

classical and most prevalent serotype, is responsible for highly

contagious and acute disease outbreaks in ducklings worldwide

(5–8). Besides rapid horizontal transmission, which causes severe

mortality in ducklings younger than 3 weeks of age, DHAV-1 can

also infect laying ducks, causing egg drop syndrome (9).

Furthermore, it can be vertically transmitted from breeding ducks

to ducklings (10).

The endoplasmic reticulum (ER) is a highly intricate and

dynamic organelle with diverse functions, including cellular

metabolism and protein synthesis, folding, modification and

trafficking. Endoplasmic reticulum stress (ERS) occurs when there

is an accumulation of unfolded or misfolded proteins, activating the

unfolded protein response (UPR) (11). The replication of viruses is

closely associated with ER membranes, which serve as center sites

for viral encapsulation and envelopment (12–15). During viral

replication, many viral proteins, particularly glycoproteins, are

synthesized for virus replication and maturation. The increased

demand for proteins triggers ERS, leading to both cell survival and

cell death.

Cell apoptosis is a complex regulatory network influenced by

various factors, and viruses can induce cell apoptosis through

multiple mechanisms, such as ERS, DNA damage, and disruption

of Ca2+ homeostasis (16–20). Apoptosis has been recognized as a

programmed cell death mechanism that facilitates virus spread

during virus infection (21). Several viruses in the Picornaviruses

family, such as foot and mouth disease virus, enterovirus, and

poliovirus, have been reported to be associated with apoptosis (22–

24). Studies have indicated that apoptosis may also play a significant

role in the infection process of DHAV-1in vitro (25).

ERS-induced apoptosis has been implicated in the infection of

various viruses, such as bovine viral diarrhea virus (BVDV) in

animals and hepatitis C virus (HCV) in human (26, 27). Short-term

activation of UPR helps cells adapt to ERS and maintain cellular

homeostasis. However, persistent ERS and viral infections can

induce cell apoptosis by regulating different apoptosis associated

factors. One crucial factor is the transcription factor C/EBP

homologous protein (CHOP), also known as growth arrest and

DNA damage-inducible gene 153 (GADD153). Activation of

CHOP can upregulate the pro-apoptosis protein GADD34 and

downregulation the antiapoptotic protein Bcl-2 (28–30).

In the UPR pathway, glucose-regulated protein 78 (GRP78) acts

as an ER chaperone and interacts with protein kinase R (PKR)-like

ER kinase (PERK) to activate transcription factor 6 (ATF6) and

inositol-requiring enzyme 1 (IRE1), keeping them in an inactive

state under normal conditions (31–33). During ERS, misfolded

proteins bind to GRP78, leading to the dissociation of cellular

factors from GRP78. It has been reported that all three

transmembrane proteins (PERK, ATF6 and IRE1) can induce

CHOP transcription, and the eukaryotic initiation factor 2 alpha-

ATF4 (PERK-eIF2a) pathway is crucial for to CHOP expression

(34). During the early stage of UPR, PERK is released from GRP78
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and undergoes self-phosphorylation, activating its kinase activity.

The PERK-mediated phosphorylation of eIF2a (p-eIF2a)
attenuates global protein translation and reduces protein folding

load (35). P-eIF2a preferentially translates ATF4 mRNA and

upregulates ATF3 transcription, leading to elevated CHOP

expression. It has been reported that CHOP is responsible for

inducting death receptor 5, contributing to ERS-induced

apoptosis (36).

Viral infections often trigger ERS within the host cells,

employing various strategies to manipulate this stress response

for their own replication. However, the precise mechanisms by

which DHAV-1 modulates the UPR and ERS-induced apoptosis

remain unclear. This study aimed to investigate the impact of

DHAV-1 infection on ERS and apoptosis, which will provide a

novel insight into the apoptosis mechanisms induced by DHAV-1

infection contributing to our understanding of DHAV-

1 pathogenesis.
Materials and methods

Virus and antibodies

The DHAV-1 LY0801 strain (accession no. FJ436047), a

virulent strain (5), was propagated in 10-day-old specific-

pathogen free (SPF) embryonated eggs for several days. The

purified viral allantoic fluid was store at -80°C as the virus stock.

Anti-DHAV-1 monoclonal antibody (mAb) 4F8, which binds to the

liner epitope “75GEIILT80” in the VP1 protein of DHAV-1, was

stored in our Laboratory (37). Antibodies against GRP78, PERK, p-

PERK, eIF2a, p-eIF2a, ATF4, CHOP and b-actin were purchased

from Cell Signaling Technologies. Antibodies against Bcl-2, ATF3,

and GADD34 were purchased from Abcam. Anti-His tag antibody

was purchased from Sigma. The horseradish peroxidase (HRP)-

conjugated goat anti-mouse or goat anti-rabbit IgG antibody was

obtained from Beyotime.
Cells treatment

Duck embryo fibroblast (DEF) cells were prepared from 10-

day-old SPF embryos purchased from the State Resource Center of

Laboratory Animal for Poultry (Harbin, China). Baby hamster

Syrian kidney-21 (BHK-21) cells were purchased from the

American Type Culture Collection (ATCC) (Manassas, VA,

USA). DEF and BHK-21 cells were maintained in standard

Dulbecco’s modified Eagle’s medium (DMEM) supplemented

with 10% fetal bovine serum (FBS) and grown at 37°C in 5%

CO2. When the cells reached approximately 80%~90% confluence,

they were infected with DHAV-1 at a multiplicity of infection

(MOI) of 2.0. After adsorption for 2 h at 37°C, the medium was

removed, cells were washed three times with phosphate-buffered

saline (PBS), and fresh medium with 2% FBS was added. Mock-
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infected cells were used as a negative control. In the drug treatment

groups, cells were treated with 2.5 mg/mL tunicamycin (Solarbio,

Beijing, China), 3 mM 4-phenylbutyric acid (4-PBA) (Sigma, St.

Louis, MO, USA), 4nM rapamycin (RAPA, Sigma, St. Louis, MO,

USA), 1mMGSK2606424 (MedChem Express, NJ, USA), or 10 mM

2-AP (Sigma, St. Louis, MO, USA), respectively. All cells were

cultured at 37°C under 5% CO2 until they were harvested at 12 to 72

hours post-infection (hpi).
Real-time quantitative polymerase chain
reaction analysis

Total RNA was extracted from mock-infected or DHAV-1

infected cells using TRIzol reagent (Promega, Madison, WI, USA)

according to the manufacturer’s instructions. Two micrograms of

the total RNA were then reverse transcribed using PrimeScript™

RT reagent Kit (TaKaRa, Dalian, China). RT-qPCR was carried out

using the UltraSYBR mixture (TaKaRa, Dalian, China), with an

initial denaturation step at 95°C for 5 min, followed by 40 cycles of

denaturation at 95°C for 15 s and annealing and extension at 60°C

for 34 s. The expression levels of ATF4, CHOP and b-actin were

quantitative analyzed. The primer sequences used as follows: ATF4

forward 5’-AAA GAA AAC TGG AGG GCC CC-3’ and reverse 5’-

GTA GGA GTC TGG GCT CAT GC-3’, CHOP forward 5’-GGA

GTG GCA GTG TTC CAG AG-3’ and reverse 5’-TGT TCA TCC

TCA GTG CCC AC-3’, and b-actin forward 5’-GGT ATC GGC

AGC AGT CCT A-3’ and reverse 5’-TTC ACA GAG GCG AGT

AAC TT-3’. The relative expression levels of these genes were

normalized to b-actin using the comparative cycle threshold (Ct)

method (2-△△Ct).
Western blotting analysis

Mock-infected and DHAV-1 infected cells were harvested at the

indicated time points using the RIPA Lysis and Extraction Buffer

(Invitrogen, Carlsbad, CA, USA). The lysates were centrifuged at

10,000 rpm for 10 min at 4°C to pellet cell debris, and the

supernatants were collected. The protein concentrations were

determined using the BCA kit (Beyotime, Shanghai, China).

Equal amounts of total cell protein were separated on 7.5%~15%

sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) and

transferred onto nitrocellulose (NC) membranes (Millipore Corp.,

Bedford, MA, USA) for western blotting analysis. Briefly, the

membranes were blocked with 5% bovine serum albumin (BSA)

blocking buffer for 1 h at room temperature, incubated with specific

primary antibodies at 4°C overnight. After being washed three times

with tris-buffered saline with 0.1% Tween 20 (TBST), the signals

were developed by incubating with HRP-conjugated anti-rabbit or

anti-mouse antibodies, visualized using the enhanced

chemiluminescence substrate (ECL, Beyotime, Shanghai, China)

according to the manufacturer’s protocol, and quantitated using

Image J software.
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Observation with transmission
electron microscope

DEF cells infected with DHAV-1 were grown in plates and

collected at 48 hpi. Ultra-thin sections of the cells were observed

using a H-7650 TEM (Hitachi, Tokyo, Japan). The morphology of

ER membranes was observed as previously described (38). Mock

cells were used as the negative control for comparison.
Detection of X-box binding protein-
1 splicing

Total RNA was isolated from DHAV-1-infected DEF cells, and

cDNA was synthesized as mentioned above. The XBP1 gene was

amplified by RT-PCR using primers 5’-CGG GAC AGG AAG AAA

GCG-3’ and 5’-ATT AAT GGC CTC CAG CTT AG-3’. The PCR

products were subsequently digested with the restriction enzyme Pst

I (Thermo Fisher Scientific, San Jose, CA, USA) and separated on a

1% agarose gel. As an internal control, GAPDH mRNA was

amplified using the primers 5’-AGA TGC TGG TGC TGA ATA

CG-3’ and 5’-ACT GTC TTC TGT GTG GCT GT-3’. Mock cells

were used as the negative control.
Annexin V-FITC and PI staining analysis

To analyze the level of apoptosis, 1×106 cells were collected by

centrifugation at 1000 rpm for 5 min and washed with PBS for three

times. The cells were then resuspended in 1×binding buffer and

incubated with FITC-conjugated Annexin V. Subsequently, cells

were stained with propidium iodide (PI) according to the

manufacturer of Annexin V-FITC/PI apoptosis kit (BD

Bioscience, San Jose, CA, USA). The apoptosis cells were analyzed

using flow cytometry. Mock cells were incubated as a negative

control. Each experiment was performed in triplicate.
Nuclear morphologic change

To detect DNA fragmentations during cell apoptosis, DHAV-1-

infected cells were washed with PBS and fixed with cold methanol/

acetone (1:1, v/v) for 5 min at room temperature. After removal of

the fixation solution, the cells were washed three times with PBS

and then stained with 2 mM Hoechst 33342 (Sigma-Aldrich, St.

Louis, MO, USA) for 10 min at room temperature. The nuclear

changes were observed under a fluorescence microscope (Olympus,

Tokyo, Japan).
DNA ladder analysis

DEF cells infected with DHAV-1 were harvested at 72 hpi by

centrifugation. Total DNA was extracted with a DNA ladder
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extraction kit (Beyotime, Shanghai, China) and separated on a 1.5%

agarose gel. The fragmented DNA bands were observed under the

image analyzer (Syngene, Cambridge, UK).
Results

DHAV-1 infection activates ERS

To investigate the initiation of ERS response during DHAV-1

infection, we examined the expression levels of GRP78, an ERS

marker protein, through western blotting analysis. Both DEF cells

and BHK-21 cells showed increased levels of GRP78 compared to

the mock-infected cells (Figure 1A), similar to that in the cells

treated with tunicamycin, which was used as a positive control.

Interestingly, DEF cells exhibited higher GRP78 expression than

BHK-21 cells at 24 hpi, potentially attributed to the greater

proliferation efficiency of DHAV-1 in DEF cells. Contrasting with
Frontiers in Immunology 04
the normal appearance in mock-infected cells (Figure 1B), TEM

revealed significant swelling of the ER membrane in DHAV-1-

infected cells (Figure 1C). These findings strongly indicated that

DHAV-1 infection activated ERS and UPR.

4-PBA has been demonstrated as an inhibitor of ERS (39). In

this study, we utilized 4-PBA to mitigate ERS induced by DHAV-1

infection. Our result showed a significant decrease in the expression

level of GRP78 upon 4-PBA treatment, with an optimal

concentration of 3 mM (Figure 1D). Furthermore, at both 24 and

48 hpi, the induction of GRP78 was significantly lower with 3 mM

4-PBA treatment (Figure 1E).

During viral infection, numerous viral proteins are synthesized

and accumulated in the ER lumen, exploiting the host’s translation

machinery. For example, viruses such as HCV and African swine

fever virus (ASFV) utilize ER as their replication sites to enhance

virus replication (40, 41). To investigate the role of ERS in DHAV-1

replication, we quantified the number of viral mRNA copies in cells

infected with DHAV-1 infection, as well as DHAV-1-infected cells
FIGURE 1

DHAV-1 infection activated the ERS. (A) DHAV-1 induces the GRP78 expression in DEF cells and BHK-21 cells. Tunicamycin (Tm) was respectively
used as positive controls. (B) The ER ultrastructure in mock-infected DEF cells under transmission electron microscope (TEM) was used as the
negative control. (C) The ER ultrastructure in DHAV-1-infected DEF cells revealed significant swelling under TEM. (D) The expression level of GRP78
showed a significant decrease upon 4-PBA treatment, with an optimal concentration of 3 Mm. (E) With 3 mM 4-PBA treatment, the induction of
GRP78 was significantly lower at both 24 and 48 hpi. (F) Inhibition ERS with 4-PBA effectively reduced the replication of DHAV-1.
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with tunicamycin or 4-PBA treatment using RT-qPCR. The result

showed that ERS contributed to DHAV-1 replication, and

inhibition ERS with 4-PBA effectively reduced the replication of

DHAV-1 (Figure 1F).
DHAV-1 infection upregulates
eIF2a phosphorylation

The UPR encompasses three distinct arms involving the

activation of ATF-6, PERK and IRE1, respectively. It is well

known that ERS and PKR are two major pathways that regulate

eIF2a during virus infection (42, 43), and p-eIF2a inhibits global

protein translation and thereby reduces protein folding load during

ERS. To determine which arm of the URPs is activated during

DHAV-1 infection, we conducted further investigation and

analyzed eIF2a phosphorylation in lysates from DHAV-1-

infected cells using western blotting analysis. The results revealed

that the p-eIF2a level was upregulated in DHAV-1-infected cells,

while total eIF2a (t-eIF2a) protein level was unchanged (Figure 2),

suggesting that DHAV-1 infection activated PERK arm of the UPR,

resulting in the phosphorylation of eIF2a. In addition, the kinetics

of eIF2a phosphorylation induction coincided with the expression

level of DHAV-1 VP1 protein, indicating that ERS was involved in

the process of DHAV-1 replication.
Frontiers in Immunology 05
DHAV-1 infection induces proapoptotic
CHOP expression

Activation of PERK and subsequent phosphorylation of eIF2a
selectively promote the transcription of ATF4, which in turn

upregulate CHOP and GADD34, leading to apoptosis. To

investigate whether the downstream proteins of p-eIF2a were

induced by DHAV-1 infection, we examined the mRNA levels of

ATF4 and CHOP, as well as the protein expression of ATF4, CHOP,

GADD34, and ATF3. The RT-qPCR results demonstrated

persistent increases in ATF4 and CHOP mRNA levels during

DHAV-1 infection (Figures 3A, B). Furthermore, western blotting

analysis revealed a consistent and sustained elevation in the protein

expression levels of ATF4, CHOP, and GADD34 during DHAV-1

infection (Figure 3C). Notably, as an ATF4 target gene, ATF3

exhibited upregulation in response to DHAV-1 infection and

showed significantly increases at 12 and 24 hpi, indicating its

involvement in the earlier stage of ERS (Figures 3D, E).
DHAV-1 infection activates IRE1 arm
of UPR

Activation of IRE1 pathway leads to the splicing of XBP1

mRNA (44). In our study, western blotting results revealed an
FIGURE 2

DHAV-1 infection activated the PERK pathway. (A) The t-PERK, p-PERK, t-eIF2a, p-eIF2a, VP1 and b-actin expressions in mock-infected cells and
DHAV-1-infected cells were generally analyzed using western blotting assay, showing p-eIF2a level was upregulated with the replication of in
DHAV-1. (B) Compared with mock-infected group, the ratios of p-PERK to t-PERK, and p-eIF2a to t-eIF2a in infected cells were both upregulated
from 24 to 48 hpi.
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increased level of phosphorylated IRE1 during DHAV-1 infection,

while the total IRE1 expression level remained unchanged

(Figure 4A). Moreover, the protein level of the spliced XBP1

(XBP1s) were significantly upregulated, particularly at 24 hpi with

a slightly increase observed at 36 and 48 hpi (Figure 4A).

As known, IRE1 endoribonuclease activation leads to the

splicing of XBP1 mRNA by removing a 26-bp intron that

includes a Pst I restriction site (Figure 4B). To examine the effect

of DHAV-1 infection on XBP1 splicing, we performed RT-PCR

followed by Pst I restriction digestion. Using specific primers, the

un-spliced XBP1 fragment was represented by two separate bands

of 278 bp and 258 bp, while the presence of a 578 bp indicated the

spliced XBP1 (Figure 4C). The RT-PCR results revealed that the

detection of XBP1s mRNA in DHAV-1-infected and tunicamycin-

treated cells, while un-spliced XBP1 mRNA was identified in the

mock-infected cells (Figure 4D). These results suggested that

DHAV-1 infection activated the IRE1-XBP1 pathway under ERS.

To further investigate whether all three ATF6 pathways of the

UPR were activated during DHAV-1 infection, we further

examined the ATF6 pathway. When the ATF6 was activated,

ATF6 was cleaved by transmembrane proteases, resulting in the

active N-terminal 50-kDa ATF6 fragment. However, no ATF6

cleavage was observed in DHAV-1-infected cells, indicating that

DHAV-1 infection did not active ATF6 pathway (data not shown).
Frontiers in Immunology 06
DHAV-1 infection induces ERS-
mediated apoptosis

Nuclear shrinkage and DNA fragmentation are typical

characteristics of cell apoptosis. To assess the role of DHAV-1

infection in nuclear morphologic change, we compared chromatin

condensation in DHAV-1-infected and mock-infected cells.

DHAV-1-infected cells exhibited condensed nuclei with intense

staining compared to mock cells (Figure 5A). Furthermore, DNA

ladder assay demonstrated DNA fragmentation in DEF cells

infected with DHAV-1 (Figure 5B). These results indicated that

DHAV-1 infection induced apoptosis in DEF cells.

To further confirm DHAV-1-induced apoptosis and

investigate the relationship between the UPR and apoptosis

during DHAV-1 infection, we examined the level of cleaved

caspase-3 protein. Western blotting analysis revealed an

upregulation of cleaved caspase3, which correlated with the

expression level of CHOP (Figure 5C). Notably, the upregulated

expression levels of caspase-3 and CHOP induced by DHAV-1

were decreased in cells treated with ERS inhibitor 4-PBA

(Figure 5C). It is well known that CHOP promotes cell death by

activating proapoptotic genes and downregulating antiapoptotic

genes. In this study, one of the downstream effectors of CHOP,

GADD34, was upregulated during DHAV-1 infection (Figure 4C).
FIGURE 3

DHAV-1 infection activated the eIF2a-ATF4-CHOP pathway. (A, B) Compared with mock-infected group, the ATF4 and CHOP mRNA levels in
DHAV-infected cells were persistently increased from 24 to 48 hpi. Tunicamycin (Tm) was respectively used as positive controls. (C) Western
blotting analysis revealed a consistent and sustained elevation in the protein expression levels of ATF4, CHOP, and GADD34 during DHAV-1
infection. (D) ATF3 exhibited upregulation in response to DHAV-1 infection and showed significantly increases at 12 and 24 hpi. (E) The ration of
ATF3 to b-actin in DHAV-infected cells shows a marked decrease, while ration in mock-infected groups shows a steady rise from 24 to 48 hpi.
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Moreover, anti-apoptotic protein Bcl-2 exhibited a significant

decrease from 24 hpi to 48 hpi (Figure 5D). These results

provide evidence that DHAV-1 infection induced ERS-

mediated apoptosis.
Blocking the UPR reduces DHAV-1-
induced apoptosis in DEF cells

The PERK-eIF2a-ATF4-CHOP pathway of UPR plays a vital

role in ERS-induced apoptosis. In response to stress signal, the IFN-

induced double-stranded RNA-dependent PKR can also

phosphorylate the eIF2a (45). Moreover, PKR not only

contributes to the early stage of eIF2a phosphorylation but also

elicits eIF2a-ATF4-CHOP signaling in ERS-induced apoptosis

during viral infection (38, 46). Our proteomic analysis confirmed

the high expression of PKR in DHAV-1-infected cells (47). To

investigate whether DHAV-1 induces apoptosis through the PERK/

PKR-eIF2a-ATF4-CHOP pathway, we first analyzed the effect of

PERK inhibitor GSK2606414 and PKR inhibitor 2-aminopurine (2-

AP) on DHAV-1-infected DEF cells apoptosis using flow

cytometry. Tunicamycin and 4-PBA were used as positive and

negative controls, respectively. As shown in Figure 6A, DHAV-1

infection increased the percentage of apoptotic cells to 56.8%

compared to 15.5% of the mock-infected cells. The percentage of

apoptotic cells induced by tunicamycin was 84.1%, whereas the

percentage of apoptotic cells treated with 4-PBA was 32.4%. These
Frontiers in Immunology 07
results indicated that DHAV-1 infection and the ERS inducer

tunicamycin promoted DEF cells apoptosis. Moreover, both the

PERK inhibitor GSK2606414 and PKR inhibitor 2-AP significantly

inhibited DHAV-1-induced apoptosis, with the PERK inhibitor

demonstrating a stronger inhibitory effect on DHAV-1-induced

apoptosis (Figures 6B, C).
Involvement of PERK/PKR in ERS-
mediated apoptosis

Western blotting analysis further revealed that cells treated with

GSK2606414 or 2-AP showed a significant reduction in the

respective protein level and CHOP protein level compared to the

mock-infected cells. Additionally, a lower expression level of VP1

protein was observed in DHAV-1-infected cells treated with

pharmacological intervention (Figure 7A). This result was further

supported by viral copies number analysis using RT-qPCR, which

showed significant decrease in viral copy numbers in cells treated

with GSK2606414 or 2-AP, indicating that inhibiting apoptosis

attenuated the virus replication (Figure 7B). Moreover, the virus

copy numbers in GSK2606414-treated cells were lower than those

in 2-AP treated cells, indicating that PERK pathway had a greater

effect on DHAV-1 replication than the PKR pathway. Overall, these

results indicated that the PERK/PKR- eIF2a-ATF4-CHOP pathway

was involved in the ERS-mediated apoptosis caused by DHAV-1

infection and DHAV-1 replication.
FIGURE 4

DHAV-1 infection activated the IRE1 pathway. (A) Western blotting analysis showed an increased level of phosphorylated IRE1 during DHAV-1
infection, while the total IRE1 expression level remained unchanged. The protein level of the spliced XBP1 (XBP1s) were upregulated particularly at 24
hpi, with a slightly increase observed at 36 and 48 hpi. (B) The analysis scheme of XBP1 mRNA splicing: IRE1 endoribonuclease activation leads to
the splicing of XBP1 mRNA by removing a 26-bp intron that includes a PstI restriction site. (C) The size of PCR-amplified fragments from spliced and
un-spliced XBP1 with or without PstI cleavage were listed. (D) RT-PCR analysis of XBP1 mRNA splicing: XBP1s mRNA could be detected in DHAV-
infected and tunicamycin-treated cells, while un-spliced XBP1 mRNA was identified in the mock-infected cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1567540
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lan et al. 10.3389/fimmu.2025.1567540
Discussion

ER is a crucial multifunctional organelle that serves as the site of

viral replication and maturation for several viruses (48). During

viral infection, a large amount of viral protein synthesis results in

the accumulation of unfolded or misfolded proteins in the ER,

triggering ERS and activating the UPR (49, 50). Our previously

proteomic result also revealed that the activation of ERS-induced

autophagy by DHAV-1 (47). However, the relationship between the

ERS and apoptosis caused by DHAV-1 has not yet to be fully

elucidated. In this study, we identified the activation of UPR process

and investigated the relationship between UPR and apoptosis

caused by DHAV-1. We found that the PERK/PKR pathway

plays a crucial role in ERS-induced apoptosis and DHAV-1

replication. This effect is achieved by inducting the proapoptotic

transcription factor CHOP, which ultimately activates caspase-3

and promotes cell apoptosis (Figure 8).

GRP78 is the master regulator of the UPR pathway and governs

the UPR activation (51). Our current study, using western blotting

and TEM, demonstrated significant upregulation of GRP78 and

expansion of ER membrane in DHAV-1-infected cells (Figure 1),
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indicating that DHAV-1 activation of ERS. The PERK pathway, one

of the most important arms of UPR, phosphorylates eIF2a, leading
to the inhibition of general protein translation but the selectively

promotion of ATF4 translation during ERS (36). Moreover, ATF4

plays a crucial role in adapting to stresses by regulating the

transcription of numerous genes (52). Our western blotting result

showed that eIF2a was phosphorylated along with the PERK

activation caused by DHAV-1, resulting in the upregulation of

ATF4, ATF3, and CHOP (Figures 2, 3). Further research results

showed that DHAV-1 infection also activated the IRE1 pathway

(Figure 4), and the ATF6 pathway remained inactive. Our study

provides a notable example of how a virus exploits the UPR

pathway to cope with ERS induced by DHAV-1 infection. It has

been reported that many viruses have evolved strategies to modulate

UPR for their own replication (53–55). Furthermore, we observed

that the activation of ERS could enhance DHAV-1 replication,

whereas inhibition of ERS with 4-PBA could significantly reduce

viral replication (Figure 1). Thus, it is conceivable that DHAV-1

infection induces ERS and modulates the UPR, leading to a

shutdown of host protein synthesis and enhancement of viral

protein translation, ultimately benefiting viral replication.
FIGURE 5

DHAV-1 infection induces CHOP-mediated apoptosis in DEF cells. (A) The DHAV-infected cells exhibited condensed nuclei with intense staining
compared to mock cells. Yellow arrows indicate condensed nuclei. (B) Quick detection of apoptotic DNA ladder in DEF cells with DHAV-1 infection.
Lane marker: standard molecular size maker (5 Kb). Lane 2: DAHV-1-infected cells. Lane Mock: Mock-infected cells. (C) The upregulation of cleaved
caspase-3 was decreased when ERS caused by DHAV-1 was inhibited with 4-PBA treatment. (D) The anti-apoptotic protein Bcl-2 was down-
regulated from 24 hpi to 48 hpi during DHAV-1 infection.
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Viral infection can induce various forms of cell death. Previous

studies have reported that DHAV-1 can trigger pyroptosis;

however, apoptosis appears to be more common in DHAV-1

infections. Cell apoptosis has been observed in DHAV-infected

ducklings, indicating its potential significance in DHAV-1

infection. Apoptosis is characterized by the translocation of

membrane phosphatidylserine (PS) from the inner side of the

plasma membrane to the surface. Annexin V, which has a high

affinity for PS, can be used to stain cells for Annexin V-FITC/PI

analysis (56). Additionally, apoptosis can be identified by ladder

pattern of 180-200 bp fragment resulting from DNA cleavage (57).

In our study, we demonstrated an increased apoptosis rate caused
Frontiers in Immunology 09
by DHAV-1 infection from 12 hpi to 48 hpi, along with the

formation of a DNA ladder in DHAV-1-infected cells (Figure 5).

The UPR is initially a pro-survival signal aiming at restoring ER

homeostasis. However, under persistent ERS, it can switch to a pro-

apoptotic in model (58). The PERK and IRE1 arms of UPR, during

persistent ERS, can suppress the activity of antiapoptotic proteins and

activate the expression of proapoptotic proteins (59). In our study,

DHAV-1 infection upregulation the expression of CHOP, which is

recognized as one of the proapoptotic proteins induced by ATF4 and

ATF3 (35). It has been reported that there is a close relationship

between ER and mitochondria, and ERS can activate caspase-3

leading to apoptosis (60). Western blotting results revealed that the
FIGURE 6

DHAV-1 infection leads to CHOP-induced caspase-3 cleavage. (A) The effects of PERK inhibitor GSK2606414 and PKR inhibitor 2-aminopurine (2-
AP) on DHAV-1-infected DEF cells apoptosis was analyzed using flow cytometry, tunicamycin and 4-PBA were respectively used as positive and
negative controls. The results showed the percentage of apoptotic cells in DHAV-1-infected group was 56.8%, the mock-infected group was 15.5%,
the tunicamycin-treated group was 84.1%, the 4-PBA-treated group was 32.4%. (B) The percentage of normal cells in different treated groups was
consistent with the above flow cytometry results. (C) The percentage of apoptotic cells in different treated groups was consistent with the flow
cytometry results. All experiments were repeated three times.
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FIGURE 7

Involvement of PERK/PKR in ERS-mediated apoptosis during DHAV-1 replication. (A) Western blotting assay was designed to evaluate the effects of
PERK inhibition and PKR inhibition on the ERS-mediated apoptosis: cells treated with GSK2606414 or 2-AP showed a significant reduction in the
respective protein level and CHOP protein level compared to the mock-infected cells. A lower expression level of VP1 protein was observed in
DHAV-1-infected cells treated with pharmacological intervention. (B) The RT-qPCR was designed to evaluate the effects of PERK inhibition and PKR
inhibition on DHAV-1 replication: the viral copies in cells treated with GSK2606414 or 2-AP treated showed a significant decrease. Moreover, the
virus copies in GSK2606414-treated cells were lower than those in 2-AP treated cells.
FIGURE 8

Schematic diagram of UPR caused by DHAV-1 infection. DHAV-1 infection leads to UPR through PERK-eIF2a-ATF4 and IRE1-XBP1s pathways. Both
PERK and PKR participate in the regulation of p-eIF2a and ATF4 to modulate apoptosis and viral replication. DHAV-1 infection induces DNA
breakage, and CHOP protein exerts its proapoptotic activity by inhibiting Bcl-2. Sharp arrows indicate activation, blunt lines indicate inhibition.
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activation and cleavage of caspase-3 in DHAV-1-infected cells, while

the expression level of cleaved-caspase-3 decreased with the

inhibition of ERS (Figure 5). The ATF4-CHOP-mediated

transactivation of the Bcl-2 family is involved in ERS-induced cell

apoptosis pathway (61, 62). In our study, the anti-apoptosis protein

Bcl-2 was down-regulated in DHAV-1-infected cells, suggesting that

cell apoptosis caused by DHAV-1 is regulated.

CHOP is a well-known gene that facilitate ERS-induced

apoptosis, and its regulation involves a complex mechanism. It

has been reported that the upregulation of CHOP is mediated by

both the PERK-eIF2a-ATF4 pathway and the PKR-eIF2a-ATF4
pathway (63). In this study, the expression level of CHOP decreased

when PERK and PKR were inhibited by GSK26064 and 2-AP

(Figure 6), which is consistent with CHOP-mediated apoptosis

caused by avian infectious bronchitis virus (63). Importantly, we

observed a significant decrease in the VP1 protein at 48 hpi, which

aligns with RT-qPCR results (Figure 7). These findings suggested

that the PKR pathway synergistically interacts with the PERK

pathway in regulating of ERS-induced apoptosis caused by

DHAV-1, thereby contributing DHAV-1 replication. Similar

apoptotic regulation strategies have been reported in various virus

families during their replication process, such as West Nile virus,

BVDV2, HCV, arbovirus, influenza virus, and HIV (64–67).

In conclusion, this report provides evidence of the induction of

UPR signaling cascades, the involvement of the PERK/PKR-eIF2a-
ATF4-CHOP pathway, and the underlying mechanism of ERS-

induced apoptosis caused by DHAV-1 infection. This work

provides new insights into DHAV induced apoptosis and the

regulation mechanism that benefits viral infection. Furthermore,

modulators of the UPR, such as GSK2606424, which inhibits viral

replication, may serve as novel therapeutic targets for controlling

DHAV infection and pathogenesis.
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