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Background:Metabolic dysregulation inmetabolic syndrome (MetS) exacerbates

myocardial ischemia-reperfusion injury (MIRI). This study aimed to identify

diagnostic biomarkers and therapeutic candidates for MetS-associated MIRI.

Methods: Three MIRI and two MetS datasets from GEO were analyzed using

differential expression analysis, WGCNA, and machine learning (LASSO/SVM-

RFE). Hub genes were validated via qRT-PCR in hypoxia-induced H9C2 cells.

Drug candidates were predicted via PPI networks, CTD, and molecular docking,

followed by experimental evaluation of dexamethasone.

Results: Five hub genes—DAK, GTF3C5, KCNMB1, TRAF1, and ZNF692—were

identified, with distinct expression patterns (DAK/GTF3C5 downregulated;

KCNMB1/TRAF1/ZNF692 upregulated). These genes were enriched in immune-

related pathways, and their diagnostic performance was robust (AUCs: 0.875–

0.969). Dexamethasone downregulated KCNMB1/TRAF1/ZNF692 and reduced

apoptosis in H9C2 cells.

Conclusion: This study reveals immune-metabolic dysregulation as a key driver

of MetS-MIRI, proposes five biomarkers for diagnosis, and highlights

dexamethasone as a promising therapeutic candidate.
KEYWORDS

myocardial ischemia reperfusion injury, metabolic syndrome, machine learning,
molecular docking, immune infiltration
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1 Introduction

Myocardial ischemia-reperfusion injury (MIRI) is one of the

common pathogenic mechanisms in patients with acute coronary

syndrome (ACS) and myocardial infarction (MI), and remains a

major challenge in the treatment of cardiovascular diseases (1–3).

Although emergency procedures such as percutaneous coronary

intervention (PCI) have significantly reduced the incidence of

cardiovascular events by successfully restoring blood flow, the

heart faces multiple injuries after reperfusion, including acute

oxidative stress, inflammatory responses, and cell death (4, 5).

Notably, these injuries are exacerbated in patients with metabolic

syndrome (MetS), where genetic predispositions impair

endogenous antioxidant defenses, leading to amplified reactive

oxygen species production during reperfusion (6). This process

not only exacerbates functional damage to the heart but may also

trigger long-term cardiac remodeling, ultimately leading to heart

failure and other life-threatening conditions (7). Therefore, how to

effectively prevent and treat MIRI is a critical issue that urgently

needs to be addressed in the field of clinical cardiovascular diseases.

MetS is a group of pathological conditions characterized by

multiple metabolic abnormalities, including obesity, insulin

resistance, diabetes, hypertension, and hyperlipidemia (8, 9). MetS

is considered a risk factor for various chronic diseases, including

cardiovascular diseases, type 2 diabetes, stroke, and certain types of

cancer (10). Emerging studies reveal that MetS-associated genetic

variants disrupt adipokine signaling, thereby promoting systemic

insulin resistance and pro-inflammatory cytokine release (e.g.,

TNF-a, IL-6), which synergistically aggravate myocardial

inflammation during reperfusion (11). In recent years, an

increasing number of studies have shown a significant correlation

between MetS and MIRI (12, 13). This phenomenon is linked to the

exaggerated inflammatory response and oxidative stress in MetS

patients. Furthermore, MetS can cause abnormal fatty acid

metabolism, increasing the oxidative burden on the myocardium,

thereby exacerbating reperfusion injury (14, 15). For instance,

defective CPT1B alleles in MetS impair mitochondrial fatty acid

b-oxidation, resulting in lethal arrhythmias post-reperfusion (16).

Although the mechanisms underlying MIRI have been

extensively studied, existing treatment options still face significant

challenges. Traditional therapies mainly include antioxidant

treatment, anti-inflammatory treatment, and cyto-protection, but

these methods have shown limited efficacy in clinical applications

(17, 18). Some drugs can alleviate oxidative stress and inflammatory

responses after myocardial reperfusion, but due to their significant

side effects or lack of long-lasting effects, they have not become

standard treatment options for MIRI (19). Importantly, these

limitations may stem from a failure to address the genetic-

epigenetic crosstalk in MetS. For example, conventional

antioxidants cannot rescue NRF2 promoter methylation-induced

suppression of phase II detoxifying enzymes in MetS patients,

leaving cardiomyocytes vulnerable to ROS bursts (20).

Additionally, pathophysiological processes such as cell apoptosis,

mitochondrial dysfunction, and endothelial damage after

myocardial reperfusion remain therapeutic challenges (21, 22).
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Studies indicate that after myocardial ischemia-reperfusion,

myocardial cells undergo varying degrees of apoptosis, necrosis,

and autophagy through multiple pathways, processes that are

difficult to effectively inhibit with conventional drug interventions

(23–25). Therefore, the development of new therapeutic strategies,

particularly targeted drugs aimed at metabolic dysregulation and

cellular damage, has become a current research focus.

The occurrence of MetS is closely associated with mutations or

abnormal expression of multiple genes, and the role of these genetic

alterations in MIRI has become a focus of research (26). Studies

suggest that changes in genes related to lipid and glucose

metabolism, such as insulin receptor substrates (IRS) and fatty

acid synthase (FAS), in MetS may affect the metabolic state of

myocardial cells, thereby influencing the extent of MIRI (27–29).

Research has shown that mutations in the IRS-1 gene lead to the

development of MetS, while simultaneously increasing the severity

of MIRI, an effect closely related to disruptions in fatty acid

metabolism and intracellular energy supply (30, 31). Additionally,

the widespread inflammatory response in MetS patients is also

linked to the abnormal expression of certain key genes (32). Studies

indicate that levels of inflammatory cytokines such as TNF-a and

IL-6 are elevated in the serum of MetS patients, and the persistent

activation of these cytokines exacerbates myocardial injury during

myocardial ischemia-reperfusion by promoting apoptosis and local

inflammation (33, 34). With the advancement of genomics and

transcriptomics technologies, more key genes related to MetS have

been discovered, providing new perspectives for further exploring

the relationship between MetS and MIRI (35).

In recent years, significant progress has been made in the

development of small molecule drugs for the treatment of

cardiovascular diseases. Compared to traditional macromolecular

drugs, small molecule drugs offer better cell permeability, lower

toxicity, and stronger targeting capabilities, making them highly

promising for the treatment of MIRI. Our research specifically

focuses on designing dual-target inhibitors that simultaneously

rectify MetS-related genetic defects (e.g., PPAR-g agonists to

restore fatty acid oxidation) and mitigate MIRI-specific damage

(e.g., RIPK1 inhibitors to block necroptosis), thereby breaking the

vicious cycle between metabolic dysfunction and reperfusion injury.

As the mechanisms underlying MetS and MIRI are increasingly

understood, more research has focused on developing small

molecules targeting these mechanisms, particularly those capable

of regulating metabolic pathways, reducing inflammation,

mitigating oxidative stress, and repairing damaged cells. Such

small molecule drugs are expected to become effective therapeutic

options for MIRI in the future.
2 Methodology

2.1 Collection and processing of
microarray data

The raw expression profile datasets for MIRI, including

GSE6381, GSE108940, and GSE160516, were obtained from the
frontiersin.org
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GEO database (https://www.ncbi.nlm.nih.gov/geo/). The raw

expression profile datasets for peripheral blood mononuclear cells

(PBMCs) fromMetS patients, GSE98895 and GSE200744, were also

sourced from the GEO database. Detailed descriptions of the

datasets are provided in Table 1.
2.2 Differential expression analysis

Differential expression analysis of genes (DEGs) was performed

using the **limma** package. DEGs between the normal group and

myocardial ischemia-reperfusion group in the GSE6381 dataset, as

well as DEGs between the normal group and MetS patients in the

GSE98895 dataset, were selected using a threshold of P.Val < 0.05.

The results of DEGs were visualized through volcano plots and

heatmaps, which were generated using the ggplot2 and

pheatmap packages.
2.3 Weighted gene co-expression network
analysis

The WGCNA package in R was used to construct a gene co-

expression network and identify modules related to MIRI in the

GSE6381 dataset and modules related to MetS in the GSE200744

dataset. The soft threshold power (b) was selected using the

**pickSoftThreshold** function, with a fit index >0.9 as the

criterion. The adjacency matrix was calculated using the

adjacency function, and then converted into a Topological

Overlap Matrix (TOM) using the TOMsimilarity function. The

mergeCloseModules function was used to merge highly correlated

modules of feature genes. The module feature relationships were

displayed and visualized using heatmaps. Additionally, the module

membership (MM) and gene significance (GS) scores of the

modules were evaluated to interpret module significance.
2.4 Enrichment analysis

We further conducted functional enrichment analysis of the

selected genes using the Microbioinformatics platform (https://

www.bioinformatics.com.cn/). First, Gene Ontology (GO) analysis
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was performed to assess enrichment in three categories: Biological

Process (BP), Molecular Function (MF), and Cellular Component

(CC), to reveal the biological functions of these genes and their

potential mechanisms of action within the cell. Additionally, Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analysis was carried out. KEGG analysis helps identify the

association between genes and specific biological pathways.
2.5 Machine learning

Gene expression data was filtered using the Least Absolute

Shrinkage and Selection Operator (LASSO) method. LASSO

reduces redundant features by introducing an L1 regularization

term, selecting the most important genes for model prediction.

This method effectively performs variable selection and enhances

the interpretability of the model, ensuring that the selected genes are

closely related to the research objectives. Subsequently, the Support

Vector Machine-Recursive Feature Elimination (SVM-RFE) method

was used to further refine the selected genes. SVM-RFE recursively

eliminates irrelevant features and evaluates the classification ability of

genes using a SVM, progressively optimizing the feature set to

identify the hub genes with the greatest classification ability.
2.6 The construction of nomogram

The nomogram function from the rms package was used to

generate a nomogram. In the nomogram, each variable corresponds

to a score axis, and the total score axis is used to predict the final risk

value. The expression comparison of the three characteristic genes in

the training cohort (GSE6381) and validation cohort (GSE108940 and

GSE160516) were investigated. The receiver operating characteristic

(ROC) curve was constructed using the “pROC” package to evaluate

the diagnostic performance of the signature genes and nomogram.
2.7 Immune cell infiltration analysis

The CIBERSORT algorithm was used for the quantitative

analysis of immune cell infiltration in the samples through the

CIBERSORT R script. CIBERSORT utilizes a gene expression
TABLE 1 Basic information of GEO datasets used in the study.

GSE series Tissue Organism
Sample size

Platform
Control MIRI

GSE6381 Heart Homo sapiens 4 8 GPL96

GSE108940 Heart Mouse 6 6 GPL7202

GSE160516 Heart Mouse 4 12 GPL23038

Control Mets

GSE98895 PBMC Homo sapiens 20 20 GPL6947

GSE200744 PBMC Homo sapiens 33 25 GPL28038
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signature matrix of 22 known immune cell subtypes and applies

linear support vector regression (SVR) to deconvolve the expression

matrix of human immune cell subtypes, thereby assessing the

relative proportions of the 22 immune cell types in each sample.

By comparing the differences in immune cell infiltration between

the MIRI group, MetS group, and control group, we further

evaluated the changes in immune cells. The correlation between

immune cells was visualized using the corrplot package.
2.8 Protein-protein interaction network
analysis and cluster analysis

The key genes were analyzed through the STRING database

(https://www.stringdb.org) with a medium confidence score > 0.4.

The protein-protein interaction (PPI) network was imported into

Cytoscape software (version 3.9.0) for visualization, and the

cytoHubba module was used to predict the gene clusters with the

highest scores.
2.9 Comparative toxicogenomics database
drug prediction analysis

Based on the gene-drug interaction network in the CTD

database, and by combining the mechanisms of action of the

drugs with gene expression patterns, the response of each drug to

the key genes was predicted. By comparing the effects of different

drugs on the target genes, their potential efficacy and drug

sensitivity in specific diseases were evaluated.
2.10 Molecular docking

The full-length sequences of KCNMB1, ZNF6921, and TRAF1

were obtained from the PDB database, and their structures were

predicted using AlphaFold. Additionally, the 3D structure of

Dexamethasone (CAS: 50-02-2) in SDF format was retrieved

from the PubChem database. All protein and molecule files were

converted to PDBQT format, and polar hydrogen atoms were

added. The docking pocket was set as a cubic pocket of 40 Å × 40

Å × 40 Å, with a grid spacing of 0.05 nm. To assess the binding

affinity of the candidate drug to its target, molecular docking

analysis was performed. The binding poses of the candidate drug

with the protein were obtained using Autodock Vina 1.2.2, along

with the binding energies of the best protein-ligand complex

interactions. The binding interface of the protein-ligand complex

was systematically analyzed using PLIP and LigPlus, and interaction

details were further supplemented using pyMOL 2.5 software.
2.11 Construction of MIRI cell model

The H9c2 cells were purchased from Procell and cultured under

hypoxic conditions (1-3% oxygen) for 24 hours to simulate
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ischemia. Maintain a parallel normoxic control group, i.e.

untreated cells at 21% oxygen concentration, throughout the

entire experiment. After hypoxia, the cells were transferred to

normal oxygen conditions (21% O2) to simulate the reperfusion

process, with reoxygenation typically lasting 2-24 hours. All

experimental readouts were normalized to time-matched

normoxic controls to distinguish hypoxia/reoxygenation-specific

effects. This model can simulate various physiological processes

involved in myocardial ischemia and reperfusion, such as oxidative

stress, apoptosis, and inflammatory responses.
2.12 RT-qPCR validation of hub gene
expression

Total cellular RNA from MIRI was extracted using RNA

extraction reagent (Trizol) according to the manufacturer’s

instructions. cDNA synthesis and quantitative real-time PCR

(qRT-PCR) were performed following the manufacturer’s

guidelines. The expression of hub genes was represented as 2-

△△Ct relative to Gapdh for mRNA quantification. The rat

homologous genes primer sequences are listed in Table 2.
2.13 Flow cytometry analysis of MIRI cell
apoptosis

Flow cytometry was used to analyze the extent of cell apoptosis

in H9c2 cells after MIRI. The cells were first collected and washed

with PBS, followed by staining using the Annexin V-FITC/PI

apoptosis detection kit. Annexin V-FITC was used to label early

apoptotic cells, while PI (propidium iodide) stained late apoptotic

or necrotic cells. After staining, the samples were analyzed by flow

cytometry using the BD FACSCanto II for data acquisition.
2.14 Statistical analysis

All statistical analyses were performed using R software 4.3.1.

Wilcox or Student’s t-test was implemented to analyze the

differences between the two groups. Pearson’s or Spearman’s

correlation test was conducted to determine the correlation

between the variables. When p <0.05, the observed difference was

considered statistically significant.
3 Results

3.1 Data processing, DEGs identification,
and GSEA enrichment analysis

The flowchart of the bioinformatics analysis is shown in

Figure 1. To analyze the genomic changes in MIRI, differential

expression analysis was performed. In the GSE6381 dataset, there

were 200 upregulated genes and 156 downregulated genes between
frontiersin.org
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the normal group (HC) and MIRI group (Figure 2A). Volcano plots

and heatmaps were used to visualize the expression patterns of

DEGs in MIRI (Figures 2B, C). GSEA analysis revealed

upregulation of the KEGG MEDICUS REFERENCE CCR CXCR

GNB G PI3K RAC SIGNAI pathway, while the KEGG MEDICUS

REFERENCE KITLG KIT PI3K SIGNALING PATHWAY and

KEGG MEDICUS REFERENCE WNT5A ROR SIGNALING

PATHWAY were downregulated (Figure 2D). To further explore

the key genes involved in MIRI, we conducted a WGCNA analysis

to identify critical modules associated with MIRI. Based on scale

independence and average connectivity, a soft threshold of 7 was

applied (Figures 2E, F). The clustering dendrograms for MIRI and

control groups are shown in Figures 2G, H. To further evaluate

these modules, we selected a cutting line for the module

dendrogram and merged modules with a distance less than 0.45,

resulting in a total of 15 co-expression modules (Figures 2I, J).

Spearman’s correlation coefficients were performed to plot the

module-trait relationship and assess the correlation between each

module and MIRI diagnosis (Figure 2K). The green-yellow module

showed the highest positive correlation with MIRI (720 genes, r =

0.69, P = 0.03) and was selected as the most relevant module for

MIRI. Specific gene modules were closely associated with MIRI and

hold potential biomarker value, further advancing our

understanding of the functional roles of genes in MIRI.

We employed differential analysis and WGCNA to investigate

the genomic alterations in Mets. In Figure 3A, the GSE98895

dataset revealed 2360 upregulated genes and 2503 downregulated

genes. The differential gene expression patterns were clearly

demonstrated through the volcano plot in Figure 3B, while the

heatmap in Figure 3C illustrates the expression levels of

representative MetS DEGs in each sample. GSEA enrichment

analysis showed downregulation in the KEGG MEDICUS

REFERENCE BMP SIGNALING PATHWAY, KEGG MEDICUS

REFERENCE CCR2 GNB G PI3K NFKB SIGNALING, and KEGG
Frontiers in Immunology 05
MEDICUS REFERENCE CCR CXCR GNB G PI3K RAC

SIGNALING pathways (Figure 3D). WGCNA analysis, by

calculating network scale independence and average connectivity,

determined the optimal soft threshold setting. The data in

Figures 3E, F indicate that the most stable network topology was

achieved with a soft threshold of 11.

In Figures 3G, H, hierarchical clustering analysis was used to

show the correlation between samples and modules, revealing

significant differences in gene expression patterns between the

Mets and normal groups (HC). Based on clustering, the samples

were clearly divided into two groups. Figure 3I presents the

classification results of module characteristic genes, where the

module dendrogram was clustered according to the expression

features of the modules. Correlation analysis further revealed the

relationship between modules and clinical features, with the pink

module showing the strongest negative correlation with MetS (r =

-0.34, P = 0.01) as shown in Figure 3J, K.
3.2 Key gene screening and enrichment
analysis of MIRI combined with MetS

To investigate the mechanisms through which MetS influences

MIRI, we present a total of 4777 DEGs in the MetS group, while the

MIRI group contains 470 DEGs. Among the DEGs in both groups,

86 genes are differentially expressed in both (Figure 4A), indicating

a partial overlap of genes between the MetS and MIRI groups. Based

on the intersecting genes shown in Figure 4A, we performed Gene

Ontology (GO) analysis. Figures 4B, C highlight several significantly

enriched biological processes, among which “positive regulation of

stress-related MAPK cascade” and “glycolytic metabolic process”

are most prominent. These processes play crucial roles in cellular

stress responses and energy metabolism. These signals suggest that

immune regulation and cellular stress response are key biological

mechanisms within the intersecting genes of MIRI and MetS.

Figure 4D presents the results of KEGG enrichment analysis,

identifying significant pathways such as “lipid and carbohydrate

metabolism” and “sphingolipid biosynthesis,” which may play

essential roles in the pathogenesis of both MIRI and MetS.

Further analysis of the MetS group was conducted, focusing on

the DEGs in the “pink module” (Figure 4E), followed by GO and

KEGG enrichment analysis. GO analysis of the pink module genes

revealed that the enriched biological processes include “leukocyte

adhesion” and “extracellular matrix interaction with immune cells,”

both of which are closely related to immune responses and

intercellular interactions (Figure 4F). The enrichment levels and

functional characteristics of these genes further support their

potential importance in disease progression. A more refined

analysis of the pathways associated with the pink module revealed

significant enrichment in the “integrin-mediated signaling

pathway” and “platelet activation signaling pathway,” suggesting

that these modules may involve crucial biological processes such as

blood coagulation and cell adhesion (Figure 4G). Additionally,

Figure 4H illustrates the KEGG pathway enrichment results

within the pink module, highlighting pathways related to bacterial
TABLE 2 Rat homologous genes primer sequences.

Gene Name Primer Sequence

Tkfc F:5’-CCTCTATAGCTCCAGGCGTC-3’

R:5’-CTGAGTTGCTGCAGGGTTGA-3’

Gtf3c5 F:5’-TTCACCGCAATGATGGGACA-3’

R:5’-TGTTGGAGAACAGAGCAGGC-3’

Kcnmb1 F:5’-TAGAGCTCCAAGGCCTGACT-3’

R:5’-ACAGTCATTTAGTTCCCTGGGT-3’

Traf1 F:5’-AGGGCTGGTCCTCTACTTTACT-3’

R:5’-GGACAGATCCGTTCCTCATCG-3’

Zfp692 F:5’-ACCAGTACCTGCAACTCTGC-3’

R:5’-TCACAAGTCGGATTCGGAGC-3’

Gapdh F:5’-TCTCTGCTCCTCCCTGTTC-3’

R:5’-ACACCGACCTTCACCATCT-3’
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infections and immune responses, such as “Salmonella infection”

and “pathogenic bacterial infections.” The enrichment of these

pathways suggests that genes associated with immune responses

and infections may play a pivotal role in the shared mechanisms of

MIRI and MetS.
3.3 Construction of the MIRI diagnostic
model and validation of its performance

To identify key biomarkers associated with MIRI, we performed

a Venn diagram analysis of critical genes in the GSE6381 and

GSE98895 datasets, resulting in the identification of 21 common

variables (Figure 5A, Supplementary Table 1). Subsequently, the

optimal regularization parameter was determined through cross-

validation, which ensured the stability of the selection process

(Figure 5B). The Lasso regression model coefficient plot was

provided, illustrating the relationship between the six selected key
Frontiers in Immunology 06
genes and their respective coefficients (Figure 5C). Additionally,

using SVM-REF to screen these 21 variables, this method did not

exclude any variables (Figure 5D). The intersection of variables

obtained from both LASSO and SVM-REF analyses identified five

genes: DAK, GTF3C5, KCNMB1, TRAF1, and ZNF692 (Figure 5E).

The expression levels of these five variables in the GSE6381 dataset

were presented, with DAK and GTF3C5 showing low expression in

MIRI, while KCNMB1, TRAF1, and ZNF692 exhibited high

expression (Figure 5F). A nomogram was constructed using these

five variables to calculate the non-compliance risk based on the

identified biomarkers, displaying the corresponding scores and

overall risk (Figure 5G). Figures 5H–K focus on model

performance, where Figure 5H shows the calibration curve

comparing ideal and actual probabilities with minimal error, and

Figure 5I demonstrates the higher net benefit of the MIRI model at

various thresholds. Figure 5J compares the ROC area under the

curve (AUC) values of five biomarkers: DAK (0.938), GTF3C5

(0.875), KCNMB1 (0.969), TRAF1 (0.875), and ZNF692 (0.969).
FIGURE 1

The detailed workflow of this study.
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Finally, Figure 5K indicates that the combined analysis of DAK,

GTF3C5, KCNMB1, TRAF1, and ZNF692 yields an AUC of 1 for

the ROC curve, suggesting that these genes collectively exhibit

excellent diagnostic efficacy for MIRI (AUC > 0.8).
Frontiers in Immunology 07
To validate the aforementioned results, we downloaded the

mouse datasets GSE108940 and GSE160516 related to MIRI and

performed verification of the key genes. In both the GSE108940 and

GSE160516 datasets, we identified four mouse homologous genes—
A GSE6381
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FIGURE 2

DEGs and WGCNA enrichment analysis of the MIRI genome. (A) Venn diagram showing the number of DEGs between the MIRI and control groups.
(B) Volcano plot of differentially expressed genes (DEGs) in the MIRI group. (C) Heatmap illustrating the expression patterns of MIRI DEGs. (D) GSEA
enrichment analysis results for MIRI DEGs. (E) Relationship between scale independence and soft threshold in the WGCNA network topology
analysis. (F) Relationship between average connectivity and soft threshold in the WGCNA network topology analysis. (G) Hierarchical clustering tree
of MIRI samples and modules. (H) Correlation analysis between the MIRI gene network and module content. (I) Hierarchical clustering of MIRI
module genes. (J) Heatmap showing the correlation between MIRI modules and clinical features. (K) Scatter plot illustrating the relationship between
module membership (MM) and gene significance (GS) in MIRI.
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FIGURE 3

Differential expression analysis of MetS transcriptomic data and WGCNA module selection. (A) The Venn diagram illustrates the total number of
genes and the number of DEGs associated with the MetS-related GSE98895 dataset. (B) The volcano plot depicts the expression patterns of DEGs in
the MetS-related GSE98895 dataset. (C) Heatmap showing the expression patterns of significantly upregulated or downregulated DEGs in the MetS
dataset, with each row corresponding to a DEG and each column corresponding to a MetS case or control sample. (D) GSEA enrichment analysis of
DEGs in the GSE98895 dataset. (E) Identification of the optimal b value using a scale-free topology model, with the scale independence and
(F) average connectivity analysis indicating b = 11 as the chosen soft threshold. (G) Hierarchical clustering tree of MetS and control samples.
(H) Gene co-expression modules represented by different colors under the gene tree. (I) Heatmap of the adjacency of characteristic genes.
(J) Heatmap showing the relationship between module characteristic genes and MetS. (K) Correlation plot between module membership and gene
significance in the pink module.
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FIGURE 4

Joint enrichment analysis of biological processes and signaling pathways for MetS and MIRI. (A) Venn diagram of the overlapping DEGs between the
MetS and MIRI groups. (B) GO enrichment analysis of biological processes for the intersecting genes between MetS and MIRI. (C) GO pathway
enrichment analysis of significantly enriched pathways involving these intersecting genes. (D) KEGG enrichment analysis of significantly enriched
pathways for the overlapping genes. (E) The DEGs of the “pink module” in the MetS group. (F) GO analysis revealing the biological processes
enriched by the genes in the pink module. (G) GO enrichment analysis of pathway enrichment for the genes in the pink module. (H) KEGG
enrichment analysis of the significantly enriched pathways for these genes.
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Dak, Gtf3c5, Kcnmb1, and Traf1. Consistent with our previous

findings, Dak was found to be downregulated in both GSE108940

and GSE160516, while Gtf3c5, Kcnmb1, and Traf1 were

upregulated in both datasets (Figures 6A, E). The clinical decision

curve (DCA) analysis of the MIRI model constructed by Dak,

Gtf3c5, Kcnmb1, and Traf1 shows a larger area under the curve,

indicating a superior clinical decision-making capacity (Figure 6B,

F). Additionally, the ROC curve analysis revealed that the AUC for

individual genes ranged from a minimum of 0.694 to a maximum of

0.917 (Figures 6C, G). The combined ROC curve of Dak, Gtf3c5,

Kcnmb1, and Traf1 reached an AUC of 1, suggesting that the

combined analysis of these four genes offers superior diagnostic

performance for MIRI (Figures 6D, H).
3.4 Analysis of the impact of key genes on
immune infiltration in MIRI and MetS

Given that the DEGs enrichment analysis of MIRI and Mets in

Figure 4 reveals significant associations with immune response, we

then analyzed the immune cell infiltration of key genes in MIRI and

MetS. Significant differences in immune cell infiltration were observed

between the normal and MIRI groups, with immune cell infiltration

being more active in the MIRI group compared to the control group.

Notably, higher infiltration levels of CD4 memory T cells, activated

NK cells, and M1 macrophages were observed in the MIRI group.

These findings suggest that immune responses may play an important

role in the progression ofMIRI (Figures 7A, B). InMIRI, immune cells

showed interactions, with a strong positive correlation observed

between activated NK cells and resting CD4 memory T cells, as well

as between activated dendritic cells and activated CD4memory T cells,

indicating that these cells may cooperate in the immune response.

Conversely, negative correlations were found between activated CD4

memory T cells and certain immune cell populations (such as M2

macrophages and activated mast cells), suggesting the potential

presence of immune suppression or regulatory mechanisms

(Figure 7C). Key genes were involved in the regulation of immune

cell levels, with KCNH5 showing a positive correlation with resting

NK cells, while TRAF1 was associated with activated CD4 memory T

cells. This influence may contribute to the differential levels of

immune cells in MIRI (Figure 7D).

In MetS, compared to the control group, the MetS group

exhibited higher levels of immune cell infiltration, particularly in

T cells CD8, NK cells, M1 macrophages, and dendritic cells

(Figure 7E). Statistical analysis of immune cell infiltration further

confirmed the significantly increased infiltration levels of resting

CD8 T cells and NK cells in the MetS group (Figure 7F). Correlation

analysis between immune cells revealed a strong positive correlation

between memory B cells and activated NK cells, suggesting a

potential cooperative role of these cells in immune responses. On

the other hand, activated CD4 memory T cells showed a negative

correlation with other immune cells (such as M2 macrophages and

neutrophils) (Figure 7G). Correlation analysis of key genes with

immune cells showed significant associations between multiple key

genes and the infiltration of immune cell populations. For instance,
Frontiers in Immunology 10
the gene TRAF1 was positively correlated with activated NK cells

and also exhibited a strong correlation with activated CD4 memory

T cells (Figure 7H). Through these gene-immune cell interactions,

the levels of immune cell infiltration in MetS are regulated.
3.5 Biological pathways regulated by key
genes and drug prediction

To further analyze the roles of key genes DAK, GTF3C5,

KCNMB1, TRAF1, and ZNF692, we constructed a PPI network for

these genes using the STRING database, which displayed the

interactions among the genes. The network consists of 38 nodes and

114 edges (Figure 8A). Based on the PPI network, the top 20 most

significant genes were identified using the Cytohubba plugin,

including GTF3C5, GTF2F2, GTF2F1, GATAD2A, and GTF3C4

(Figure 8B). We then analyzed the biological functions impacted by

these 20 important genes, primarily focusing on pathways such as viral

carcinogenesis, transcriptional regulation in cancer, and neutrophil

exosome formation, which are closely related to immune response

molecular mechanisms (Figure 8C). KEGG enrichment analysis

revealed several pathways, including peptide-lysine modification,

heterochromatin organization, and protein acetylation, indicating

the involvement of these genes in intracellular signaling and gene

expression regulation (Figure 8D). Additionally, we explored drug

predictions for the key genes in the CTD. Based on the overlap of gene

interactions, six related drugs were identified, such as vincristine,

tobacco, doxorubicin, and bisphenol A, which influence pathways

such as Signaling by NGF, Signaling by Rho GTPases, and Signaling

by PDGF, suggesting potential therapeutic and toxic effects

(Figure 8E). The molecular structures of these six drugs were also

presented to assist in understanding their chemical compositions

(Figure 8F). Subsequently, docking analysis revealed that KCNMB1,

TRAF1, and ZNF692 all exhibited strong binding affinity with

dexamethasone. The affinity score of dexamethasone with KCNMB1

was -6.7 kcal/mol, where hydrogen bonds (blue solid lines) were

formed between dexamethasone and ASP-119, LYS-126, Pi-cation

interactions (orange dashed lines) and halogen bonds (cyan solid

lines) with LYS-126, as well as hydrophobic interactions (gray dashed

lines) with VAL-123, LYS-126, PHE-127, and PHE-148 (Figure 8G).

The affinity score of dexamethasone with TRAF1 was -6.9 kcal/mol,

with hydrogen bonds formed between dexamethasone and LYS-272,

ARG-279, PHE-292, and TRP-271 (blue solid lines), and hydrophobic

interactions with LYS-272 (gray dashed lines) (Figure 8H). The affinity

score of dexamethasone with ZNF692 was -8.7 kcal/mol, with

hydrogen bonds formed between dexamethasone and ASN-371,

HIS-348, ARG-337 (blue solid lines), and hydrophobic interactions

with PHE-339, TRY-344, and HIS-348 (gray dashed lines) (Figure 8I).
3.6 Dexamethasone effect on MIRI in an in
vitro cell model

In this study, we first induced a MIRI model in H9C2 cells

through hypoxic treatment and observed typical changes in cell
frontiersin.org
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FIGURE 5

Machine Learning-Driven Identification and Validation of MIRI Diagnostic Biomarkers. (A) Intersectional analysis of hypoxia-responsive genes: Venn
diagram identifies 21 overlapping DEGs between GSE6381 (human cardiomyocytes, n=15) and GSE98895 (murine left ventricle, n=8) datasets.
(B) Regularization parameter optimization: Ten-fold cross-validation curve showing mean squared error (y-axis) versus log(l) (x-axis). Optimal l
(0.032, dotted line) selected where deviance reaches minimum (error bars = ± 1 SD across 100 bootstrap iterations). (C) LASSO coefficient
trajectories: Shrinkage of 21 candidate genes (colored lines) with increasing penalty. (D) SVM-RFE feature ranking: Recursive elimination plot showing
21 genes sorted by elimination order (right to left). No features excluded (100% retained) based on 5% accuracy loss threshold (dashed horizontal
line). (E) Consensus biomarker selection: Intersection of LASSO (n=5) and SVM-RFE (n=21) outputs identifies five core genes (DAK, GTF3C5,
KCNMB1, TRAF1, ZNF692). (F) Diagnostic biomarker expression: Violin plots of five-gene signature in GSE6381. Heatmap inset shows z-score
normalized expression across 23 MIRI vs. 12 control samples. (G) Clinical translation nomogram: Points-to-risk conversion model integrating
biomarker expression with baseline covariates (age >50, diabetes status). Calibration slope = 0.94 (95%CI 0.89-0.99) via bootstrap. (H) Model
calibration: Observed vs. predicted MIRI probability (Loess-smoothed, bandwidth=0.75) with Brier score = 0.11 (null model = 0.25). Diagonal
reference line indicates perfect calibration. (I) Decision curve analysis: Net benefit (y-axis) across probability thresholds (x-axis, 0-1). Combined
model (red) outperforms treat-all (gray) and treat-none (black) strategies between 12-89% threshold probabilities. (J) Individual biomarker
performance: Time-dependent ROC curves at 24h post-reperfusion.AUC values: KCNMB1 (0.969), ZNF692 (0.969), DAK (0.938), GTF3C5 (0.875),
TRAF1 (0.875). Shaded regions = 95% CIs. (K) Combinatorial diagnostic power: Composite ROC of five-gene panel achieves perfect discrimination
(AUC=1.00, DeLong test p=2.3×107 vs. best single marker). Internal validation via 80:20 split (n=100 iterations). *p<0.05; **p<0.01.
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morphology (Figure 9A). We then analyzed the expression of key

genes Dak, Gtf3c5, Kcnmb1, Traf1, and Znf692 in this model

(Figure 9B). The results showed that the expression levels of Dak

and Gtf3c5 were significantly lower in the MIRI group compared to

the normal control group, while Kcnmb1, Traf1, and Znf692 were
Frontiers in Immunology 12
significantly higher. Subsequently, we added different

concentrations of dexamethasone (0 mM, 2.5 mM, 5 mM, and 10

mM) and observed cell apoptosis (Figure 9C). Compared to the

MIRI group, as the dexamethasone concentration increased, the

number of apoptotic cells in the treatment groups gradually
FIGURE 6

Validation of key gene expression in the MIRI mouse datasets GSE108940 and GSE160516. (A) Expression levels of key genes in GSE108940. (B) Decision
curve analysis for predicting MIRI using key genes in GSE108940. (C) ROC curves of individual key genes in GSE108940. (D) Combined ROC curve of
key genes in GSE108940. (E) Expression levels of key genes in GSE160516. (F) Decision curve analysis for predicting MIRI using key genes in GSE160516.
(G) ROC curves of individual key genes in GSE160516. (H) Combined ROC curve of key genes in GSE160516. *p < 0.05.
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FIGURE 7

Immune microenvironment dynamics and key gene interactions in MIRI and metabolic syndrome. (A) Immune landscape remodeling in MIRI. Left:
CIBERSORTx analysis reveals altered immune cell proportions in MIRI, with increased infiltration of CD4+memory T cells, activated NK cells, and pro-
inflammatory M1macrophages compared to controls. Right: t-SNE visualization highlights distinct immune clustering in MIRI samples (arrows indicate
enrichment of pro-inflammatory populations). (B)Quantitative immune signature in MIRI. Box plots demonstrate elevated infiltration levels of three key
immune populations (CD4+memory T cells, activated NK cells, M1 macrophages) in MIRI, with error bars reflecting intergroup distribution trends. (C)
Immune cell coordination network in MIRI. Correlation heatmap reveals dynamic immune interactions: a strong positive axis between activated NK cells
and resting CD4+memory T cells (red module), contrasted with negative correlations between activated CD4+ T cells and M2 macrophages (blue
module), suggesting disrupted immune activation-suppression balance. (D)Gene-immune regulatory axes in MIRI. Network diagram illustrates positive
associations between KCNMB1 and resting NK cells (orange edges), and between TRAF1 and activated CD4+ T cell infiltration (purple edges). Node size
reflects genes’ hub roles in the regulatory network. (E)MetS-specific immune phenotype. Stacked bar plots show increased cytotoxic immune populations
(CD8+ T cells, NK cells, M1 macrophages) and dendritic cell activation in MetS compared to controls. (F) Stratified immune activation in MetS. Violin plots
compare resting CD8+ T cell and NK cell infiltration between groups, demonstrating broader activation heterogeneity in MetS (dashed lines markmedian
shifts). (G)MetS immune crosstalk network. Circos plot identifies synergistic interactions betweenmemory B cells and activated NK cells (red ribbons),
alongside antagonistic relationships between activated CD4+ T cells and neutrophils (blue ribbons). Gray connections denote non-significant associations.
(H) Key Gene-Driven Immune Regulation in MetS. Circular heatmap highlights TRAF1’s dual associations with activated NK cells and CD4+ T cells (outer
gene ring vs. inner immune cell sectors), suggesting its role in coordinating immune responses. *p<0.05; **p<0.01; ***p<0.001.
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decreased, but it remained higher than in the normal control group,

suggesting that dexamethasone could alleviate cell apoptosis, with

higher concentrations showing more pronounced effects, though it

did not completely reverse the apoptosis caused by MIRI. Finally,
Frontiers in Immunology 14
we measured the expression of key genes in the different drug

treatment groups. The results indicated that the expression levels of

Dak and Gtf3c5 remained unchanged after dexamethasone

treatment, while the levels of Kcnmb1, Traf1 and Znf692
FIGURE 8

PPI Network and Associated Analysis of Key Genes DAK, GTF3C5, KCNMB1, TRAF1, and ZNF692. (A) PPI network of DAK, GTF3C5, KCNMB1, TRAF1,
and ZNF692 constructed using the STRING database. (B) Network interaction results of the top 20 most important genes identified based on the PPI
network, using the CytoHubba plugin. (C) GO enrichment analysis of the top 20 important genes. (D) KEGG enrichment analysis results of the top 20
important genes. (E) Six drugs associated with the key genes identified based on CTD drug prediction results. (F) Molecular structures of the six
drugs. (G-I) Representative docking pair combinations with strong binding energy from the drug.
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gradually decreased with increasing dexamethasone concentration

(Figure 9D). These findings suggest that dexamethasone treatment

significantly regulated the expression of these genes, further

supporting its protective effect on the MIRI cell model. The

results indicate that dexamethasone can suppress MIRI-induced

cell apoptosis to some extent and exert its effect by regulating the

expression of related genes.
4 Discussion

MIRI is a myocardial injury induced by the restoration of

blood flow, and its underlying mechanisms are still not fully

understood (36, 37). Recent studies suggest that MetS, as an

important risk factor for cardiovascular diseases, may exacerbate

MIRI in multiple ways (10, 38). For instance, MetS amplifies

oxidative stress and mitochondrial dysfunction during

reperfusion, which aligns with our hypothesis of shared

pathways between MetS and MIRI (39). However, the specific

relationship between MetS and myocardial ischemia-reperfusion,

along with the molecular mechanisms involved, remains unclear

(40, 41). To explore this potential association, this study utilized

genomic analysis and identified significant overlaps between MIRI

and MetS. Specifically, despite displaying different gene expression

patterns, we found 86 overlapping genes that were significantly

differentially expressed in both MIRI and MetS through DEG

analysis. These findings directly address a critical knowledge gap

by identifying TRAF1 and KCNMB1 as potential dual-purpose

therapeutic targets, offering a molecular basis for developing

therapies that simultaneously mitigate metabolic dysfunction

and reperfusion injury. This discovery provides a new

perspective on understanding the molecular mechanisms linking

MetS and MIRI and may offer a theoretical foundation for future

therapeutic strategies.

Given the role of MetS in myocardial ischemia-reperfusion, we

screened the most critical genes influencing their interaction for

predicting the onset of myocardial ischemia-reperfusion. This study

constructed a diagnostic model for MIRI based on key genes such as

DAK, GTF3C5, KCNMB1, TRAF1, and ZNF692, and validated the

model’s effectiveness using independent datasets from mice and

rats. Through DCA and ROC curves, we found that the diagnostic

model exhibited high accuracy in MIRI diagnosis, and the

combined analysis of these five genes resulted in an ROC curve

area of 1, indicating excellent clinical predictive ability. This multi-

gene approach holds immediate translational value: It provides a

framework for developing non-invasive blood tests (e.g., circulating

RNA panels) to identify MetS patients at high risk of MIRI prior to

revascularization procedures, enabling personalized prophylactic

interventions. Our multi-gene approach demonstrates superior

predictive performance compared to previous studies focusing on

non-joint diagnostic biomarker development (35). This result not

only provides important evidence for the early diagnosis of MIRI

but also serves as a valuable reference for related clinical research.

Currently, drug therapy is one of the primary methods to

reduce MIRI (42, 43). Common drugs include antioxidants, anti-
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inflammatory agents, and cytoprotective drugs. Dexamethasone, a

widely used glucocorticoid, has been shown to have anti-

inflammatory and immunomodulatory effects (44, 45). A recent

clinical trial by Jimenez-Valero reported that dexamethasone

reduced post-reperfusion infarct size by 3.3% in STEMI patients,

consistent with our observed anti-apoptotic effects (46). Our

findings extend these clinical observations by proposing a gene-

guided application: Dexamethasone may be particularly beneficial

in MetS patients with upregulated Traf1/Kcnmb1 expression,

suggesting a precision medicine approach for patient

stratification. This study explored the therapeutic effect of

dexamethasone in the MIRI model. After treating with different

concentrations of dexamethasone, we observed that dexamethasone

significantly reduced cell apoptosis induced by MIRI, and the

therapeutic effect progressively improved with increasing

dexamethasone concentration. However, although dexamethasone

treatment alleviated MIRI-induced cell apoptosis, its effect was not

sufficient to fully reverse the damage, suggesting that its protective

effect in treating MIRI may have certain limitations. Additionally,

we further analyzed the impact of dexamethasone on the expression

of key genes (such as Dak, Gtf3c5, Kcnmb1, Traf1, and Znf692) in

the MIRI model. The results showed that dexamethasone might

alleviate myocardial ischemia-reperfusion damage to some extent

by inhibiting the expression of KCNMB1, TRAF1, and ZNF692

genes. This gene regulatory pattern is similar to the mechanism of

novel MIRI therapies such as NLRP3 inflammasome inhibitors

(47), suggesting potential synergistic therapeutic strategies.

Therefore, while dexamethasone has therapeutic potential, its

clinical application in MIRI treatment requires further validation

and may necessitate more precise therapeutic approaches.

Although this study provides new molecular insights into the

relationship between MetS and myocardial ischemia-reperfusion

and proposes an effective diagnostic model, some limitations

remain. First, the study mainly relied on animal models and

public datasets for analysis, lacking validation with human

samples, which may limit the generalizability of the results. To

bridge this gap, future work should prioritize clinical translation

through: (1) Prospective validation of the five-gene panel in human

cohorts undergoing cardiac surgery, and (2) Pharmacodynamic

studies assessing dexamethasone’s gene-modulatory effects in

MetS patients. Second, while dexamethasone demonstrated

certain efficacy in the cell model, its clinical effectiveness still

needs to be validated through more clinical trials. The molecular

mechanisms of MIRI are highly complex, and future research

should incorporate more experimental data to further investigate

other potential biomarkers and therapeutic targets, providing a

more comprehensive foundation for improving the clinical

treatment of MIRI.
5 Conclusion

The MIRI diagnostic model based on key genes such as DAK,

GTF3C5, KCNMB1, TRAF1, and ZNF692 constructed in this study

has high clinical predictive ability and can provide important basis
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for early diagnosis of MIRI. However, the translational relevance of

these biomarkers requires further validation in human myocardial

specimens. Future studies should verify their expression patterns in

human ischemic heart tissues through autopsy samples or
Frontiers in Immunology 16
endomyocardial biopsies to bridge the gap between animal

models and clinical applications. In addition, the application of

dexamethasone in the MIRI model has demonstrated its potential to

alleviate cell apoptosis, although the therapeutic effect is limited,
FIGURE 9

Effect of Dexamethasone on Hypoxia-Induced H9C2 Cell MIRI Model. (A) Microscopic images comparing the H9C2 cell MIRI model induced by
hypoxic conditions with the normal control group. The left panel shows the normal control group, and the right panel shows the MIRI model group,
scale bar = 20 mm. (B) Expression levels of key genes (Dak, Gtf3c5, Kcnmb1, Traf1, Znf692) in the MIRI model. (C) Effect of dexamethasone on cell
apoptosis in the MIRI model. The apoptosis rates of different treatment groups (control, MIRI+0mM dexamethasone, MIRI+2.5mM dexamethasone,
MIRI+5 mM dexamethasone, MIRI+10 mM dexamethasone) were analyzed by flow cytometry. (D) The changes in RNA levels of key genes (Dak,
Gtf3c5, Kcnmb1, Traf1, Znf692) in the MIRI model under different concentrations of dexamethasone treatment. ns: not significant; **p < 0.01;
***p < 0.001; ****p < 0.0001.
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it still provides ideas for future treatment strategies. Importantly,

the species-specific differences in drug response necessitate

subsequent validation in human cardiomyocytes or cardiac

organoids to assess clinical feasibility. In summary, this study

reveals a potential association between MetS and MIRI, providing

a new molecular mechanism perspective for understanding the role

of MetS in MIRI.
6 Perspectives

Future studies should validate the hub genes (DAK, GTF3C5,

KCNMB1, TRAF1, ZNF692) in human MetS-MIRI cohorts to

refine diagnostic and prognostic utility. The limited efficacy of

dexamethasone underscores the need for synergistic therapies

targeting both KCNMB1-related ion channels and TRAF1/

ZNF692-driven inflammation. Multi-omics approaches could

dissect how MetS exacerbates MIRI via metabolic-immune

crosstalk, while organoid models mimicking MetS-MIRI

comorbidity may accelerate drug discovery. Prioritizing human

tissue validation and combinatorial strategies will bridge

mechanistic insights to precision therapies, addressing unmet

c l in ica l needs in pat ients wi th dua l metabo l ic and

cardiovascular risks.
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