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Peptide vaccines: an innovative
therapeutic approach
against antibiotic-resistant
bacterial infections
Fatemeh Tavassoli Razavi, Nasrin Salari , Atena Emami,
Dariush Haghmorad and Rasoul Baharlou*

Department of Immunology, School of Medicine, Semnan University of Medical Sciences,
Semnan, Iran
Bacterial infections continue to pose a serious threat to global health, especially

with the growing challenge of multidrug-resistant pathogens. While traditional

vaccines have been pivotal in reducing disease burden, they come with limitations

such as variable efficacy, safety concerns, and limited ability to address the diversity

of bacterial strains. This review highlights the promise of peptide-based vaccines as

an innovative approach to overcoming these hurdles. By targeting specific regions

of bacterial proteins, peptide vaccines can elicit precise immune responses with

improved safety and broader applicability. Advances in technology, including

bioinformatics and delivery systems, have enhanced their design, making them

more stable, effective, and easier to produce. These vaccines work by activating

both antibody and T-cell responses through well-defined mechanisms. Different

types, such as linear peptides, cyclic peptides, and synthetic long peptides, offer

diverse strategies to tailor immune protection. The role of adjuvants and advanced

delivery methods, like nanoparticles and liposomes, further improve their potential.

Exciting progress has been made against the ESKAPE pathogens — Enterococcus

faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter

baumannii, Pseudomonas aeruginosa, and Enterobacter spp. Peptide vaccines

offer a forward-thinking, adaptable solution to reduce bacterial infections and

mitigate the rise of antibiotic resistance, paving theway for safer andmore effective

prevention strategies. This review underscores the critical role of peptide-based

vaccines in combating bacterial infections, advocating for ongoing research to

unlock their full potential.
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1 Introduction

Bacterial infections remain a major global health problem,

causing substantial morbidity and mortality; notably in low- and

middle-income countries (LMICs) with challenging healthcare

system resources (1, 2). Tens of millions die from bacterial

diseases, including respiratory infections caused by tuberculosis

and pneumonia (3). These infections predominantly affect young

children, elder people and people with compromised immune

systems (4). Among the top five global causes of death are lower

respiratory tract infections (LRTIs); pneumonia is the most

common (5). Along with pneumonia, other bacterial infections—

such as bloodstream infections (sepsis), urinary tract infections

(especially catheter-associated), and bacterial meningitis—

contribute significantly to global mortality, particularly when

caused by multidrug-resistant organisms (6).

Vaccination remains one of the most effective public health

interventions to prevent bacterial infections. Vaccines prime the

immune system, enabling it to recognize and respond to pathogens

before an infection can be established (7). Conventional vaccines—

live-attenuated, inactivated, and subunit vaccines — have

significantly decreased the incidence of various bacterial diseases.

However, these approaches have intrinsic limitations. For instance,

although live-attenuated vaccines are highly immunogenic, they

pose safety concerns since the attenuated strains can revert to a

virulent form, particularly in the immunocompromised host (8–

10). Inactivated vaccines are safer but they often trigger only

moderate immune responses, requiring the use of adjuvants or

booster doses (9, 10). Subunit vaccines, which employ purified

pathogen components, frequently fail to generate durable immunity

(10, 11). Additionally, the diversity of bacterial antigens is a major

problem. Traditional vaccines are often strain- or serotype-specific,

limiting their broad use (12).

The increase in multidrug-resistant (MDR) bacteria highlights

the need for new vaccines. Antibiotic resistance has reached a global

crisis, with MDR pathogens such as methicillin-resistant

Staphylococcus aureus (MRSA) and carbapenem-resistant

Enterobacteriaceae, emerging as major public health threats (13).

These so-called “superbugs” (14) are particularly alarming as they

cause hard-to-treat infections, leading to increased morbidity,

mortality, and healthcare costs (15).

In addition to their resistance to antibiotics, MDR bacteria have

evolved multiple immune evasion strategies that enable persistence

and pathogenicity (16). These include biofilm formation, which

creates a physical barrier that impedes phagocytosis and limits

immune cell access (17); secretion of immunomodulatory toxins,

such as leukocidins and hemolysins, which damage immune cells or

disrupt cytokine signaling (18); antigenic variation, involving

changes in surface antigens that help bacteria escape recognition

by antibodies and T-cells (19); inhibition of phagocytosis, via

surface proteins (e.g., protein A in S. aureus) that bind antibodies

in a non-opsonizing orientation (20); and downregulation of

antigen presentation, where bacterial factors interfere with major
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histocompatibility complex (MHC)" expression, limiting T-cell

activation (21). These sophisticated strategies enable pathogens to

evade both innate and adaptive immunity, establish chronic

infections, and challenge vaccine-mediated protection.

Consequently, there is an imperative to develop innovative

vaccine platforms that not only prevent infection but also reduce

antibiotic reliance and effectively counter bacterial immune

evasion strategies.

The bacterial peptide-based vaccine is a new paradigm of

bacterial immunization that uses short sequences of amino acids

from pathogen-specific antigens to elicit a targeted response against

specific epitopes (the portions of antigens that the immune system

uses to recognize pathogens). Peptide vaccines bypass risks

associated with using whole pathogens, such as reversion to

virulence, associated with traditional approaches. Peptide vaccines

targeting conserved protein regions critical to bacterial survival and

less prone to mutation offer the possibility of broad immunity and

can effectively combat antigenic variation (22). New insights from

bioinformatics and proteomics have played a major role in

discovering immunogenic peptides. This allows the rational

design of vaccines against individual pathogens or multiple

strains (23). In addition to providing immunological advantages,

peptide vaccines offer significant logistical and economic benefits.

Their synthetic derivation makes them easy to manufacture, which

lowers production costs and simplifies storage and distribution (10).

Innovative delivery systems, such as nanoparticle-based carriers,

enhance peptide stability and facilitate targeted endocytic uptake by

antigen-presenting cells. This promotes efficient processing and

presentation of epitopes on MHC class I and II molecules, thereby

eliciting robust humoral and cellular immune responses and

optimizing overall vaccine immunogenicity and efficacy (24, 25).

In general, peptide-based vaccines present a promising, flexible

approach to overcoming many of the challenges faced by traditional

bacterial vaccines. Offering a targeted, customizable, and potentially

safer solution, they have the potential to significantly reduce the

global impact of bacterial infections, especially as antibiotic

resistance continues to rise. Continued research into peptide

immunization is essential to harness their full potential in

creating effective, lasting vaccines against a wide range of bacterial

pathogens. In this review, we examined the benefits and future

approaches of peptide vaccines.
2 Mechanisms of peptide vaccines in
immunity against bacterial infections

2.1 Immunological basis of peptide
vaccines

Peptide vaccines offer several advantages, including precise

antigen targeting, favorable safety profiles, and the ability to

induce both humoral and cellular immune responses (22). The
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fundamental mechanism underlying their immunogenicity involves

the presentation of antigenic peptides by MHCmolecules to T-cells,

thereby initiating an adaptive immune response against bacterial

pathogens (Figure 1) (26).

2.1.1 Antigen presentation by MHC molecules
and T-cell activation

These studies generally design peptide vaccines that are

composed of selected amino acid sequences, termed epitopes,

which correspond to the immunogenic regions of bacterial

antigens. Following administration, such epitopes are internalized

by antigen-presenting cells, mainly dendritic cells (27). The cell

processes the peptides and then presents them on the surface in

association with MHC molecules. MHC class I and II present

peptides to cytotoxic CD8
+ T and CD4

+T helper cells, which play

a crucial role in coordinating the immune response through the

elimination of intracellular pathogens and secretion of cytokines

that support both cellular and humoral immunity (28). Dendritic

cells, along with the presentation of peptides with MHC class II,

secrete interleukin 2 and TNF-a on CD4
+T to activate it (29). The

efficacy of peptide vaccines is strongly influenced by the ability of
Frontiers in Immunology 03
the epitopes to bind to MHC molecules, which promotes T-cell

activation and a potent immune defense against bacterial infections.

2.1.2 Stimulation of humoral and cellular immune
responses

A well-designed vaccine should trigger both humoral and

cellular immune responses to provide comprehensive protection

against bacterial pathogens. Activated CD4
+T activates B-cells by

secreting INF-g and interleukins such as 4 and 5. The humoral

immune response, driven by B-cell activation and antibody

production, is essential for neutralizing extracellular bacteria and

preventing colonization. The antibodies can neutralize bacterial

toxins, inhibit bacterial adhesion to host tissues, and facilitate

opsonization, marking bacteria for phagocytosis (29, 30). Cellular

immunity, primarily mediated by T-cells, plays a crucial role in the

defense against intracellular pathogens. Cytotoxic CD8
+ T-cells

recognize and eliminate infected cells, and CD4
+ helper T-cells

stimulate phagocytic activity and also enhance the responses of

cytotoxic T-cells by secreting INF-g and interleukin 2, contributing

to the development of lasting immunity (28, 29). Peptide vaccines

aim to induce a comprehensive and durable immune response
FIGURE 1

Schematic illustration of the immune response to a peptide vaccine. Upon injection of the vaccine, microbial peptides are internalized by dendritic
cells, which then process and present them via MHC class II (A) and I (B) molecules to CD4

+ and CD8
+ T-cells. This interaction leads to the secretion

of IL-2 and TNF-a by DC on CD4
+ T-cells (A). Activated CD4

+ T-cells enhance CD8
+ T-cells function by secreting IFN-g and IL-2, which promote

bacterial killing through perforin and granzyme release (A1). Additionally, CD4
+ T-cells stimulate B-cells to differentiate into plasma cells to produce

antibodies (A2), and also activate macrophages to recognize and phagocytose antibody-opsonized bacteria (A3).
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against bacterial infections by targeting epitopes that engage both

humoral and cellular immunity.
2.2 Types of peptide vaccines

Peptide vaccines are classified based on the structure of the

peptide as well as its targeted immune response. There are a few

categories of peptides, such as linear peptides, cyclic peptides,

epitope-based peptides, and synthetic long peptides (SLPs).

Different types have distinct advantages for bacterial vaccine

development.

2.2.1 Linear vs. cyclic peptides
Most peptide vaccines are based on linear epitopes—short,

sequential amino acid fragments derived from pathogenic

proteins. These are relatively easy to identify, synthesize, and

screen using high-throughput platforms. However, linear peptides

often fail to replicate the native three-dimensional structure of

proteins, leading to reduced stability and suboptimal immune

recognition in vivo. In contrast, conformational epitopes—formed

by amino acid residues brought together by protein folding—are

typically more immunogenic as they better resemble the native

surface of pathogens recognized by B-cell receptors. Peptide

vaccines face a fundamental limitation in effectively presenting

these conformational structures due to the inherent flexibility and

lack of structural complexity of linear peptides. Cyclic peptides, by

forming stable and rigid ring structures, can mimic conformational

epitopes more accurately. Their restricted conformational mobility

enhances binding specificity to MHC molecules and immune

receptors, and increases resistance to enzymatic degradation.

Thus, employing cyclic peptides in vaccine design can partially

overcome the challenge of inducing immune responses against

conformational epitopes, though reproducing full protein

structures remains difficult in synthetic constructs (31–33).

2.2.2 Epitope-based peptides
Epitope-based vaccines are composed of peptides representing

either T-cell or B-cell epitopes. T-cell epitopes are selected based on

their ability to bind MHC molecules, leading to the activation of

cytotoxic T lymphocyte (CTL) or helper T-cell responses that are

essential for combating intracellular pathogens. In contrast, B-cell

epitopes—often derived from surface-exposed regions of bacterial

proteins—aim to induce robust antibody responses, which are critical

for neutralizing extracellular pathogens (34, 35). To enhance

immunogenic breadth, multiple epitopes can be combined into a

single construct, resulting in multiepitope-based peptide vaccines

(36). These constructs are designed through a rational,

immunoinformatics-driven process involving the prediction and

selection of highly antigenic, non-toxic, and non-allergenic epitopes

with broad population coverage. Then, the selected epitopes are

assembled using appropriate peptide linkers and, in some cases,

fused to molecular adjuvants or carrier sequences to enhance
Frontiers in Immunology 04
immunogenicity (37). The choice of linker is critical for maintaining

proper antigen processing and structural integrity. Flexible linkers such

as AAY or KK are often used to join CTL and B-cell epitopes due to

their capacity to promote proteasomal cleavage and enhance epitope

presentation. However, their high conformational mobility may result

in reduced structural integrity, unwanted interactions between adjacent

epitopes, or impaired biological activity. On the other hand, rigid

linkers like EAAAK provide fixed spatial separation between functional

domains, helping to maintain proper folding and minimize domain

interference but may hinder the conformational flexibility needed for

antigen processing by APCs. Thus to ensure optimal structural

conformation and antigen processing, peptide linkers are chosen

based on the structural and immunological demands of the vaccine

construct (37–39). Following design, the synthetic gene encoding the

multi-epitope construct is codon-optimized and recombinantly

expressed in suitable host systems. The suitability of these vaccine

candidates depends on several critical parameters, including

physicochemical stability, expression yield, proper folding, epitope

accessibility, and cost-effectiveness of production. (37). Multiepitope

vaccines have demonstrated promise against antigenically diverse or

drug-resistant pathogens—such as ESKAPE bacteria—by eliciting

multi-faceted immune responses and potential cross-protection.

2.2.3 Synthetic long peptides
SLPs are longer peptides, 20 to 35 amino acids long, that contain

multiple T-and B-cell epitopes within a single structure. This

enables the activation of both arms of the immune system. SLPs

often have multiple MHC-binding sites, enabling a broader T-cell

response and increased potential for cross-reactivity. Their design

imitates natural antigens in a way that enhances antigen

presentation and immune recognition. These features make SLPs

promising for inducing strong and lasting immunity in bacterial

vaccine development (40, 41).
2.3 Adjuvants and delivery systems

To enhance the immunogenicity of peptide vaccines, adjuvants

and advanced delivery systems are often used. Adjuvants amplify

the immune response to an antigen, while delivery systems control

the release of the vaccine and target its delivery, overcoming the low

immunogenicity of isolated peptide antigens (42).

2.3.1 Adjuvants in enhancing immunogenicity
Adjuvants stimulate immune cells and prolong antigen exposure,

thereby enhancing vaccine efficacy. Traditional adjuvants, such as

alum, play a major role in promoting antibody responses. However,

newer adjuvants, including Toll-like receptor (TLR) agonists, saponins,

and liposomes, are designed to boost cellular immunity by activating

dendritic cells and promoting antigen presentation. In peptide vaccines,

adjuvants are particularly valuable as they provide “danger signals” that

amplify the immune response (42, 43). Despite their efficacy, the use of

adjuvants comes with potential risks, particularly concerning their
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safety. Overuse or inappropriate selection of adjuvants can result in

allergic reactions and, in some cases, autoimmune disorders. For

example, TLR agonists may overstimulate the immune system,

leading to unwanted inflammatory responses or hypersensitivity,

especially in vulnerable individuals. Additionally, some adjuvants,

such as saponins, have been linked to local reactions and systemic

toxicity. These risks necessitate careful optimization and controlled

usage of adjuvants in peptide vaccines to prevent any adverse effects

(44, 45).

2.3.2 Delivery systems: nanocarriers, liposomes,
and conjugate vaccines

New delivery systems, including nanocarriers and liposomes,

have been developed that protect peptides from degradation,

control their release rate, and target the immune cells with high

precision. Nanocarriers, consisting of nanoparticles and polymer

systems, can encapsulate peptides for protection and assured

delivery to the APCs. Nanoparticles may be prepared as pathogen

imitations that can be taken up by dendritic cells at enhanced rates,

therefore promoting antigen presentation (46). Since liposomes are

vesicular carriers of lipids, they would, in turn, encapsulate the

peptides for longer circulation and specific delivery to immune

cells. They also act as an adjuvant and enhance humoral and

cellular responses (47). Conjugate vaccines link peptides to carrier

proteins such as tetanus or diphtheria toxoids. They enhance

immunogenicity by providing extra T-cell epitopes. This approach

is quite useful in groups where immune responses are generally poor,

such as older adults and young children (48).

Despite their advantages, each delivery modality carries specific

safety concerns. Nanocarriers may induce dose−dependent

cytotoxicity, oxidative stress, and pro−inflammatory cytokine

release—effects that vary with particle size, surface charge, and

composition, and can lead to tissue damage or systemic

inflammation (49). Liposomes are prone to complement activation

−related pseudo-allergy (CARPA), manifesting as infusion−related

hypersensitivity (flushing, dyspnea, hypotension) in susceptible

individuals (50). Conjugate vaccines, while generally well tolerated,

can cause local injection−site reactions and, in rare cases, carrier

−induced epitope suppression, whereby pre−existing immunity to the

protein carrier (e.g., tetanus toxoid) diminishes the response to the

linked peptide antigen (51, 52).
3 Peptide vaccines against bacterial
infections

As mentioned, peptide vaccines have emerged as a therapeutic

strategy by targeting specific antigenic determinants, which can

induce precise and potent immune responses against a wide range

of bacterial pathogens in the fight against bacterial infections. One

of the most promising strategies in this context involves the use of

conserved regions of bacterial proteins. These conserved sequences

are shared across multiple strains or species of a pathogen and are
Frontiers in Immunology 05
less prone to mutation, making them ideal targets for vaccine

development. Targeting such regions ensures broader coverage

against diverse bacterial variants, including multidrug-resistant

strains. Furthermore, these proteins are predicted to be highly

antigenic and essential for pathogen survival and reduces the risk

of immune escape due to antigenic variation. Moreover, peptides

derived from conserved epitopes are more likely to elicit cross-

protective immune responses, which is crucial for combating the

genetic variability characteristic of ESKAPE pathogens (53, 54).

This review analyzes the development of peptide vaccines for

the ESKAPE pathogens — Enterococcus faecium, Staphylococcus

aureus, Klebsiella pneumoniae, Acinetobacter baumannii,

Pseudomonas aeruginosa and Enterobacter spp. — each of which

presents unique challenges in immunogenicity and pathogen

persistence. Peptide vaccines in development against ESKAPE are

shown in Table 1.
3.1 Streptococcus pneumoniae
(pneumococcus)

Streptococcus pneumoniae remains a significant global health

burden, causing a range of severe infections, including pneumonia,

meningitis, and sepsis. While pneumococcal conjugate vaccines

(PCVs) have significantly reduced the incidence of pneumococcal

disease, serotype diversity and the emergence of non-vaccine

serotypes limit their effectiveness (90, 91).

Peptide vaccines offer a promising alternative by targeting

conserved antigens present across multiple pneumococcal strains.

This approach has the potential to provide broader protection

against a wider range of serotypes, including those not covered by

current vaccines. PspA (Pneumococcal Surface Protein A) is the

most promising vaccine candidate (92). This protein—along with

several other surface proteins—is highly conserved across

pneumococcal strains and is recognized by both B and T-cells.

Recently Bahadori et al. demonstrated the efficacy of the fusion

PhtD-PspA-PspC-based peptide vaccine in inducing protective

antibody responses and improving survival in animal models of

pneumococcal infection in a preclinical study (56). Researchers

have also conducted clinical trials combining the peptide vaccine

and the pneumococcal conjugate vaccine for greater efficacy (60–

62). However the multiepitope peptide vaccine against Streptococcus

pneumoniae showed limited efficacy in a clinical trial for otitis

media, likely due to antigenic polymorphism among strains. The

selected epitopes did not cover the full antigenic diversity, resulting

in weak cross-protection. Additionally, synthetic peptides may fail

to replicate the native structure of full-length proteins, reducing

their immunogenicity (62). Preclinical and clinical trials are still

ongoing in this field, and if successful, peptide vaccines could

provide a valuable tool in the fight against pneumococcal disease,

providing broader protection and overcoming the limitations of

current vaccine strategies.
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3.2 Staphylococcus aureus

Staphylococcus aureus, particularly methicillin-resistant S.

aureus (MRSA), remains a significant cause of hospital-acquired

infections worldwide. Its ability to form biofilms, evade host

immune responses, and develop resistance to multiple antibiotics

has made it a challenging pathogen to combat (93).

Peptide-based vaccines represent a promising approach to

combat Staphylococcus aureus infections by targeting key

virulence factors to elicit robust immune responses and prevent

bacterial colonization. Notably, clumping factors A and B (ClfA and

ClfB) have emerged as important targets, as explored by Dey et al.

ClfA facilitates bacterial adhesion to host tissues, while ClfB

promotes attachment to nasal corneocytes and triggers human

platelet aggregation. These antigens are both highly immunogenic
Frontiers in Immunology 06
and conserved, making them suitable candidates for vaccine

development, especially against multidrug-resistant strains (63).

Also, the newest study developed a peptide vaccine using B and

T-cell epitopes from MABC, NABC, and PIc proteins to combat

Staphylococcus aureus. Mice immunized with this vaccine showed

the best skin lesion healing, with high IgG levels, increased INF-g,
and enhanced CD4/CD8 T-cell counts. This approach improved

both humoral and cellular immunity, demonstrating promising

results for S. aureus vaccine development (65).

Several multi-antigenic peptide vaccines have been evaluated in

preoperative settings. For example, the V710 vaccine targeting IsdB

did not reduce the incidence of postoperative infections in cardiac

surgery patients and was paradoxically associated with increased

mortality in those who became infected—likely due to insufficient

preexisting IL-2 and IL-17 responses (71, 94). Conversely, the
TABLE 1 Peptide vaccines in development against ESKAPE.

Bacterium Target(s) of Peptide Vaccine Development Stage Source(s)

Streptococcus pneumoniae
PspA, PhtD

PspA, PhtD, PspC
PspA, CbpA, PhtD, PiuA

Preclinical
Preclinical
Preclinical

(55)
(56)
(57)

Streptococcus pneumoniae PspC In silico (58)

Streptococcus pneumoniae
PhtD, PcpA

PcpA, PhtD, PlyD1
dPly, PhtD

Clinical trials - Phase I
Clinical trials - Phase I

Clinical trials - Phase I & II

(59)
(60)

(61, 62)

Staphylococcus aureus
ClfA, ClfB

R13
Preclinical
Preclinical

(63)
(64)

Staphylococcus aureus MABC, NABC, and PIc Preclinical (65)

Staphylococcus aureus

Alpha-enolase, ClfA, IsdB
FnBPA, FnBPB

Glycosyltransferase, EBP, Staphylococcal
secretory antigen

In silico
In silico
In silico

(66)
(67)
(68)

Staphylococcus aureus ClfB, FnbpA, Hla, IsdA, IsdB, LukE, SdrD, and SdrE In silico & Preclinical (53, 69)

Staphylococcus aureus
rFSAV
IsdB

Clinical trial - Phase II
Clinical trial - Phase II

(70)
(71)

Pseudomonas aeruginosa OprF, OprI
Clinical trials - Phase II & III

Clinical trials - Phase II
Clinical trials - Phase I

(72)
(73)
(74)

Pseudomonas aeruginosa
PilA
PBD

Preclinical
Preclinical

(75)
(76)

Pseudomonas aeruginosa
OprF, OprE

fructose bisphosphate aldolase (FBA)
In silico
In silico

(77)
(78)

Enterococcus faecium (VRE)
PBP5
Psts

In silico
In silico

(79)
(80)

Klebsiella pneumoniae (CRKP)
OmpA, OmpW, and FepA (mHla-EpiVac)

P40
Preclinical
Preclinical

(81)
(82)

Klebsiella pneumoniae (CRKP)
type 3 fimbrial protein

OMPK17
FepA

In silico
In silico
In silico

(83)
(84)
(85)

Acinetobacter baumannii
Ata, FilF, and Nucab

Ata
Preclinical
Preclinical

(86)
(87)

Acinetobacter baumannii
EpsA, CsuB

FilF
In silico
In silico

(88)
(89)
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rFSAV vaccine, which incorporates five different antigens,

demonstrated good safety and strong, rapid humoral responses in

a phase II clinical trial among patients undergoing elective

orthopedic surgery (70). These findings highlight the challenges

inherent in developing effective vaccines against S. aureus, including

the need for appropriate antigen selection and consideration of host

immune profiles.

Despite these findings, no peptide-based S. aureus vaccine has

yet reached clinical application, underscoring the need for further

experimental and clinical investigations (95).
3.3 Pseudomonas aeruginosa

Pseudomonas aeruginosa is a versatile opportunistic pathogen that

can cause a wide range of infections, particularly in

immunocompromised individuals. Its intrinsic antibiotic resistance

and ability to form biofilms make it a significant challenge in

healthcare settings (96).

Peptide vaccines represent a promising strategy to combat P.

aeruginosa infections. Key targets for peptide-based vaccines against

P. aeruginosa include outer membrane proteins (OMPs) and also the

receptor-binding domains (RBD) of pili. Studies to develop a peptide

vaccine against RBD have been conducted in the past (97, 98).

Recently, in the study by Adlbrecht et al., a peptide vaccine against

OprI and OprF was evaluated in phase II and III clinical trials, and it

showed that while the vaccine was highly immunogenic, it did not

reduce mortality from Pseudomonas aeruginosa (72). Additionally, Roy

et al. designed an in silico multiepitope peptide vaccine targeting the

OprF and OprE proteins of Pseudomonas aeruginosa, which are

conserved across various serogroups and phenotypically stable within

biofilms. While the computational predictions regarding

immunogenicity, antigenicity, and safety were promising, no

experimental validation has been reported to date. Therefore,

extensive preclinical and clinical studies are still required to confirm

its real-world efficacy (77). Currently, more clinical trials are underway

to assess the safety and immunogenicity of peptide vaccine candidates

against P. aeruginosa. If successful, these vaccines could provide much-

needed protection for high-risk individuals, particularly those with

underlying medical conditions or undergoing invasive procedures.
3.4 Enterococcus faecium

Vancomycin-resistant Enterococcus faecium (VRE) has emerged

as a significant healthcare-associated pathogen, causing a range of

serious infections, including bloodstream infections, surgical site

infections, and endocarditis. The increasing prevalence of VRE,

coupled with its resistance to multiple antibiotics, has necessitated

the development of novel therapeutic strategies (99).

Peptide vaccines provide a new potential strategy for the

prevention of VRE infections. These vaccines may target surface

proteins, such as Penicillin-Binding Protein 5 (PBP5), which is

necessary for the cell wall strength and stability, inducing specific

immune responses neutralizing bacteria, and preventing their biofilm
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formation. Since this protein is an important metabolic target for beta-

lactam antibiotic resistance, peptide vaccines against its epitopes can be

a preventive measure (100). Additionally, this protein’s multiepitope

vaccine with B-cell and T-cell epitopes can elicit both humoral and

cellular immune responses, which Dey et al. evaluated in silico, and

were promising for experimental testing. Humoral immunity,

mediated by antibodies, can neutralize VRE and promote its

clearance by phagocytic cells. Cellular immunity, mediated by T-cells,

can eliminate infected cells and provide long-lasting protection (79). By

enhancing immune system recognition and overcoming immune

evasion mechanisms, peptide vaccines have the potential to improve

outcomes for patients infected with VRE. Although preclinical and

clinical research is needed for a vaccine against this bacterium, they

represent a promising strategy to combat this challenging pathogen.
3.5 Klebsiella pneumoniae

Carbapenem-resistant Klebsiella pneumoniae (CRKP) has

emerged as a major global health threat, causing severe infections

such as pneumonia, bloodstream infections, and urinary tract

infections (UTIs). The increasing prevalence of CRKP, coupled with

its resistance to multiple antibiotics, has led to significant morbidity

and mortality (101, 102).

Unfortunately, there is no effective vaccine available against

Klebsiella pneumoniae (103). Peptide vaccines are considered

promising approaches for fighting CRKP infections. Major

candidates for peptide-based vaccines against CRKP include outer

membrane proteins (OMPs) such as OmpA which are involved in

bacterial survival and virulence. In a study conducted by Liao et al.,

was produced a peptide vaccine to target the OmpA-OmpW-FepA

combination protein and then administered that vaccine to mice.

Induced by such antigens, the peptide vaccine confers the

capabilities of opsonization of bacteria by antibodies; they make

them more amenable to clearance by an immune cell and evoke IgG

antibodies above any other tested immunoglobulins (81). These

peptide vaccines may be used against CRKP, which will improve the

outcomes. However, we need more studies to test the safety and

efficacy of these peptide vaccines.
3.6 Acinetobacter baumannii

Acinetobacter baumannii is a gram-negative bacterium with

increasing trends toward multidrug resistance, which has

constituted a severe health threat worldwide during recent years.

This microorganism is thus quasi-invincible due to its ability to

form biofilm and its resistance to most known antibiotics, including

last-resort antimicrobials including colistin (104).

One of the most interesting strategies to overcome the problems

caused by these bacteria is peptide vaccines that important

approach is in the targeting of biofilm-related proteins such as

Ata, FilF, and Nucab. They are important in bacterial adhesion,

biofilm development, and immune evasion (105). Ren et al.

developed peptide vaccines targeting these antigens, which inhibit

biofilm formation, reduce bacterial colonization, and accelerate
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immune clearance. In addition, this study developed a peptide

vaccine that generated opsonizing antibodies capable of

promoting phagocytosis and clearance of developing bacterial

infections. This is especially crucial in the setting of chronic

infections, in which bacteria can avoid host defenses (86). Peptide

vaccines are in progress to combat A. baumannii and improve

patient outcomes. They are a potentially powerful weapon against

this ornery bug. Many need to be further tested for safety

and effectiveness.
4 Preclinical and clinical evaluation of
peptide vaccines against bacterial
infections

Significant progress has been made in the development of

peptide vaccines for bacterial infections, and promising results

have been obtained from both preclinical and clinical studies.
4.1 Animal models

Mice, non-human primates, and other animal models are

invaluable for assessing immunogenicity and efficacy of peptide

vaccines. Such models enable studies to study the induction of

particular immune responses, such as T-cell activation, antibody

production and cytokine profiles. For bacterial pathogens, effector-

encoded peptide vaccines have shown promise in animal models,

including for organisms such as Staphylococcus aureus. S. aureus

peptide vaccines reduce bacterial load and improve survival in

animal models of infection (65, 106). While animal models

provide valuable insights, it is important to acknowledge their

limitations. Differences in immune responses between animals

and humans can impact the interpretation of preclinical data.

Therefore, studies must carefully consider the selection of

appropriate animal models and how to apply findings to human

populations (107).
4.2 Clinical trials

The transition from preclinical studies to clinical trials is a critical

step in the development of peptide vaccines. Phase I clinical trials

focus on assessing the safety and tolerability of the vaccine in a small

group of healthy volunteers. Phase II trials involve larger groups of

participants and aim to determine the optimal dose and evaluate the

vaccine’s effectiveness. Phase III trials, the final stage of clinical

development, involve large-scale randomized controlled trials to

confirm the vaccine’s efficacy and safety in diverse populations.

Several peptide-based vaccines targeting bacterial infections are

currently undergoing clinical trials, which were mentioned earlier.
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For example, peptide vaccines for Pseudomonas aeruginosa have

shown promising safety profiles in Phase I trials. Ongoing Phase II

trials are evaluating their immunogenicity and efficacy in larger

populations. While these early-phase clinical trials have shown

encouraging results, challenges remain in advancing peptide

vaccines to Phase III trials. Factors such as peptide stability,

immunogenicity, and the development of effective adjuvants and

delivery systems are crucial for generalizing preclinical findings into

clinical applications (108).
5 A Critical appraisal of the safety,
stability, and manufacturability of
peptide vaccines

5.1 Safety considerations

Peptide vaccines have unprecedented safety over traditional

vaccines because they are well-defined in their composition.

However, the potential risk of autoimmune reactions and off-

target effects is a cautious approach. If administered, peptides are

highly homologous with host proteins, autoimmunity might

develop. The risk of cross-reactivity has been mitigated through

careful epitope selection strategies that include targeting sequences

with minimal structural similarity to self-antigens. Rigorous

preclinical testing — including evaluation of the long-term

immune response and assessment of delayed adverse events — is

important in these discussions to ensure safety (109). However,

advanced bioinformatic tools and structural analyses may also be

used to detect peptides with low sequence homology to host

proteins. This will lower the possibility of autoimmune reactions

(110). However, if not carefully characterized, off-target effects

where the immune response targets unrelated strains of bacteria

and other commensal microbiota can also pose potential safety

issues. Utilizing pathogen-specific peptide sequences and limiting

structural similarities with commensal bacteria might mitigate these

dangers (111, 112).
5.2 Enhanced stability for improved
logistics

Peptide vaccines provide significant logistical advantages in

stability and storage, particularly in resource-limited environments.

Unlike live-attenuated or inactivated vaccines, which often cause

stringent cold-chain logistics (113), synthetic peptides exhibit greater

stability at room temperature or require only moderate refrigeration.

Lyophilization (freeze-drying) further extends shelf life, simplifying

distribution and minimizing associated costs. Recent studies

demonstrate the viability of specific peptide formulations under

diverse storage conditions for extended durations. It’s particularly

helpful for deploying them in remote regions (114).
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5.3 Simplified manufacturing and scalability

Peptide vaccines benefit from streamlined manufacturing

processes compared to conventional vaccines. Unlike traditional

methods rely on pathogen cultivation, peptide vaccines can be

produced through chemical synthesis or recombinant DNA

technology. This approach gives greater control over production,

which helps achieve high purity and consistency, reduces costs, and

speeds up vaccine development. However, scaling up peptide

synthesis presents challenges, including potential batch-to-batch

variability and high cost influenced by peptide length and

complexity. Advancements in automated synthesis techniques and

cost-effective production methods are addressing these limitations,

which pave the way for wider use and large-scale production of

peptide vaccines (108, 115, 116).
6 Future directions in peptide vaccine
development for bacterial infections

Peptide vaccines are promising tools for the prevention and

management of bacterial infections, with ongoing advances in

bioinformatics, immunology, and delivery technologies forming

the future of their development.
6.1 Innovations in peptide design;
bioinformatics and artificial intelligence

Due to the development of immunoinformatic tools, the

implementation of computational biology has primarily eased the

way in the advancement of peptide vaccine development. High-

throughput sequencing and structural biology data can be

integrated by these technologies to map the immunogenic

bacterial epitopes. Using these tools, researchers can predict B-cell

and T-cell epitopes, model peptide–MHC and peptide–TCR

interactions, and determine binding affinities and epitope

stability. Machine learning can help guide this step by finding

conserved peptides across multiple strains of bacteria to develop

vaccines capable of eliciting long-lived and specific immune

responses (117–119).

In recent years, artificial intelligence (AI) has played a

transformative role in vaccine design by streamlining several key

steps such as antigen selection, epitope prioritization, and adjuvant

discovery. Machine learning and deep learning algorithms analyze

genomic sequences, protein structures, and immune system

interactions to assess immunogenicity and optimize candidate

peptides. These AI-driven methods not only reduce the time and

cost of vaccine development but also improve precision by

integrating emerging technologies like single-cell omics and

synthetic biology. Despite challenges such as data heterogeneity

and interpretability of models, the incorporation of AI into vaccine
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research represents a promising approach to accelerate the design of

safe and effective peptide vaccines against a broad range of

infectious diseases (120).
6.2 Personalized peptide vaccines

The concept of personalized medicine is being applied more

often to vaccine development. Differences in immune response

among individuals, often due to genetic differences in HLA allele

distribution, influence peptide presentation and recognition.

Tuning frequencies for specific human genetic profiles can rescue

vaccine efficacy and reduce their unwanted effects. This is especially

useful for high-risk groups, including healthcare workers and

people with immunodeficiency (Figure 2) (121).
6.3 Next-generation delivery systems

Delivery System of the Next Generation Improving peptide

stability and immunogenicity by optimizing vaccine delivery

systems is of great significance. Innovative approaches for stable,

efficient delivery of peptide vaccines are emerging, such as with virus-

like particles (VLPs) and microneedle patches (Figure 2). Virus-like

particles serve as efficient delivery systems for peptide vaccines by

mimicking the structure of viruses while lacking genetic material,

allowing safe presentation of antigens to immune cells. VLPs have

been modified to present peptide epitopes on their surface to

promote antigen uptake and immune activation. This approach has

shown promising efficacy against preclinical models and is currently

being evaluated for various infectious diseases (10, 122). Microneedle

patches penetrate the outer layers of the skin and deliver their

payloads—such as peptide antigens—directly to dendritic cells in

the dermis in a minimally invasive manner. By targeting these key

antigen-presenting cells, microneedles facilitate robust immune

activation. Moreover, due to their ease of administration, pain-free

application, and potential for self-use, microneedle technologies

significantly improve vaccine accessibility and compliance,

particularly in low-resource settings (10, 123).
6.4 Combination therapies

As shown in Figure 2, combining peptide vaccines with

antibiotics or other vaccines can enhance their efficacy and

expand their activity. For infections resistant to antibiotics,

combining peptide vaccines with them can reduce bacterial load

and limit the rise of drug-resistant strains (14, 124). Additionally,

combining peptide vaccines with other vaccine platforms, such as

conjugate vaccines, can provide broader immune coverage against

complex pathogens. In this regard, Laura L. Hammitt and

colleagues conducted a clinical trial based on a protein-based
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pneumococcal vaccine (dPly/PhtD) containing pneumolysin toxoid

and pneumococcal histidine triple protein D (62).
6.5 Harnessing the power of
immunomodulation

Combining peptide vaccines with immunomodulators, such as

checkpoint inhibitors, can amplify immune responses. Checkpoint

inhibitors can enhance T-cell responses, particularly beneficial for

chronic bacterial infections that require a strong cell-mediated

immune response. Such combination therapies may allow for

lower antibiotic doses, which could reduce side effects and the

risk of antibiotic resistance (125, 126).
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Peptide vaccines offer a promising approach to combat bacterial

infections. By targeting specific antigens, these vaccines can induce

targeted immune responses, enhancing the body’s ability to recognize

and eliminate bacterial pathogens. Key advantages include rapid

production, cost-effectiveness, and suitability for immunocompromised

individuals. However, challenges such as improving immunogenicity,

stability, and delivery methods remain. Ongoing research is focused on

optimizing peptide design, developing advanced delivery systems, and

exploring combination therapies to enhance vaccine efficacy. With

continued advancements, peptide vaccines have the potential to

become a crucial tool in the struggle against antibiotic resistance and

emerging infectious diseases.
FIGURE 2

Strategies in peptide vaccine design and application. The figure illustrates key approaches in developing peptide vaccines, centered around antigen-
presenting cells that process peptides to activate T-cell immunity. Represented vaccine modalities include linear peptides, cyclic peptides, and
synthetic long peptides (SLPs) incorporating both B- and T-cell epitopes. Genomic advances enable personalized vaccines tailored to individual
genetic profiles. Delivery platforms (liposomes, nanocarriers, microneedle patches, virus-like particles) and adjuvants (e.g., TLR agonists) enhance
immunogenicity. The development pipeline spans in silico epitope prediction, preclinical testing, and clinical trials. Emerging strategies—such as
antibiotic-conjugated peptide vaccines—highlight combinatorial approaches to boost efficacy and counter antimicrobial resistance.
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