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Orthopedic diseases pose significant challenges to public health due to their high

prevalence, debilitating effects, and limited treatment options. Additionally,

orthopedic tumors, such as osteosarcoma, chondrosarcoma, and Ewing

sarcoma, further complicate the treatment landscape. Current therapies,

including pharmacological treatments and joint replacement, address

symptoms but fail to promote true tissue regeneration. Cell-based therapies,

which have shown successful clinical results in cancers and other diseases, have

emerged as a promising solution to repair damaged tissues and restore function

in orthopedic diseases and tumors. This review discusses the advances and

potential application of cell therapy for orthopedic diseases, with a particular

focus on osteoarthritis, bone fractures, cartilage degeneration, and the treatment

of orthopedic tumors. We explore the potential of mesenchymal stromal cells

(MSCs), chondrocyte transplantation, engineered immune cells and induced

pluripotent stem cells to enhance tissue regeneration by modulating the

immune response and addressing inflammation. Ultimately, the integration of

cutting-edge cell therapy, immune modulation, and molecular targeting

strategies could revolutionize the treatment of orthopedic diseases and

tumors, providing hope for patients seeking long-term solutions to

debilitating conditions.
KEYWORDS
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1 Introduction

1.1 Orthopedic diseases and the need for regenerative
treatments

Orthopedic diseases, including osteoarthritis (OA), bone fractures, cartilage degeneration,

and orthopedic tumors, are among the most prevalent conditions worldwide (1–3). These

diseases significantly impact the quality of life of millions, particularly in aging populations.

Osteoarthritis alone affects over 500million people globally, with its incidence expected to rise
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as the population ages (1). Bone cancers such as osteosarcoma,

chondrosarcoma, and Ewing sarcoma, although rarer, present

significant clinical challenges in both diagnosis and treatment,

requiring more specialized care. These diseases are characterized by

the progressive deterioration of joints, cartilage, and bone, which

leads to pain, reduced mobility, and impaired function (Table 1).

Orthopedic tumors, though often less common, complicate treatment

regimens with the need for aggressive therapies that include surgery,

chemotherapy, and radiation. Current pharmacological treatments

for pain management in degenerative joint diseases include

nonsteroidal anti-inflammatory drugs (NSAIDs), opioids,

corticosteroids, and disease-modifying osteoarthritis drugs

(DMOADs). These agents aim to reduce pain and inflammation,

although they do not address the underlying degeneration of joint

tissues. While conventional treatments like pharmacological

management and joint replacement surgeries help address

symptoms, they fail to promote true tissue regeneration (4, 5).

These treatments can be effective in alleviating pain and restoring

some joint function, but they do not address the underlying tissue loss

or repair the natural anatomy of the affected areas.

Regenerative medicine, particularly cell-based therapies, has

gained attention as a promising alternative to traditional

treatments. By harnessing the body’s own regenerative potential,

these therapies aim to repair or regenerate damaged tissues and

restore function (6, 7). This approach is being explored not only for

degenerative diseases like osteoarthritis but also for orthopedic

tumors, where regenerative treatments may aid in rebuilding bone

tissue after tumor excision or radiation (8). However, despite

significant advances, challenges remain in optimizing the efficacy

and long-term outcomes of cell therapies in orthopedic diseases.

The inability to fully regenerate damaged tissues, control

inflammation, and address immune responses within the local

tissue microenvironment remains a significant barrier to the

successful application of these therapies (9, 10).
1.2 Engineered cell therapies

Cell therapy has emerged as a promising solution to address the

limitations of conventional treatments for orthopedic diseases,

including degenerative conditions and tumors. Mesenchymal

stromal cells (MSCs), which have the ability to differentiate into

multiple cell types, such as chondrocytes, osteoblasts, and

adipocytes, are a key focus of research in this field (11, 12). MSCs
Abbreviations: ACI, Autologous chondrocyte implantation; BML, bone marrow

lesion; BMSC, bone marrow mesenchymal stem cell; CAR-M, CAR-

macrophages; CAR-NK, CAR-natural killer; CAR-T, chimeric antigen receptor

T cells; IRF3, interferon regulatory factor 3; iPSCs, induced pluripotent stem cells;

MACI, matrix-assisted chondrocyte implantation; MMPs, matrix

metalloproteinases; MSCs, Mesenchymal stromal cells; MT1G, Metallothionein

1G; OA, osteoarthritis; PDGF, platelet-derived growth factor; RANKL, receptor

activator of nuclear factor kappa-B ligand; TKA, total knee arthroplasty; TLRs,

Toll-like receptors; Tregs, regulatory T cells; VEGF, vascular endothelial

growth factor.
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can be sourced from various tissues, such as bone marrow, adipose

tissue, and synovial fluid, and have shown potential in repairing

cartilage defects, promoting bone healing, and reducing

inflammation (10, 13, 14). Clinical studies have demonstrated the

safety and feasibility of MSC-based therapies for conditions like

osteoarthritis, with improvements in pain reduction and function

observed in many cases (15). For orthopedic tumors, MSCs may

also play a role in regenerating bone and cartilage after tumor

resection. MSC-based treatments have been explored in preclinical

models for osteosarcoma and other bone cancers, where they may

assist in filling bone defects left after surgery and aid in the

regeneration of normal bone tissue (16). Another promising

approach is chondrocyte transplantation, where autologous

chondrocytes are harvested, expanded, and re-implanted into

damaged cartilage (17, 18). It has shown success in treating focal

cartilage defects, although challenges remain in maintaining the

functional integrity of the graft long-term (19). Furthermore, the

engineering of immune cells, such as T-cells or macrophages, to

enhance their regenerative potential and modulate the

inflammatory response within the orthopedic disease

microenvironment represents an exciting avenue for research

(20). In orthopedic tumors, engineered immune cells also help in

targeting residual tumor cells or modulating the immune response

to prevent relapse (21). The key to success in these therapies lies in

overcoming the inflammatory environment that characterizes many

orthopedic diseases and finding ways to enhance tissue regeneration

while preventing immune rejection (22, 23). Additionally, induced

pluripotent stem cells (iPSCs) have gained attention in orthopedic

disease therapy due to their unique ability to differentiate into any

cell type, including chondrocytes and osteoblasts, providing the

potential for autologous tissue repair. Although iPSCs offer

significant promise, challenges in controlling differentiation and

preventing tumorigenesis remain (24).
1.3 Key molecular pathways modulate the
cell therapy effect in orthopedic diseases

A critical factor in the success of cell therapies for orthopedic

diseases is the modulation of the immune response and the

regulation of local inflammation (25, 26). The immune

microenvironment of tissues affected by osteoarthritis, bone

fractures, and tumors is often characterized by a pro-

inflammatory state that hinders healing and tissue regeneration

(27). Toll-like receptors (TLRs), a family of pattern recognition

receptors that play a central role in innate immunity, are key

regulators of this inflammatory response (28, 29). TLRs are

expressed on various cells, including chondrocytes, macrophages,

synoviocytes, and even cancer cells, and their activation leads to the

production of pro-inflammatory cytokines and chemokines,

contributing to cartilage degradation, bone resorption, and tumor

progression (30, 31). Among the TLRs, TLR3 has emerged as a

particularly interesting target in orthopedic disease therapy (32–34).

TLR3 is primarily activated by double-stranded RNA, a pathogen-

associated molecular pattern typically associated with viral

infections (35). Upon activation, TLR3 initiates a signaling
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cascade involving the transcription factors NF-kB and interferon

regulatory factor 3 (IRF3), which leads to the production of pro-

inflammatory cytokines and type I interferons (36, 37). In

orthopedic diseases and tumors, TLR3 plays a dual role by

modulating the immune response and influencing tissue repair

processes. Recent studies suggest that TLR3 signaling may be

involved in the regulation of cartilage degeneration, bone

remodeling, and immune responses to bone tumors. TLR3

activation promotes joint degeneration in osteoarthrosis (34).
2 Advances in cell-based therapies for
orthopedic diseases

Cell-based therapies have shown considerable promise in the

field of regenerative medicine, offering potential solutions for

treating orthopedic diseases, such as osteoarthritis, cartilage

degeneration, bone fractures, and even orthopedic tumors. These

therapies aim to repair, regenerate, or replace damaged tissues by

harnessing the regenerative properties of different cell types. This

section explores several key approaches, including MSC therapy,

chondrocyte-based approaches, engineered immune cell therapies

and iPSCs, each of which presents unique benefits and challenges

(Figure 1).
2.1 Mesenchymal stroma cell therapy

In this review, the term mesenchymal stromal cells (MSCs) is

used in accordance with the International Society for Cell and Gene

Therapy (ISCT) nomenclature guidelines (38). MSCs are a

population of cells with immunomodulatory and secretory

functions, as opposed to ‘mesenchymal stem cells,’ which are

defined by their demonstrated self-renewal and multilineage

differentiation capabilities. Key markers used to identify MSCs,

such as CD73, CD90, and CD105, are essential for characterizing

MSCs in regenerative therapies. These markers help define the
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identity and functional properties of MSCs, ensuring their purity

and effectiveness in clinical applications.

MSCs are a promising cell type for regenerative therapies due to

their ability to differentiate into various mesodermal cell types,

including chondrocytes, osteoblasts, and adipocytes. MSCs are

primarily derived from adult tissues, such as bone marrow, adipose

tissue, and synovial fluid, and can also be sourced from umbilical cord

blood or placenta. Their multipotent differentiation capacity, coupled

with their immunomodulatory properties, makes them an ideal

candidate for treating orthopedic diseases. MSCs exerts therapeutic

effects via paracrine signaling (39–41). When MSCs are transplanted

into damaged tissues, they secrete a wide range of bioactive

molecules, including growth factors, cytokines, and extracellular

matrix components, that help modulate inflammation, stimulate

tissue repair, and promote regeneration (42, 43). In osteoarthritis,

for example, MSCs secrete anti-inflammatory cytokines such as IL-10

and TGF-b, which help to counteract the inflammatory mediators

that contribute to cartilage degradation (44). Moreover, MSCs

stimulate the proliferation and differentiation of endogenous

progenitor cells, thereby enhancing tissue regeneration. In addition

to their regenerative capabilities, MSCs are also capable of

modulating the immune response. MSCs interact with various

immune cells, such as T cells, B cells, and macrophages, to

suppress inflammatory responses and reduce immune-mediated

damage in tissues (12, 45, 46). This immunomodulatory effect is

particularly important in autoimmune and inflammatory diseases

like osteoarthritis, where chronic inflammation is a key driver of

disease progression (47, 48). For example, bone marrow MSC

(BMSC)-derived exosomes prevent osteoarthritis by regulating

synovial macrophage polarization, promoting macrophages from

pro-inflammatory (M1-like) phenotype to anti-inflammatory (M2-

like) phenotype (39).

MSC-based therapies for orthopedic diseases have shown

promising results in preclinical studies and early-phase clinical trials.

MSCs are being investigated as a potential therapy for OA, with clinical

trials in phase I/II showing pain relief and functional improvement (49,

50). However, challenges like low cell survival in inflammatory joints

and limited therapeutic duration remain. Two clinical studies highlight
TABLE 1 Pathological traits, subtypes, and grading criteria of key diseases affecting joints and bones.

Disease Pathological Traits Subtypes/Grading Criteria

Osteoarthritis (OA)

- Degeneration of articular cartilage - Early: Cartilage thinning

- Bone remodeling - Moderate: Cartilage loss with osteophyte formation

- Inflammation of synovial membrane - Severe: Joint deformity and loss of function

Rheumatoid Arthritis (RA)

- Chronic inflammation of synovial membranes - Early: Synovitis

- Pannus formation - Moderate: Joint destruction

- Joint erosion and deformity - Severe: Deformity and ankylosis

Bone Tumors

- Uncontrolled growth of bone or soft tissue - Benign: Osteochondroma, Enchondroma

- Can be benign or malignant
- Malignant: Osteosarcoma, Ewing’s
sarcoma, Chondrosarcoma

- Pain, swelling, and functional impairment
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the importance of stem cell delivery sites (44, 51). In one study, bilateral

knee OA patients received BMSCs either via intra-articular (I.A.)

injection or directly to subchondral bone lesions. After 15 years, 70%

of knees in the I.A. group required total knee arthroplasty (TKA),

compared to only 20% in the subchondral group, emphasizing the role

of BML (bone marrow lesion)-targeted therapy in preventing OA

progression (51). Another study on 140 late-stage OA patients

compared subchondral BMSC delivery to TKA (44). Both groups

had similar knee scores (~80) and TKA rates (~1%/year) after 15 years,

suggesting BML regeneration delay knee replacement by over a decade.

These findings underscore the potential of BMSC therapy and the

critical role of subchondral bone in OA treatment (52).

For bone fractures, MSCs have been used to promote bone healing,

particularly in cases of non-union fractures or those associated with
Frontiers in Immunology 04
large bone defects (53, 54). Hypoxic MSC-derived exosomes promote

bone fracture healing by the transfer of miR-126 (40). Moreover, in

orthopedic tumors, MSCs have shown potential for assisting in the

regeneration of bone tissue after tumor excision or radiation,

particularly in bone cancers like osteosarcoma. Osteosarcoma is a

malignant bone tumor that arises from mesenchymal cells, which are

also the source of MSCs. While MSCs play a role in bone regeneration,

they also influence the tumor microenvironment in osteosarcoma.

Metallothionein 1G (MT1G) regulates the cell’s antioxidant status and

metal ion balance, influencing the proliferation and differentiation of

MSCs, thereby affecting bone regeneration and repair processes,

MT1G has been verified as a target for osteosarcoma (55). In

addition, MSC-derived exosomes as targeted nanocarriers for

Doxorubicin delivery, enhancing osteosarcoma therapy through the
FIGURE 1

Detailed processes of cell-based therapies for orthopedic diseases. This diagram outlines the step-by-step processes involved in various cell-based
therapies used for the treatment of orthopedic diseases. (1) Mesenchymal stem cell (MSC) therapy: This process begins with the isolation of MSCs
from bone marrow or adipose tissue. The MSCs are then expanded in culture and differentiated into osteoblasts, chondrocytes, or other cell types,
depending on the specific tissue regeneration needed. These differentiated cells are transplanted into the damaged bone or cartilage to promote
healing and regeneration. (2) Chondrocyte therapy: In this process, autologous chondrocytes are harvested from the patient’s own cartilage,
expanded in vitro, and then re-implanted into the damaged cartilage area. This therapy is designed to repair cartilage defects, particularly in cases of
osteoarthritis or traumatic injuries. (3) Immune cell therapy (osteosarcoma and CAR-T therapy): This section illustrates the use of chimeric antigen
receptor T (CAR-T) cell therapy specifically for osteosarcoma treatment. Patient-derived T cells are engineered to express CARs targeting tumor
antigens on osteosarcoma cells. These engineered CAR-T cells are expanded and infused back into the patient, where they recognize and attack
tumor cells, modulating the immune response and potentially improving outcomes for patients with osteosarcoma. (4) Induced pluripotent stem cell
(iPSC) therapy: iPSCs are generated by reprogramming somatic cells, such as skin fibroblasts, back into pluripotent cells. These iPSCs are then
differentiated into osteoblasts or chondrocytes to regenerate bone and cartilage tissues, offering a potential therapeutic approach for a wide range
of orthopedic disorders.
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SDF1-CXCR4 axis (56). However, challenges remain in optimizing

MSC therapy, including issues related to cell survival, engraftment, and

long-term efficacy.

Allogeneic MSC transplantation offers several advantages,

making it an attractive option for regenerative therapies (57, 58).

One key benefit is the off-the-shelf availability of allogeneic MSCs,

which eliminates the delays and complications associated with

autologous MSC sourcing. Since these cells can be readily

harvested from a donor, the need for patient-specific cell

harvesting is bypassed, facilitating more timely treatments (58). In

addition, allogeneic MSCs have immunomodulatory properties that

enable them to modulate the immune response, which is crucial for

reducing inflammation and promoting healing in various tissues.

These properties allow them to be effective in treating diseases

characterized by chronic inflammation, such as osteoarthritis, by

helping to suppress immune-mediated tissue damage.

Furthermore, fetal-derived MSCs have garnered attention due

to their higher proliferative capacity and enhanced differentiation

potential compared to adult-derived MSCs (59). These cells are

known to proliferate more rapidly and have a greater ability to

differentiate into a wider range of cell types. As a result, fetal-

derived MSCs present a promising alternative source for

regenerative medicine, particularly in the context of orthopedic

diseases where rapid tissue regeneration is essential (60). Their

superior growth and differentiation potential could lead to more

effective MSC-based therapies, improving the outcomes for patients

with conditions such as osteoarthritis or bone fractures.
2.2 Chondrocyte-based cell therapy

Chondrocyte-based therapies involve the transplantation of

autologous or allogenic chondrocytes to repair damaged cartilage

(61, 62). It has been widely used in the treatment of focal cartilage

defects, particularly in younger patients (63). The process typically

involves harvesting healthy chondrocytes from non-weight-bearing

regions of the joint, expanding them in vitro, and then re-implanting

them into the damaged area, thus to restore the normal cartilage

structure and function, thereby alleviating symptoms and preventing

further joint degeneration (64). Autologous chondrocyte

implantation (ACI) is a well-established procedure for treating

large cartilage defects and has been shown to improve joint

function and reduce pain in many patients (65). The key advantage

of ACI is the use of the patient’s own cells, which minimizes the risk

of immune rejection (66). Both ACI and matrix-assisted chondrocyte

implantation (MACI) procedures have demonstrated long-term

success in treating knee cartilage lesions related to osteoarthritis,

helping to delay the need for arthroplasty (66).

However, technique has limitations, such as the need for a two-

step procedure and the potential for donor site morbidity.

Additionally, the newly generated cartilage may not fully replicate

the mechanical properties of native cartilage, leading to a potential

risk of graft failure or degeneration over time. Using scaffold

materials combined with chondrocytes to provide structural

support and promote the growth of new cartilage (67). These
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scaffolds are made from a variety of materials, including natural

polymers, synthetic hydrogels, or even decellularized tissues, and

they are designed to mimic the biomechanical properties of

cartilage (68–70). Silk fibroin-based materials have been used for

cartilage and osteochondral repair too (71). Advances in 3D

bioprinting have enabled the creation of more complex scaffolds

that better support chondrocyte growth and tissue regeneration

(72). Additionally, the use of stroma/stem cells, such as MSCs or

iPSCs, in combination with chondrocytes or scaffolds may offer a

promising strategy to enhance cartilage regeneration and improve

long-term outcomes.

A significant challenge in cartilage therapies is the in vitro

culture and expansion of autologous chondrocytes. During culture,

chondrocytes can dedifferentiate, losing their ability to produce

cartilage-specific extracellular matrix components (73). Moreover,

the need to expand sufficient numbers of cells for clinical

applications remains a challenge, as does maintaining the

differentiated state of the chondrocytes. One key question

regarding autologous chondrocyte transplantation is whether it

leads to true regeneration of articular cartilage or primarily

facilitates tissue repair. While some studies report the formation

of hyaline-like cartilage, others suggest that the newly formed tissue

may more closely resemble fibrocartilage, which lacks the durability

and biomechanical properties of genuine hyaline cartilage.
2.3 Engineered immune cell therapy

Engineered immune cells, such as chimeric antigen receptor T

cells (CAR-T), CAR-natural killer (CAR-NK) cells, and CAR-

macrophages (CAR-M), represent an exciting frontier in cell-

based therapies. Traditionally used in cancer immunotherapy,

these engineered immune cells have also shown potential for

modulating inflammation and promoting tissue repair in

orthopedic diseases. They focus on harnessing the immune

system’s ability to target and eliminate specific cells, such as

inflammatory macrophages or damaged tissue, and to enhance

tissue repair processes.

Engineered immune cell therapy has been widely studied in

orthopedic cancers such as osteosarcoma, chondrosarcoma, Ewing’s

sarcoma, fibrosarcoma, etc (74, 75). Phase I trial (NCT02107963) of

GD2 CAR-Ts (GD2-CAR.OX40.28.z.iC9), has demonstrated

feasibility and safety of administration in children and young

adults with osteosarcoma and neuroblastoma (76). GGD2-C7R

CAR-T therapy clinical trial (NCT03635632) are conducted in

solid tumors with GD2 target including relapsed Ewing Sarcoma

and osteosarcoma (77). These trials highlight the promising

potential of engineered immune cell therapies to treat difficult-to-

treat orthopedic cancers.

The ability of CAR-T cells to specifically target inflammatory

cells, such as activated macrophages or T cells, could be utilized to

reduce inflammation and promote tissue healing in diseases like

osteoarthritis. Additionally, CAR-T cells could be engineered to

target specific molecules involved in cartilage degradation or bone

resorption, such as matrix metalloproteinases (MMPs) or receptor
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activator of nuclear factor kappa-B ligand (RANKL). CAR-NK cells

are engineered to enhance the cytotoxic activity of NK cells, and

their application in orthopedic diseases could involve targeting and

eliminating activated immune cells that contribute to chronic

inflammation. Additionally, CAR-NK cells may promote tissue

regeneration by enhancing the activity of other immune cells,

such as MSCs, within the tissue microenvironment (78). In

addition, macrophages play a dual role in inflammation and

tissue repair. Macrophages could be polarized in vitro in two

extreme phenotypes: the pro-inflammatory (M1-like) phenotype,

associated with the release of pro-inflammatory cytokines and

promotion of tissue destruction, and the anti-inflammatory (M2-

like) phenotype, which supports tissue regeneration and repair (79).

During the resolution phase of inflammation, pro-resolving

macrophages play a crucial role in promoting tissue healing by

producing growth factors such as vascular endothelial growth factor

(VEGF) and platelet-derived growth factor (PDGF), which enhance

angiogenesis and collagen synthesis (80, 81). Given their ability to

modulate immune responses, CAR-macrophages could be explored

as a potential approach to attenuate inflammation and support

tissue regeneration in orthopedic diseases. Future studies may

investigate their capacity to target pro-inflammatory cytokines or

signaling pathways involved in cartilage degradation.
2.4 Induced pluripotent stem cells therapy

IPSCs offer an abundant and renewable source of cells for tissue

engineering, serving as an appealing alternative to primary cells.

With their remarkable plasticity and differentiation capabilities,

iPSCs hold significant promise for cell-based therapies. Patient-

specific iPSCs can be tailored to reduce the risk of autoimmune

reactions, making them a nearly ideal candidate for regenerative

medicine. Research on iPSCs in cartilage tissue engineering has

highlighted their potential for functional cartilage repair and as

valuable models for understanding cartilage-related diseases. For

instance, iPSCs derived from somatic cells generate patient-specific

stem cells for studying osteoarthritis and testing therapeutic agents

(82, 83). Furthermore, iPSCs obtained from OA patients’ tissues can

differentiate into cartilage, creating new opportunities for

investigating cartilage pathology and treatment (84). Despite these

advancements, no clinical trials using iPSC-derived cartilage cells

for therapy have been reported. iPSCs share the proliferative and

differentiation advantages of other stem cells while avoiding issues

related to immune rejection and ethical concerns (24). However,

further research is essential to advance the use of iPSC-derived

chondrocytes in OA treatment and joint repair. In addition to

cartilage repair, iPSC-based therapies are showing potential in the

treatment of bone-related disorders. For example, iPSCs have been

successfully differentiated into osteoblasts, the cells responsible for

bone formation, and used in preclinical studies to promote bone

regeneration in critical-sized bone defects. In a study involving a

mouse model, iPSC-derived osteoblasts seeded onto bioengineered

scaffolds not only enhanced bone regeneration but also

demonstrated superior integration with the host tissue compared
Frontiers in Immunology 06
to traditional stem cell therapies (85). This approach highlights the

versatility of iPSCs in addressing complex orthopedic challenges

such as large bone defects and non-union fractures.

As outlined in the previous sections, a range of cell-based

therapies has been developed to address orthopedic diseases, each

offering distinct mechanisms and therapeutic potentials. To fully

assess the advantages and limitations of these approaches, it is

essential to conduct a comparative analysis of several key therapies,

including MSC therapy, chondrocyte therapy, immune cell therapy

(specifically CAR-T cell therapy for osteosarcoma), and iPSC

therapy. This comparison enables a comprehensive evaluation of

their effectiveness in promoting tissue regeneration, targeting

tumors, and achieving optimal therapeutic outcomes (Table 2).
3 Immune modulation in orthopedic
repair and regeneration

3.1 Balancing inflammation and
regeneration

The immune microenvironment plays a crucial role in bone and

cartilage repair and recovery following orthopedic tumor

treatments (86, 87). Effective healing requires a well-regulated

immune response to clear damaged cells and pathogens while

promoting tissue regeneration. Acute inflammation initiates

repair in the early stages of injury, but excessive or chronic

inflammation can hinder recovery, leading to cartilage

degradation, fibrosis, impaired bone healing, and delayed recovery

after tumor surgery (88). Achieving a balance between

inflammation and regeneration is critical in orthopedic conditions

like osteoarthritis, bone fractures, cartilage degeneration, and

tumor-related treatments. Key immune mediators, including

cytokines and immune cells, influence this balance. Pro-

inflammatory cytokines like TNF-a, IL-1b, and IL-6 are essential

for initiating repair but can exacerbate tissue damage if persistently

elevated (89). In contrast, anti-inflammatory cytokines such as IL-

10 and TGF-b resolve inflammation and support tissue healing by

promoting cell migration and differentiation. In orthopedic tumors,

regulatory T cells (Tregs) suppress excessive inflammation, creating

a regenerative microenvironment conducive to tissue healing after

surgery (90). Modulating the immune response is therefore a

promising strategy to enhance tissue repair and improve cell

therapy outcomes.
3.2 The role of TLR3 in immune
modulation

TLR3, a pattern recognition receptor, is critical for modulating

inflammation and repair (91). Expressed on immune cells,

chondrocytes, and synovial cells, TLR3 detects double-stranded

RNA from pathogens or tissue damage (92, 93). Its activation

triggers NF-kB and IRF3 signaling, leading to the production of

pro-inflammatory cytokines and type I interferons. Activating
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TLR3 selectively in MSCs enhances their regenerative properties,

improving integration and functionality in damaged tissues, thus

promote joint degeneration in osteoarthritis (34).While TLR3-

induced inflammation supports innate immunity, it also impacts

tissue homeostasis and repair. In orthopedic diseases, TLR3

signaling plays a dual role. It contributes to osteoarthritis by

promoting pro-inflammatory cytokine production, exacerbating

cartilage degradation and inflammation. Targeting TLR3 by

alleviate osteoarthritis (19). However, TLR3 also enhances the

regenerative potential of MSCs, improving their migration and

differentiation. Preconditioning MSCs with TLR3 agonists boosts

chondrogenic differentiation and migration, which enhances

cartilage repair. This dual role makes TLR3 an attractive target

for therapeutic modulation.
4 Challenges and potential strategies
of cell therapy for orthopedic diseases

Key challenges in cell therapy for orthopedic diseases include

improving cell survival, enhancing engraftment within damaged

tissues, and mitigating immunological and inflammatory responses

that impair tissue repair, particularly in the complex tumor

microenvironment of orthopedic cancers (94). Additionally, the

lack of standardized protocols for cell production, expansion, and

administration poses significant hurdles to ensuring consistency

and reproducibility. Variability in cell sources, techniques, and

delivery methods further complicates the translation of these

therapies into clinical practice. Regulatory barriers remain

another obstacle, with approval processes for cell-based therapies
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being both time-consuming and demanding due to stringent

safety and efficacy requirements. To address these challenges,

emerging technologies such as advanced biomaterials,

nanocarriers, and bioengineering tools are being explored.

Biomaterials like 3D-printed scaffolds, injectable hydrogels, and

electrospun fibers provide mechanical support for transplanted

cells while mimicking the natural extracellular matrix to promote

cellular adhesion, proliferation, and differentiation (95–97).

Nanotechnology further supports cell therapy by enabling

targeted delivery of therapeutic agents or enhancing the

bioactivity of transplanted cells. Nanoparticles and nanofibers

encapsulate and deliver drugs, genes, or signaling molecules

directly to the injury site, reducing off-target effects and

improving therapeutic outcomes (98). For example, nanocarriers

loaded with anti-inflammatory cytokines or immunosuppressive

agents modulate the immune response to improve engraftment and

tissue repair in inflammatory environments (99). Furthermore,

preconditioning strategies are also emerging as a solution to

improve cell survival and functionality. Exposing cells to hypoxic

conditions, pro-inflammatory cytokines, or specific signaling

molecules prior to transplantation can enhance their resilience in

hostile microenvironments and increase their regenerative potential

(100). Moreover, genetic engineering of cells, such as modifying

MSCs to express anti-apoptotic or pro-regenerative factors, is being

explored to further boost their therapeutic efficacy. Successful

regenerative therapy for articular cartilage must achieve specific

cellular and morphological characteristics, including the restoration

of a well-organized cartilage structure, proper integration with

subchondral bone, and the formation of extracellular matrix

(ECM) components like collagen type II and proteoglycans. These
TABLE 2 Comparison of different cell therapies in orthopedic diseases.

Aspect
Mesenchymal stem

cell therapy
Chondrocyte therapy Immune cell therapy

Induced pluripotent
stem cell therapy

Source of cells
Bone marrow, adipose tissue,
umbilical cord, etc.

Cartilage tissue (autologous
or allogenic)

Immune cells (e.g., T
cells, macrophages)

Patient-derived somatic cells
reprogrammed into iPSCs

Differentiation
potential

Multipotent, can differentiate into
cartilage, bone, or adipose tissue

Already differentiated
as chondrocytes

No differentiation; directly target
immune modulation

Pluripotent, can differentiate into
any cell type,
including chondrocytes

Primary
mechanism

Regeneration and repair through
differentiation and
paracrine signaling

Directly regenerate
cartilage tissue

Modulate inflammation and
promote repair

Generate functional cells
for transplantation

Target diseases
Osteoarthritis, bone defects,
cartilage injuries

Cartilage injuries,
osteochondral defects

Autoimmune-related orthopedic
diseases, inflammation-
associated injuries

Osteoarthritis, cartilage and
bone regeneration

Clinical use
Widely studied, some therapies in
clinical trials or approved

Established in clinical use
(e.g., ACI)

Emerging, limited to preclinical/
early trials

Experimental, primarily in
preclinical research

Advantages
Easy to harvest,
immunomodulatory properties, no
tumorigenesis risk

Highly specific to cartilage
repair, clinically
established methods

Targets immune-driven inflammation
and TME modulation

High differentiation potential, can
generate unlimited cell supply

Challenges
Limited differentiation efficiency,
poor survival in
hostile environments

Limited proliferation potential,
donor site morbidity

High cost, off-target effects,
complex engineering

Tumorigenesis risk, high cost,
ethical concerns

Regulatory
status

Some approved therapies; others
under evaluation

Well-established
clinical guidelines

Preclinical and early-phase trials
Experimental, facing strict
regulatory scrutiny
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features are essential for the functionality and durability of the

regenerated cartilage in joint repair.
5 Conclusions and perspectives

In summary, cell-based therapies have made significant strides

in the treatment of orthopedic diseases, offering potential solutions

for conditions such as osteoarthritis, cartilage degeneration, bone

fractures , and orthopedic tumors l ike osteosarcoma,

chondrosarcoma, and Ewing sarcoma. These therapies promote

tissue repair, restore function, and reduce inflammation, providing

a promising alternative to conventional treatments that primarily

manage symptoms. MSCs, chondrocyte transplantation, and

engineered immune cell therapies have shown great potential in

preclinical studies and early clinical trials. Despite these

advancements, several challenges remain in translating these

therapies into widespread clinical use.

Looking forward, a multi-faceted approach combining

advanced cell therapies with immune modulation, molecular

targeting, and emerging technologies is essential to improving

clinical outcomes in orthopedic diseases and tumors. However,

several unresolved questions remain that need to be addressed in

future research:
Fron
1. How can we improve cell survival after transplantation?

Ensuring the survival and function of transplanted cells,

especially in hostile environments like the tumor

microenvironment, is challenging.

2. How can we balance inflammation and regeneration?

Inflammation is crucial for repair but excessive immune

responses hinder regeneration.

3. How can we scale up cell therapies for clinical use?

Standardized protocols for producing and administering

cell therapies are lacking.

4. What molecular pathways can enhance regeneration?

Pathways like TLR3 are linked to inflammation and

repair, but their roles are not fully understood.
In conclusion, while cell-based therapies hold immense promise

for the treatment of orthopedic diseases and tumors, overcoming

the remaining challenges will require a multidisciplinary approach.

The integration of immune modulation, advanced technologies,

and a deeper understanding of molecular pathways will be key to

enhancing the efficacy of these therapies and achieving better
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clinical outcomes. The future of orthopedic disease and tumor

treatment will likely involve a personalized, tailored approach,

combining the best of cell therapy, immune modulation, and

emerging technologies to provide optimal solutions for patients.
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