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Identification of disulfidptosis in
esophageal squamous cell
carcinoma based on single-cell
and bulk RNA-seq data to
predict prognosis and
treatment response
Xiaodan Zhang1,2†, Jianting Du1,2†, Xiao Lin1,2†, Shuliang Zhang1,2,
Taidui Zeng1,2, Maohui Chen1,2, Guanglei Huang1,2,
Chun Chen1,2* and Bin Zheng1,2*

1Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China,
2Key Laboratory of Cardio-Thoracic Surgery(Fujian Medical University), Fujian Province University,
Fuzhou, Fujian, China
Purpose: Our study aims to identify the molecular subtypes of genes associated

with disulfidptosis in esophageal squamous cell carcinoma(ESCC), develop a

prognostic model, and identify potential therapeutic targets.

Methods: Based on the GSE53625 expression profile data, we identified

molecular subtypes with significant survival differences through consensus

cluster analysis. Subsequently, univariate Cox, multivariate Cox, and LASSO-

Cox regression analysis were used to establish risk stratification models. The

transcriptome data of the TCGA-ESCC cohort and the GSE160269 single-cell

sequencing dataset were integrated to verify the biological significance of the

model, and further analyze the heterogeneity of the tumor immune

microenvironment, explore the differences in the intercellular communication

network, and screen potential targeted drugs, providing a theoretical basis for

subsequent translational research.

Results: We identified two distinct patterns of disulfidptosis expression with

significant differences in overall survival. Then, we constructed the prognostic

signature of disulfidptosis, and results showed patients with high score had worse

prognosis. Univariate and multivariate Cox analysis demonstrated that the

constructed prognostic signature was an independent prognostic factor and

was validated in an independent validation set. The two subgroups differed in the

proportion of immune cell infiltration and related signaling pathways in ESCC.

The exploration of immunotherapy data confirmed our prognostic signature also
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had certain predictive power for immunotherapy. Drug screening suggested

AZD8186 and JQ1 as potential therapies for high-score patients.

Conclusion: This study provides a new prognostic signature for ESCC, explores

new therapeutic targets, and provides new theoretical support for

personalized treatment.
KEYWORDS

disulfidptosis, esophageal squamous cell carcinoma, prognostic analysis, single-cell
transcriptomic analysis, therapeutic strategy
Introduction

Esophageal cancer (EC) is one of the world’s deadliest cancers,

consisting primarily of esophageal squamous cell carcinoma

(ESCC) and esophageal adenocarcinoma (1). Among them, ESCC

is a highly lethal cancer in the esophagus, primarily concentrated in

Asia and Africa (2, 3). Currently, the primary clinical treatments for

ESCC are surgical resection, radiotherapy, and chemotherapy.

However, most patients are already in the middle to late stage

when detected because the early symptoms of ESCC are not

obvious, leading to unsatisfactory treatment outcomes (4).

Additionally, one of the core features of cancer is the ability to

escape cell death, posing a great challenge for oncology treatment

(5). Therefore, developing reliable and effective biomarkers and

guiding individualized and optimal treatment modalities for ESCC

patients is important.

Previous studies discovered that cancer cells can autonomously

alter the flux of various metabolic pathways to increase bioenergy

and biosynthetic demands and to mitigate the oxidative stress

required for cancer cell proliferation and survival (6). When the

metabolite accumulation exceeds the metabolic load of tumor cells,

excess oxidative stress is generated, resulting in cell death (7). A

recent study has identified a previously unexplained cell death

caused by the rapid accumulation of excess cystine intracellular

due to disulfide stress (8). This study discovered that in glucose-

deprived SLC7A11-high cancer cells, intracellular NADPH is
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rapidly depleted (8, 9). The massive accumulation of disulfide

molecules leads to abnormal disulfide bond cross-linking between

actin cytoskeletal proteins and cytoskeletal contraction, disrupting

their organization and resulting in actin network collapse and cell

death, possibly leading to a new form of cell death, namely

disulfidptosis (8, 10). Additionally, glucose transporter protein

inhibitors could effectively inhibit cellular glucose uptake, causing

NADPH depletion, actin cytoskeleton cross-linking, and

disulfidptosis in SLC7A11-high cancer cells (10, 11). In vivo

experiments on mice also demonstrated that GLUT inhibitors

significantly inhibited tumor growth and induced aberrant

disulfide cross-linking of actin cytoskeletal proteins in SLC7A11-

high (10). This finding promises to be a new area of tumor therapy,

but further research and exploration are needed to understand its

specific mechanisms and therapeutic applications.

Currently, the study of disulfidptosis is still in its infancy, but

relevant data are available to present its huge relationship with

tumor development, such as lung and bladder cancers (12, 13).

Similarly, we performed an analysis based on ESCC to explore the

disulfidptosis-related genes expressions in specific carcinomas,

resolve possible molecular linkages, and investigate potential

prognostic targets. Therefore, this study aims to identify the

molecular isoforms of disulfidptosis-related genes in ESCC in

public databases, resolve the regulation pattern of disulfidptosis in

ESCC, and construct a scoring model for disulfidptosis-related

genes. Single-cell RNA sequencing (scRNA-seq) and bulk RNA-

seq data were combined to explore the different tumor growth

patterns, clinical outcomes, immune microenvironment, and

cellular communication and predict new potential compounds to

provide new theoretical support for clinical decision-making.
Materials and methods

Data collection and preprocessing

We obtained the GSE53625 dataset (gene expression profiles

and clinical data) from the Gene Expression Omnibus (GEO). After

filtering, 179 tumor samples with complete expression and survival
frontiersin.org
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(overall survival [OS]) data were included as the training cohort.

The R package TCGAbiolinks was used to download FPKM

expression profiles (for log transformation), survival data, and

clinical data from the TCGA-ESCA EC and kept 80 squamous

cancer samples with both expression and survival data for

validation. The expression profiles (UMI-count) of 60 squamous

cancer samples from the GSE160269 single-cell dataset were

selected for analysis in this project. A dataset of cutaneous

melanomas treated with anti-CTLA-4 was downloaded and used

to assess the predictive efficacy of signature in the immunotherapy

cohort (14). Interaction relationships of disulfidptosis-related genes

were obtained based on the Search Tool for the Retrieval of

Interacting Genes/Proteins (STRING) database (https://

www.string-db.org/), and Protein-Protein Interaction Networks

(PPI) were constructed based on the interactions (10).
Consensus unsupervised clustering

Based on the expression profile data of 10 disulfidptosis-related

genes, unsupervised cluster analysis was applied to identify different

expression patterns of disulfidptosis. The ConsensusClusterPlus

package was used for the operation, the distance used for

clustering was Pearson, the clustering method was Pam, and 1000

replications were performed to ensure the stability of the

classification. The R packages survminer and survival were used

to generate survival curves for prognostic analysis using the Kaplan-

Meier method. The log-rank test was used to determine the

significance of differences and resolve the correlation between

samples with different expression patterns and OS. Additionally,

the R package limma was used to identify differentially expressed

genes between different subgroups. We identified differentially

expressed genes with |log2FC| ≥ 0.585 (fold change ≥1.5) and

FDR < 0.05.
Constructing a prognostic signature

The hazard ratio (HR) and prognostic significance of differential

genes and screened genes with p < 0.05 as prognostic correlates were

determined using univariate Cox regression analysis.

We applied LASSO regression (glmnet R package) to select key

prognostic genes. The risk score was calculated by summing the

product of each gene’s expression level (exp) and its LASSO

coefficient (coef): Score = Sexp*coef. The samples were divided

into high and low groups according to the score. We generated

Kaplan-Meier survival curves to compare patient outcomes. The

significance of the differences was determined using the log-rank

test to further resolve the correlation between these two types of

samples and OS. The predictions of the scoring system on scoring

were evaluated using the receiver operating characteristic curve

(ROC), and the area under the curve (AUC) was visualized using

the R package timeROC. Moreover, univariate and multivariate Cox

analysis were performed to explore the independent prognostic

value of the score.
Frontiers in Immunology 03
Gene set variation analysis and functional
enrichment

We performed Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analyses using the

clusterProfiler R package (parameters pvalueCutoff = 0.05,

pAdjustMethod = “BH”), and the R package GSVA was used to

perform genes differentially expressed in the two groups of samples

were screened using the difference multiplicity |log2FC| ≥ 0.585

(difference multiplicity great ne set variation analysis to annotate the

potential functions of key genes and predict their potential molecular

functions. Gene sets were downloaded from the Molecular Signatures

Database (MSigDB) for the HALLMARK, KEGG, and Gene Ontology

Biological Processes (GOBP) sublibraries and used to conduct

GSVA analysis.
Tumor immune microenvironment
assessment

The immune score, stromal score, and tumor purity were

calculated for each tumor sample using the ESTIMATE

algorithm. The Spearman correlation was calculated between

score and immune score, stromal score, and tumor purity.

According to previous studies, the single-sample gene-set

enrichment analysis (ssGSEA) algorithm was used to estimate the

relative abundance of each cell infiltrate in TME. The distribution of

immune cell infiltrates were compared between different grouped

samples using the Wilcoxon test.
Predicting drug sensitivity

Based on the Genomics of Drug Sensitivity in Cancer (GDSC)

(https://www.cancerrxgene.org/) and Chemical and Systems

Biology Program (CTRP) (https://portals.broadinstitute.org/ctrp/)

cancer genomics drug susceptibility databases, R package

oncoPredict’s calcPhenotype algorithm was used to evaluate the

drug IC50 values for each sample in the training set. The spearman

correlation was calculated between score and drug IC50 to assess the

correlation between drug sensitivity and signature. The difference

between drugs IC50 in high and low groups was compared.
Single-cell transcriptome data quality
control and identification of malignant
cells

After the original authors’ quality control, 60 ESCC samples were

analyzed from the GSE160269 dataset using the R package Seurat

(v4.1.0) and normalized using the NormalizeData function. The

FindVariableFeatures function was used to identify highly variable

genes based on their average expression values (greater than 0.1 and

less than 8) and dispersion (greater than 1) to identify highly variable

genes. Batch correction between samples was performed using the R
frontiersin.org
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package Harmony to avoid batch effects interfering with downstream

analysis. Then, the data were scale-transformed, principal component

analysis was used for dimensionality reduction, the top 50 principal

components were selected for downstream analysis, and the

RunUMAP function was used for visualization.

The cell type annotation information provided by the original

authors of the dataset was extracted. Among them, the malignant

epithelial cells were identified using the copykat method. The

CellScore was calculated using the AddModuleScore function of

the Seurat package based on the signature-containing genes.

Malignant epithelial cells were classified into high and low groups
Frontiers in Immunology 04
based on the median CellScore of malignant epithelial cells. Cell

stemness scores were calculated using the AddModuleScore

function and stemness gene sets from previously published studies.
Trajectory analysis and cellular
communication

The R package monocle2 was used for trajectory analysis, time

series analysis of malignant epithelial cells was proposed, and the R

package CellChat was used for cell-to-cell communication analysis.
FIGURE 1

Consensus clustering of disulfidptosis-related genes in ESCC samples (A) expression of disulfidptosis-related genes in normal and tumor samples;
(B) PPI of disulfidptosis-related genes; (C) consensus clustering of disulfidptosis-related genes, 1 and 2 represent two subgroups; (D) consensus
clustering CDF plot; (E) consensus clustering cumulative distribution function Delta area; (F) OS curves of two subgroups; (G) clinicopathological
characteristics and expression level heat plot of disulfidptosis-related genes in two subgroups. (ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001;
****, p < 0.0001).
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Statistical analysis

All analyses were performed using R version 4.1.2. For

significance analysis between various values (expression, infiltration

ratio, and various eigenvalues), the Wilcoxon rank sum test was used

to compare differences between two groups of samples, whereas the
Frontiers in Immunology 05
Kruskal-Wallis was used to compare differences between multiple

groups of samples. For plot presentation, ns indicates p > 0.05, *

indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001, and

**** indicates p < 0.0001. Survival curves were generated for the

prognostic analysis by the Kaplan-Meier method, and determined the

significance of differences using the log-rank test.
FIGURE 2

Molecular differences in disulfidptosis expression patterns (A) differential volcano plot; (B) differential gene expression heat plot; (C) functional
enrichment analysis of differential genes.
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Results

Consensus clustering identifies sample
subgroups

We compared their expression differences between normal and

tumor samples to assess whether the expression of disulfidptosis-

related genes affects tumor progression in ESCC. The results

revealed that six genes were significantly highly expressed in

tumor samples, whereas two genes were significantly low

(Figure 1A). NDUFS1 showed the highest connectivity in the
Frontiers in Immunology 06
protein interaction network (Figure 1B), suggesting its potential

as a hub gene regulating disulfidptosis.

We performed unsupervised cluster analysis using the R

package ConsensusClusterPlus based on 10 disulfidptosis-related

genes expression profiles of ESCC samples from the GSE53625

dataset. We identified two subgroups, named Cluster1 and Cluster2

(N = 85/94, Figures 1C–E). The Kaplan-Meier curves revealed that

the two subgroups had significantly different prognoses, with

Cluster1 having a worse OS (Figure 1F). We also compared the

clinicopathological characteristics of different subgroups of ESCC

using a heat plot. We discovered significant differences in the
FIGURE 3

signature construction and validation (A) forest plot of prognostic efficacy of top20 prognostic genes; (B) confidence interval of each Lambda of
LASSO regression; (C) change trajectory of LASSO regression independent variables, the horizontal coordinate indicates the logarithm of the
independent variable Lambda, and the vertical coordinate indicates the coefficient of the independent variable; (D) LASSO regression coefficient of
key prognostic genes; (E) Prognostic survival curves for high- and low- score groups in the training set; (F) ROC curves in the training set;
(G) Prognostic survival curves for high- and low- score groups in the validation set; (H) ROC curves in the validation set; (I) Independent prognosis
for high and low groups of risk scores in the training set; (J) Independent prognosis for high and low groups of risk scores in the validation set.
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distribution of esophageal carcinoma sites (locations) between

subgroups of patients (p < 0.05, Figure 1G).
Construction and validation of the
prognostic signature

We constructed a disulfidptosis signature for predicting the

prognosis of ESCC patients based on differential genes between the

disulfidptosis expression patterns. Initially, we screened 493

differentially expressed genes between the two disulfidptosis

expression patterns using the limma package (Figures 2A, B). GO

and KEGG enrichment analysis of these differentially expressed

genes using the clusterProfiler package. The KEGG results indicated

that these genes were primarily enriched in pathways related to

cytochrome P450, DNA adducts, reactive oxygen species (ROS),

suggesting potential associations with drug toxicity, drug resistance,

or metabolism of environmental carcinogens, involving

mechanisms of carcinogenesis driven by DNA damage or

oxidative stress. For the GO analysis: Biological Process (BP)

terms were predominantly linked to xenobiotic substance

metabolism and stress response, lipid metabolism and

inflammatory regulation. Molecular Function (MF) terms were

mainly associated with oxidation-reduction and detoxification

functions, monooxygenase and lipid metabolism, and heme

binding and oxygen metabolism. Cellular Component (CC) terms

were enriched in processes related to cornified envelope formation,

neural synapses, and regulation of cell polarity. (Figure 2C).

Next, the univariate Cox regression analysis exposed that 47 of

these differential genes were significantly associated with patient OS

in the GSE53625 esophageal squamous cancer cohort

(Supplementary Table 1), and the forest plot visualizes the Cox

regression analysis results of the 20 genes with the smallest p-values

(Figure 3A). Supplementary Figure 1 displays the KM curves of the

six genes with the smallest to the greatest P-values.

Furthermore, LASSO-Cox regression analysis was performed

based on these 47 genes. We performed 10-fold cross-validation

under optimal conditions to determine the model’s penalty

parameter (l), eliminating 19 key prognostic factors affecting

patient OS (Figures 3B–D). Based on the key prognostic factor

expression levels and the linear combination of the corresponding

weights, we construct the signature that can assess each patient’s

prognosis. Table 1 illustrates the coefficients of each factor.

We calculate the risk score for each patient in the training set

based on the constructed prognostic signature and divide them into

high- and low-risk groups based on the median value. KM curve

analysis and the log-rank test indicated that high-risk group

patients had significantly shorter OS (p-value < 0.05, Figures 3E).

The AUC for the predicted outcome of the sample was 0.712, 0.726,

and 0.756 at one, two, and three years respectively (Figures 3F),

indicating that the Score can provide a good characterization of

sample OS. Then, we explored the independence of prognostic

signature in the training set. Univariate and multivariate Cox

regression models were constructed based on prognostic signature

and clinical characteristics, and the results revealed that prognostic
Frontiers in Immunology 07
signature was an independent prognostic factor (HR = 2.31, p-value

< 0.05, Figure 3I).

We used TCGA-ESCC as an independent validation set to

assess the reliability of the prognostic signature. Patients were

divided into high- and low-risk groups according to the

prognostic signature risk score. Patient OS was also significantly

lower in the high-risk group than in the low-risk group (Figure 3G),

with predicted outcome AUCs of 0.649, 0.803, and 0.625 for the

validation set samples at one, two, and three years, respectively

(Figure 3H). Univariate and multivariate Cox regression models

were constructed based on prognostic signature and clinical

characteristics, and the results were consistent with the test set,

again supporting prognostic signature as an independent

prognostic factor (HR = 3.22, p-value < 0.05, Figure 3J).
Single-cell transcriptome analysis of
prognostic signature

The original authors of the dataset quality-controlled scRNA-

seq data of 192,078 cells (containing 20,335 B cells, 10,346

Endothelial, 44,547 Epithelial, 27,881 Fibroblast, 1,136

Fibroblastic reticular cells (FRC), 18,514 Myeloid, 3,023

Pericytes, and 66,296 T cell). Moreover, 17,986 genes were

detected. The PCA results presented a significant batch effect

between samples (Figure 4A), and the batch effect between
TABLE 1 Key factors and the corresponding coefficients.

signature coef

PLA2G3 -0.0408777770054639

TSPAN2 0.129552453050212

LDHD -0.0306569525078317

PAGE1 -0.0307708458875278

TMPRSS11E -0.0118258735625092

NKAIN2 -0.0169467967600925

PLA2G4A -0.111288936388811

PYROXD2 0.10341543327457

CNTN1 -0.0811084517504579

SPRR4 -0.012175650239528

TLDC2 -0.0530741811661962

ISL1 0.00907394814271503

PTGS2 -0.00337995214635402

DLK1 -0.0422476394195441

ATP8B3 -0.0505582772279708

COL22A1 0.0431952962889701

ABCA4 0.0977266256856891

FAM110C 0.0943087131900304

SLCO1B3 -0.0248740526803297
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samples was removed using Harmony (Figure 4B). UMAP

demonstrated the distribution of different cell types (Figure 4C),

and the proportion of cell distribution in each sample was

heterogeneous (Figure 4D).

We extracted epithelial cells identified by copykat as malignant

and with at least one model gene detected (N = 19159, such as at least

one model gene with expression greater than 0), calculated Stemness

and CellScore for each cell, and classified CellGroup into high and low

groups according to CellScore, using UMAP for presentation

(Figures 4F, J, M). Trajectory analysis of malignant epithelial cells

revealed three differentiation states (Figure 4E). State1 cells,

characterized by low stemness (Figures 4G, H), represented the least

aggressive phenotype. Tumor progression was associated with a

gradual shift from State1 to State2/3, marked by increased stemness

and loss of differentiation (Figure 4I). State1 → State2 and State1 →
Frontiers in Immunology 08
State3 trajectory routes have an increased CellScore (Figures 4K, L)

and an increased proportion of high in the CellGroup (Figure 4N),

indicating an increase in tumor malignancy.
Prognostic signature and immune
microenvironment

Based on the bulk sequencing data, we calculated the

pathway/biological process activities of KEGG and GOBP

using the GSVA algorithm. We compared the differences

between the activities of different groups using the rank sum

test. The results demonstrated that the immune-related

biological processes activities, such as T cell activation and T

cell-mediated tumor cell immune response, were significantly
FIGURE 4

CellScore of single cell sequencing data and trajectory analysis (A) PCA analysis; (B) cell distribution before and after batch effect; (C) cell type distribution; (D)
cell proportional distribution of samples. (E, G, I, K) trajectory distribution of State, Stemness, Pseudotime, CellScore; (F, J, M) UMAP plots of Stemness,
CellScore, CellGroup of UMAP plot; (H, L) violin distribution of Stemness, CellScore in different States; (N) proportional distribution of CellGroup in
different States.
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higher in the high-score group than in the low-score group.

High-score tumors exhibited stronger activation of pro-tumor

pathways, including p53 signaling, chemokine production, and

immune cell recruitment (Figure 5A).

Based on scRNA-seq data, we calculated differentially

characterized genes between high and low groups of CellGroup

and performed GO and KEGG enrichment analysis using

clusterProfiler. The results presented that genes were significantly

enriched in immune-related biological processes, such as regulation
Frontiers in Immunology 09
of T-cell activation and proliferation, and tumor progression-

related pathways, such as cell cycle, P53 signaling pathway, and

antigen processing and presentation (Figures 5B, C), consistent with

the results of bulk sequencing data.

Next, we analyzed the enrichment differences between high and

low groups using GSEA. The results disclosed that the high-risk

group was significantly enriched in immune-related pathways, such

as B-cell activation and lymphocytes, in both bulk and scRNA-seq

data (Figures 5D, E).
FIGURE 5

Functional enrichment analysis of different groups (A) GOBP and KEGG pathway enrichment analysis of bulk sequencing data; (B,C) GOBP and KEGG
pathway enrichment analysis of scRNA sequencing data; (D, E) GSEA analysis of bulk and scRNA sequencing data. (*, p < 0.05; **, p < 0.01; ***, p <
0.001; ****, p < 0.0001).
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We calculated the percentage of immune cell infiltration in each

tumor sample using the bulk sequencing data. The results revealed

that the score of prognostic signature was significantly positively

correlated with a stromal score, immune score, and ESTIMATE

score, and significantly negatively correlated with tumor purity

(Figure 6A). The percentage of infiltrated cells, such as Natural

killer cells, Type1 T helper cells, and regulatory T cells (Tregs), was

significantly lower in the Low group samples than in the High

group (Figure 6B).
Differences in specific cellular
communication between high-and low-
prognostic signature score groups

Next, we performed intercellular communication analysis using

the CellChat package, with extensive cellular communication

among the cell populations (Figures 7A, B). When distinguishing

between incoming and outgoing signaling, Malignant Epithelial

Cells, Non-Malignant Epithelial Cells, Pericytes, Low neoplastic,

Endothelial, and FRC are outgoing signaling dominant senders,

while B cell, T cell, Fibroblast, High neoplastic, and Myeloid are

incoming signaling dominant receivers (Figure 7C). Low and high
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neoplastic are in multiple tumor malignant progression-related

pathways such as MIF, ITGB2, and FN1 with different cells for

messaging (Figures 7D–F).
Potential treatment strategies for
prognostic signature

We explored the predictive efficacy of prognostic signature on

sample prognosis in the immunotherapy cohort (14). We

discovered that patients with the same low score in the

immunotherapy cohort had a better prognosis (Figure 8A).

However, there was no significant difference in risk scores among

patients in the immunotherapy with/without response group

(Figure 8B), nor was there a significant difference in the

proportion of samples responding to immunotherapy with/

without immunotherapy in the different risk groups (Figure 8C).

We predicted the IC50 values of the drugs in the training set

sample using the R package oncoPredict, GDSC, and CTRP database

drug information combined with the expression profile of the

training set. We compared the spearman correlation between the

score and the IC50 of each drug, ranked the drugs according to the

absolute value of the correlation coefficient from the largest to the
FIGURE 6

Immune landscape of different groups (A) correlation of immune stroma score and tumor purity with the score of prognostic signature; (B) distribution
of the proportion of immune cell infiltration in different groups. (ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001).
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smallest, and selected the top six drugs with significant positive and

negative correlations, respectively (Figures 8D, F, H, J, p < 0.05), with

significant differences in drug IC50 across Score groupings

(Figures 8E, G, I, K).
Discussion

Recent studies have demonstrated that cells with high SLC7A11

expression exhibit increased susceptibility to cell death under glucose

deprivation. This vulnerability primarily stems from reduced glycolysis

under glucose-deficient conditions, leading to insufficient NADPH

production. Without adequate NADPH, cystine cannot be reduced

to cysteine, resulting in disulfide accumulation and subsequent

disulfide stress. The accumulated disulfides interact with the actin

cytoskeleton, where cross-linking between actin and cytoskeletal

proteins disrupts actin architecture, ultimately triggering cell death

(15, 16). Termed “disulfidptosis,” this process has been progressively

recognized as a form of metabolic cell death, joining ferroptosis and

cuprotosis as novel paradigms targeting tumor metabolic

vulnerabilities (17–20). While these findings establish fundamental
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mechanisms of disulfidptosis in solid tumors, its regulatory networks

and clinical translation potential in specific malignancies such as ESCC

remain underexplored. In this study, we analyzed disulfidptosis-related

gene expression differences in ESCC samples from public databases.

Unsupervised clustering analysis revealed that higher risk scores were

significantly associated with poorer prognosis. To investigate

prognostic disparities between high- and low-risk patients, we

performed differential gene expression analysis, followed by

enrichment analysis, immune infiltration profiling, and drug

sensitivithe mechanistic framework of disulfidptosisy evaluation of

identified differentially expressed gsurvival curves for prognostic

analysis were generated using the Kaplan-Meier methodenes.

ESCC is highly heterogeneous, leading to different clinical

outcomes and treatment sensitivity (21). To address this issue, we

enriched and analyzed the differential genes between the expression

patterns of disulfidptosis and wanted to develop a signature to

enable risk stratification and personalized treatment prediction. The

findings suggest that tumor progression-related pathways such as

DNA adducts, ROS, and lipid metabolism may contribute to

prognostic differences in ESCC. The rapid proliferation and

metabolic dysregulation of ESCC cells lead to excessive ROS
FIGURE 7

Cellular communication (A) all network diagram; (B) signaling dominant statistical heat plot; (C) signaling dominant statistical point diagram; (D, E, F)
network of signaling pathways.
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generation, posing a significant threat to cellular survival. To

counteract this damage, cells produce glutathione to scavenge

excess ROS (22, 23). Furthermore, ROS can oxidize DNA to form

adducts, activate DNA damage repair mechanisms, deplete NAD+

reserves, and exacerbate energy crises, indirectly promoting

disulfide accumulation (24, 25). Cytochrome P450 enzyme-

mediated metabolism of procarcinogens generates DNA adducts

while potentially exacerbating reductive stress through NADPH

consumption, thereby accelerating disulfide accumulation (26, 27).

These signaling pathways are closely associated with the mechanism

of disulfidptosis, also indirectly demonstrating that disulfidptosis is

a form of cell death induced by disulfide accumulation resulting

from cellular metabolic abnormalities.

Tumormicroenvironment heterogeneity represents a critical factor

in ESCC chemoradiotherapy resistance (18). Our study identified

significantly enhanced activity of immune-related BP and tumor

progression signaling pathways in the high-risk group, along with

substantial differences in immune cell infiltration proportions,

including natural killer cells, Th1 cells, and Tregs. Notably, IFN-g
secreted by CD8+ T cells was found to suppress the expression of

disulfidptosis-related genes SLC3A2 and SLC7A11—two subunits of

the cystine transport system (28, 29). This suggests that the anti-tumor

effects of disulfidptosis may involve immunomodulatory mechanisms,

potentially through CD8+ T cell functional inhibition or SLC3A2/

SLC7A11-mediated cystine metabolism regulation impacting immune

escape in ESCC. Importantly, analysis of immunotherapy cohorts

confirmed enhanced treatment responsiveness in low-risk patients,

indicating the prognostic model’s utility in identifying potential

immunotherapy beneficiaries. However, the lack of significant

correlation between risk scores and objective response rates to

immune checkpoint inhibitors implies that this signature primarily

reflects global TME characteristics (e.g., immunosuppressive status or

metabolic stress levels) rather than directly influencing antigen

presentation efficiency. This observation aligns with features of

SLC7A11-high tumors, where previous studies have shown that

SLC7A11 overexpression enhances tumor antioxidant capacity

through GSH synthesis, fostering an immunosuppressive

microenvironment (30, 31).

Targeted therapy, as a new therapeutic method, plays an important

role in the treatment of ESCC (32), such as targeting the metabolic

vulnerability of SLC7A11-high cancer cells, glucose transporter type 1

biosynthesis, and glutathione induces NADPH dissipation, significant

disulfide molecules accumulation, such as cysteine, and ROS

accumulation, thereby inhibiting tumor growth and spread (33, 34).

Using the oncoPredict algorithm, we identified significantly correlated

IC50 values for therapeutic agents. Notably, AZD8186 and JQ1

exhibited lower IC50 values and stronger cytotoxic effects in high-

score tumors, suggesting synergistic interactions between their targeted

pathways (PI3K, BET) and score-characterizedmetabolic vulnerabilities

(35, 36). Conversely, high-score ESCC cells demonstrated significant

resistance to EGFR inhibitors (e.g., Gefitinib) and BTK inhibitors (e.g.,

Ibrutinib), potentially mediated through compensatory EGFR pathway

activation or drug efflux pump upregulation. While previous studies in

bladder, lung, and breast cancers have validated associations between

disulfidptosis-related models and chemotherapeutic sensitivity (12, 13,
FIGURE 8

Prognostic signature predicts drug sensitivity (A) KM survival curves in
different score groups; (B) Score distribution in different response
groups; (C) Distribution of immunotherapy response in different score
groups; (D, E) Sensitivity analysis of Top 6 drugs with positive
correlation with prognostic scores in the GDSC database; (F, G)
Sensitivity analysis of Top 6 drugs with negative correlation with
prognostic scores in the GDSC database; (H, I) Sensitivity analysis of
Top 6 drugs with positive correlation with prognostic scores in the
CTRP database; (J, K) Sensitivity analysis of Top 6 drugs with negative
correlation with prognostic scores in the CTRP database. (HR, Hazard
Ratio; CI, Confidence Interval; ***, p < 0.001; ****, p < 0.0001).
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37), this work establishes the first disulfidptosis-associated drug

prediction framework for ESCC, providing a basis for personalized

therapeutic strategies.

While mechanistic understanding of disulfideptosis continues to

advance, the disease-specific regulatory networks in ESCC remain to

be fully elucidated. Real-time dynamic monitoring of metabolic

biomarkers including glutathione and ROS is crucial for addressing

adaptive therapeutic resistance. Furthermore, the observed

dissociation between our risk stratification model and

immunotherapy outcomes implies the existence of additional

regulatory factors modulating the disulfideptosis-immune crosstalk,

which necessitates multi-omics integration for accurate predictive

modeling. Finally, computationally identified drug candidates such as

AZD8186 and JQ1 require rigorous experimental validation to

confirm their therapeutic potential. Future investigations should

incorporate systematic approaches combining in vivo and in vitro

experiments to decipher the precise regulatory architecture of

disulfideptosis in ESCC. Prospective clinical trials should be

implemented to systematically evaluate the therapeutic efficacy of

targeted strategies such as SLC7A11/GLUT1 inhibitors, while

concurrently advancing the development of enhanced multi-omics-

integrated prognostic frameworks.
Conclusions

This study provides a new prognostic signature based on

disulfidptosis for ESCC, which can be used as an effective tool for

predicting prognosis. We analyzed the prognostic indicators of

ESCC and explored different tumor growth patterns, immune

microenvironments, cell communication, and drug therapy,

providing new theoretical support for clinical decision-making.
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