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The role of monocytes and
macrophages in idiopathic
inflammatory myopathies:
insights into pathogenesis and
potential targets
Shinji Izuka1, Toshihiko Komai1*, Yumi Tsuchida1,
Haruka Tsuchiya1, Tomohisa Okamura1,2 and Keishi Fujio1*

1Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo,
Tokyo, Japan, 2Department of Functional Genomics and Immunological Diseases, Graduate School of
Medicine, The University of Tokyo, Tokyo, Japan
Idiopathic inflammatory myopathies (IIMs) are heterogeneous autoimmune

disorders characterized by muscle inflammation, weakness, and extramuscular

manifestations such as interstitial lung disease, skin rash, arthritis, dysphagia,

myocarditis and other systemic organ involvement. Although T and B cells have

historically been central to the understanding of IIM immunopathology,

monocytes and their differentiated progenitor cells, macrophages, are

increasingly being recognized as critical mediators of both tissue damage and

repair. In subtypes such as dermatomyositis, immune-mediated necrotizing

myopathy and antisynthetase syndrome, macrophages infiltrate skeletal muscle

and other affected tissues, contributing to inflammation via production of pro-

inflammatory cytokines, chemokines, and reactive oxygen species. Dysregulated

interferon signaling, mitochondrial stress, and aberrant metabolic states in these

cells further perpetuate tissue injury in IIMs. Conversely, certain macrophage

subsets can support muscle fiber regeneration and dampen inflammation,

underscoring the dual roles these cells can play. Future research into the

heterogeneity of monocytes and macrophages, including single-cell

transcriptomic and metabolomic approaches, will help clarify disease

mechanisms, identify biomarkers of disease activity and prognosis, and guide

novel therapeutic strategies targeting these innate immune cells in IIM.
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Introduction

Idiopathic inflammatory myopathies (IIMs) represent a diverse

group of autoimmune diseases characterized by immune-mediated

damage to skeletal muscle. IIM subgroups include dermatomyositis

(DM), antisynthetase syndrome (ASyS), polymyositis (PM),

immune-mediated necrotizing myopathy (IMNM), and inclusion

body myositis, each of which exhibits distinct clinical and

pathological features (1). IIM manifestations extend beyond

muscle weakness, frequently involving skin rashes, arthritis/

arthralgia, interstitial lung disease (ILD), and cardiac

complications (1–3). While early research focused primarily on

the roles of T and B lymphocytes and dendritic cells, a growing body

of evidence highlights the crucial involvement of monocytes and

macrophages in the initiation, progression and resolution of muscle

inflammation in IIMs (4–7). Monocytes are recruited to affected

tissues where they can be activated, differentiating into various

forms of macrophages that contribute to tissue damage, modulate

the local inflammatory milieu and participate in repair mechanisms.

Given the increasing recognition of the roles of monocytes and

macrophages in IIM pathology, this review aims to delineate their

diverse functions, explore their contribution to disease mechanisms,

and discuss potential targeted therapeutic strategies.
Monocyte-to-macrophage
differentiation and polarization

The myeloid cell compartment, comprising monocytes,

macrophages, granulocytes and dendritic cells, serves not only as

the first line of immune defense but also plays a pivotal role in

mediating communication between innate and adaptive immunity

(8, 9). Traditional flow cytometry methods for classifying blood

monocytes have relied on the distinction among classical (CD14+

+CD16−), intermediate (CD14++CD16+), and non-classical

(CD14+CD16++) subsets (10). However, single-cell RNA

sequencing (scRNA-seq) has revolutionized our understanding of

monocyte heterogeneity, revealing a more complex and dynamic

picture of their subsets. This technology demonstrates a spectrum of

transcriptional states within these subsets, each characterized by

specific cytokine profiles, interferon (IFN) signatures, chemokine

receptor expression and metabolic activity (11, 12). This refined

understanding will be crucial for dissecting the specific roles of

different monocyte and macrophage populations in the

pathogenesis of IIMs.

While not all macrophages are derived from monocytes (13), in

the context of myositis, monocytes are recruited to affected muscle

tissues, where they differentiate into monocyte-derived

macrophages (14). Once within the muscle tissue, these

monocytes undergo further differentiation into functionally

plastic macrophages, exhibiting a wide range of activation states

(15). Macrophages are traditionally categorized as M1-like (pro-

inflammatory) or M2-like (anti-inflammatory and tissue-repairing)

subsets; however, in vivo macrophage phenotypes are considerably

more nuanced and context-dependent (16). Indeed, macrophages
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exhibit pro-inflammatory, pro-wound-healing, pro-fibrotic, anti-

inflammatory, anti-fibrotic, pro-resolving, and tissue-regenerating

properties, often with overlapping or sequential expression (16).

M1-like macrophages are often activated by IFN-g and bacterial

products via pathways including the IFN-g/Janus kinase (JAK)/

signal transducer and activator of transcription 1 (STAT1), Toll-like

receptor (TLR) activation of TIR domain-containing adaptor

inducing interferon-b/interferon regulatory factor 3 for IFN

secretion, and TLR/MyD88/NF-kB for cytokine secretion, and

these macrophages secrete inflammatory cytokines and

chemokines (e.g., tumor necrosis factor (TNF)-a, interleukins
(IL-1, IL-6), chemokines (e.g., C-C motif ligand (CCL)2/4, and C-

X-C motif chemokine ligand (CXCL)8/11), nitric oxide, and

reactive oxygen species (ROS) (15). These factors exacerbate local

inflammation and contribute to muscle fiber necrosis.

Macrophages also play a crucial role in resolving inflammation

by clearing cellular debris. M2-like macrophages, often induced by

IL-4 and IL-10 via the IL-4/IL-13/JAK1/JAK3/STAT6 and IL-10/

STAT3 pathways, respectively, secrete anti-inflammatory mediators

(e.g., IL-10) and the growth factors IGF-1 and transforming growth

factor b, which can both promote tissue repair and, in some

contexts, contribute to fibrosis (17). They may also promote

myogenic differentiation and facilitate muscle fiber regeneration.

However, the M1/M2 paradigm should be considered a spectrum,

with considerable plasticity in macrophage phenotypes influenced

by the local microenvironment (16). Understanding these diverse

macrophage phenotypes lays the groundwork for examining

changes in circulating monocyte subsets and their contribution to

the tissue-specific pathology of IIMs.
Circulating monocytes in myositis

Studies of circulating monocyte populations in IIMs have

revealed alterations in subset distribution and activation status.

Notably, in patients with active anti-melanoma differentiation-

associated protein 5 (MDA5) antibody-positive DM, the

proportion of circulating classical monocytes was increased

compared with healthy controls (18). Classical monocytes are

characterized by their production of S100 family proteins, leading

to pro-inflammatory responses (19, 20). Furthermore, monocyte

subsets in IIM, including classical monocytes, show elevated

expression of genes involved in neutrophil and monocyte

activation, such as S100A8, S100A9, S100A12, FCGR3B, and

CXCR2 (18). Similarly, mass cytometry of peripheral blood

mononuclear cells (PBMCs) revealed an increased proportion of

CD14+CD16-CD19-CD3- classical monocytes in IIM patients

compared with healthy controls (21). Furthermore, bulk RNA-seq

analysis of PBMCs from patients with IIMs, along with

deconvolution analysis using CIBERSORTx algorithm (22), also

indicates an increased proportion of monocytes compared to

healthy controls (23). In the study, flow cytometry analysis

further confirmed the increased proportions of classical and

intermediate monocyte subsets in IIM patients compared to

healthy controls. These changes in PBMC populations have been
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identified in patients with both anti-MDA5 antibody-positive DM

and anti-Jo-1 antibody-positive IIMs (23). Notably, scRNA-seq of

PBMCs detected IFI27-expressing CD14+ monocytes as a key

feature in patients with active DM positive for anti-MDA5

antibodies (24). Since IFI27 is an IFN-inducible gene, this finding

suggests that IFN signature and activated monocytes are

contributing to the pathogenesis of anti-MDA5 antibody-

positive DM.
Monocyte recruitment and chemokine
dynamics in myositis

In the pathogenesis of myositis, monocytes are actively

recruited from the circulation to inflamed muscle tissue. This

process is driven by intricate interplay among chemokines and

adhesion molecules (14). Notably, elevated levels of several

chemokines, including CCL2, CCL3, CCL4, CXCL8, CXCL9, and

CXCL10, have been identified within the muscle tissue of IIM

patients (25–31). These chemokines act as chemoattractants,

guiding monocytes and lymphocytes to the site of inflammation

(31). Specifically, CCL2, CCL3, CCL4, CXCL8, and CXCL10 levels

are also increased in the peripheral blood of patients with IIM

(28, 32, 33), suggesting their role in the systemic inflammatory

response simultaneously. Moreover, the serum CXCL8 level has

been identified as a predictive marker for rapidly progressing ILD

(RP-ILD) among patients with IIM-associated ILD (34). Similarly,

the serum CXCL10 level is correlated with the Cutaneous

Dermatomyositis Disease Area and Severity Index (CDASI) score

in patients with DM (35). Further emphasizing this connection, the

serum CXCL10 levels in anti-MDA5 antibody-positive DM patients

are markedly elevated at disease onset and decrease upon treatment

(36). This highlights the systemic nature of inflammation and the

involvement of chemokines in multi-organ manifestations of IIMs.

Interestingly, monocytes have been shown to produce CXCL10 in a

dose-dependent manner upon type I IFN stimulation in vivo (36).

This suggests a positive feedback loop wherein monocyte activation

and type I IFN signaling amplify inflammation. In addition,

increased levels of vascular adhesion molecules, such as vascular

cell adhesion molecule 1, are also observed in patients with DM,

particularly those who develop severe ILD (37). This increased

expression of adhesion molecules likely further facilitates the

migration of monocytes into the damaged organs.

Macrophage infiltration of muscle
tissue in myositis

Histopathological studies consistently reveal significant

infiltration of monocytes and macrophages within the muscle

tissue of IIM patients (1, 14). Macrophages are often found

distributed around the endomysium and perimysium in patients

with DM. However, the distribution of macrophages in affected

muscle can vary considerably depending on the IIM subtype and

specific autoantibody profile. For instance, muscle specimens from
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juvenile patients with anti-nuclear matrix protein (NXP) 2 and anti-

transcriptional intermediary factor (TIF) 1-g antibodies show

pronounced diffuse endomysial macrophage infiltration (38).

Conversely, muscle biopsies from anti-MDA5 antibody-positive

DM patients typically show only mild inflammatory cell

infiltration (38). However, biopsies of juvenile DM patients with

anti-Mi2 antibodies in one study tended to show greater necrosis or

perifascicular atrophy rather than purely diffuse macrophage

infiltration (39). These infiltrations mirrored those found in adult

DM; anti-NXP2, anti-TIF1-g, and anti-Mi2 antibody-positive DM

displayed similar CD68+ infiltration in both endomysial and

perimysial areas, while anti-MDA5-positive DM showed less

CD68+ cell infiltration (40) (Supplementary Figure S1). In

patients with ASyS (41) and IMNM (42), macrophages are

diffusely distributed within the endomysium. This implies that the

degree and pattern of macrophage infiltration reflect distinct

underlying pathogenic mechanisms in different IIM subtypes.

Once recruited to muscle tissues, macrophages contribute to

myophagocytosis, the process of engulfing damaged muscle fibers,

and release pro-inflammatory cytokines, including IL-1, IL-6, and

TNF (43). These actions amplify the inflammatory response and

directly contribute to muscle damage.

Our previous transcriptomic analysis revealed a strong

association between increased monocyte infiltration into muscle

tissue and muscle damage (6). By applying a deconvolution

algorithm to bulk RNA-seq data from muscle tissue of IIM

patients, we quantified the proportions of infiltrating immune cell

types. We found that the estimated proportions of CD16+ and

CD16- monocytes, as well as myeloid dendritic cells, are positively

correlated with serum creatine kinase and aldolase levels, further

reinforcing their involvement in muscle damage. Similarly, gene

modules associated with phagocytosis also exhibit a positive

correlation with these muscle enzymes. Supporting these findings,

histological analysis of muscle tissue from patients refractory to

standard immunosuppressive treatment for myositis revealed a

larger area occupied by CD68+ macrophages compared with

muscle tissue from patients who responded to treatment (44).

Additionally, a negative correlation was observed between the

manual muscle testing 8 score at baseline and the area occupied

by CD68+ cells before treatment. This suggests that the extent of

macrophage infiltration may be a predictive marker of disease

severity and treatment response.
Monocyte and macrophage
contributions to pulmonary
manifestations in myositis

While direct evidence of monocyte and/or macrophage

infiltration in lung tissues from IIM patients is limited, this is

largely because bronchoalveolar lavage fluid (BALF) and lung

biopsies are not necessary for clinical diagnosis and do not

substantially contribute to clinical decision-making. This is

especially true when radiological patterns of ILD are evident
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through imaging or serological markers such as myositis-specific

antibodies or myositis-associated antibodies are positive (45, 46).

Nonetheless, there is growing evidence suggesting that

macrophages likely play a significant role in the development of

IIM-associated ILD. One immunohistochemical analysis showed

that CD163+ macrophages were found to infiltrate the alveolar

spaces in the lungs of patients with DM-related ILD and were more

severe in the lungs of a non-surviving patient (47). The serum level

of soluble CD163, a type I transmembrane protein and a marker of

macrophage activation, is also elevated in DM and PM patients with

ILD compared to those without ILD, and it correlates with disease

activity (48). Additionally, recent scRNA-seq of BALF from patients

with DM revealed an upregulation of genes associated with IFN-

related pathways, including IFIT1 and CXCL10, within monocytes/

macrophages (49). Interestingly, a viral response signature,

characterized by MX1 expression, was detected not only in lung-

resident immune cells but also in circulating monocytes,

neutrophils, B cells, and plasma cells in the blood of DM patients.

This suggests a systemic immune response with a prominent

pulmonary component in these patients.

Several serum markers associated with macrophage activation

have been reported to predict prognosis in IIM-associated ILD.

Ferritin is described as a macrophage activation marker and is

introduced alongside other macrophage markers such as chitinase-

3-like protein 1, soluble CD206, galectin-9, and neopterin in the

context of anti-MDA5 antibody-positive DM (50–53). Although the

precise cellular origin of ferritin in this condition remains unclear,

the positive correlation between an increased percentage of HLA-

DRlow CD14+ monocytes and both serum ferritin and IL-6 levels

(54) suggests that these monocytes, in addition to macrophages,

may also be a source of ferritin (55). Moreover, macrophages recycle

iron from senescent erythrocytes, storing it intracellularly in

ferritin. In inflammatory states, an elevated level of hepcidin leads

to the degradation of ferroportin, causing macrophages to retain

more iron. This results in increased ferritin synthesis and release,

thus elevating the serum ferritin concentration. During macrophage

activation, pro-inflammatory cytokines (e.g., IL-1b, IL-6) and

hepcidin signals converge to upregulate ferritin expression (56).

Additionally, the heavy subunits of ferritin may also function as a

pro-inflammatory factor (57). While the ferritin level is linked to

disease progression, particularly in patients with RP-ILD, the serum

CXCL10 level has been reported to reflect the early treatment

response more effectively compared with the ferritin level (36). In

addition to ferritin, serum soluble CD206, a mannose receptor and

marker for M2 macrophages (58) is also elevated in anti-MDA5

antibody-positive DM-associated ILD (59) and in RP-ILD (60).

Furthermore, its serum level is correlated with a poor prognosis,

indicating a potential pathogenic role (61). Although M2

macrophages generally play an anti-inflammatory role, CD206+

lung macrophages in bleomycin-induced lung fibrosis in mice

contribute to lung fibrosis, suggesting a pathogenic fibrotic role in

IIM-ILD (62). Neopterin, primarily produced by activated

macrophages and monocytes stimulated with IFN-g, exhibits

higher serum levels in DM patients compared with healthy

controls (63). Anti-MDA5 antibody-positive DM patients exhibit
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the highest levels of serum neopterin, and a high serum neopterin

level was identified as an independent risk factor for mortality (63).

Additionally, the serum level of YKL-40, primarily secreted by

macrophages and neutrophils, has also been shown to predict the

occurrence of RP-ILD and to indicate a poor prognosis (64). These

findings underscore the complex interplay among macrophage

activation, IFN signaling, and ILD disease severity, though

interpretation should be approached with caution given the

plasticity and heterogeneity of macrophages.

Emerging evidence suggests that macrophage polarization is not

strictly binary (65), particularly in tissue-resident macrophages

such as alveolar macrophages (AM). Indeed, AM from

individuals in distinct tissue localization consistently express

features of both M1 (CD80, CD86, CD64) and M2 (CD206 and

CD163) polarized macrophages, and the CD206hiCD86hi AM

subset remains the dominant population even after in vivo

exposure to pneumococci or human immunodeficiency virus (66).

Additionally, M2macrophages can express CD86, an M1marker, in

response to TLR2 stimulation and exhibit a pro-inflammatory

phenotype, further demonstrating the phenotypic and functional

plasticity of macrophages. Moreover, macrophages exhibit

significant heterogeneity within the M2 spectrum, encompassing

distinct subsets (M2a, M2b, M2c, and M2d) with diverse roles in

wound healing, immunoregulation, and tissue remodeling (65, 67).

Given this complexity, the relationship between M2 macrophages

and M1 markers cannot be simply defined, and macrophage-

associated parameters must be interpreted within specific

biological contexts.
Macrophage infiltration of skin
in myositis

The histology of DM skin is characterized by perivascular

infiltrates of immune cells, including T cells and macrophages

(68). Immunohistochemical analysis of DM skin lesions

(specifically Gottron’s sign) in patients with anti-MDA5

antibody-positive DM revealed that the majority of CXCL10+

cells are also CD68+, indicating their monocyte/macrophage

lineage (36). Furthermore, in addition to the presence of MxA, a

protein specifically induced by type I IFN, CXCL10 is moderately to

strongly expressed in DM skin, primarily within the upper dermis

and epidermis (69). These skin areas also exhibit elevated numbers

of CXC-chemokine receptor 3 (CXCR3)+ T cells. This suggests a

potential mechanism wherein type I IFN-induced CXCL10

production by macrophages attracts T cells, contributing to the

characteristic skin rash in DM.

While IFN signatures in muscle tissue are reportedly enriched

in DM and, to a lesser extent, in ASyS (6, 70), studies employing

immunofluorescence and highly multiplexed imaging mass

cytometry showed that both ASyS and DM skin exhibit similarly

elevated type I IFN signaling. This is evidenced by elevated levels of

IFN-b and MxA compared with healthy controls (71). Interestingly,

macrophage subsets, specifically those positive for phosphorylated

stimulator of interferon genes (STING), display heightened
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production of pro-inflammatory mediators, such as TNF, IL-17,

and IFN-b, in skin involvement in ASyS relative to those in DM

(71). In contrast, the overall composition and activation of other

immune cell populations, including dendritic and T cells, are largely

similar between the two diseases. These findings demonstrate that

while both ASyS and DM skin share common features of type I IFN

activation, macrophages positive for phosphorylated STING may

play a distinct role in modulating inflammation and contributing to

the unique clinical features of cutaneous signs in ASyS.
Monocyte activation and
mitochondrial dysfunction in myositis

The activation of monocytes in IIMs is influenced by complex

interplay among factors such as galectin-9, IFN signaling, and

mitochondrial dysfunction. Galectin-9, a b-galactose-binding
protein secreted by vascular endothelial cells, promotes

angiogenesis (72). In particular, the serum galectin-9 level is

significantly increased in patients with anti-MDA5 antibody-

positive DM compared with healthy controls (73–75).

Furthermore, increased gene expression of galectin-9 is observed

in both the serum and lung tissues of patients who developed RP-

ILD (75). In vitro experiments confirmed that stimulation with

galectin-9 leads to increased secretion of CCL2 from lung

fibroblasts (75). Given that galectin-9 promotes differentiation

into M2-type macrophages (76), these findings suggest that

galectin-9 can stimulate monocyte/macrophage activity and

contribute to lung fibrosis especially in anti-MDA5 antibody-

positive DM. Interestingly, a positive correlation was observed

between galectin-9 and type I IFN-inducible genes, such as MX1

and IFIH1, at the mRNA level in PBMCs, suggesting a potential

synergistic or interconnected role of galectin-9 and type I IFN

signaling in fibrosis associated with anti-MDA5 antibody-positive

DM (75). This further emphasizes the intricate interplay of different

inflammatory mediators in IIM pathogenesis.

Lately, emerging evidence has also highlighted the contribution

of monocyte mitochondrial dysfunction to IIM pathology. In

juvenile dermatomyositis (JDM), mitochondrial abnormalities in

CD14+ monocytes, including the presence of “megamitochondria”

and enhanced oxidative phosphorylation, promote the production

of oxidized mitochondrial DNA (77). This oxidized mitochondrial

DNA can activate the cyclic GMP-AMP synthase/STING pathway,

driving further IFN production and muscle fiber damage.

Additionally, dysregulated expression of mitochondrial-associated

genes has been correlated with increased expression of IFN-

stimulated genes in JDM CD14+ monocytes, highlighting this

mechanistic link (77). Indeed, IFNs activate the transcription

factor STAT1, which in turn induces the expression of M1

markers, including CXCL9 and CXCL10, via the IFN-a/b
receptor (78, 79). These findings underscore the role of IFN

signaling in promoting pro-inflammatory macrophage activation.

Moreover, aberrant changes to mitochondrial morphology and

cellular metabolism are key features of mitochondrial stress,
Frontiers in Immunology 05
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increased ROS levels (15, 80, 81). These observations highlight

dysregulated mitochondrial dynamics and oxidative stress as critical

pathological features linking monocyte abnormalities to IIM

disease progression.
Crosstalk between monocytes/
macrophages, other immune cells,
and muscle fibers

Monocytes and macrophages do not function in isolation in

IIM; rather, they interact extensively with other immune cells,

including CD8+ cytotoxic T cells, CD4+ helper T cells, and B cells

(82). Activated macrophages initiate a cycle of inflammation by

releasing pro-inflammatory cytokines and chemokines. These

signals attract more immune cells, activate helper and cytotoxic T

cells, which leads to tissue damage, and stimulate further

macrophage activity. C-X3-C motif ligand 1 (CX3CL1), which is

highly expressed in inflamed endothelial cells induced by type I IFN

(83), plays a crucial role in attracting monocytes and T cells. An

elevated CX3CL1 level in patients with anti-MDA5 antibody-

positive DM shows a significant correlation with anti-MDA5

antibody titers (84). Notably, CX3CL1 can induce recruitment of

CX3CR1+ M2 macrophages in the lungs (83, 85), potentially

associated with lung fibrosis, suggesting complex interplay among

endothelial activation, monocyte recruitment, and tissue fibrosis. In

addition, dysregulation of regulatory T cells, which normally

regulate macrophage phagocytosis, can contribute to disease

development (86). These intricate cellular interactions might be

critical to the pathogenesis of muscle damage. Unlike in healthy

conditions, muscle fibers themselves can produce chemokines and

express MHC class I in IIMs (82, 87), resulting in dynamic interplay

in which both immune and muscle cells influence the other’s

phenotypes and activities. Furthermore, monocyte-derived

dendritic cells can facilitate myoblast proliferation and migration

while upregulating the expression of HLA-ABC, HLA-DR, VLA-5,

and VLA-6 in myoblasts (88). This further indicates that monocyte-

derived cells directly influence muscle regeneration and repair

processes in IIMs.
Therapeutic implications

A deeper understanding of the multifaceted roles of monocytes

and macrophages in IIM pathogenesis is paving the way for the

development of more targeted therapeutic strategies. However, the

current therapies targeting these cells in IIMs are not fully

optimized. The development of treatments that directly address

monocyte recruitment, modulate their activation, shift their

polarization states, or address the underlying mechanisms of their

aberrant activation (e.g., by addressing mitochondrial dysfunction

or aberrant type I IFN signaling) are active and important areas

of investigation.
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Effect of current standard therapies
for IIMs on monocyte/macrophages

Current standard of care treatments for IIM, including

glucocorticoids, methotrexate, azathioprine, calcineurin inhibitors,

cyclophosphamide and intravenous immunoglobulin (IVIg) (1, 89),

likely exert some of their therapeutic effects by modulating

monocyte and macrophage function, although the precise

mechanisms are not fully elucidated. Glucocorticoids can directly

and indirectly influence immune cell differentiation, exerting

distinct effects on monocytes versus mature macrophages. Indeed,

they alter a greater number of mRNAs in monocytes than in

differentiated macrophages (90) and can inhibit proinflammatory

mediators while enhancing anti-inflammatory factors, partly by

stimulating the adenosine receptor A3 to promote a shift toward

M2 macrophages (91, 92). In rheumatoid arthritis, glucocorticoids

similarly foster an anti-inflammatory macrophage phenotype,

suppress cytokine production, boost phagocytic capacity, and help

protect joint structures—partly via interactions with fibroblast-like

synoviocytes (93). These effects also facilitate clearance of apoptotic

cells, often through stromal cell interactions.

Classical immunosuppressants, while acting on a broad

spectrum of immune cells, also impact monocyte and

macrophage function through diverse mechanisms. Methotrexate

induces apoptosis in monocytes and promotes the transformation

of M1 macrophages into M2 macrophages through adenosine

signaling. The levels of adenosine increase in response to

methotrexate administration, binding to adenosine receptors on

monocytes (94). In bleomycin-induced pulmonary fibrosis mouse

models, tacrolimus inhibits JAK2/STAT3 signaling, reducing

profibrotic factor production by M2 macrophages and

modulating their polarization, suggesting a significant anti-fibrotic

effect through macrophage targeting (95). However, tacrolimus can

also promote M2-like polarization in monocytes/macrophages from

healthy volunteers and inhibit p38MAPK phosphorylation at higher

concentrations (96), indicating a complex and potentially

concentration-dependent effect on macrophage function.

Azathioprine’s metabolites, 6-MP and 6-T-GTP, dampen

macrophage-mediated inflammation. While this effect is largely

Rac1-independent, Rac1-mediated suppression of iNOS also

contributes (97). Cyclophosphamide reduces the production of

pro-inflammatory cytokines IL-1 and TNF by monocytes, acting

both directly on these cells and indirectly through effects on

lymphocytes and the hematopoietic system (98). Moreover, IVIg,

though its mechanisms of action are complex, inhibits IFN-g
signaling in macrophages by suppressing the Fc receptor FcgRIII
(99). Despite the ability of current immunosuppressants to reduce

inflammation and modulate macrophage activity, they are often

limited by side effects and may not fully resolve monocyte/

macrophage-driven pathology. This underscores the need for
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more targeted therapeutic strategies aimed at specifically

addressing the role of these cells in disease.
Targeting monocyte recruitment
and activation

Monocyte migration to inflamed tissues is a critical step in the

amplification of inflammatory responses. Strategies designed to

interfere with this process are of considerable interest. For instance,

antibodies targeting the chemokine receptor CCR2, which is crucial

for CCL2 (MCP-1)-mediated chemotaxis, have been explored as a

therapeutic approach. While anti-CCR2 antibodies did not

demonstrate substantial efficacy in rheumatoid arthritis trials (100),

their potential in the context of IIMs, in which CCL2 is often elevated,

deserves further consideration. Similarly, monoclonal antibodies

targeting granulocyte-macrophage colony-stimulating factor, a key

cytokine in monocyte and macrophage differentiation, are being

explored for their ability to inhibit macrophage proliferation and

activation (101). Although these antibodies are not currently under

investigation specifically for IIM treatment, they are in clinical trials

for treating other autoimmune conditions (e.g., rheumatoid arthritis,

psoriasis, and multiple sclerosis) (101).

The colony-stimulating factor 1 receptor (CSF-1R) plays a

crucial role in the survival, proliferation, differentiation,

recruitment, and function of mononuclear phagocytes, including

macrophages and monocytes (102). Therefore, monoclonal

antibodies targeting CSF-1R are being actively investigated as well

(103). A strategy to reduce monocyte and macrophage activation

and recruitment to inflamed tissues involves targeting oxidative

stress. In experimental autoimmune myositis models, increased

ROS and decreased NF-E2-related factor 2 (Nrf2) levels are

observed, and studies have shown that overexpressing Nrf2 in

experimental autoimmune myositis macrophages inhibits their

migration and reduces the levels of pro-inflammatory factors

while increasing antioxidative stress enzymes (104). Hence,

activating the Nrf2/antioxidant response element pathway can

promote the degradation of ROS and reduce the expression of

pro-inflammatory factors, thus potentially mitigating macrophage

infiltration and inflammation in IIMs.
Modulating macrophage polarization

The inherent plasticity of macrophages can allow a shift in their

activation from a pro-inflammatory M1-like phenotype toward a

reparative M2-like state. This concept is appealing, and several

approaches to achieve this shift are under evaluation (105–107).

However, as noted earlier, M2-like macrophages have also been

implicated in IIM pathogenesis, particularly in the context of
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fibrosis. Since M2-like macrophages may be recruited in response to

inflammation to aid in its resolution (108), it is important to

recognize that the M2 phenotype is not monolithic. Indeed, M2

macrophages are further classified into subsets with distinct

functions, including pro-fibrotic, immunomodulatory and anti-

inflammatory, and immunosuppressive and pro-fibrotic roles

(67). A shift toward anti-inflammatory and immunosuppressive

subtypes may have therapeutic potential in IIM.

Modulating signaling molecules such as peroxisome

proliferator-activated receptors (PPARs), particularly PPAR-g,
holds promise. PPAR-g expression is increased by IL-4 and is a

key regulator of inflammation and lipid metabolism, promoting an

alternatively activated macrophage phenotype (109, 110).
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Mesenchymal stem cell-derived exosomes represent another

avenue for modulating macrophage polarization. These vesicles

can transfer diverse molecules, including DNA, mRNA, and

proteins, to recipient cells, including macrophages, to promote

tissue repair and suppress inflammatory M1 cells (111, 112).

Additionally, exosomes derived from other cell types, such as

endothelial cells (e.g., containing miR-10a) and adipose tissue-

derived stem cells (e.g., carrying active STAT3, which induces

arginase-1 expression in macrophages), can also modulate

macrophage phenotypes (113, 114). As such, understanding

which exosomes promote a more reparative macrophage

phenotype is important for exploring mesenchymal stem cell-

derived exosome therapy for IIMs.
FIGURE 1

Involvement of monocytes and macrophages in IIMs. Monocytes from the bone marrow circulate in the blood (classical, intermediate, non-classical)
and are recruited to affected tissues, such as muscle, skin, and lung, by elevated chemokines and adhesion molecules. In tissues, monocytes
differentiate into pro-inflammatory (M1-like) macrophages or tissue-repairing (M2-like) macrophages under the influence of cytokines such as IFN-g,
IL-4, and IL-10. In the muscle, these macrophages contribute to phagocytosis and tissue damage, while in the lung, they are associated with
interstitial lung disease (ILD), marked by elevated levels of ferritin and other biomarkers. Type I IFN responses are observed in affected organs.
Potential therapeutic targets to address monocyte and macrophage involvement in IIMs include anti-CCR2, anti-GM-CSF, anti-CSF-1R, Nrf2
activators, PPAR-g agonists, mesenchymal stem cell-derived exosomes (MSC-Exos), JAK inhibitors, anifrolumab, and dazukibart.
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Targeting aberrant immune signaling
and cellular dysfunction

The complex interplay between dysregulated mitochondrial

function and heightened IFN signatures, especially in conditions

like DM and JDM (1, 77, 115–119), highlights opportunities for

intervention. Given that type I IFN signaling utilizes JAK1 and

tyrosine kinase 2 (TYK2) as signal transducers, JAK inhibitors—

some of which are already approved for rheumatoid arthritis (120)

—show potential by blocking IFN-a and IFN-g signaling,

particularly in monocytes, as well as in other immune cells (121).

Additionally, they promote the generation of monocyte-derived

macrophages with an anti-inflammatory transcriptional and

functional profile (122), thereby reducing the production of pro-

inflammatory cytokines and chemokines. Indeed, some reports

have shown the efficacy of JAK inhibitors, particularly in

managing anti-MDA5 antibody-positive DM (123–131). This may

stem from the robust type I IFN signature observed in anti-MDA5

antibody-positive DM. Furthermore, anifrolumab, a human

monoclonal antibody targeting the type I IFN receptor subunit 1,

which has been approved for SLE (132), is another potential

therapeutic option. In addition to its broader effects on IFN

signaling, anifrolumab has been shown to attenuate the

inflammatory response in models of myocardial ischemia/

reperfusion injury by reducing monocyte/macrophage

polarization toward the pro-inflammatory M1 phenotype and

decreasing their phagocytic activity (133). In fact, case reports

have shown rapid improvement of skin rashes in IIM patients

treated with anifrolumab (134, 135). Likewise, dazukibart, a

monoclonal antibody against IFN-b, also showed promising

results in a phase 2 trial for adult DM, especially for skin

manifestations (136).

While direct targeting of inflammatory cytokines, such as TNF-

a (137–142) and IL-6 (143, 144) is a therapeutic strategy being

explored for IIMs, the efficacy of these agents varies and, in some

cases, may cause harm (145–149). TNF-a inhibitors regulate the

polarization of inflammatory M1 macrophages while also

enhancing phagocytosis (150). Meanwhile, IL-6 inhibitors reduce

superoxide anion production by monocytes/macrophages and

upregulate PPAR-g expression in monocytes and monocyte-

derived macrophages, promoting a shift toward an anti-

inflammatory phenotype (151). Further research is needed to

identify and validate specific therapeutic targets, optimize drug

use, and establish efficacy in well-defined IIM patient populations

based on molecular data (152).
Discussion

Monocytes and macrophages drive tissue inflammation,

damage, and fibrosis in IIMs via complex interactions with

innate and adaptive immunity (Figure 1). Their infiltration

patterns differ according to subtype, reflecting distinct

immunopathological pathways. Mitochondrial dysfunction and

metabolic shifts regulate monocyte activation and cytokine
Frontiers in Immunology 08
production, complicating the traditional M1/M2 framework. In

addition to therapies targeting various molecules and emerging

technologies (153, 154), strategies are being developed to inhibit

macrophage activation, shift them toward anti-inflammatory

phenotypes, block key receptors (e.g., CSF-1R), or target their

released cytokines.

Further studies are needed to clarify how autoantibody profiles

and clinical phenotypes shape monocyte/macrophage phenotypes

and clinical outcomes. Moreover, a recent large-scale retrospective

cohort study revealed a higher risk of ischemic heart disease in PM

and DM (hazard ratio: 1.61 [1.15–2.25]) (155). Given that one cause

of atherosclerosis is the accumulation of cholesterol-laden

macrophages in the arterial wall and that atherosclerotic plaques

also contain monocytes (156), the increased risk of heart disease in

IIM may be explained by another pathogenic role of monocytes and

macrophages. The role of tissue-repairing macrophages in IIM

remains poorly understood (86), and local tissue factors like

hypoxia and muscle-derived signals also impact macrophage

polarization. Advanced profiling methods (scRNA-seq, spatial

transcriptomics) are vital for uncovering disease-specific subsets

(157). Therefore, a personalized approach targeting dysregulated

pathways of monocyte/macrophage biology in IIMs holds the

potential to transform patient care, enabling mechanism-based

therapies that balance inflammation, tissue repair, and fibrosis

more effectively.
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SUPPLEMENTARY FIGURE 1

Macrophage infiltration patterns in muscle across selected subtypes of IIM.

Macrophage infiltration in the perimysium and endomysium among different
dermatomyositis subtypes. TIF1-g- and Mi-2-positive patients demonstrate

the higher endomysial infiltration, whereas MDA5-positive patients show
comparatively lower macrophage infiltration in both perimysial and

endomysial areas. IIM, idiopathic inflammatory myopathies; MDA5,

melanoma differentiation-associated gene 5; TIF1-g, transcription
intermediary factor 1-g.
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