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Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease characterized

by progressive scarring, alveolar destruction, and limited therapeutic options.

Although the exact etiology of IPF remains unclear, emerging evidence suggests

that ferroptosis, an iron-dependent form of regulated cell death driven by lipid

peroxidation and oxidative stress, plays a significant role in its pathogenesis.

Ferroptotic stress not only compromises alveolar epithelial cell integrity, but also

triggers inflammatory responses and profibrotic signaling cascades that activate

and sustain fibroblast dysfunction. This review delineates the core regulatory

pathways of ferroptosis, iron metabolism, lipid peroxidation, antioxidant

defenses, mitochondrial remodeling, and RNA editing, with an emphasis on

their relevance in IPF. We explore how epithelial injury and macrophage-

derived signals initiate ferroptosis, and how fibroblast subsets, shaped by

scRNA-seq-defined heterogeneity and plasticity, respond to these cues by

reinforcing ECM deposition and oxidative stress. Therapeutic avenues targeting

ferroptosis, including antioxidant supplementation, iron chelation, and

modulation of lipid metabolism, are discussed alongside cell-specific

interventions and nanodelivery strategies. By integrating recent advances in

molecular profiling and ferroptosis biology, this review provides a framework

for leveraging ferroptosis as a tractable target in IPF and identifies novel

directions for precision antifibrotic therapy.
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1 Introduction

1.1 Overview of pulmonary fibrosis

Pulmonary fibrosis (PF) encompasses a group of chronic,

progressive lung diseases characterized by excessive extracellular

matrix (ECM) deposition, tissue remodeling, and loss of lung

elasticity. These pathological changes impair gas exchange and

ultimately lead to respiratory failure, with advanced cases often

necessitating lung transplantation (1). The development of PF

involves a complex interplay of genetic predisposition, environmental

exposures, and dysregulated tissue repair. Repeated alveolar epithelial

injury, unresolved inflammation, and aberrant fibroblast activation

drive progressive scarring, as activated fibroblasts secrete ECM

components that perpetuate fibrosis (2). Despite significant advances

in understanding the molecular mechanisms underlying PF, effective

treatment options remain limited, underscoring the need for

continued research.
1.2 Idiopathic pulmonary fibrosis

Idiopathic pulmonary fibrosis (IPF), the most severe and

common subtype of PF, affects approximately 25,000 new

individuals annually in the United States. Histologically,

IPF is defined by the usual interstitial pneumonia (UIP)

pattern, characterized by patchy fibrosis, fibroblastic foci, and

honeycombing (3). Unlike other interstitial lung diseases, IPF

follows a particularly aggressive clinical course, with a median

survival of only 3–5 years after diagnosis (4).Current antifibrotic

therapies, including pirfenidone and nintedanib, may slow disease

progression but fail to halt or reverse fibrosis, highlighting the

urgent need for more effective treatments (5).
1.3 Ferroptosis and IPF

Ferroptosis, a unique form of cell death derived by iron

overload and lipid peroxidation, has emerged as a critical

contributor to oxidative stress and chronic inflammation in IPF.

This process disrupts alveolar epithelial integrity, activating

profibrotic signaling pathways, including fibroblasts proliferation,

and ECM deposition—hallmarks of IPF pathogenesis (6). Unlike

apoptosis, ferroptosis is non-apoptotic and pro-inflammatory,

amplifying tissue injury and perpetuating fibrotic remodeling. As

such, targeting ferroptosis represents a promising therapeutic

strategy (7).

This review aims to synthesize emerging insights into the

mechanistic role of ferroptosis in IPF, with a particular focus on

how ferroptotic stress influences fibroblast responses, epithelial-

fibroblast crosstalk, and fibrotic progression. We highlight recent

findings on the cellular and molecular mechanisms driving

ferroptosis, its impact on tissue remodeling, and potential

therapeutic opportunities. By examining both epithelial and

stromal contributions to ferroptosis-driven pathology, we aim to
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provide a framework for identifying novel targets for disease

interception and treatment.
2 Ferroptosis: core mechanisms and
regulatory pathways

Ferroptosis is a distinct form of regulated cell death that differs

fundamentally from apoptosis, necroptosis, and pyroptosis. Unlike

these pathways, which involve caspase activation, membrane pore

formation, or DNA fragmentation, ferroptosis is driven by iron-

catalyzed lipid peroxidation and oxidative damage to cellular

membranes. Its regulation centers on four interconnected

processes: iron metabolism, polyunsaturated fatty acids (PUFA)

peroxidation, antioxidant defense failure, and mitochondrial

dysfunction (8).
2.1 Iron metabolism and ferroptosis

Iron is central to ferroptosis, as its redox activity catalyzes the

formation of reactive oxygen species (ROS) via Fenton reactions,

triggering cellular membranes damage and cell death (9). Cellular

iron homeostasis is maintained by tightly regulated pathways

involving iron import (e.g., transferrin receptor 1 [TfR1]), export

(e.g., ferroportin), and storage (e.g., ferritin) (10–12). Disruption of

this balance leads to labile iron accumulation, sensitizing cells to

ferroptosis (13).

A critical regulator of intracellular iron levels is ferritinophagy,

the selective autophagic degradation of ferritin mediated by nuclear

receptor coactivator 4 (NCOA4). This process releases stored iron

into the cytosol, increasing susceptibility to ferroptosis (14). Recent

studies have shown that enhanced ferritinophagy in stressed

alveolar epithelial cells contributes to iron overload and

ferroptotic injury in pulmonary fibrosis models (7).

In the context of IPF, elevated pulmonary iron levels and altered

expression of iron-handling proteins have been observed in patient

lungs, particularly in fibrotic regions (6). Experimental inhibition of

iron accumulation or ferritinophagy using deferoxamine or

NCOA4 knockdown attenuates epithelial cell death and collagen

deposition in bleomycin-induced fibrosis models, supporting the

pathogenic role of iron dysregulation in IPF (15).

Together, these findings underscore aberrant ion metabolism,

notably excessive import, ferritin degradation, and impaired export,

as a key initiator of ferroptosis in IPF and related fibrotic lung

diseases. Targeting these dynamics may attenuate the epithelial

damage and profibrotic microenvironment characteristic of IPF.
2.2 Lipid peroxidation and PUFA
susceptibility

Lipid peroxidation of polyunsaturated fatty acids (PUFAs),

particularly within phospholipid membranes, is a defining feature of

ferroptosis (16). This process is driven by the enzymatic and non-
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enzymatic oxidation of PUFA-containing phosphatidylethanolamines

(PUFA-PEs), such as those incorporating arachidonic acid (AA) and

adrenic acid (AdA). Among these, AdA-phosphatidylethanolamine

(AdA-PE) has emerged as a critical pro-ferroptotic lipid species, whose

oxidation initiates membrane damage and cell death.

Key enzymes regulate the synthesis and incorporation of PUFAs

into membrane phospholipids. Acyl-CoA synthetase long-chain

family member 4 (ACSL4) activates arachidonic acid (AA) and

adrenic acid (AdA) to form PUFA-CoAs, which are subsequently

esterified into phospholipids by Lysophosphatidylcholine

acyltransferase 3 (LPCAT3), yielding PUFA-PEs such as AdA-PE

(17, 18). These PUFA-PEs are highly prone to peroxidation,

especially under oxidative stress. Lipoxygenases (LOXs), such as

ALOX15, enzymatically oxidize these substrates, producing lipid

hydroperoxides (PE-OOH) that execute ferroptosis (19, 20).

In the setting of IPF, elevated ACSL4 and LOXs expression has

been documented in fibrotic lung tissue and alveolar epithelial cell,

correlating with enhanced lipid peroxidation and fibrotic

progression (21–23). Genetic or pharmacological inhibition of

ACSL4 or LOXs reduces lipid peroxidation, preserves epithelial

cell integrity, and mitigates fibrotic remodeling (21, 24, 25).

Furthermore, LPCAT3 deficiency confers partial resistance to

ferroptosis by reducing PUFA incorporation into membranes,

highlighting its potential as a regulatory checkpoint and

therapeutic target (26).

These findings underscore the significance of PUFA

metabolism and lipid peroxidation in ferroptosis execution and

IPF pathogenesis. Targeting these upstream processes may

attenuate ferroptotic epithelial damage and downstream

fibroblast activation.
2.3 Antioxidant defense

Oxidative lipid damage is a hallmark of ferroptosis,

counteracted by a network of antioxidant systems that preserve

membrane integrity and cell survival. Among these, the glutathione

peroxidase 4 (GPX4) pathway serves as the central defense

mechanism. GPX4 utilizes reduced glutathione (GSH) to

neutralize lipid hydroperoxides (PUFA-PE-OOH) into non-toxic

lipid alcohols, thereby preventing ferroptotic cell death (Figure 1)

(27). In IPF, both GPX4 activity and intracellular GSH levels are

significantly diminished in injured alveolar epithelial cells, linking

ferroptosis to epithelial dysfunction and fibrosis (28).

Beyond GPX4, alternative systems also protect cells from lipid

peroxidation. Ferroptosis suppressor protein 1 (FSP1) functions

independently of GSH/GPX4 by reducing coenzyme Q10 (CoQ10)

to its antioxidant form, CoQH2, which directly quenches lipid

radicals in the plasma membrane (29). Activation of FSP1 has

shown protective effects against ferroptosis in non-pulmonary

systems, and emerging data suggest that this axis may also

safeguard lung epithelium, though its role in IPF warrants further

exploration (30–35).
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Another key layer of defense is governed by the transcription

factor nuclear factor erythroid 2–related factor 2 (NRF2). Upon

oxidative stress, NRF2 translocates to the nucleus and induces

expression of genes involved in GSH synthesis (e.g., GCLC,

GCLM) (36), iron sequestration (e.g., FTH1), and detoxification

enzymes (37). In pulmonary fibrosis models, NRF2 deficiency

exacerbates lung injury and inflammation (38), while

pharmacological activation of NRF2 restores redox balance, limits

ferroptotic damage, and ameliorates fibrotic remodeling (37, 37).

Additionally, the GTP cyclohydrolase-1 (GCH1)/tetra

hydrobiopterin (BH4) axis has recently been identified as a novel

ferroptosis defense mechanism. GCH1 catalyzes the synthesis of

BH4, a potent radical-trapping antioxidant that also preserves

CoQ10 levels and stabilizes lipid membranes (39, 40). BH4

supplementation or GCH1 overexpression has been shown to

suppress ferroptosis in oxidative injury models and may represent

a therapeutic option for fibrotic lung conditions (39, 41).

Collectively, these antioxidant mechanisms—GPX4/GSH,

FSP1/CoQ10, NRF2 signaling, and GCH1/BH4—interact to

mitigate ferroptotic damage in epithelial cells. In the setting of

IPF, where these defenses are often compromised, restoring or

enhancing antioxidant capacity may not only protect alveolar

integrity but also interrupt the feedback loop of oxidative stress

and fibroblast activation that drives fibrosis.
2.4 Mitochondrial involvement and
metabolic rewriting

Mitochondria serve as key modulators of ferroptosis sensitivity

through their roles in reactive oxygen species (ROS) production,

metabolic flux, and the maintenance of iron–sulfur (Fe–S) clusters

(42). Under physiological conditions, mitochondrial respiration tightly

regulates ROS levels. However, in the fibrotic lung microenvironment,

persistent epithelial stress and mitochondrial dysfunction promote

excessive mitochondrial ROS (mtROS), which synergize with

cytosolic lipid peroxidation to drive ferroptotic cell death (43).

In IPF, alveolar epithelial cells exhibit disrupted mitochondrial

dynamics and defective oxidative phosphorylation, which contribute

to elevated mtROS production (44). These ROS not only damage

mitochondrial membranes but also amplify lipid peroxidation

cascades initiated in the cytoplasm, sensitizing cells to ferroptosis

(45). Targeting mtROS with agents such as MitoQ have been shown

to attenuate ferroptosis and fibrosis in preclinical models by restoring

mitochondrial function and reducing lipid ROS (46).

Additionally, mitochondria are crucial for the synthesis and

maintenance of Fe–S clusters, which are essential cofactors for

numerous redox enzymes. Loss of Fe–S cluster stability, often

observed under oxidative stress, leads to the release of free iron

into the mitochondrial matrix, exacerbating Fenton chemistry and

fueling ferroptosis (42). This mitochondrial iron dysregulation

creates a feed-forward loop of oxidative injury that accelerates

epithelial dysfunction and fibrosis.
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These findings highlight the pivotal role of mitochondrial

dysfunction in ferroptosis-driven fibrosis. Interventions aimed at

restoring mitochondrial health represent a promising strategy to

break the cycle of epithelial injury and fibrogenesis.
2.5 Potential biomarkers of ferroptosis

Translating ferroptosis from a mechanistic concept into a

clinical tool for IPF will require reliable, minimally invasive

biomarkers that reflect iron overload, lipid peroxidation, and

antioxidant failure in the lung.
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2.5.1 Lipid−peroxidation byproducts
Quantification of malondialdehyde (MDA) and 4−hydroxy

nonenal (4−HNE) in bronchoalveolar lavage fluid (BALF) or

exhaled breath condensate provides a direct readout of membrane

lipid damage (47). Elevated MDA and 4−HNE levels correlate

with disease severity and have been reported in fibrotic lung

models (48).
2.5.2 Enzymatic and protein markers
GPX4 activity or expression can be measured by ELISA or

immunohistochemistry on BALF cells or transbronchial biopsies;

reduced GPX4 is a hallmark of ferroptotic susceptibility (49).
FIGURE 1

Integration of ferroptosis pathways with fibrogenic signaling in idiopathic pulmonary fibrosis (IPF). This schematic outlines the molecular crosstalk
between ferroptosis and pro-fibrotic pathways in IPF. Iron uptake through transferrin receptor 1 (TfR1) and reduction by STEAP3 and DMT1 leads to
intracellular Fe²⁺ accumulation, which catalyzes ROS production via the Fenton reaction. Oxidative lipid metabolism mediated by lipoxygenases and
P450 oxidoreductase contributes to lipid peroxidation, a key step in ferroptosis. Glutathione (GSH) synthesis and GPX4 activity act as antioxidant
defenses against lipid peroxides, while ACSL4 facilitates the incorporation of polyunsaturated fatty acids (PUFAs) into membrane phospholipids,
increasing vulnerability to peroxidation. The figure also illustrates how ferroptosis intersects with the TGF-b/Smad and TLR4/NF-kB pathways—major
drivers of fibrosis. TGF-b signaling activates Smad2/3/4 complexes, leading to transcriptional induction of fibrosis-associated genes. Concurrently,
TLR4 signaling via MyD88 activates NF-kB, promoting the expression of pro-inflammatory cytokines. These pathways may be further amplified by
ferroptotic cell death and ROS, exacerbating tissue damage and fibrotic remodeling. miR-155-5p and other regulators are implicated in enhancing
ACSL4 expression, linking immune signaling to ferroptotic susceptibility. Together, this figure illustrates a feedforward loop between ferroptosis and
fibrogenesis in IPF.
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ACSL4 and LOX family members are often upregulated in IPF

lung tissue; their mRNA or protein levels may serve as positive

indicators of ongoing lipid remodeling and peroxidation (50).

2.5.3 Iron−handling molecules
Ferritin, transferrin saturation, and labile iron pool

measurements in serum or BALF reflect systemic and alveolar

iron loading (51).

NCOA4 expression in airway epithelial cells—assessed by qPCR

—may indicate enhanced ferritinophagy and intracellular iron

release (52).

2.5.4 Ferroptosis−related gene signatures
Transcriptomic analyses of IPF BALF have identified an eight

−gene ferroptosis signature (NRAS, EMP1, SLC40A1, MYC,

ANGPTL4, PRKCA, MUC1, GABARAPL1) that distinguishes IPF

patients from healthy controls and associates with prognosis. In

murine bleomycin models, 20 additional ferroptosis−linked genes

(e.g., ALOX15, CDO1, JUN, SLC2A1, GPX2) were differentially

expressed in fibrotic versus normal lung (53).

Taken together, these biomarkers capture complementary facets

of ferroptosis—upstream iron dysregulation, core lipid peroxidation

events, failed antioxidant defenses, and downstream gene

expression changes. Future efforts should standardize assay

techniques, validate candidate markers in large IPF cohorts, and

develop multi−analyte panels that maximize sensitivity and

specificity for early detection, patient stratification, and

monitoring of ferroptosis−targeted therapies.
3 Ferroptosis in the development of
IPF

3.1 Environmental and intrinsic triggers

Alveolar epithelial cells (AECs), particularly type II alveolar

epithelial cells (AECIIs), are central to the initiation and

progression of IPF due to their roles in maintaining alveolar

integrity, surfactant production, and epithelial regeneration (54–

56). A growing body of evidence indicates that these cells exhibit

heightened susceptibility to ferroptosis under stress conditions,

rendering them a critical cellular trigger for fibrotic remodeling in

the lung (57). In lungs of IPF patients, AECIIs often show impaired

antioxidant capacity and evidence of accumulated oxidative

damage, correlating with increased cell death and tissue injury

(58). Unlike fibroblasts or immune cells, AECIIs reside at the

frontline of the alveolar surface and are continually exposed to

environmental, mechanical, and metabolic stressors, which may

predispose them to lipid peroxidation and iron-dependent cell

death (56).

Multiple environmental and intrinsic factors converge to induce

ferroptosis in AECIIs, contributing to the initiation and progression

of IPF. Environmental insults such as airborne pollutants, cigarette

smoke, and occupational exposures (e.g., asbestos, silica) are well-

documented oxidative stress in the lung. These insults generate ROS
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that overwhelm cellular antioxidant defenses, promote lipid

peroxidation, and drive ferroptotic cell death in AECs (56, 58).

Additionally chronic or recurrent respiratory infections, such as

those caused by herpesviruses and bacterial colonization, can act as

exogenous triggers of epithelial stress and ferroptosis (59, 60).

Intrinsic factors, including aging and genetic predisposition,

further sensitize lung epithelial cells to ferroptosis (61). Age-

associated mitochondrial dysfunction, telomere shortening, and

impaired antioxidant responses all contribute to a ferroptosis-

permissive environment (62). Genetic mutations in surfactant

protein C (SFTPC) or telomerase components (TERT, TERC)

compromise proteostasis and telomere maintenance, increasing

epithelial susceptibility to oxidative damage and Ferroptosis

(63, 64).

These environmental and intrinsic triggers for ferroptosis are

also reported causes of IPF (65–68). Additionally, they may act in

concert with key fibrotic signaling pathways—notably the TGF-b/
Smad and TLR4/NF-kB axes—to drive chronic epithelial injury and

fibrotic remodeling.
3.2 TGF-b signaling pathway

TGF-b is a central mediator of fibrotic responses and remains

persistently activated in the lungs of patients with IPF (69). Its

activation is closely linked to both environmental and intrinsic

stimuli that disrupt cellular homeostasis and provoke oxidative

stress. Once activated, TGF-b binds to its receptor complex,

initiating phosphorylation of Smad2 and Smad3, which then form

a complex with Smad4 and translocate to the nucleus and regulate

gene transcription (70). In AECs, this cascade not only promotes

epithelial–mesenchymal transition (EMT) and cell cycle arrest, but

also contributes to a pro-ferroptotic intracellular environment.

Specifically, it upregulate pro-ferroptotic enzymes, such as

ACSL4, increases ROS production, and suppresses antioxidant

defense mechanisms—thereby facilitating lipid peroxidation and

ferroptotic cell death (Figure 1) (7, 71).

Beyond transcriptional regulation, TGF-b signaling modulates

ferroptosis through its interplay with microRNAs (miRNAs)—key

post-transcriptional regulators implicated in IPF pathogenesis (72).

TGF-b can both induce and be modulated by specific miRNAs,

forming a feedback network that shapes epithelial stress responses

(72, 73). For example, Kong et al. demonstrated that TGF-b/Smad4

signaling upregulates miR-155, which in turn promotes TGF-b-
induced epithelial–mesenchymal transition (EMT), tight junction

dissolution, and cell migration (74). In bleomycin-induced

pulmonary fibrosis models , inhibit ion of miR-155-5p

reduced expression of TGF-b1, IL-1b, and TNF-a, attenuating
inflammatory and fibrotic progression (Figure 1) (75). Given

miR-155’s reported role in enhancing oxidative stress and

mitochondrial dysfunction, its upregulation may also sensitize

epithelial cells to ferroptosis. More broadly, TGF-b-responsive
miRNAs may act as intermediaries that promote ferroptotic cell

death by suppressing ferroptosis-inhibitory targets (e.g., GPX4,

SLC7A11) or amplifying pro-oxidative signaling (76–78). Thus,
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miRNA dysregulation represents a layer of ferroptosis control

embedded within canonical TGF-b signaling, contributing to the

chronic epithelial injury and maladaptive repair that

characterize IPF.

Moreover, TGF-b has been shown to epigenetically repress

ferroptosis-protective genes (79). In models of pulmonary fibrosis,

TGF-b signaling increases the expression of methylation regulators

(e.g., UHRF1), which silence GPX4 and FSP1, two key suppressors

of ferroptosis (30). As a result, AECs become highly susceptible to

lipid ROS accumulation and ferroptotic cell death.

The ferroptotic loss of AECs is a critical pathological event that

precedes and perpetuates fibrotic remodeling. Dead or dying

epithelial cells release damage-associated molecular patterns

(DAMPs), stimulate the recruitment of profibrotic macrophages,

and enhance TGF-b production in a self-amplifying loop (80).

Additionally, the loss of epithelial-derived niche factors (e.g., WNT

ligands, BMPs) destabilizes the epithelial-mesenchymal balance,

promoting fibroblast activation and extracellular matrix (ECM)

deposition (81). In this context, TGF-b/Smad signaling serves as

both a driver and amplifier of ferroptosis-induced epithelial

damage, establishing a mechanistic link between chronic injury,

ferroptotic stress, and irreversible fibrotic progression in IPF

(82, 83).
3.3 NF-kB signaling pathway

The NF-kB signaling pathway plays a pivotal role in connecting

innate immune activation to ferroptotic cell death and fibrotic

remodeling in the lung (84). Environmental insults such as

cigarette smoke or bacterial endotoxins (e.g., LPS), as well as

intrinsic triggers including DAMPs released from stressed or

dying epithelial cells, can engage TLR4 receptors on AECs (85).

Upon activation, TLR4 signals through MyD88-dependent

pathways to induce NF-kB nuclear translocation, leading to

transcription of pro-inflammatory cytokines (e.g., IL-6, TNF-a)
and enzymes involved in iron metabolism and lipid peroxidation,

both key components of ferroptosis (Figure 1) (86). In LPS-induced

acute lung injury models, inhibition of TLR4/NF-kB signaling has

been shown to alleviate ferroptosis and reduce pulmonary

damage (84).

In AECs, TLR4/NF-kB activation contributes to a pro-ferroptotic

intracellular environment by upregulating genes such as NOX1 and

NOX4 (promoting ROS production) and ACSL4 (increasing PUFA-

containing phospholipid substrates), while suppressing ferroptosis-

protective genes like GPX4 through redox imbalance and

inflammatory stress (86–88). Sustained NF-kB signaling also

impairs the cellular antioxidant response by disrupting Nrf2

activity, further sensitizing AECs to ferroptosis (89).

Notably, there is growing evidence of functional crosstalk

between TLR4/NF-kB and TGF-b/Smad signaling in fibrotic lung

disease (89). For instance, NF-kB activation has been shown to

enhance TGF-b expression and facilitate its autocrine and paracrine
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amplification, while TGF-b signaling can stabilize TLR4 expression

and amplify NF-kB-driven transcriptional responses, creating a

positive feedback loop that amplifies inflammatory and fibrotic

responses (86, 90, 91). Together, these pathways synergistically

promote AEC ferroptosis, inflammation, and the activation of

fibroblasts and myofibroblasts, ultimately accelerating ECM

deposition and lung architecture distortion.

Through this integrative mechanism, TLR4/NF-kB acts not

only as a sensor of epithelial injury but as an amplifier of

ferroptosis-associated inflammation, bridging environmental

triggers with immune activation and fibrotic remodeling—

hallmarks of IPF.
4 Ferroptosis and IPF progression

4.1 Inflammatory amplification

Ferroptosis contributes not only to the initiation of IPF, but also

to its chronic progression through sustained inflammatory

amplification by perpetuating a cycle of epithelial injury, immune

activation, and fibrotic remodeling (92).

One critical consequence of ferroptosis in AECs is the release of

DAMPs, including high-mobility group box 1 (HMGB1),

extracellular ATP, and oxidized phospholipids (oxPLs), which act

as endogenous triggers of innate immune responses (93, 94). These

DAMPs activate pattern recognition receptors (PRRs), notably

TLR4 and RAGE (receptor for advanced glycation end products)

on neighboring epithelial cells, infiltrating neutrophils,

macrophages, and resident fibroblasts (95, 96). This activation

triggers the NF-kB signaling cascade, leading to a transcriptional

upregulation of pro-inflammatory cytokines (e.g., TNF-a, IL-1b,
IL-6), chemokines, and adhesion molecules, which in turn recruit

more immune cells to the injury site, and driving chronic

inflammation and tissue damage (85).

Additionally, ferroptosis-derived oxidized lipid mediators, such

as 4-HNE and MDA, can further potentiate inflammation by

inducing oxidative stress and enhancing NF-kB signaling in a

feed-forward loop (97–99). These lipid peroxidation products not

only propagate tissue injury but also impair anti-inflammatory

resolution processes (100).

Moreover, the influx of neutrophils and pro-inflammatory

macrophages contributes to the formation of a self-amplifying

inflammatory circuit. Neutrophils release myeloperoxidase (MPO)

and ROS, exacerbating oxidative stress (101), while M1-like

macrophages secrete further pro-inflammatory cytokines, establishing

a chronic inflammatory niche (102). This chronicity hinders epithelial

repair and sets the stage for fibrogenic signaling cascades.

Taken together, ferroptosis-induced DAMP release, cytokine

production, and ROS generation converge to establish a vicious

cycle of oxidative stress and inflammation, which not only amplifies

immune activation but also primes the lung microenvironment for

fibrotic transformation.
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4.2 Macrophage polarization

Ferroptosis profoundly influences the immune landscape in the

fibrotic lung, particularly by modulating macrophage recruitment and

polarization—key processes that drive the transition from

inflammation to fibrosis in IPF (86, 102). Ferroptotic AECs release

bioactive molecules, including DAMPs, oxPLs, and lipid aldehydes

(e.g.,4-HNE, MDA), promote monocyte infiltration by triggering the

release of chemokines (like CCL2) and cytokines. These signals guide

the infiltration of circulatingmonocytes into the injured alveolar niche

and promoting their differentiation into macrophages (103). Among

the heterogenous macrophage populations in the lung, monocytes-

induced alveolar macrophage (Mo-AMs) have emerged as key

fibrogenic players. Unlike tissue-resident alveolar macrophages, Mo-

AMs expand during injury and persist long-term in the fibrotic lung.

Genetic ablation studies have shown that depletion of Mo-AMs—but

not embryonically derived resident alveolar macrophages—

significantly ameliorates asbestos-induced pulmonary fibrosis (104).

This persistence and functional specialization ofMo-AMs underscores

their central role in driving sustained inflammation, secreting

profibrotic mediators like TGF-b, IL-10, and CCL18, and

orchestrating fibroblast activation and ECM deposition (103, 105).

Once recruited into the injured alveolar niche, infiltrating

monocytes differentiate into macrophages under the influence of the

ferroptotic microenvironment. This niche is enriched with DAMPs,

oxPLs, and lipid peroxidation products, which collectively shape the

phenotypic fate of these newly differentiated macrophages. Initially,

exposure to DAMPs and ROS may transiently promote M1-like

polarization characterized by pro-inflammatory responses. However,

as the injury becomes chronic, persistent exposure to

immunomodulatory signals—including IL-10, TGF-b, oxidized

phosphatidylethanolamines (oxPEs), and lipid aldehydes like 4-HNE

—progressively skews macrophages toward a profibrotic M2-like

phenotype (106). Moreover, certain ferroptotic signaling products

actively reinforce this polarization: oxidized phospholipids serve as

ligands for PPARg, a nuclear receptor that stabilizes M2 polarization

while suppressing M1-like inflammatory gene expression (107, 108).

These M2-like macrophages become central orchestrators of

fibrosis progression. They secrete a spectrum of profibrotic

mediators, including TGF-b1, IL-10, arginase-1, and CCL18,

which promote fibroblast proli feration, myofibroblast

differentiation, and excessive ECM deposition (109). Among

these, CCL18 is particularly notable for its strong correlation with

disease severity in IPF patients (110).

In sum, ferroptosis not only recruits macrophages to sites of injury

but also reprograms their phenotype, transforming them from

inflammatory responders into active participants in fibrotic remodeling.

This dual role makes macrophage polarization a crucial node in the

ferroptosis-IPF axis and a promising target for therapeutic intervention.
4.3 Fibroblast activation and differentiation

Ferroptosis-induced loss of AECs disrupts the epithelial–

mesenchymal equilibrium that is critical for maintaining
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pulmonary homeostasis. The depletion eliminates key antifibrotic

signals—such as bone morphogenetic proteins (BMPs) and WNT

pathway inhibitors—leading to the release of fibroblasts from their

quiescent state and driving their proliferation and excessive collagen

deposition (111, 112). The resulting imbalance forsters the expansion

of fibroblastic foci, the pathological hallmark of progressive IPF,

which are associated with poor clinical outcomes (113).

Fibroblasts generally exhibit resistant to ferroptosis, owning to

their elevated antioxidant defenses (114). However, they are highly

sensitive to ferroptotic signals released from adjacent epithelial cells.

DAMPs, pro-inflammatory cytokines (e.g., IL-6, IL-1b), and lipid

peroxidation products released during ferroptosis can activate

fibroblasts and induce their differentiation into a-smooth muscle

actin (a-SMA)-expressing myofibroblasts (115). Notably, oxPLs

can directly engage TLR4 on fibroblasts, initiating downstream

TGF-b and NF-kB signaling pathways that reinforce fibroblast

activation and survival (116).

Differentiation into a-SMA+ myofibroblasts is a pivotal event in

IPF progression. a-SMA expression confers contractile properties

that enable myofibroblasts to remodel the ECM, contributing to

increased tissue stiffness, impaired gas exchange, and further

activation of latent TGF-b, thus perpetuating the fibrotic loop

(117, 118). These myofibroblasts are the primary producers of

ECM proteins, secreting abundant type I/III collagen, fibronectin,

and tenascin-C, leading to progressive matrix deposition and

scarring (119).

Crucially, myofibroblasts exhibit resistance to apoptosis,

allowing them to persist even after the initial injury has resolved,

sustaining the chronicity of IPF (120). They also secrete profibrotic

cytokines such as TGF-b and IL-6, which promote further fibroblast

differentiation and recruit additional inflammatory and fibrogenic

cells, thereby amplifying a positive feedback loop that sustains

fibrosis (121–123). Ferroptotic AECs further exacerbate this

process by releasing matricellular proteins such as periostin,

which stimulate fibroblast proliferation and ECM deposition

within fibrotic niches (124).

Recent studies highlight that fibroblast activation is not a uniform

process. Single-cell transcriptomic profiling has revealed marked

heterogeneity among alveolar fibroblast subpopulations, including

age-dependent subsets with distinct sensitivity to oxidative stress and

ferroptotic signals (125). These subpopulations follow different

differentiation trajectories—some favoring fibrosis progression while

others may contribute to resolution—thus influencing the spatial and

temporal heterogeneity of fibrotic remodeling. Ferroptosis likely exerts

differential effects on these subsets, selectively promoting the expansion

of profibrotic myofibroblast lineages while sparing or even suppressing

anti-fibrotic populations (125).

This heterogeneity is further reflected in the characteristic

patchy architecture of IPF. Areas with intensive ferroptotic

activity exhibit high lipid peroxidation and iron accumulation,

often colocalizing with fibroblastic foci, suggesting spatial

coupling between ferroptosis-induced epithelial injury and

fibroblast activation (126).

Importantly, these findings imply that ferroptosis inhibitors such

as liproxstatin-1 may not exert uniform effects across fibroblast
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subsets. Instead, they may preferentially suppress the expansion of

profibrotic fibroblast lineages, offering a potential avenue for targeted

antifibrotic therapy tailored to fibroblast heterogeneity.
4.4 ECM production and fibrotic niche
reinforcement

Ferroptosis-induced oxidative stress significantly influences

ECM remodeling, a hallmark of IPF. The oxidative milleu

enhances ECM stability and stiffness through the upregulation of

enzymes like lysyl oxidases (LOX and LOXL2), which catalyzes the

crosslinking of collagen and elastin fibers, increasing EMC tensile

strength (127, 128). This stiffened ECM not only impairs lung

compliance but also serves as a mechanical stimulus that activates

fibroblasts through mechanotransduction pathways (117).

One consequence of increased ECM stiffness is suppression of

miR-29, a key negative regulator the expression of stromal genes,

resulting to increased translation of ECM components and further

matrix deposition. Simultaneously, mechanical cues activates the

Hippo pathway effector Yes-associated protein 1 (YAP), which

translocates to the nucleus, where it promotes the transcription of

profibrotic genes, reinforcing ECM deposition and stiffness (129).

Additionally, mesenchymal progenitor cells acquire a mechanical

memorymediated by miR-21, enabling them tomaintain a fibrogenic

phenotype even after the initial stiffening stimulus has subsided (130).

Ferroptosis of AECs exacerbates these effects by generating

localized oxidative stress, which contributes to ECM stiffening

and creates a fibrotic niche that fosters myofibroblast persistence.

This self-reinforcing loop—linking ferroptosis, oxidative ECM

remodeling, and fibroblast activation—underscores the central

role of ferroptosis in sustaining chronic fibrotic remodeling in IPF.

Given the heterogeneity of fibroblast populations, such ECM-

driven reinforcement of fibrosis may disproportionately affect

specific fibroblast subsets that are more prone to profibrotic

activation, further emphasizing the importance of context-

dependent therapeutic strategies that consider fibroblast diversity

and their variable sensitivity to ferroptotic stress.
5 Ferroptosis as therapeutic target for
IPF

Given its pivotal role in alveolar epithelial injury and its

contribution to inflammation and fibrotic remodeling,

ferroptosis has emerged as a compelling therapeutic target in IPF.

Multiple strategies have been proposed to modulate ferroptosis,

targeting different components of its regulatory network and

downstream signaling cascades. These approaches can be broadly

categorized according to their target, including regulators of

oxidative stress, lipid peroxidation, iron dysregulation, DAMP-

mediated inflammation, profibrotic cytokines, and ECM

remodeling (Table 1).
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5.1 Regulators of ferroptosis core
machinery

5.1.1 Iron chelation and ROS management
Ferroptosis is an iron-dependent, regulated form of cell death

characterized by iron-driven lipid peroxidation. In IPF, iron

overload in alveolar space exacerbates oxidative stress and

sensitizes AECs to ferroptosis by promoting Fenton chemistry

and lipid peroxidation (148, 149). This process is especially

damaging in the context of chronic lung injury, where sustained

epithelial death and release of DAMPs propagate inflammation and

fibrotic remodeling.

Supporting the translational relevance of these mechanisms, a

clinical study by Puxeddu et al. (131) demonstrated the presence of

iron-laden macrophages and elevated ferritin expression in lung

tissue from IPF patients (131). These findings provide direct

evidence of local iron accumulation and oxidative stress in the

human fibrotic lung, reinforcing the pathophysiological rationale

for targeting iron in therapeutic strategies.

Accordingly, strategies that reduce the bioavailable iron pool

within the lung microenvironment have shown promise in

mitigating ferroptosis and preserving epithelial integrity.

Clinically approved iron chelators such as deferoxamine (DFO)

and deferiprone (DFP), which are used to treat systemic iron

overload, have demonstrated potential antifibrotic effects through

inhibition of ferroptosis. In preclinical model of lung injury, DFO

reduced iron accumulation, decreased ferroptosis markers such as

4-HNE, and preserve epithelial integrity, ultimately leading to

attenuated fibrotic remodeling (126, 132, 133). Similarly, DFP has

shown protective effects in models of neurodegenerative and retinal

disorders by alleviating oxidative stress caused by excess iron (134–

136). These chelators act by binding free Fe2+, thereby inhibiting the

Fenton reactions and thus blocking a key driver of ferroptotic

cell death.

Beyond chelation, modulation of ferritinophagy—a process that

release stored iron from ferritin—offer another promising approach

to reduce intracellular iron level (137). NCOA4—mediated

ferritinophagy increases the available iron pool by releasing stored

iron from ferritin complexes, thereby promotes ferroptosis under

oxidative conditions. As discussed in Section 2.1, pharmacologic

inhibition of ferritinophage, such as with dihydroquercetin, has

been shown to ameliorate silica-induced pulmonary fibrosis by

protecting AECs from ferroptosis (137). Thus, targeting NCOA4

could provide a more complementary, cell-intrinsic strategy for

limiting ferroptotic injury. When combined with iron chelation,

NCOA4 inhibition could yield a more robust and sustained

suppression of ferroptosis, reinforcing epithelial resilience in the

fibrotic lung.

5.1.2 Antioxidant defense modulators
Oxidative stress is a key upstream driver of ferroptosis in IPF,

making antioxidant defense modulators as attractive therapeutic

candidates. By replenish glutathione (GSH), scavenging ROS, or
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enhancing endogenous antioxidant enzymes, these agents can

interrupt the lipid peroxidation cascade and protect AECs from

ferroptotic death.

N−Acetylcysteine (NAC), a precursor for GSH synthesis, has

long been explored for oxidative stress mitigation. However, large

randomized controlled trials, including the PANTHER−IPF study,

revealed limited clinical efficacy of NAC alone therapy in slowing

disease progression or improving survival in unselected IPF cohort

(138, 139, 150). Although NAC’s ability to restore intracellular GSH

and modulate ferroptotic markers remains mechanistically relevant,

its limited benefit in clinical practice suggests a need to prioritize

more targeted and potent antioxidants in future therapeutic design.

A growing body of evidence highlights the pivotal role of

mitochondrial ROS (mtROS) in amplifying lipid peroxidation and

sensitizing cells to ferroptosis (140). Accordingly, mitochondria-

targeted antioxidants have gained traction. MitoTEMPO, a

superoxide dismutase mimetic designed to localize within

mitochondria, effectively scavenges mtROS and preserves

mitochondrial integrity, significantly reducing ferroptosis and

fibrosis exacerbation in experimental models (141). Similarly,

MitoQ, a mitochondria-directed ubiquinone derivative,

demonstrates protective effects in lung injury models by

suppressing mtROS, decreasing proinflammatory cytokine
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secretion, and inhibiting TGF-b/NOX4 and PDGF/ROCK

signaling pathways (142, 143). These agents exemplify organelle-

specific antioxidant defense strategies that not only block

ferroptosis but also interfere with pro-fibrotic signaling cascades.

Ferroptosis-specific inhibitors offer another line of therapeutic

intervention. Small molecules such as ferrostatin-1 (Fer-1) and

liproxstatin-1 (Lip-1) stabilize the activity of GPX4, the core

enzyme that detoxifies lipid peroxides and suppresses ferroptotic

cell death. In bleomycin-induced lung fibrosis models, Fer-1 and

Lip-1 preserve epithelial structure, reduce collagen deposition, and

attenuate TGF-b signaling. These agents also activate the NRF2

pathway, further amplifying antioxidant gene expression (124, 126,

144). While these inhibitors remain at the preclinical stage, they

continue to inform the mechanistic underpinnings of ferroptosis

inhibition and serve as a proof of concept for targeting lipid

peroxidation in IPF.

The NRF2 transcription factor orchestrates expression of GPX4,

SLC7A11, and a suite of antioxidant enzymes.

Central to the antioxidant response is the NRF2–GPX4

signaling axis. NRF2 transcriptionally activates genes encoding

antioxidant enzymes such as GPX4, SLC7A11, and others

involved in GSH metabolism (7, 145). Pharmacological NRF2

activators have demonstrated robust protective effects in
TABLE 1 Summary of ferroptosis inhibitors and their efficacy in IPF models.

Therapeutic
Agent

Mechanism of Action Efficacy in IPF Models References

Deferoxamine
(DFO)

Iron chelator; reduces Fe2+-driven lipid peroxidation
via Fenton reaction inhibition

Reduced iron accumulation, decreased ferroptosis markers (e.g., 4-
HNE), preserved epithelial integrity

(126, 131, 132)

Deferiprone
(DFP)

Iron chelator; similar mechanism as DFO Protective in oxidative stress-related disorders; potential to mitigate
ferroptosis in pulmonary settings

(133–135)

Dihydroquercetin Inhibits NCOA4-mediated ferritinophagy Reduces intracellular iron release, alleviates AEC ferroptosis in silica-
induced pulmonary fibrosis

(136)

N-Acetylcysteine
(NAC)

GSH precursor; enhances antioxidant capacity Limited efficacy in clinical trials (e.g., PANTHER-IPF);
mechanistically relevant for ferroptosis inhibition

(137–139)

MitoTEMPO Mitochondria-targeted antioxidant; scavenges mtROS Decreased lipid peroxidation and fibrosis; preserves mitochondrial
and epithelial integrity

(140)

MitoQ Mitochondrial ROS scavenger; inhibits TGF-b/NOX4
and PDGF/ROCK pathways

Protective in lung injury; reduces cytokine secretion and fibrosis (141, 142)

Ferrostatin-1
(Fer-1)

Lipid ROS scavenger; stabilizes GPX4 Reduces collagen deposition and TGF-b signaling; preserves
epithelial structure

(124, 126, 143)

Liproxstatin-1
(Lip-1)

Inhibits lipid peroxidation via GPX4 activation Similar effects as Fer-1; also activates NRF2 to amplify
antioxidant defense

(124, 126, 143)

Sulforaphane Natural NRF2 activator; boosts GPX4 and antioxidant
enzyme expression

Decreased 4-HNE and fibrosis; restores redox balance in lung tissue (144, 145)

Setanaxib
(GKT137831)

Dual NOX1/4 inhibitor; blocks ROS generation Shown to reduce fibrosis in preclinical models; Phase II trial in IPF
patients recently completed

(146)

Rosiglitazone ACSL4 inhibitor; reduces PUFA incorporation
into membranes

Preserves GSH and GPX4 levels; protects against lipid peroxidation
and fibrosis

(25)

AS-252424 Selective ACSL4 inhibitor Anti-ferroptotic and anti-fibrotic effects in preclinical models (147)
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preclinical models by reducing 4-HNE, restoring redox

homeostasis, and limiting AEC ferroptosis (146). Sulforaphane, a

natural NRF2 agonist, has shown antifibrotic activity in lung

models and may be a candidate for further development (145).

Newer synthetic NRF2 activators with improved bioavailability are

currently under preclinical investigation, with some poised for

translational studies.

Translating antioxidant modulation into clinical application has

proven challenging, but emerging agents are bridging this gap.

Setanaxib (GKT137831) is a first-in-class dual inhibitor of NOX1/4,

two isoforms of NADPH oxidase that generate ROS and contribute

to ferroptosis-associated tissue injury. Setanaxib has shown

antifibrotic efficacy in preclinical models of liver, kidney, and lung

fibrosis (151). It is the first NADPH oxidase inhibitor to enter

clinical trials for IPF. A phase II randomized, placebo-controlled,

multicenter trial (NCT03865927) was recently completed to

evaluate Setanaxib in ambulatory patients with IPF. Although

results have not yet been posted, preliminary investigator updates

suggest that Setanaxib may significantly reduce pulmonary injury

and disease progression by limiting NOX-derived ROS and

interfering with ferroptosis-associated pathways. This agent

represents one of the most clinically advanced antioxidant-based

therapies aimed at IPF.

Together, these antioxidant modulators offer multiple points of

intervention along the ferroptotic cascade. While clinical translation

has been challenging, ongoing trials of NRF2 activators and novel

formulations may yet unlock significant benefits for IPF patients.

5.1.3 Targeting lipid metabolism
Lipid peroxidation is a hallmark of ferroptosis and a major

contributor to alveolar epithelial injury in IPF (57). Therapeutic

strategies that disrupt the enzymatic or non-enzymatic formation of

lipid hydroperoxides may directly suppress ferroptotic cell death

and attenuate the downstream fibrotic cascade. Among these,

ACSL4 plays a key role by facilitating the incorporation of PUFAs

into membrane phospholipids, thereby sensitizing cells to

peroxidation and ferroptosis (147).

Inhibition of ACSL4 has shown therapeutic promise in

preclinical models of fibrosis. Rosiglitazone, a thiazolidinedione

initially developed as a PPARg agonist, was found to attenuate

ischemia–reperfusion–induced lung injury by suppressing ACSL4

activity. This intervention was associated with reduced lipid

peroxidation and preserved intracellular levels of glutathione

(GSH) and glutathione peroxidase 4 (GPX4), two essential

components of cellular defense against ferroptosis (25). More

recently, a selective small-molecule ACSL4 inhibitor, AS-252424,

exhibited both anti-ferroptotic and anti-fibrotic effects in

experimental settings, further underscoring the therapeutic

potential of directly modulating lipid metabolism in the context

of IPF (152).

Although the clinical translation of ACSL4 inhibitors remains

in its early stages, these preclinical findings highlight the

importance role of lipid remodeling in ferroptosis-driven fibrotic

progression and suggest that future therapies strategies may benefit

from targeting this metabolic axis.
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5.2 Inflammatory signaling and immune
activation

Regulated cell death pathways, including non−lytic apoptosis

and lytic forms such as necroptosis, pyroptosis, and ferroptosis,

release DAMPs that trigger sterile inflammation in the lung (153,

154). Key DAMPs such as HMGB1 and ATP activate PRRs,

including TLR4 and receptor for advanced glycation end products

(RAGE), on macrophages, neutrophils, and fibroblasts. This

engagement leads to NF−kB–dependent upregulation of pro

−inflammatory cytokines (TNF−a, IL−1b, IL−6) and chemokines,

perpetuating tissue injury and fibrogenesis (155, 156).

Small−molecule inhibitors of TLR4 signaling have shown

preclinical efficacy in lung injury models. TAK−242 (Resatorvid),

a selective TLR4 inhibitor, suppresses NF−kB activation, reduces

cytokine releases, and mitigates alveolar damage in models of acute

lung injury (157). Eritoran (E5564), an MD2–TLR4 antagonist, was

well tolerated in a Phase II sepsis trial (NCT00046072) and

demonstrated trends toward lower mortality, suggesting

translational potential in IPF (158).

Targeting RAGE signaling may also offer therapeutic benefit.

FPS−ZM1, a blood−brain−barrier−permeable RAGE inhibitor,

s ignificant ly attenuates HMGB1-mediated pulmonary

inflammation and tissue injury in murine emphysema models,

illustrating proof of concept for its use in fibrotic lung disease (159).

Direct inhibition of NF−kB signaling can dampen cytokine

storms and fibrotic remodeling. BAY 11−7082 irreversibly inhibits

IkB kinase, suppressing TNF−a–induced IkBa phosphorylation

and reducing pro−coagulant and inflammatory markers in alveolar

epithelial cells (160). Dimethyl fumarate (DMF), an FDA−approved

NRF2 agonist for multiple sclerosis, indirectly inhibits NF−kB and

has demonstrated antifibrotic effects by restoring redox homeostasis

in aged IPF models (161).

The chemokine CCL2 (MCP−1) drives monocyte recruitment

and differentiation into profibrotic monocyte−derived alveolar

macrophages (Mo−AMs). Carlumab, an anti−CCL2 monoclonal

antibody, demonstrated safety in Phase 1b oncology trials, though

with limited monotherapy activity; its repurposing for IPF is under

investigation (162). MLN1202, an anti−CCR2 antibody, reduced

macrophage infiltration in Phase II rheumatoid arthritis studies,

highlighting its potential to disrupt monocyte−macrophage-

mediated fibrosis (163).
5.3 Cytokines and macrophage polarization

Ferroptosis-driven inflammation promotes the polarization of

macrophages toward an M2-like, pro-fibrotic phenotype, largely

mediated by cytokines such as TGF-b and IL-10 (164). Targeting

these cytokines or their downstream signaling pathways offers a

strategy to disrupt the self-perpetuating loop linking ferroptotic cell

death to fibroblast activation and ECM deposition.

TGF−b and IL−10 are central to M2 macrophage polarization

in the fibrotic lung. TGF−b, elevated downstream of ferroptosis, not

only stimulates collagen production by fibroblasts but also induces
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the expression of M2 markers including arginase−1 and the

mannose receptor (CD26) in macrophages, cementing their M2

identity. Therapeutic approaches targeting TGF-b signaling have

shown partial success in clinical trials for IPF. Fresolimumab

(GC1008), a pan−TGF−b neutralizing monoclonal antibody,

completed a Phase I trial (NCT00125385) in IPF patients,

demonstrating good tolerability and biomarker reductions

suggestive of anti−fibrotic activity (165). Pirfenidone, an approved

IPF antifibrotic, indirectly inhibits TGF−b1–mediated epithelial-

mesenchymal t rans i t ions by suppress ing MUC1−CT

phosphorylation and b−catenin signaling, reducing a−SMA and

collagen expression in preclinical models (166). Nintedanib,

another approved IPF therapy, targets multiple tyrosine kinases

downstream of PDGF and FGF, which intersect with TGF−b
signaling to limit myofibroblast proliferation. In a Phase II trial,

nintedanib effectively slowed lung function decline and reduced the

frequence of acute exacerbation in patients with IPF (167).

IL−10, another key cytokine released by ferroptotic AECs,

reinforces M2 polarization and tissue−repair functions in

macrophages. Although IL−10 blockade remains preclinical in

fibrosis, studies in murine models demonstrate that anti−IL−10

antibodies or genetic deletion of IL−10 signaling shifts

macrophages toward a less fibrogenic profile and reduces collagen

accumulation (168).

IL−6 lies at the interaction of inflammation and fibrosis. By

promoting STAT3 activation, IL−6 fosters macrophage survival and

M2 marker expression, while also driving fibroblast–myofibroblast

transition. Tocilizumab, an IL−6 receptor antagonist approved for

systemic sclerosis–associated interstitial lung disease (SSc−ILD),

has shown promising results in preserving lung function and

reducing M2−associated biomarkers in clinical studies (169, 170).

While its role in IPF remains under investigation, the findings from

SSc−ILD suggest that IL−6 blockade may help rebalance

macrophage phenotypes and limit fibrotic progression.

Collectively, targeting cytokine and chemokine involved in

ferroptosis-induced macrophage polarization presents a

compelling strategy to reprogram the fibrotic immune

environment in IPF. Future trials should explore these

interventions—ideally in combination with ferroptosis inhibitors

—to achieve synergistic suppression of epithelial injury and pro

−fibrotic immune activation.
5.4 Fibroblast activation and ECM
remodeling

Ferroptosis−associated inflammation activates myofibroblasts,

which secrete matricellular proteins such as periostin and

fibronectin. These proteins accumulate in the lung interstitium, and

drive matrix stiffening and epithelial stress (129). This remodeled,

rigid extracellular matrix drives nuclear translocation of YAP and

TAZ, the Hippo pathway effectors, which in turn induce glycolytic

and glutaminolytic genes that support myofibroblast survival and

ECM production (171). Simultaneously, oxidative modifications of
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chromatin—such as histone H3K27 demethylation—enable YAP/

TAZ to access fibrogenic promoters, sustaining an activated fibroblast

phenotype (172). Therapeutic strategies targeting this axis, such as

verteporfin to agents that modulate redox-sensitive epigenetic marks,

hold promise for reversing fibroblast activation in IPF.

Several ECM-targeted therapies have advanced to clinical

evaluation. Pamrevlumab (FG−3019), a fully human monoclonal

antibody against connective tissue growth factor (CTGF/CCN2),

was tested in the Phase II PRAISE trial (NCT01890265). In 103 IPF

patients, pamrevlumab reduced the decline in forced vital capacity

(FVC) by 60.3% compared to placebo over 48 weeks (–2.9% vs –

7.2%; between−group difference of 4.3%, p=0.033) and halved the

rate of disease progression (10.0% vs 31.4%), with a favorable safety

profile (173).

PRM−151, a recombinant form of human pentraxin−2, also

showed potential in IPF. In a Phase II randomized, placebo

−controlled study (NCT02550873) of 111 IPF patients, PRM−151

slowed FVC decline over 28 weeks and preserved 6−minute walk

distance, with good tolerability (174). A 76-week open−label

extension confirmed sustained effects on lung function, consistent

with its role in inhibiting fibrocyte differentiation and ECM

production (175). However, the subsequent Phase III

STARSCAPE trial (NCT04552899) was terminated early for lack

of efficacy, though prior data still validate pentraxin−2 as a regulator

of fibroblast activity (175).

Admilparant (BMS−986278), an oral lysophosphatidic acid

(LPA) receptor antagonist, has been evaluated in a Phase II

randomized trial (NCT04308681) in IPF and progressive

pulmonary fibrosis. A 26-week course of 60 mg twice daily led to

a 69% relative reduction in the rate of percent predicted FVC

decline versus placebo (treatment difference 2.9%; 95% CI 0.4-5.5),

with a favorable safety profile (176). These encouraging results

support its progression to Phase III evaluation.

Emerging evidence indicates that ferroptosis−associated lipid

peroxidation and iron overload not only contribute to ECM

stiffening but also reprogram fibroblast metabolism and epigenetics

to keep cells into an activated state. Disrupting key steps in ECM

remodeling, including matricellular protein deposition, collagen

crosslinking, and mechanotransduction, represents a promising

strategy to halt fibrosis progression. When combined with

upstream ferroptosis inhibitors, this multipronged strategy holds

promise for preserving lung architecture and halting IPF progression.
6 Conclusion and perspective

Ferroptosis, an iron−dependent, lipid peroxidation–driven

form of regulated cel l death, has emerged as a key

pathophysiological mechanism in IPF, linking alveolar epithelial

injury to persistent inflammation, macrophage activation, and

fibrotic remodeling of the lung parenchyma (7). This review

integrates core mechanisms—dysregulated iron metabolism,

compromised antioxidant defenses, enzymatic and non

−enzymatic lipid peroxidation, and mechanotransduction via
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YAP/TAZ—with cellular crosstalk among epithelial cells, immune

populations, and fibroblasts. We also discuss therapeutic strategies

ranging from iron chelators to inhibitors of mechanosensitive

pathway (6). Together, these insights offer a systems-level view of

ferroptosis as both a driver and a modifiable target in IPF

pathogenesis (177).

However, several major challenges must be addressed to enable

clinical translation of ferroptosis-targeted therapies. Iron chelators

such as deferoxamine and deferiprone, while effective in mitigating

epithelial ferroptotic injury in preclinical models, carry the risk of

systemic iron depletion and may exacerbate anemia-a condition

already prevalent among IPF patients due to chronic inflammation

and reduced erythropoiesis (178). Similarly, antioxidant therapies

like NAC, while aim to restore intracellular glutathione and reduce

ROS-dedicated lipid peroxidation, have shown inconsistent efficacy

in IPF. Notably, PANTHER−IPF study reported no improvement

in lung function and even raised safety concerns when NAC was

combined with immunosuppressants (139, 150). These findings

highlight the complex and context-dependent role of ROS in IPF

pathogenesis, where both insufficient and excessive ROS can be

detrimental. Direct ferroptosis inhibitors, including ferrostatin−1

and liproxstatin−1, exhibit potent in vitro protection but suffer from

poor oral bioavailability, uncertain pharmacokinetics, and potential

off−target toxicity, complicating their clinical development (177).

Enzyme−targeted approaches, such as ACSL4 inhibition, remain

confined to early preclinical stages, with no candidates yet

advancing to human trials.

Beyond these individual drug challenges, broader translational

barriers exist: achieving sufficient distribution in fibrotic lung tissue,

avoiding disruption of physiological redox signaling, and

minimizing toxicity during long-term administration (177).

Emerging delivery platforms such as nanoparticle−based delivery

systems and inhalable formulations offer promising avenues to

enhance lung targeting and reduce systemic exposure, but their

efficacy and safety in IPF-specific contexts remain to be rigorously

validated (179).

Future research efforts should prioritize the identification of

ferroptosis-specific biomarker to improve clinical translation. These

may include genetic, proteomic, or metabolomic indicators that not

only confirm the presence of ferroptotic activity but also help stratify

patients likely to benefit from targeted interventions. Such biomarkers

would be invaluable for selecting appropriate candidates for clinical

trials and for monitoring treatment responses in real time (180).

Another important direction is the development of combination

therapies that simultaneously target ferroptosis and other pro-fibrotic

mechanisms. For instance, co-targeting ferroptotic pathways along with

TGF-b/Smad signaling or YAP/TAZ-driven mechanotransduction may

produce synergistic effects that surpass those of monotherapies.

Achieving this will require a deeper mechanistic understanding of

how ferroptosis interacts with these parallel pathways in different lung

cell types and microenvironments (7).

Advances in spatial multi-omics technologies hold promise for

resolving the spatial heterogeneity of ferroptotic activity within the

fibrotic lung. These approaches can identify distinct cell

populations and regions with heightened ferroptotic stress,
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enabling the design of more precise and localized therapies. By

integrating spatial transcriptomics, proteomics, and metabolomics,

researchers can develop targeted interventions based on the cellular

context and disease stage (181).

Recent discoveries also highlight the role of RNA editing and

epigenetic regulation in ferroptosis. In particular, ADAR1

−mediated adenosine−to−inosine RNA editing has been shown to

modulate ferroptosis-regulated microRNAs such as let−7d, which

intersect with both TGF−b signaling and oxidative stress pathways;

restoring normal ADAR1 function could mitigate ferroptosis

−driven miRNA dysregulation and stabilize both epithelial and

fibroblast phenotypes (182).

In conclusion, ferroptosis represents both a mechanistic

cornerstone and a therapeutic target in IPF. By addressing these

key knowledge gaps—ranging from biomarker discovery to

epigenetic control—future studies can establish the foundation for

ferroptosis-targeted IPF therapies (183). Such advances hold the

potential to transform how we diagnose, monitor, and treat this

devastating and currently incurable disease.
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