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Spatial proteomics of the tumor
microenvironment in melanoma:
current insights and
future directions
Chiara Bungaro, Michele Guida and Benedetta Apollonio*

Rare Tumors and Melanoma Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, Italy
Over the past years, cancer research has transitioned from a ‘cancer cell-

centered’ focus to a more integrative view of tumors as dynamic ecosystems.

This paradigm shift emphasizes the tumor microenvironment (TME) as a complex

network of interacting cellular and acellular components, where tumor cells

orchestrate a supportive environment that facilitates progression, metastasis, and

immune evasion. Understanding the spatial organization of these components

within the TME is crucial, as the positioning and interactions between cancerous

and non-cancerous cells significantly influence tumor behavior and therapy

response. Spatial proteomics has emerged as a powerful tool for TME analysis,

enabling the detection and quantification of proteins within intact tissue

architecture at subcellular resolution. This approach provides insights into

cellular interactions, signaling pathways, and functional states, facilitating the

discovery of novel biomarkers and therapeutic targets linked to specific tissue

regions and cellular contexts. Translating spatial proteomics into clinical practice

requires overcoming challenges related to technology refinement,

standardization of workflows, and adaptation to routine pathology settings.

Melanoma is an aggressive, highly immunogenic malignancy with variable

response rates to existing immunotherapies. Given that over half of patients

treated with immune checkpoint inhibitors (ICIs) fail to respond or experience

disease progression, the identification of novel biomarkers and therapeutic

targets to enhance current therapies is urgently required. Spatial imaging

technologies are increasingly being utilized to dissect the complex interplay

between stroma, melanoma, and immune cell types within the TME to address

this need. This review examines key spatial proteomics methods, their

applications in melanoma biology, and associated image analysis pipelines. We

highlight the current limitations, and future directions, emphasizing the potential

for clinical translation to guide personalized treatment strategies, inform

prognosis, and predict therapeutic response.
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Introduction

Over the last few decades, cancer research has undergone a

significant paradigm shift: from a ‘cancer-centered’ view, primarily

focused on the genomic aberrations of neoplastic cells, to a more

comprehensive understanding of tumors as complex ecosystems. In

this new framework, tumors are seen as dynamic entities where both

cellular and acellular components form an intricate network of co-

evolving interactions—the tumor microenvironment (TME) (1). This

holistic perspective recognizes that tumor cells act not in isolation but

as central orchestrators of a tumor-supportive environment, actively

recruiting and reprogramming non-immune and immune cells,

remodeling the vasculature, and altering the extracellular matrix to

support progression and metastasis.

Mapping the spatial location of the different cellular

components is crucial as the TME is a highly organized,

structured environment where the positioning of different cell

types is essential for their function. For this reason, the spatial

relationships between tumor cells, immune cells, stromal cells, and

blood vessels are fundamental to tumor progression, immune

evasion, and therapy resistance.

While tissue studies remain crucial for cancer diagnosis, patient

stratification, and treatment recommendations, the techniques

routinely used for these investigations (e.i. immunohistochemistry)

are limited to the low number of markers that can be simultaneously

visualized. In the past few years, more studies have been focused on

the development of new multiplexed technologies and analysis

methods aimed at preserving tissue architecture by spatially

resolving the complexity of the TME, mapping different cell types,

and understanding their reciprocal interactions and their function.

Among them, spatial proteomics, which allows the detection

and quantification of proteins within the context of tissue

architecture, has been recognized as one of the most promising

methods for TME analysis (2). By mapping protein expression

patterns at subcellular resolution, spatial proteomics provides

insights into cellular interactions, signaling pathways, and

functional states of cells within the TME. This new set of

information could be used for the discovery of novel biomarkers

and therapeutic targets that are tightly linked to specific tissue

regions and cellular contexts. It also opens the door to identifying

novel therapeutic combinations, as spatial proteomics can reveal

how different treatment modalities may alter the spatial dynamics of

the TME. However, while spatial proteomics offers immense

potential for understanding cancer biology, its translation into

clinical practice remains a challenge. It is critical to develop

methods and platforms that can be easily adapted to routine

pathology labs and clinical settings. This requires not only

refining technologies for better sensitivity and resolution but also

developing standardized workflows and protocols that can be

widely adopted in clinical practice. The goal is to provide

pathologists and clinicians with actionable approaches that can

guide personalized treatment strategies, inform prognosis, and

predict response to therapies.

Over the past few years, spatial proteomics has significantly

advanced our understanding of the melanoma TME. Although
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melanoma is highly immunogenic and several immunotherapy-

based treatments are available, a significant proportion of patients,

particularly those with late-stage disease, still fail to achieve

durable responses or experience disease progression (3–6). This

clinical challenge underscores the urgent need to identify novel

biomarkers for predicting treatment outcomes and to discover new

therapeutic targets that can improve the effectiveness of current

immunotherapies. To address this critical knowledge gap, spatial

imaging technologies have shown critical potential.

In this review, we examine the key methods used in spatial

proteomics, their applications in melanoma biology, and the image

processing and analysis pipelines associated with these technologies.

We also address the current limitations and outline future

directions for advancing spatial proteomics.
Spatial proteomics methods

While the core principle of antibody-staining remains

consistent across most spatial proteomic approaches, they differ

in detection methods. Different moieties attached to the (primary/

secondary) antibodies used for protein target detection act as signal

amplifiers or identifiers, and are based on enzymes, fluorescence, or

mass spectrometry (Figure 1, Table 1).

Conventional immunohistochemistry (IHC) is widely used in

routine pathology for tumor diagnosis and classification. It is based

on the simultaneous use of up to two antibodies directed against

specific markers, and an enzyme-based detection through

horseradish peroxidase or alkaline phosphatase (7). This

approach has high sensitivity and is well-established, but it is

limited in the number of proteins simultaneously detected. To

overcome this limitation multiplex IHC (mIHC) protocols, based

on multiplexing sequential staining strategies, have been optimized.

mIHC can be based on twomain approaches: (i) same-slide iterative

labeling, digital scanning, and antibody stripping; (ii) sequential

tissue slices staining with one/two antibodies simultaneously (8),

digital scanning, and images overlapping (9).

These techniques expand the number of detected markers but,

as chromogenic amplification provides a non-linear correlation

with protein expression levels, they lack a direct correlation

between protein expression level and signal intensity.

Additionally, the use of sequential tissue slice staining introduces

challenges in maintaining cell identity and consistency across slices.

Multiplex immunofluorescence (MxIF) allows the simultaneous

detection of different protein targets at the cellular level.

Fluorescence spectral overlap limits detection to a maximum of 4

or 5 markers, or up to 6 if using maximum laser number coupled

with deconvolution algorithms.

The number of detectable markers can be increased using Cyclic

Immunofluorescence (CyCIF), which is based on the same antibody

staining cycle principle employed in mIHC (10). Signal removal

between staining cycles can be achieved by either stripping the

antibody or its label, or through fluorophore photobleaching, such

as Iterative Bleaching Extends Multiplexity (IBEX) (11). While

these methods enable the detection of a greater number of
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markers compared to conventional immunofluorescence (IF), they

require careful optimization of the antibody staining sequence.

Additionally, they often depend on specialized automated systems

that minimize handling time and improve efficiency, although at

high costs.
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Recent studies have introduced a new pipeline for cyCIF, called

hyperplexed immunofluorescence imaging (HIFI), which employs a

manual, cost-effective, and instrument-free approach (12, 13). This

method enables high-throughput data acquisition using standard

benchtop reagents and conventional slide-scanning microscopes,
FIGURE 1

Experimental workflow of the available spatial proteomics technologies: conventional [IHC (immunohistochemistry), IF (immunofluorescence)],
iterative [CyCIF/HIFI (cyclic immunofluorescence, hyperplexed immunofluorescence imaging), CODEX (Co-detection by indexing)], mass
spectrometry based [IMC (imaging mass cytometry), MiBi (multiplex ion beam imaging)], and methods that combine proteomics and transcriptomics
[DSP (digital spatial profiling-GeoMX) and SMI (spatial molecular imager-CosMX)]. Created in https://BioRender.com.
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facilitating the democratization of high-throughput spatial

proteomics. However, despite their accessibility and whole-slide

imaging capabilities, manual HIFI methods are time-consuming

compared to platform-dependent proteomic techniques. They

require continuous operator presence, optimization of antibody

panels (to avoid antigen damage during elution), and protocol

durations that vary with the number of staining rounds.

Additionally, the analysis pipelines for these methods are not yet

fully standardized.

Co-detection by indexing (CODEX) is another cyclic imaging

technique that involves staining with antibodies conjugated to

oligonucleotide tags with 5’ overhangs of varying lengths. This is

followed by multiple imaging cycles, enabling the detection of up to

100 markers (14). The signal from DNA-labeled antibodies can be

further amplified using sequential hybridization reactions, such as

Immuno-SABER. While these methods enable maximal multiplexing

and offer a powerful tool for spatial proteomics, they come with

certain limitations. One of the challenges is the need for additional

antibody validation after the conjugation step to ensure that the

conjugated oligonucleotide tags do not interfere with antibody

binding. Moreover, the absence of an amplification system for the

antibody tags themselves means that lowly or diffusely expressed

markers are difficult to detect, as the signal from these markers may

not be strong enough to distinguish from background noise.
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Currently, CODEX-based imaging has been used in numerous

studies to achieve high-plex imaging of whole tissue samples.

However, the costs associated with this technology present a

challenge to its widespread application. Other multiplex

approaches are based on the use of metal-tagged antibodies,

which provide unmatched protein identification capabilities and

can quantify more than 40 proteins simultaneously. They are based

on Time-of-flight (TOF) mass spectrometry and differ in how

metals are extracted from the tissue: using either secondary

ionization [MiBi-Multiplexed ion beam imaging (15)] or laser

ablation [IMC-imaging mass cytometry (16)].

While these approaches do not require multiple tissue slices or

cycles of antibody staining/stripping, they do not have an

amplification system and require long time for image acquisition.

Moreover, secondary ionization and laser ablation cause tissue

destruction, and samples cannot be used for downstream

applications (e.g. digital spatial profiling).

Other methods combine the simultaneous detection of spatial

proteome and transcriptome to achieve a more detailed tissue

resolution. The Digital Spatial Profiler (DSP) GeoMX employs

fluorochrome-tagged antibodies (morphology markers) for cell

identification, alongside DSP antibody tagged with unique

barcoded photocleavable oligonucleotide linkers. Fluorescence-

based imaging is used for the segmentation of the cell types of
TABLE 1 Summary of methods applied in spatial proteomics.

Spatial
Proteomic
Method

Number
of targets

Antibody
detection
method

Image
acquisition
method

Whole
slide

Sample
type

Resolution Pros Cons

IHC Up to 3
Chromogenic
amplification

Optical Yes FFPE Subcellular
High

sensitivity,
reproducibility

Low throughput, no direct
correlation between protein

expression and
signal intensity

MxIF Up to 6
Conjugated
fluorochrome

Fluorescence Yes
FFPE
FF

Subcellular High sensitivity Low throughput

CyCIF/HiFI >40
Conjugated
fluorochrome

Fluorescence Yes
FFPE
FF

Subcellular
Multiple
markers

Antibody stripping
optimization, need for
specific instruments (if

automated), time
consuming (if manual)

CODEX
ImmunoSABER

Up to 100 DNA barcode Fluorescence Yes
FFPE
FF

Subcellular
High

throughput
Antibody optimization

and availability

MiBI
IMC

>40 Metal
Mass

Spectrometry
No FFPE

0.4-0.7mm
1mm

High
throughput,

no
autofluorescence

Long acquisition time, no
amplification system,
tissue disruption

DSP (GeoMX)
Up to 3

(fluorescence)
>100 barcode

Fluorochrome-
tagged +

oligo-tagged
Fluorescence No

FFPE
FF

Subcellular

High
throughput,
coupled to

RNA analysis

Limited markers selection,
difficult single cell analysis

SMI (CosMX) >100
Fluorochrome-
tagged probes

Fluorescence No
FFPE
FF

Subcellular

High
throughput,

coupled to RNA
analysis, single
cell detection

Costs, low scalability
IHC, immunohistochemistry; MxIF, multiplex immunofluorescence; CyCIF, cyclic immunofluorescence; HiFI, hyperplexed immunofluoresce imaging; CODEX, co-detection by indexing; MiBI,
multiplexed ion beam imaging; IMC, imaging mass cytometry; DSP, digital spatial transcriptomic; SMI, spatial molecular imager; FFPE, Formalin-Fix Paraffin Embedded; FF, fresh frozen.
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interest with morphology markers. Tissues are then exposed to UV

light which releases the photocleavable linkers. Subsequent library

construction and sequencing allow for digital readout and spatial

mapping of the protein targets. Notably, DSP also includes RNA

probes, offering in situ transcriptomic mapping (17). Compared to

other spatial proteomics approaches, DSP increases the number and

variety of spatially resolved targets, however it does not achieve

single-cell resolution.

In contrast, the Spatial molecular imager (SMI) CosMx utilizes

a high-plex in situ fluorescence-based imaging approach for the

concurrent detection of both RNA and protein. Tissues are

incubated with oligonucleotide-tagged antibodies (for proteins)

and probes (for RNA). Fluorescent reporters with unique

barcodes are sequentially hybridized and imaged, with the signal

quenched after each round. This cyclic process builds a unique

fluorescent signature for each protein and RNA target, allowing for

its identification and quantification at a precise location (18).

Despite its high throughput and resolution capabilities, CosMX

experiments can be considerably expensive, potentially restricting

its accessibility for some research groups or larger-scale studies.
Application of spatial proteomics to
melanoma tumor microenvironment

Characterizing the melanoma TME, its cellular composition,

and the spatial relationships between its cellular components is

increasingly vital, especially in the era of immunotherapy.

Understanding cell phenotypes, their precise location, and

interactions within the TME can provide critical insights into

how tumors evade immune surveillance and respond to

treatment (Table 2).

Gide et al. (19) used MxIF to quantify densities and spatial

locations of T cells and PD-L1 in the TME of melanoma patients

treated with immunotherapy (both single agent and combination ICIs).

They used the Opal technology coupled to the Vectra 3.0 slide scanner

to obtain a 5 colors whole slide image of FFPE primary tumors and to

identify area of interest (tumoral and peritumoral) that were then

imaged at higher resolution (20x), and analyzed using the scanner

proprietary software. They found that patients responding to ICIs had

increased numbers of intratumoral and peritumoral CD8+ T cells

together with higher numbers of PD-L1+ cells, both before therapy and

in tumor biopsies collected early after therapy, thus confirming data

obtained with IHC (20, 21). They also observed an increase of CD8+

expressing granzyme B, EOMES (Eomesodermin), and TBET (T-box

expressed in T cells) in responder patients at early stages of treatment,

indicating that effector T cells are needed for an optimal anti-tumor

immune response.

However, there were some limitations in the methodology that

may have restricted the depth of analysis. The study did not use

multiplex immunofluorescence to differentiate between cells

expressing multiple markers. Instead, authors quantified cells

expressing a single marker, potentially overlooking important cell

subpopulations, such as exhausted T cells which could have been

characterized by co-expression of inhibitory receptors (e.g., PD-1,
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TIM-3). Therefore, the lack of multi-marker analysis limited the

potential for identifying more immune cell phenotypes.

Furthermore, the study did not incorporate spatial analysis of the

immune microenvironment.

A 6plex MxIF was used to define the immune landscape of

melanoma metastasis (22). Interestingly, immune cell

neighborhoods were defined using an unsupervised flow

cytometry-like workflow which identified spatial immune

signatures associated with prognosis.

In brain melanoma metastasis, MxIF was used to confirm

digital spatial transcriptomic data and to map the neural-immune

architecture of the TME. The data confirmed that patients with

tumor brain metastasis infiltrated with higher number of CD3+ and

CD20+ lymphocytes (presumably corresponding to tertiary

lymphoid structures) experienced longer overall survival,

suggesting that more organized immune infiltrates can foster

active anti-tumor immune responses or restrict tumor

expansion (23).

These studies only partially leveraged the potential of MxIF,

limiting the number of markers analyzed and thus hindering the

exploration of cellular heterogeneity within the TME.

CycIF with the MILAN (multiple iterative labelling by antibody

neodeposition) method (which uses a combination of a detergent

and a reducing agent to remove antibodies) has been used to dissect

TME cell phenotypes in a small cohort of primary cutaneous

melanoma (24). Authors identified 47 functional cell populations

(corresponding to tumor, epithelial, and immune cells) and

different cellular neighborhoods characterized by interactions

between activated and/or exhausted immune cells. These

interactions were linked to traditional pathological classifications

(e.g. brisk/non-brisk immune infiltrate, early/late regression),

offering functional insights into classical pathological features

commonly used in melanoma staging.

A recent study employing 20–30 plex CyCIF provided a more

detailed characterization of primary melanoma, examining its

cellular composition and structural organization (25). Through

spatial analysis, the authors identified the presence of recurrent

cellular neighborhoods (RCNs), spatial clusters of different cell

types that change during disease progression. Specifically, the

study uncovered how initial anti-tumor immune responses

were progressively hindered as myeloid niches formed, leading to

T cell exhaustion and eventually immune suppression. As

melanoma acquires invasive properties, these changes in cellular

microenvironments facilitate tumor progression. Furthermore, by

integrating spatial proteomics with spatial transcriptomics, the

researchers were able to identify distinct molecular programs tied

to disease progression, thereby advancing our understanding of

melanoma biology. This integrative approach also uncovered

potential therapeutic targets that could be leveraged for future

immunotherapy strategies.

CyCIF has also been used to assess melanoma evolution in

longitudinal samples collected across 9 years from a single patient

initially responding to ICIs and subsequently experiencing late

recurrence and death (26). These studies allowed the spatial

characterization of tumor-immune interactions occurring during
frontiersin.org
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TABLE 2 Application of spatial proteomics for the study of melanoma TME.

Reference Model Technology
Sample
type

Multiplexed
targets

Sample
size

Clinical findings

Gide TN
et al (19)

Human MxIF Primary
melanoma
pre/
post
treatment

4 ~40 Patients responding to ICIs have increase numbers of intratumoral
and peritumoral CD8+ T cells together with higher numbers of
PD-L1+ cells

Giraldo NA
et al (22)

Human MxIF Melanoma
metastasis

6 93 Long-term survivor patients: "inflamed" TME. Tumor cells near
high densities of CD8+ or PD-1+ cells.
Non-survivors: high densities of CD163+ cells lacking PD-L1, often
close to other macrophages.

Mendoza-
Valderrey A
et al (23)

Human IHC
MxIF
DSP

Melanoma
metastasis
(brain)

IHC (1)
MxIF (3)
DSP (56)

52 Higher infiltration of CD3+ and CD20+ lymphocytes in tumor
brain metastasis associated with longer overall survival

Bosisio FM
et al (24)

Human CycIF Primary
melanoma

39 29 Cellular neighborhoods associated to traditional pathological
classifications (e.g. brisk/non-brisk immune infiltrate, early/
late regression)

Nirmal AJ
et al (25)

Human CycIF Primary
melanoma

30 11 Histological progression associated with formation of myeloid
niches and T cell exhaustion

Liu D
et al (26)

Human CycIF Primary
melanoma,
melanoma
metastasis

23 37
longitudinal
samples

Increase of NGFRhi tumor cells and decreased numbers of CD8+,
CD4+ FoxP3- lymphocytes over time (during progression, ICIs
treatment and resistance)

Hickey
JW (27)

Mouse,
Human

CODEX B16F10
melanoma
model
Melanoma
metastasis

42 mouse
58 human

Human: 6
before/
after ICIs

Responder patients show higher PD-1+ CD8 T cells and TCF1/7+

CD8 T cells pre and post ICIs

Liu H (28) Human CODEX Acral
melanoma

22 12 Increased spatial enrichment of APOE+ CD163+ macrophages
associated to invasive acral melanoma (worse prognosis)

Surwase SS
et al (29)

Murine CODEX B16F10
melanoma
model

28 – Increased intratumoral immune activity after immunotherapy
delivery with nanoparticles

Martinez-
Morrilla S
et al (30)

Human IMC Melanoma 25 60 High b2-microgluobulin, MHC-I, and LAG3 associated to
improved progression-free survival and overall survival in ICIs-
treated melanoma patients

Xiao X
et al (31)

Human IMC Melanoma 35 26 Immune-hot TMEs formed by B lymphocytes and CD8+ and CD4+

T lymphocytes correlate to response to ICIs and better overall
survival. Immune-cold TMEs are formed by myeloid cells in close
contact with CD8+ T cells and are predictive of poor
clinical outcomes

Moldoveanu
D et al (32)

Human IMC Melanoma 35 67 Proliferating antigen-experienced cytotoxic T cells
(CD8+CD45RO+Ki67+) close to melanoma cells associated with
response to ICIs

Hoch T
et al (33)

Human IMC Melanoma 41 69 CXCL9 and CXCL10 localized in patches associated with
dysfunctional T cells, while CXCL13 strongly associated with B cell
patches and follicles, indicating that chemokines are associated to
different cellular milieu

Toki MI
et al (34)

Human DSP Melanoma 3 fluorescence
44 DSP

60 PD-L1 expression in macrophages associated with better
progression free survival and overall survival

Martinez-
Morilla S
et al (35)

Human DSP Melanoma 3 fluorescence
77 DSP

53 High stroma expression of CD95 associated with resistance to
ICIs treatment

Barras D
et al (36)

Human DSP Melanoma 4 fluorescence
79 DSP

13 Patients responding to adoptive cellular therapy with tumor-
infiltrating lymphocytes (TIL-ACT) exhibit CD8+ TILs with
increased cytotoxicity, exhaustion, and co-stimulation markers

(Continued)
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response vs late ICIs resistance and at different metastatic sites,

allowing a deeper understanding of the evolution of resistance and

tumor microenvironmental heterogeneity, offering a rationale to

improve combination therapies and to identify new targets.

Additional studies have utilized CODEX to investigate TME

evolution during adoptive T cell therapy in mouse models of

melanoma. A 42-plex antibody panel targeting immune, tumor,

and stromal cells, along with functional markers (primarily

checkpoints), was employed to examine immune cell infiltration

and tumor inflammation dynamics in a syngeneic B16F10 model of

antigen-specific T cell therapy (27). The authors reconstructed the

timeline of the anti-tumor immune response, visualizing different

cell neighborhoods at various stages of inflammation and tumor

attack. Their findings revealed that therapeutic T cells not only

target tumor cells but can also induce a shift in tumor cell

phenotypes, converting them into an inflamed, anti-proliferative

state. Moreover, T cells were shown to mediate the formation of

both productive and unproductive tumor-immune neighborhoods,

which affect therapy responses. A similar evolution of cellular

neighborhoods was observed in human melanoma samples

stained with a 58-plex panel, comparing responder vs non-

responder patients to ICIs. Results show that greater abundance

of PD-1+ CD8 T cells and TCF1/7+ CD8 T cells pre and post ICIs

was associated with response to treatment. Responders also showed

spatial reorganization of the TME after ICIs treatment, with the

formation of tumor-immune neighborhoods highly enriched in

Immune Infiltrate cellular neighbourhoods (27). These data

underscore the importance of considering T cells influence on the

structural reprogramming of the TME, as this process can

significantly impact the magnitude and effectiveness of anti-tumor

immune responses and tumor eradication. Therefore, these findings

suggest that immunotherapy strategies should incorporate factors

capable of restructuring the TME to enhance therapeutic outcomes.

More recently, CODEX was employed in a multi-omics study to

define and functionally assess the transition from in situ to invasive

acral melanoma. By integrating genomic sequencing with various

transcriptomic approaches and a 22-plex CODEX panel, the authors

identified molecular tumor subtypes characterized by increased
Frontiers in Immunology 07
epithelial-mesenchymal transition and spatial enrichment of APOE+

CD163+ macrophages as markers of invasive acral melanoma, with a

worse prognosis (28). A recent study has also shown the applicability

of the CODEX technology to study TME changes in animal models

treated with novel combination therapies (29).

In addition to CODEX, IMC has also been used to stratify

patient responses to immunotherapy. In a study using a 26-plex

panel on 60 melanoma samples from ICI-treated patients, the

application of the AQUA software, which calculates the

cumulative signal intensity per unit compartment area, identified

beta-2-microglobulin expression as a predictor of ICI response (30).

In addition, Xiao and colleagues used a 35-plex and identified 6

different patient archetypes (spatial cellular neighborhoods)

predictive of anti-PD-1 responses. In line with other spatial

proteomics studies (25, 27), they observed that immune-hot

TMEs are formed by CD8+ T cells surrounded by CD4+ and B

lymphocytes, and correlate to response to ICIs and better

overall survival. On the other hand, immune-cold archetypes

are characterized by myeloid cells in close contact with CD8+

T cells and are predictive of poor clinical outcomes (31).

Another IMC study quantifying the expression of 35 protein

markers in 67 pre-treatment melanomas, demonstrated that the

abundance of proliferating antigen-experienced cytotoxic T cells

(CD8+CD45RO+Ki67+) and their proximity to melanoma cells were

associated with positive response to ICIs (32).

Other IMC-based studies have employed modified protocols to

simultaneously detect protein markers and mRNA targets for

chemokines, enabling a more comprehensive analysis of T

lymphocytes activation and/or dysfunction and their patterns of

interaction in the TME (33).

Digital Spatial Profiling (DSP) GeoMX has been applied in

melanoma biology to discover predictive markers for

immunotherapy response in metastatic patients. Two independent

studies identified PD-L1 expression in macrophages, but not tumor

cells, as the strongest predictor of response to ICIs, while CD95

expression in immune cells was associated with immunotherapy

resistance (34, 35). In a phase I study of metastatic melanoma

patients treated with adoptive cellular therapy with tumor-
TABLE 2 Continued

Reference Model Technology
Sample
type

Multiplexed
targets

Sample
size

Clinical findings

Cabrita R
et al (37)

Human DSP Metastatic
melanoma

4 fluorescence
60 DSP

55 Co-occurrence of CD8+ T cells and CD20+ B cells in the TME is
associated with improved survival and tertiary lymphoid
structures formation

Helmink BA
et al (38)

Human DSP Melanoma 4 fluorescence
22 DSP

5 TLSs are associated with markers of T cell activation and response
and B cell proliferation

Beasley GM
et al (39)

Human DSP Melanoma
sentinel
lymph
node

3 fluorescence
59 DSP

4 High expression of dendritic cell (DC) activation markers (CD86,
HLA-DR, OX40L) within the SLN tumor associated with greater
overall survival

Therien AD
et al (40)

Human DSP Melanoma
sentinel
lymph
node

3 fluorescence
68 DSP

24 Activation markers, including Ki67-associated to B cells follicles,
are increased in metastatic sentinel lymph nodes
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infiltrating lymphocytes (TIL-ACT), DSP analysis revealed distinct

immune profiles in responders. At baseline, responder patients

exhibited CD8+ TILs with increased cytotoxicity, exhaustion, and

costimulation markers, while myeloid cells showed elevated type I

interferon signaling (36). DSP has also been used to identify and
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characterize tertiary lymphoid structures (TLS) within the

melanoma TME. Two separate studies revealed differential

expression of various activation and response markers in T

lymphocytes residing within TLS compared to those outside,

which exhibited a dysfunctional phenotype (37, 38).
FIGURE 2

Workflow of spatial proteomics analysis applied to a multiplexed image of a metastasis-free melanoma sentinel lymph node. The pipeline includes
key analytical steps, each illustrated with representative outputs. Preprocessing: image registration using the VALIS algorithm ensures alignment
across imaging channels. Cell segmentation: nuclei and cytoplasmic boundaries are segmented using Cellpose. Cell phenotyping: t-SNE plot and
heatmap display the results of phenotypic clustering performed with PhenoGraph. Spatial analysis: cellular neighborhood analysis, spatial community
detection, and cell–cell interaction inference were carried out using the imcRtools package. Created in https://BioRender.com.
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DSP studies in melanoma have also been extended to the

characterization of sentinel lymph nodes (SLNs). Beasley et al.

demonstrated an association between dendritic cell (DC)

activation markers (CD86, HLA-DR, OX40L) within the SLN

tumor and overall survival (OS), with lowest expression in

patients with OS < 1 year and highest in those with OS > 8 years

(39). Another study utilizing a 68-antibody DSP panel to analyze B

cell follicles in melanoma SLNs revealed significantly higher

expression of multiple activation markers, including Ki-67, within

B cell regions of metastatic SLNs compared to non-metastatic SLNs.

These findings suggest that B cell follicles within SLNs could be

involved in orchestrating effective adaptive immune responses in

melanoma even at early stages of lymph node involvement,

characterized by low tumor cell infiltration (40).

In summary, spatial proteomics has significantly advanced our

understanding of the melanoma TME, shedding light on its

heterogeneity in relation to prognosis, its evolution during

immunotherapy response or resistance, and its distinct

organization across different metastatic sites. However, additional

work is required to translate these insights into clinical applications

and diagnostic tools.
Image analysis workflow for spatial
proteomics

Extracting meaningful biological insights from the complex

amount of data obtained with the different spatial proteomics

methods requires a well-defined analytical workflow which

involves four key pillars: (i) image pre-processing to correct

variation in image quality, (ii) cell segmentation to identify

individual cells, (iii) cell phenotyping to classify cells and reveal

their functional states, and (iv) spatial neighborhood analysis to

delve into the intricate communication networks between cell

populations. To streamline this complex workflow and empower

researchers, a series of software tools have been developed

(Figure 2, Table 3).
Preprocessing

Multiplex imaging techniques produce rich datasets that require

rigorous preprocessing to ensure data quality, consistency, and

accurate downstream analysis. This step involves addressing

artifacts, aligning multi-tile or multi-round images, and

optimizing overall image quality to overcome the technical

challenges inherent in spatial proteomic methods. For tiled

imaging techniques, stitching and registration play a crucial role

in ensuring accurate and comprehensive datasets. Stitching

assembles individual image tiles into a cohesive dataset, while

registration aligns images across different cycles for the same

tissue slide and between sequential slides to a common spatial

framework. Tools like ASHLAR (Alignment by Simultaneous

Harmonization of Layer/Adjacency Registration) (41) excel in

both tasks by leveraging iterative optimization algorithms to
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achieve subpixel accuracy. Designed specifically for cyclic imaging

workflows, ASHLAR addresses common issues like misalignment

between imaging cycles or shifts in tissue position, ensuring a

seamless composite that faithfully represents the original tissue.

Similarly, VALIS (Virtual Alignment of Pathology Image Series)

(42) offers a flexible and scalable approach to aligning multi-

gigapixel whole-slide images and provides a modality-agnostic

solution, supporting both immunofluorescence and brightfield

datasets. Its unique groupwise registration method is particularly

beneficial for datasets with high variability in staining or tissue

distortion, as VALIS can integrate both rigid and non-rigid

transformations to accommodate stretching, folding, or

other deformations.

Beyond alignment, preprocessing tackles artifacts that

compromise image quality. These include folding, air bubbles,

dust, lint, out-of-focus areas, and uneven illumination, all of

which can distort quantitative results. Automated tools such as

QUAL-IF-AI (Quality Control of ImmunoFluorescence Images

using Artificial Intelligence) (43) leverage deep learning to detect

and correct these issues efficiently, offering a reproducible

alternative to labor-intensive manual corrections. For IMC

datasets, hot pixels—high intensity signals uncorrelated to any

biological structures — are removed using intensity thresholding

or spatial filters (median, Gaussian filter) or some specific pipeline

such as IMC-Denoise (44).

In immunofluorescence workflows, background subtraction

and illumination correction are essential to minimize signal

interference and standardize intensity across the image.

Techniques such as BaSiC algorithm (45) provide robust

solutions for correcting uneven illumination patterns, improving

the consistency of fluorescence signals across tiles and within

imaging cycles. Autofluorescence, a persistent challenge in older

or archival tissues, can be mitigated using spectral unmixing or

model-based approaches.

Ultimately, preprocessing pipelines like MCMICRO (Multiple-

choice microscopy pipeline) (46) or RAPID (a Real-time, GPU-

Accelerated Parallelized Image processing software for large-scale

multiplexed fluorescence microscopy Data) (47) are indispensable

for high-throughput multiplex imaging. They streamline workflows

by automating quality control, stitching, and registration, while

facilitating reproducibility and scalability. For instance, the

MCMICRO pipeline has been successfully applied to investigate

the spatial landscape of progression and immunoediting in primary

melanoma (25). By addressing both general and modality-specific

challenges, preprocessing enables accurate feature extraction and

sets the stage for robust spatial and molecular analyses.
Segmentation

Following image processing and alignment, cell segmentation

emerges as a crucial step in analyzing cellular features. During

segmentation, individual cell boundaries are computationally

identified, generating binary masks that represent single cells

within the image. The accuracy of cell segmentation significantly
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impacts the quantification of multicellular properties, such as

protein expression and cell morphology. An ideal cell

segmentation algorithm should effectively segment cells of

different sizes and shapes within various tissue types, regardless of

cell density. Additionally, it should accurately delineate both the

membrane and internal compartments like the nucleus and

cytoplasm. Techniques like watershed segmentation (48), are

effective for isolating individual cells, however they show some

limitations in accurately segmenting overlapping cells or cells with

complex morphologies, which can lead to cell’s over-segmentation

(49). Therefore, more advanced segmentation algorithms, such as

machine learning and deep learning models, are often necessary to

achieve accurate cell segmentation in complex tissues.

Machine learning-based approaches, such as random forest

classifiers, have gained traction for segmentation tasks. A

common workflow, IMCSegmentation Pipeline (16), involves

tools like Ilastik (50), which enables pixel-based classification to

distinguish between nuclei, membranes, and background regions,

generating probability maps. These maps can then be processed in

CellProfiler (51) to produce segmentation masks. However, these

methods require extensive manual effort and parameter

optimization, and their accuracy relies heavily on the quality and

volume of the training dataset.

In contrast, deep learning-based models represent a

transformative advance, offering superior accuracy and robustness

with minimal user intervention. Models like StarDist (52), Mesmer

(53), and Cellpose (54) have redefined cell segmentation,

particularly in challenging tissue contexts. StarDist leverages a

star-convex polygonal representation (55) to segment individual

cells, particularly excelling in identifying nuclei of various shapes

and sizes. Its unique approach models each nucleus as a star-shaped

object, which enables robust segmentation even in dense tissues or

images with overlapping cells. StarDist’s adaptability to both 2D

and 3D data makes it highly versatile for a range of imaging

modalities. Mesmer incorporates pre-trained convolutional neural

networks (CNNs) optimized for multiplexed tissue images. It

seamlessly segments both nuclei and cytoplasmic compartments,

ensuring robust performance across diverse tissue types without the

need for manual annotations. Mesmer’s pre-training on extensive

datasets allows it to generalize effectively, reducing the need for user

intervention and overcoming limitations posed by traditional

algorithms. Similarly, Cellpose introduces a generalist deep

learning framework capable of segmenting cells with varied

shapes, sizes, and densities. Unlike many task-specific algorithms,

Cellpose employs a flow-based representation to predict directional

flows of pixels toward cell centers, enabling accurate boundary

delineation. Its ability to handle highly heterogeneous datasets,

including images from fluorescent, brightfield, and phase contrast

microscopy, makes it particularly powerful for real-world

applications where cell morphology is highly variable.

The adoption of these deep learning models has significantly

improved segmentation accuracy in challenging tissue

microenvironments, surpassing traditional and machine learning-

based methods. By automating feature extraction and learning
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complex relationships in image data, these models not only

streamline the segmentation workflow but also enhance the

precision of downstream analyses, such as cell phenotyping and

spatial analysis. These advances are crucial for extracting

biologically relevant insights from high-dimensional imaging

datasets in biomedical research.
Cell phenotyping

Advancements in computational methods have significantly

refined cell phenotyping. Clustering techniques, for instance, have

become essential tools for grouping cells based on molecular

profiles. One prominent method, PhenoGraph (56), constructs a

weighted graph of cellular neighborhoods by identifying k-nearest

neighbors in expression space and quantifying overlap using the

Jaccard similarity coefficient (57). The graph is then partitioned into

clusters, enabling the detection of subtle subpopulations in tissues.

This approach has been widely applied to imaging datasets such as

IMC, offering a robust framework for clustering. Another impactful

technique, FlowSOM (58), utilizes self-organizing maps (SOMs)

(59) for dimensionality reduction and clustering. It incorporates

meta-clustering via minimal spanning trees, achieving results that

are not only highly accurate but also orders of magnitude faster than

traditional algorithms like SPADE (Sequential PAttern Discovery

using Equivalence classes) (60). These methods provide scalable

alternatives to manual gating, especially for high-dimensional

dataset. Notably, several studies on melanoma (24, 33) have

leveraged PhenoGraph, either alone or in combination with

FlowSOM, for cell type identification, highlighting the power of

these algorithms in unraveling tumor heterogeneity.

Machine learning further enhances phenotyping by

incorporating prior biological knowledge and leveraging spatial

context. Garnett (61), for example, is an interpretable framework

that enables the rapid annotation of cells across tissues and species,

even supporting hierarchical classification of subtypes. Garnett does

not require prior clustering, making it adaptable to various datasets.

CELESTA (62) expands on this approach by integrating spatial

information into the classification process. It assigns cell types to

“anchor cells” based on marker profiles and refines the phenotyping

of ambiguous “non-anchor cells” using spatial relationships with

neighboring cells. By employing probabilistic models and spatial

scoring functions, CELESTA excels in classifying cells with

uncertain identities. Astir (63), instead, takes a complementary

approach by using deep recognition neural networks to assign

probabilistic cell type identities from predefined marker sets. It is

especially effective in scaling to massive datasets, delivering results

with remarkable speed and precision.

Deep learning methods have revolutionized phenotyping by

exploiting the detailed spatial and molecular features of multiplexed

imaging data. For example, DeepCellTypes (64) combines visual

encoders, language encoders, and channel-wise transformers to

generalize across diverse datasets, seamlessly adapting to different

imaging modalities and marker panels. CellSighter (65), another
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deep-learning-based pipeline, employs convolutional neural

networks to classify cells probabilistically across imaging

platforms, achieving inter-observer-level concordance in accuracy.

Going further, STELLAR (SpaTial cELl LeARning) (66) utilizes

geometric deep learning to analyze spatially resolved single-cell

datasets. It integrates spatial and molecular features through graph

convolutional neural networks, identifying known cell types from

annotated reference datasets and discovering novel phenotypes in

unannotated datasets. By leveraging spatial proximity and

molecular expression, STELLAR provides a powerful tool for cell-

type discovery and tissue structure analysis.

Collectively, these advanced methods have propelled cell

phenotyping to new levels of accuracy and efficiency. They enable

researchers to unravel the complexity of tissue organization and

cellular interactions, seamlessly integrating phenotyping with

spatial analysis to uncover deeper biological insights.
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Spatial analysis

Spatial analysis plays a pivotal role in uncovering the intricate

organization of tissues and the dynamics of cellular interactions in

multiplex imaging datasets. Building upon the foundational steps of

preprocessing, segmentation, and cell phenotyping, it provides

profound insights into tissue architecture and intercellular

communication. Techniques such as neighborhood analysis,

cellular community detection, and interaction modeling are

particularly valuable in this context.

Neighborhood analysis focuses on understanding how different

cell types are spatially distributed and interact within the tissue

microenvironment. By evaluating spatial proximity, this approach

can reveal critical insights into phenomena like immune infiltrates

in tumors or the relationships between stromal and epithelial cells

(67). Tools like HistoCAT (Histology Topography Cytometry
TABLE 3 Tools and software commonly used in spatial proteomics analysis workflow.

Image
Analysis Step

Specific Task Software/Tools Ref Links

P
R
E
P
R
O
C
E
SS
IN

G

Stitching
Ashlar;
RAPID

(41, 47)
https://github.com/labsyspharm/ashlar
https://github.com/nolanlab/RAPID

Registration
HiFiAlignmentTool;
Ashlar; Valis;
RAPID;

(13, 41, 42, 47)

https://github.com/jhausserlab/HiFiAlignmentTool
https://github.com/labsyspharm/ashlar
https://github.com/MathOnco/valis
https://github.com/nolanlab/RAPID

Artifacts Removal Qual-IF-AI, (43) https://github.com/TCWO/QualIFAI

Background and
Illumination correction

BaSiC (45) https://github.com/marrlab/BaSiC

Hot Pixel corrections IMC-Denoise (44) https://github.com/PENGLU-WashU/IMC_Denoise

SE
G
M
E
N
T
A
T
IO

N Machine
Learning Approaches

IMC segmentation pipeline
(Ilastik+ CellProfiler)

(16, 50, 51)

https://github.com/BodenmillerGroup/
ImcSegmentationPipeline
https://github.com/ilastik/ilastik
https://github.com/CellProfiler

Deep Learning Approaches
STARDIST;
MESMER; CELLPOSE.

(52–54)

https://github.com/stardist/stardist
https://github.com/vanvalenlab/intro-to-deepcell/tree/
master/pretrained_models
https://github.com/MouseLand/cellpose

C
E
LL

 P
H
E
N
O
T
Y
P
IN

G Clustering Phenograph; FlowSOM. (56, 58)
https://github.com/i-cyto/Rphenograph
https://github.com/saeyslab/FlowSOM

Machine
Learning Approaches

Garnett; CELESTA; Astir. (61–63)
https://github.com/cole-trapnell-lab/garnett
https://github.com/plevritis-lab/CELESTA
https://github.com/camlab-bioml/astir

Deep Learning Approaches
DeepCellTypes;
CellSighter; STELLAR.

(64–66)
https://github.com/vanvalenlab/deepcell-types
https://github.com/KerenLab/CellSighter
https://github.com/snap-stanford/stellar

SP
A
T
IA

L 
A
N
A
LY

SI
S

Neighborhood analysis imcRtools; Histocat. (16, 68)
https://github.com/BodenmillerGroup/imcRtools
https://github.com/SchapiroLabor/histoCAT

Cellular communities imcRtools; Squidpy. (16, 71)
https://github.com/BodenmillerGroup/imcRtools
https://github.com/scverse/squidpy

Interaction analysis imcRtools; Giotto. (16, 74)
https://github.com/BodenmillerGroup/imcRtools
https://github.com/drieslab/Giotto

Ligand-receptor
signaling networks

CellChat; SpaOTsc. (76, 77)
https://github.com/sqjin/CellChat
https://github.com/zcang/SpaOTsc
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Analysis Toolbox) (68) provide an accessible interface for exploring

these spatial relationships in IMC data, allowing researchers to

visualize cell phenotypes and compute interaction maps. The

practical feasibility of HistoCAT has been demonstrated in

clinical research: for instance, it was used by Xiao et al. (31) to

identify spatially defined tumor-immune microenvironments

associated with response to anti-PD-1 therapy in melanoma

patients, and to classify distinct TME archetypes predictive of

treatment outcome. Similarly, Martinez-Morilla et al. (30)

employed IMC for biomarker discovery in metastatic melanoma,

complementing spatial data analysis with quantitative methods to

identify predictive markers such as beta2-microglobulin (B2M),

supporting the potential of spatial proteomics for clinical

stratification. Furthermore, Cytomapper (69), an R/Bioconductor

package, offers powerful visualization capabilities for highly

multiplexed imaging data, enabling researchers to generate

informative spatial maps and explore cellular neighborhoods in

detail, complementing the analytical strengths of HistoCAT.

Meanwhile, R-based tools such as imcRtools (16) offer deeper

statistical capabilities for calculating interaction probabilities and

visualizing spatial patterns. This framework can be extended to

analyze more general spatial patterns using packages like Spatstat

(70) for advanced statistical assessments of spatial clustering

and randomness.

Detecting cellular communities adds another layer of

complexity by identifying clusters of cells that form functional

units, such as immune niches or tumor microenvironments.

Leveraging the same robust framework provided by imcRtools,

researchers can cluster and characterize cellular communities in

IMC data, integrating spatial metrics with phenotypic profiles.

Additionally, software like Squidpy (71), which utilizes spatial

neighborhood graphs, enables classification of cells into

communities while incorporating multi-omic data such as gene or

protein expression. These analyses can highlight patterns like

immune deserts or coordinated interactions between stromal and

immune cells, with Squidpy’s visualization tools offering an

intuitive way to explore these relationships. The feasibility of

Squidpy-based pipelines in clinical research is illustrated by

Coullomb et al. (72), who developed MOSNA, a spatial omics

analysis framework compatible with Squidpy, to uncover spatial

features predictive of immunotherapy response and survival across

cancer cohorts. By integrating spatial proteomics data with clinical

metadata, their study demonstrates how cell interaction patterns

and tissue architecture can inform patient stratification and

treatment outcomes.

Interaction analysis delves deeper into the mechanisms of cell-

cell communication by quantifying and modeling direct or indirect

interactions. This is crucial for understanding how cells influence

each other’s functions within their spatial context. imcRtools

facilitates the computation of interaction frequencies and

enrichment scores to identify preferential or avoided interactions

between cell types (73). Advanced tools like Giotto (74)

complement these efforts by detecting spatial dependencies that

extend beyond mere proximity, helping to elucidate the spatial

organization of functional phenotypes.
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An important resource for the scientific community is Aquila

(75), a spatial omics database and analysis platform that aims to

centralize data, analysis tools, and visualizations, facilitating sharing

and discovery in this rapidly growing field. This database could be

invaluable for melanoma researchers seeking publicly available

spatial proteomics datasets and tools for comparative analyses.

As spatial analysis techniques continue to evolve, integrative

approaches are emerging that bridge spatial organization

with molecular communication. Tools such as CellChat (76) and

SpaOTsc (Spatial Optimal Transport for single-cell transcriptomics

data) (77) model ligand-receptor signaling networks, offering

a functional perspective on cell-cell interactions (78)

These advancements not only enhance our understanding of

tissue architecture but also open new avenues for exploring

pathological processes.

Looking ahead, the field is poised for innovations that will

improve scalability and interoperability across platforms, enabling

researchers to tackle increasingly large and complex datasets. By

synthesizing spatial metrics with molecular data, future studies

promise to unveil deeper insights into the interplay between

spatial organization and tissue functionality.
Data integration for spatial analysis

Integration of spatial proteomics with
other tissue imaging approaches

While single imaging modalities can yield valuable information,

integrating data across multiple platforms enables a more holistic

view of the tissue microenvironment. This approach introduces

challenges such as spatial misalignment (79) due to differences in

platform resolution, data normalization, and the choice of

integration methodologies.

Among integrative approaches, combining IF with hematoxylin

and eosin (H&E) staining represents a straightforward but effective

strategy (80). While H&E provides fundamental morphological

information such as cell shapes, sizes, and tissue organization, IF

enables visualization of multiple fluorescent markers within

individual cells, offering molecular and structural insights. Tools

like the Orion (81) or HIPI (H&E Image Interpretation and Protein

Expression Inference) platform (82) take this integration further by

seamlessly combining multiplex fluorescence with histological data,

facilitating a comprehensive understanding of both cellular and

tissue-level features.

The integration of IF with IMC (83, 84) exemplifies a more

advanced approach, leveraging the strengths of both modalities

while mitigating their individual limitations. By integrating IF and

IMC, researchers can align high-resolution imaging capabilities

with comprehensive molecular profiling, creating a synergistic

workflow. This integration addresses the limitations of each

technique: IF compensates for IMC lower resolution, while IMC

extends IF multiplexing capacity. Computational advances,

including multimodal image co-registration and machine

learning, now enable pixel-level alignment of IF and IMC
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datasets, linking cellular phenotypes with molecular signatures in

unprecedented details.

These integrative strategies have been transformative in

practical applications. In tumor microenvironment studies, IF

provides precise mapping of immune-tumor boundaries and

structural features like vascular networks, while IMC captures

phenotypic diversity and functional pathways in immune subsets

and stromal compartments. This dual-layer analysis not only

enhances our understanding of spatially resolved phenotypes but

also identifies potential therapeutic targets by linking molecular

mechanisms to tissue architecture.

Despite their transformative potential, integrating multiplex

platforms introduces challenges, including data complexity, the

need for standardized workflows, and alignment of modalities

with varying spatial resolutions. However, ongoing advancements

in computational tools and reproducibility standards are addressing

these hurdles, ensuring that integrative approaches are both scalable

and reproducible. As a result, the integration of multiplex

imaging technologies is becoming a cornerstone of spatial

biology, unlocking unprecedented insights into tissue architecture,

cellular interactions, and functional diversity.
Integration of spatial proteomics with
other multi-omic approaches

Multi-omic data integration leverages computational

advancements to analyze individual biomolecules within single

cells. Each omics technique, such as RNA-seq, DNA methylation,

and metabolite profiling, provides deeper insights into cellular

interactions within their environment. However, each omics

approach focuses on different aspects of cellular identity, with

distinct strengths and weaknesses. Multi-omics integration offers

a powerful method for robust and sensitive cell type/state

identification, enhancing our understanding of cellular

differentiation, gene regulatory networks, cell-cell interactions,

microenvironmental organization, cellular lineages, and clonal

dynamics. Meaningful integration of high-dimensional data,

however, requires the development of computational and

statistical models that account for the technical and biological

complexities of these technologies (85). Argelaguet et al. (86),

recently categorized data integration strategies into three main

categories based on the anchors used to link different data

modalities. Horizontal integration relies on common data features

measured across different datasets, such as integrating across

batches or technologies measuring the same analyte. Vertical

integration involves parallel measurements of non-overlapping

data features within the same cells, while diagonal integration is

used when neither cells nor common features are available to serve

as anchors. Although multimodal integration is advancing

biomedical research, its clinical application is still in the early

stages. Challenges include the high costs of multi-omics

technologies, the need for specialized computational tools,

and the requirement for rigorous clinical validation, which

can be time-consuming and expensive. Despite these obstacles,
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multimodal integration holds great promise for enhancing our

understanding of complex diseases and improving patient care in

the future (87).
Spatial proteomics: limitations and
future outlook

Spatial proteomics has significantly advanced our

understanding of melanoma TME by providing detailed, spatially

resolved maps of the complex interactions between tumor cells,

immune cells, and stromal components. These approaches have

illuminated how cell-to-cell interactions influence key aspects of

cancer biology, including disease progression, metastatization, and

therapeutic response.

In melanoma, spatial proteomics has refined our understanding

of the relationship between ICIs responses and the conventional

pathology assessments of PD-1/PD-L1 expression, as well as the

prognostic significance of “brisk” versus “non-brisk” immune

infiltration. By identifying spatial patterns within the TME and

characterizing specific cellular functional states, these techniques

have elucidated the TME evolution during disease progression and

identified elements associated with increased invasiveness and

response to immunotherapies. Furthermore, mapping the spatial

context of tumor-infiltrating immune cells, their interactions with

tumor cells, and the expression of key immune checkpoint markers

has advanced the concept of precision oncology.

As spatial proteomics continues to evolve, it is gradually

emerging as new tool to be integrated into clinical practice,

holding transformative potential for pathology and its application

in cancer diagnosis, prognostication, and treatment.

Studies in melanoma have demonstrated the potential of spatial

proteomics to inform clinical decision-making across various

aspects of melanoma management, including: identifying

prognostic biomarkers of survival (22, 23, 28, 31, 34, 37, 39);

predicting response to immunotherapy (19, 27, 30, 32, 35, 36),

characterizing patterns of disease progression (24, 25, 28); and

uncovering novel mechanisms to optimize future immunotherapies

(29, 33, 38).

Despite the recent advances, spatial proteomics has several

limitations, and further improvements are still needed (88).

All the multiplex approaches developed so far offer cellular maps of

the TME, however, they often overlook key factors such as the

extracellular matrix (ECM) and soluble molecules (e.g. cytokines,

chemokines, and metabolites) that directly influence the formation of

specific cellular neighborhoods within the TME. New technologies,

such as Deep Visual Proteomics (DVP), are addressing these

limitations by combining the strengths of digital pathology with

high-sensitivity mass spectrometry (MS). DVP enables the selective

capture of cells for in-depth analysis, facilitating a more comprehensive

comparison of relevant cellular states at higher throughput. Unlike

traditional methods, DVP is not limited by antibody availability,

allowing for the quantification of up to 10,000 proteins. Additionally,

super-resolution protein imaging in DVP allows for detailed

examination of protein localization at the subcellular level, providing
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insights into how proteins function in both health and disease. In

melanoma, the application of DVP to classify cell states based on

proteomic profiles has uncovered spatial proteome changes that occur

during melanoma progression (89). This capability could uncover new

therapeutic targets, advancing drug discovery and treatment

strategies (90).

Tissues are inherently heterogeneous, and most of the spatial

proteomic approaches have largely relied on the analysis of 2D

specimens from single tissue slices. To better capture the complexity

and diversity of tissues, various research groups are working to develop

3D spatial proteomic workflows. Most of them are based on sequential

slide staining coupled with tissue reconstruction (91) or on tissue

clearing protocols combined with multiplex staining (92, 93).

Another limitation of spatial proteomics is the large volume of

data it generates, which often requires several days for thorough

analysis. The development of rapid, automated data storage

platforms and more efficient analysis pipelines could greatly

accelerate data processing, enabling faster insights and enhancing

the overall utility of spatial proteomics in research and clinical

applications. This advancement would not only accelerate results

but also pave the way for the clinical application of spatial

proteomics, potentially revolutionizing pathology.

The integration of artificial intelligence (AI) with multiplex

imaging, traditional digital pathology approaches (94), and spatial

analysis represents a transformative opportunity for spatial proteomics.

AI-driven approaches, particularly in computer vision, could

revolutionize how we analyze complex datasets, enabling real-time

pattern recognition and spatial mapping that surpass human

capabilities. These techniques could also refine traditional digital

pathology by enhancing the consistency and resolution of image

analysis, enabling more detailed tissue characterization. AI could

interpret the intricate spatial relationships within the tumor

microenvironment, identifying biomarkers and predicting responses

to immunotherapies with unparalleled precision (95). Emerging tools

(46), promise to unify tasks like segmentation, classification, and

phenotyping into streamlined pipelines, significantly enhancing both

the accuracy and efficiency of spatial data analysis (96). Looking

forward, AI-powered platforms could offer intuitive, query-based

interfaces for integrating imaging data with clinical and molecular

profiles, paving the way for new biological insights and personalized

treatment strategies. Such innovations would not only accelerate data

processing but also address the inherent limitations of human

subjectivity, unlocking the full potential of multiplexed spatial

proteomics in research and clinical practice.

There is a significant global effort to create comprehensive

human atlases of cell networks and neighborhoods, spanning a

wide range of tissue types and disease states. These atlases aim to

map the intricate cellular interactions and spatial organization

within different tissues, providing a rich resource for

understanding human biology in health and disease (97–99).

In addition, recognizing the systemic nature of cancer, where

tumor-induced perturbations extend beyond the local TME, future

spatial proteomic studies should be integrated with analyses of

cancer-mediated changes occurring at the systemic level, such as

those observed in peripheral blood. This integrated approach could
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help to identify soluble factor signatures (e.g. metabolites, proteins)

indicative of the TME that are amenable to detection in

liquid biopsies.

To conclude, the integration of spatial multi-omics represents a

frontier in biomedical research, offering unprecedented

opportunities to uncover the spatial and functional complexity of

biological systems. Future efforts will likely focus on refining

computational frameworks, reducing technological costs, and

bridging the gap toward clinical applications. By addressing these

challenges, spatial multi-omics could transform our understanding

of tissue organization and disease mechanisms, paving the way for

personalized diagnostics and therapeutics.
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