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Disulfidptosis is a newly discovered formation of programmed cell death.

However, the significance of disulfidptosis in pancreatic adenocarcinoma

remains unclear. Our investigation aims to elucidate the significance of

disulfidptosis in pancreatic ductal adenocarcinoma by integrating diverse

datasets, including bulk RNA sequencing data, microarray profiles, single-cell

transcriptome profiles, spatial transcriptome data, and biospecimens. Utilizing

various bioinformatics tools, we screened disulfidptosis-related genes based on

single-cell RNA sequencing profiles, subsequently validating them through

enrichment analysis. An 8-gene disulfidptosis-related prognostic signature was

established by constructing massive LASSO-Cox regression models and

validated by multiple external PDAC cohorts. Evaluation methods, such as

Kaplan-Meier curves, ROC curves, time-dependent ROC curves, and decision

curve analysis, were employed to assess the prognostic signature’s reliability.

High disulfidptosis-related scores were associated with a poorer prognosis and

diminished sensitivity to immune checkpoint blockade. Further investigation

uncovered that the potential components of elevated DPS involve malignant

tumor hallmarks, extensive interactions between myCAFs and tumor cells, and

the exclusion of immune cells. Cell-cell communication analysis highlighted

myCAFs’ role in signaling, potentially influencing tumor cells towards increased

malignancy through collagen, laminin, and FN1 signaling networks. Spatial

transcriptome analysis confirmed the crosstalk between myCAFs and tumor

cells. Biospecimens including 20 pairs of PDAC samples and adjacent normal

tissues further demonstrated the robustness of DPS and its correlation with CAF

markers. In conclusion, our study introduces a novel disulfidptosis-related

signature with high efficacy in patient risk stratification, which has the ability to

predict the sensitivity to immune checkpoint blockade.
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1 Introduction

According to the 2023 American cancer statistics, pancreatic

cancer is the third leading cause of cancer death in men and women

combined (1). Pancreatic ductal adenocarcinoma (PDAC) represents

the predominant pathological subtype of pancreatic cancer,

characterized by high aggressiveness and heterogeneity. Owing to

the features of insidious onset, a significant number of patients miss

the opportunity for anatomical excision upon diagnosis, contributing

to the exceptionally poor prognosis of PDAC, with a 5-year survival

rate hovering around 8% (1, 2). However, surgery alone is not enough

for the treatment of PDAC, as more than 90% of patients suffer

relapse and die without additional therapy (3). Chemotherapeutic

strategies including 5-fluorouracil/leucovorin with irinotecan and

oxaliplatin (FOLFIRINOX) and gemcitabine/nab-paclitaxel can

help improve the prognosis of PDAC, while the development of

chemoresistance and serious side effects greatly limit the clinical

benefits (4). Targeted therapy, represented by small molecular

inhibitors and immune checkpoint inhibitors (ICIs) represented by

PD-1 inhibitors, offer potential avenues for cancer cure. However,

neither has shown exciting therapeutic effects in PDAC (5). Hence,

there is an urgent need to reveal novel biomarkers to help clinical

decision-making and improve the survival of PDAC patients.

Cell death, a fundamental process in all living organisms, has

witnessed recent discoveries of novel modes, including

disulfidptosis (6), ferroptosis (7), and cuproptosis (8). These not

only regulate distinct cell fates but also provide innovative ideas for

overcoming the bottleneck in cancer treatment. Among them,

ferroptosis is featured by the accumulation of excessive iron ions

and activated lipid peroxidation resulting from the dysregulation of

iron ion transport and metabolism within cells (7). Recent studies

have revealed the relationships between ferroptosis and cancer cell

metabolism, proliferation, and the tumor microenvironment

(TME) and suggest that targeting ferroptosis has potential as a

new approach for anticancer therapy (9). In contrast, disulfidptosis,

a recently identified cell death type, is classified as a metabolic-

related regulated cell death (10). Solute carrier family 7 member 11

(SLC7A11), belongs to a heteromeric, sodium-independent, anionic

amino acid transport system that is highly specific for cysteine and

glutamate and plays a central role in disulfidptosis initiation.

Nicotinamide adenine dinucleotide phosphate (NADPH) serves

as a critical electron donor, providing the reducing power for

anabolic reactions and redox balance (11). In situations of glucose

starvation, limited NADPH production from the pentose phosphate

pathway occurs, leading to imminent reducing power exhaustion.

At the same time, massive uptake of cystine mediated by SLC7A11

leads to the accumulation of disulfide bonds between actin

cytoskeleton proteins and the collapse of the actin filament

network after NADPH depletion, ultimately triggering

disulfidptosis (6, 10). Hence, cells with a high tendency of

disulfidptosis are characterized by high expression of SLC7A11

and unstable cellular redox state. Targeting disulfidptosis may open

a new field in cancer treatment. However, difficulties like the

unclear relationship between disulfidptosis and prognosis,
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insufficient understanding of mechanisms, and lack of drugs to

selectively induce tumor cell disulfidptosis remain to be solved.

In the present study, we aim to develop a general and robust

disulfidptosis-related prognostic signature and explore its potential

components in several aspects of PDAC through comprehensive

multi-omics analysis and experimental validation (Figure 1). Our

study provided a novel approach to help improve the prognostic

assessment of PDAC patients, which highlights the potential of

disulfidptosis in clinical application and may help clinical decision-

making. Besides, we created an online tool for the easy application

of our disulfidptosis-associated signature (https://mingshsmu.

shinyapps.io/dps_pdac/). Additionally, our findings reveal critical

communications between myofibroblastic cancer-associated

fibroblasts (myCAFs) and PDAC tumor cells, correlating with

poor prognosis and insensitivity to immunotherapy.
2 Materials and methods

2.1 Data collection and preparation

The detailed results of CRISPR-Cas9 screening for disulfidptosis

were acquired from ref (6). A total of 1,250 PDAC samples with

simultaneous transcriptome profiles and corresponding prognostic

information of patients were collected from 10 distinct datasets via

various databases including The Cancer Genome Atlas (TCGA), the

Gene Expression Omnibus (GEO), the International Cancer

Genome Consortium (ICGC) data portal, and the Omics

Discovery Index (OmicsDI). Among them, 582 samples were

detected with RNA-array platform (41 samples from GSE28735

(12), 63 samples from GSE57495 (13), 64 samples from GSE62452

(14), 79 samples from GSE85916, 47 samples from GSE102238 (15),

and 288 samples from E-MTAB-6134 (16)), while 541 samples were

profiled using RNA-sequencing technology (141 samples from

TCGA-PAAD, 186 samples from PACA-CA, and 87 samples

from PACA-AU (17), 127 samples from CPTAC-PDAC (18)). In

detail, data from five datasets including GSE28735, GSE57495,

GSE62452, GSE85916, and GSE102238 were accessed through the

GEO database (https://www.ncbi.nlm.nih.gov/geo/). E-MTAB-6134

dataset was obtained from OmicsDI (https://www.omicsdi.org/).

The RNA-sequencing profiles and corresponding survival

information of PDAC patients in the TCGA-PAAD dataset were

acquired from the University of North Carolina TCGA genome

characterization center (http://xena.ucsc.edu/), while the somatic

mutation data were downloaded via “TCGAmutations” R package

(19). In particular, clinicopathological features were obtained from

the cBioPortal website (https://www.cbioportal.org/). PACA-CA

and PACA-AU datasets were accessed through the ICGC data

portal (https://dcc.icgc.org/). The genetic mutation data,

transcriptome data, and clinical information of the CPTAC-

PDAC cohort were downloaded from LinkedOmics (https://

www.linkedomics.org/data_download/CPTAC-PDAC/). The

detailed criteria for inclusion of patients enrolled in this research

were as follows: 1) histologically confirmed PDAC and
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simultaneously available information on transcriptome profiles and

survival information. To reduce bias, patients with a follow-up time

of less than 1 month were excluded. For bulk transcriptome data

preprocessing, gene expression values detected by RNA-array were

log2(x+1) transformed, while fragments per kilobase million

(FPKM) generated from RNA-sequencing were converted into

transcripts per million (TPM) and subsequently transformed as

log2(TPM+1). Batch effects among different RNA arrays and

several RNA-sequencing datasets were removed using the
Frontiers in Immunology 03
“ComBat” function with the parametric empirical Bayes

frameworks from the “sva” R package, respectively.

The single-cell RNA-sequencing profiles of 24 PDAC tumor

samples and 11 control pancreases as well as annotations of each

cell were obtained from the Genome Sequence Archive (GSA) via

the accession ID of CRA001160 (20). For data preparation and

quality control, possible “doublets” were detected and removed via

the “DoubletFinder” R package setting the doublet rate parameter as

8% (21). Quality control criteria were as follows: 1) cells had either
FIGURE 1

Schematic of the study. The framework of the four-phase study. DPS, disulfidptosis-related score; KRAS, kirsten rat sarcoma viral
oncogene homolog.
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fewer than 400 or greater than 50,000 RNA counts, 2) less than 100

or more than 8,000 RNA features, or 3) over 10% RNA features

derived from the mitochondrial genome were removed. The

remaining 52,534 cells were used for this study. Two PDAC

samples with hematoxylin and eosin (H&E) staining and spatial

transcriptome profiles were downloaded from GSE211895 (22). In

total, 2,204 spots and 3,232 spots were available for further

analysis, respectively.
2.2 Differential expression analysis

For bulk RNA-sequencing data, differentially expressed genes

(DEGs) between two groups were analyzed through the “DESeq2” R

package based on the raw count matrix. For normalized RNA-array

values or TPM values, the “limma” R package was utilized to

calculate the DEGs. Genes with the absolute value of logFC (fold

change) > 1 and adjusted P-value < 0.05 were considered significant.

Markers for cell clusters or spatial niches were calculated via the

“FindMarkers” function from the “Seurat” R package (version 4.3.0)

with default parameters (23). Particularly, only positive markers

were kept for screening disulfidptosis-related genes.
2.3 Functional enrichment analysis

Gene Ontology (GO) items and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways were analyzed based on the DEGs

through the “clusterProfiler” R package (24). In particular, the top

200 DEGs were used for enrichment analysis if the number of DEGs

exceeded 200. Gene set enrichment analysis (GSEA) was conducted

based on a list of DEGs and their values of logFC by setting the

annotated gene sets in “h.all.v2023.1.Hs.symbols”, “c2.cp.kegg.

v2023.1.Hs.symbols”, and “c5.go.v2023.1.Hs.symbols” obtained

from the Molecular Signatures Database (MSigDB, https://www.

gsea-msigdb.org/gsea/msigdb/) as reference. Enriched items,

pathways, and hallmarks with an adjusted p-value < 0.05 were

considered statistically significant.
2.4 Construction and validation of
prognostic models and nomograms

A total of three steps were conducted to construct prognostic

models. Step one, univariate Cox regression analysis was conducted

based on the integrated RNA-arrays as well as the disulfidptosis-

related genes. Genes with a p-value less than 0.05 were considered

significant and named disulfidptosis-related prognostic genes. In

step two, the integrated RNA arrays including the expression

profiles of 582 PDAC samples were separated into a training set

(n = 291) and an internal validation set (n = 291) at a 1:1 ratio with

the assistance of the “caret” R package. In step three, the Least

Absolute Shrinkage and Selection Operator (LASSO) regression

algorithm with a minimum 10-fold cross-validation was conducted

to build prognostic models based on the training set and
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disulfidptosis-related prognostic genes. Genes and their non-zero

coefficients (b) were extracted from the LASSO regression model

and were subsequently used to calculate the disulfidptosis-related

score (DPS) of each PDAC patient using the following formula:

DPS =o
n

i=1
Expgene _ i �  bgene _ i

To evaluate the prognostic significance of DPS, several distinct

PDAC cohorts with either overall survival or disease-free survival

were employed. Patients in each cohort were assigned into high-

DPS (H-DPS) and low-DPS (L-DPS) groups according to the

optimal DPS cutoff. Kaplan-Meier curves and multivariate Cox

regression analysis were employed to evaluate the risk stratification

performance of the DPS. Nomograms integrating with the DPS and

clinicopathological features were established on the basis of

multivariate Cox regression analysis. The receiver operating

characteristic (ROC) curves and time-dependent area under the

curve (AUC) were introduced to assess the robustness of DPS.

Decision curve analysis (DCA) was utilized to estimate the survival

net benefits of each variable.
2.5 Mutation analysis

Somatic mutation data were processed with the “maftools” R

package (25). The mutational rates of genes were calculated and

displayed via the “oncoplot” function. Since mutant KRAS is a

critical dominant driver for PDAC tumorigenesis and development,

the mutation types and rates of KRAS were extracted and compared

between H-DPS and L-DPS groups.
2.6 Prediction of the sensitivity to immune
checkpoint blockade

The Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm, developed through modeling two primary mechanisms

of tumor immune evasion for predicting the response to immune

checkpoint blockade (ICB) (26), was utilized to predict the

sensitivity of PDAC patients to ICB. The fractions of 22 types of

tumor-infiltrating cells were estimated using the CIBERSORT

algorithm (27).
2.7 Single-cell RNA sequencing data and
spatial transcriptome data analysis

After doublets elimination and quality control, a total of 52,534

cells were used for subsequent study. The standard preprocessing

workflow was as follows: 1) data were normalized using the

“LogNormalize” method with the scale factor of 10,000; 2) the

top 2,000 highly variable features (HVFs) were identified and

subsequently scaled with regressing out the potential influence

from cell cycle and percent mitochondrial content; 3) the first

round of dimensionality reduction was performed using principal
frontiersin.org
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component analysis (PCA) based on the expression of top 2,000

HVFs; 4) the “harmony” integration algorithm was employed to

minimize the batch effect based on the results of PCA; 5) the second

round of dimensionality reduction for data visualization was carried

out using the Uniform Manifold Approximation and Projection

(UMAP) algorithm; 6) cell clusters were identified according the top

20 harmony dimensions with various resolution from 0.01 to 1.

General markers used for cell type annotation were consistent

with Peng et al. (20) and Fu et al. (28) and listed as follows: MMP7,

TSPAN8, SOX9, LCN2 (ductal cell), PRSS1, CTRB1, CTRB2, REG1B

(acinar cell), CHGB, CHGA, INS, IAPP (endocrine cell), RGS5,

ACTA2, PDGFRB, ADIRF (stellate cell), LUM, DCN, COL1A1, FAP

(cancer-associated fibroblast, CAF), CDH5, PLVAP, VWF, CLDN5

(endothelial cell), CD14, CD163, CD68, AIF1 (macrophage), CCR7,

FSCN1, XCR1, CLEC9A, CD1C, FCER1A (dendritic cell), S100A12,

CLEC10A (monocyte), CD3D, CD3E, CD4, CD8A (T cell), MS4A1,

CD79A, CD79B (B cell), MZB1, SDC1 (plasma cell), CEACAM1,

CEACAM5, CEACAM6, KRT19 (poor prognosis). Cell subclusters

were identified by extracting the expression profiles of a certain type

of cells and performing the standard preprocessing workflow

repeatedly until all the cells were well annotated. Subclusters of

fibroblasts were annotated according to the markers identified by

Ela Elyada et al. and other researchers (29, 30): ACTA2, COL10A1,

POSTN, MMP11, SDC1, HOPX (myofibroblastic CAF, myCAF),

APOD, C7, PTGDS, EGR1, IL6, CXCL12, CFD, DPT, HAS1

(inflammatory CAF, iCAF), CD74, HLA-DRA, HLA-DPA1, HLA-

DQA1 (antigen-presenting CAF, apCAF), MPZ, S100B, LGI4, PLP1

(CAFs peripheral nerve cell, CAFPN), both RGS5/ACTA2 and

PLVAP/VWF (endothelial-to-mesenchymal transition CAF,

CAFEndMt). Immune cell subclusters were annotated using the

following previously reported markers: Cytotoxic CD8+ T cells

(PRF1, GZMA, GZMK, NKG7 with varying expression levels of

exhaustion markers LAG3, PDCD1, CTLA4, TIGIT, HAVCR2,

TNFRSF9), Naïve T cells (IL7R), T regulatory cells (FOXP3,

TNFRSF4, IKZF2, IL2RA), Follicular T cells (CD200, GNG4,

CHN1, IGFL2, ITM2A, CPM, NR3C1), CD8+ T effector memory

cells (CD8A, ZNF683), CD8+ resident memory cells (KLRK1,

ITGAE), NK cells (FGFBP2, FCGR3A), M1 macrophages (C1QA,

C1QB, C1QC, lack of the expression of CD163 and IL10), M2

macrophages (CD163, IL10, C1QA, C1QB, C1QC). The signature

scores of each cell were calculated using the UCell algorithm (31).

H-DPS and L-DPS-associated cells were selected using the Scissor

method (32) by integrating bulk and single-cell sequencing data.

Spatial transcriptome data were divided into several spatial niches

using the “BayesSpace” algorithm (33). H-DPS and L-DPS-associated

spots were selected using the “Scissor” method (32) by integrating

bulk sequencing and Spatial transcriptome profiles.
2.8 Cell communication and spatial
communication analysis

Communication networks among cell types or spatial niches

were analyzed and visualized using the “CellChat” R package (34).

To minimize the bias, a cell type consisting of at least 30 cells or a
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spatial niche consisting of at least 10 spots was considered able to

communicate with others. The probabilities of the communication

network were quantified using the number of interactions and

interaction strength. Spatial colocation analysis of ligands and

receptors was used to further confirm the communication analysis.
2.9 Biospecimens and quantitative real-
time PCR

This research was approved by the Ethics Committee of

Shanghai East Hospital, School of Medicine, Tongji University

(2022-212). A total of 20 pairs of PDAC samples and adjacent

normal tissues were obtained from Shanghai East Hospital Biobank.

All patients had signed informed consent for donating their

specimens to Shanghai East Hospital Biobank. Total RNA was

extracted from tissue samples using TRIpure Total RNA Extraction

Reagent (ELK Biotechnology, EP013), following reversed

transcribed via EntiLink™ 1st Strand cDNA Synthesis Kit (ELK

Biotechnology, EQ003) according to the manufacturer’s

instructions. Quantitative real-time polymerase chain reaction

(qRT-PCR) was performed using EnTurbo™ SYBR Green PCR

SuperMix (ELK Biotechnology, EQ001) and QuantStudio 6 Flex

(Life Technologies). The qRT-PCR results were analyzed and

examined as the relative mRNA levels based on cycle threshold

(CT) values using the 2-△△CT method. The primer sequences used

are listed in Supplementary Table S1.
2.10 Statistical analysis

Statistical analyses were performed using GraphPad Prism 8 and

R software (version 4.2.2). Categorical data were compared with the

Chi-Squared test. The differences in gene expression levels between

the two groups were analyzed using the Wilcoxon rank-sum test.

Survival curves were generated using the Kaplan-Meier method, and

the difference between the two groups was compared with the Log-

Rank test. Correlation analyses were conducted using the Pearson

correlation test. Mean values were compared using Student’s t-test. A

p-value < 0.05 was considered statistically significant.
3 Results

3.1 Identification of disulfidptosis-related
genes in PDAC tumor cells

Disulfidptosis, a recently unveiled form of cell death, holds

promising potential in cancer management and therapy. To screen

the disulfidptosis-related genes, we obtained the single-cell RNA-

sequencing data of PDAC samples and control pancreases. A total

of 52,534 cells with high-quality and preliminary cell-type

annotations were extracted and used for subsequent analysis. To

further annotate cell subpopulations, we extracted the profiles of

each cell type, found cell subclusters with high resolutions, checked
frontiersin.org
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cell markers, and excluded other cell types repeatedly until all cells

were well annotated. As a result, a total of 28 cell subpopulations

including acinar cells, normal ductal cells, two types of tumor cells,

three kinds of CAFs, endothelial cells, endocrine cells, stellate cells,

and various immune cel l subpopulations (Figure 2A,

Supplementary Figures S1A-E).

Given the crucial role of SLC7A11 in disulfidptosis, an

examination of its expression across diverse cell types became

imperative. Notably, only a subset of PDAC tumor cells exhibited

relatively high SLC7A11 expression (Figures 2B, C), indicating that

disulfidptosis is more likely to occur in tumor cells rather than other

cell types including stromal cells and immune cells in the TME of
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PDAC. To assess the tendency of disulfidptosis of every tumor cell,

we obtained 177 disulfidptosis-promoting genes including

SLC7A11, SLC3A2, NCKAP1, RPN1 et al. and 179 disulfidptosis-

suppressing genes such as GYS1, NDUFS1, and OXSM by

reanalyzing the CRISPR/Cas9 screening profiles for disulfidptosis

with setting the threshold of the p-value as 0.01 (Figure 2D).

Subsequently, disulfidptosis-associated scores of each PDAC

tumor cell were calculated. Since SLC7A11 is indispensable in the

process of disulfidptosis (6), we evaluated the tendency of

disulfidptosis of cells using the following indexes: 1) SLC7A11

expression level, 2) disulfidptosis-promoting score, and 3)

disulfidptosis-suppressing score. Consequently, 3.29% (350/
FIGURE 2

Identification of disulfidptosis-related genes. (A) The UMAP plot demonstrates cell subpopulations in PDAC. (B) The expression levels and distribution
of SLC7A11 are plotted on the UMAP map. (C) The expression levels of SLC7A11 in each cell type are summarized by a bubble chart. (D) NormZ
score rank plot shows the top disulfidptosis-promoting (red) and disulfidptosis-suppressing (blue) genes. CRISPR-Cas9 screening data were acquired
from ref (6) (E) The dot plot shows the disulfidptosis tendency of each tumor cell. Tumor cells with relatively high disulfidptosis-promoting score,
low disulfidptosis-suppressing score, and non-zero SCL7A11 expression were considered with high disulfidptosis tendency and represented by
orange dots. Other tumor cells were considered with low disulfidptosis tendency and represented by grey dots. (F) The bar plot exhibits the top
enriched GO terms in tumor cells with high disulfidptosis tendency. (G) The dot plot exhibits the enriched KEGG pathways in tumor cells with high
disulfidptosis tendency. UMAP, uniform manifold approximation and projection; DC, dendritic cell; CAF, cancer-associated fibroblast; EC, endothelial
cell; NKT cell, natural killer T cell; GO, gene ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, kyoto
encyclopedia of genes and genomes.
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10,643) of tumor cells with a relatively high disulfidptosis-

promoting score, low disulfidptosis-suppressing score, and

SLC7A11 expression were identified as more likely to undergo or

be experiencing disulfidptosis (Figure 2E).

We compared the expression profi les between the

aforementioned 350 tumor cells and other tumor cells, finding

that 85 genes were highly expressed (average log2 fold change > 0.25

and p-value < 0.05, Supplementary Table S2). GO enrichment

analysis demonstrated that these 85 genes were mainly enriched

in terms including response to unfolded protein, response to

topologically incorrect protein, and ATP-dependent protein

folding chaperone, aligning with the characteristics of disulfide

bond accumulation between actin cytoskeleton proteins during

disulfidptosis (Figure 2F, Supplementary Table S3). The top

enriched KEGG pathways such as ferroptosis and protein

processing in the endoplasmic reticulum further confirmed the

disorders of the cellular redox system and accumulation of

abnormal proteins (Figure 2G, Supplementary Table S4). Hence,

these 85 genes screened from PDAC tumor cells with high

disulfidptosis tendencies were deemed reliable disulfidptosis-

related genes (DPGs).
3.2 Construction and validation of
disulfidptosis-related prognostic signatures

For the purpose of developing clinical applications of disulfidptosis,

we decided to construct a relatively general prognostic gene signature

for risk stratification and survival improvement. To boost the

performance of modeling, we conducted univariate Cox based on

integrated bulk RNA arrays and overall survival (OS). Consequently, 32

out of 85 disulfidptosis-related genes (DPGs), comprising 31 risk genes

and 1 protective gene, exhibited significant correlations with OS (p-

value < 0.05, Figure 3A, Supplementary Table S5). Subsequently, we

employed the LASSO Cox regression algorithm to build prognostic

models based on the training set and the aforementioned 32 prognostic

DPGs. After 1,000,000 attempts, we selected 801,752 as the stochastic

seed and 0.05680307 as the lambda to achieve a relatively simple yet

accurate predictive model (Figure 3B). Eventually, a panel of 8 genes

including SLC3A2, HMGA1, S100A2, DUSP5, SPRR1B, MET, CREB5,

and MACROD2 with their non-zero coefficients were reserved for

model construction and score calculation (Figures 3C, D;

Supplementary Table S6). The formula for calculating the

disulfidptosis-related score (DPS) for each PDAC patient was as

follows: DPS = (0.16389) * ExpSLC3A2 + (0.10129) * ExpHMGA1 +

(0.07452) * ExpS100A2 + (0.05227) * ExpDUSP5 + (0.05092) * ExpSPRR1B
+ (0.01983) * ExpMET + (0.00492) * ExpCREB5 + (-0.04851) *

ExpMACROD2. To validate the risk stratification capability of the DPS

on OS, we introduced three external PDAC cohorts including TCGA-

PAAD, ICGC-CA, and ICGC-AU. As expected, the DPS successfully

discriminated patients with favorable and poor survival (all p-values <

0.05, Figure 3E). It is worth noting that the DPS also performed well on

disease-specific survival, progression-free survival, and disease-free

survival (all p-values < 0.05, Figure 3F). Hence, the DPS we
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developed demonstrated robust risk stratification power and may

significantly contribute to PDAC clinical management.
3.3 The DPS showed promoting
performance in external validation cohorts

To rigorously assess the predictive efficiency of the disulfidptosis-

related prognostic signature, we employed an additional PDAC

cohort comprising 127 patients from the CPTAC. Patients were

categorized into high DPS and low DPS groups according to the

optimal cutoff value. Kaplan-Meier curves illustrated that patients in

the low DPS group exhibited longer survival than those in the high

DPS group (p-value < 0.0001, Figure 4A), underscoring the robust

performance of the DPS. Multivariate Cox regression analysis of the

DPS and clinicopathological characteristics based on the CPTAC-

PDAC cohort revealed that the DPS stood out as the sole

independent risk factor for the OS (p-value = 0.008, Figure 4B). To

enhance the practical application of the DPS in clinical settings, we

devised a nomogram by integrating the DPS and clinical features

(Figure 4C). Given the notoriously poor prognosis of PDAC, we

constructed ROC curves and computed the AUC values for OS with a

36-month observation time (Figure 4D). The AUC values of the

nomogram, DPS, age, gender, stage for 3-year-survival were 0.811,

0.788, 0.37, 0.483, and 0.598, respectively, indicating that the DPS and

nomogram exhibited favorable predictive capacities for survival and

could serve as prognostic markers for PDAC patients. To fully

understand the predictive efficiency of the DPS and nomogram, we

calculated the time-dependent AUC values and fit them into smooth

lines. As depicted in Figure 4E, the AUC values of the DPS and

nomogram exceeded 0.75 at most time points, while the AUC values

of age, gender, and stage were far from satisfactory. In addition, the

DCA curves graphically illustrated that the net benefits at 2-year and

3-year from the nomogram and DPS were much more than those

from other clinical features (Figure 4F). Furthermore, we conducted

the same analyses on the TCGA-PAAD cohort, and the results

concurred with those from the CPTAC-PDAC cohort

(Supplementary Figures S2A-D). Taken together, the DPS and

nomogram we established showed compelling performance in risk

stratification and prognosis prediction, demonstrating potential for

clinical application and aiding decision-making.
3.4 High DPS implied malignant hallmarks
and immune desert

As the disulfidptosis-related prognostic signature exhibited

significant prognostic relevance in PDAC, our interest turned to

understand the potential components. Genetic mutations are a

primary driver of tumorigenesis and development (35). We

meticulously assessed and compared the top 10 altered genes

between high DPS (H-DPS) and low DPS (L-DPS) groups,

finding that there was little difference between these two groups

not only in the mutation frequency but also in the mutant
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classifications (Supplementary Figure S3A). KRAS is a major

oncogene in PDAC and has been found altered in more than 90%

of PDAC patients (18, 36). We analyzed and compared the mutant

rate of hot KRAS missense mutations between H-DPS and L-DPS

groups. As a result, G12D, G12V, G12R, and Q61H emerged as the

top 4 mutation types of KRAS and showed similar alteration

frequency between the two groups (Supplementary Figure S3B).

Consequently, we deduced that genetic mutations played a

negligible role in contributing to DPS.

As there was little dissimilarity in somatic mutations between

H-DPS and L-DPS groups, we wondered if there existed a

discrepancy in transcriptome and biological processes. DEG

analysis revealed 161 up-regulated genes, including S100A2,

KRT6A, KRT16, FAM83A, and SERPINB3, along with 211 down-

regulated genes, including ATP2A3, PDX1, REG4, and ADH1B, in

the H-DPS group compared to the L-DPS group (Figure 5A,

Supplementary Table S7). Enrichment analysis based on these

DEGs implied that GO terms including “keratinization”, “keratin

filament”, “intermediate filament organization”, and “intermediate

filament-based process”, which indicate the assembly of actin

filament bundles and are closely related to disulfidptosis, were

prominently characterized in the H-DPS group (Figure 5B).
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Meanwhile, GO terms like “digestion”, “intestinal absorption”,

and “B cell receptor signaling pathway”, representing normal

physiological processes, were prevalent in the L-DPS groups

(Figure 5B). KEGG pathway analysis demonstrated that cell

proliferation-associated signaling pathways including “cell cycle”,

“ECM receptor interaction”, and “focal adhesion” were significantly

enriched in the H-DPS groups, while metabolism-related pathways

such as “linoleic acid metabolism”, “drug metabolism cytochrome

P450”, and “metabolism of xenobiotics by cytochrome P450” were

predominant in the L-DPS groups (Figure 5C). GSEA based on

tumor hallmarks revealed that malignant hallmarks including

“epithelial-mesenchymal transition”, “E2F targets”, “MYC targets

V1”, and “hypoxia” were distinctly enriched in the H-DPS groups

(Figure 5D). However, physiological biological processes such as

“pancreas beta cells” and “bile acid metabolism”, as well as genes

down-regulated by KRAS activation were notably found in the L-

DPS group (Figure 5E). Taken together, our findings demonstrated

that PDAC samples in the H-DPS group were charactered closely

related to disulfidptosis and exhibited pronounced cancer hallmarks

related to cell proliferation and metastasis.

Given that tumors are typically situated in the TME, a complex

milieu comprising the extracellular matrix and diverse cell types
FIGURE 3

Construction and validation of the disulfidptosis-related prognostic signature. (A) The forest plot demonstrates the results of univariate Cox
regression analysis of disulfidptosis-related genes. (B) The deviance varies with lambda in the Least Absolute Shrinkage and Selection Operator
(LASSO)-Cox regression analysis. (C) The coefficient of each gene varies with lambda in LASSO-Cox regression analysis. (D) The bar plot shows the
coefficients of eight selected genes. (E) Kaplan-Meier curves exhibit the prognostic value of disulfidptosis-related score on overall survival in five
different cohorts. (F) Kaplan-Meier curves show the prognostic value of disulfidptosis-related score on disease-specific survival, progression-free
survival, and disease-free survival.
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such as fibroblasts, immune cells, and inflammatory cells (37), we

desired to explore if there exists a significant difference between

PDAC samples in the H-DPS and L-DPS groups since they

exhibited distinct cancer hallmarks. To estimate the levels of T

cell infiltration and the sensitivity to ICB, we employed the TIDE

algorithm to calculate the TIDE scores which could reflect the

tumor immune microenvironment. The results indicated that

PDAC samples in the H-DPS group showed significantly higher

levels of TIDE scores than those in the L-DPS group (Figure 6A;

Supplementary Table S8), suggesting that patients in the L-DPS

group might benefit more from ICB therapy, whereas patients in the

H-DPS group might not be suitable for taking immune checkpoint

inhibitors. Further analysis demonstrated that most PDAC samples

in the H-DPS group exhibited T cell exclusion while samples in the

L-DPS group showed T cell dysfunction (Figure 6B; Supplementary

Table S8), suggesting lower T cell infiltration levels in the H-DPS

group, contributing to reduced sensitivity to ICB. Then, we utilized

the CIBERSORT algorithm to evaluate the infiltrating degrees of 22

kinds of leukocytes. Agreeing with our previous results, immune

cells such as naïve B cells, CD8+ T cells, CD4+ memory resting T

cells, monocytes, and M1 macrophages were significantly lower in

the H-DPS groups compared to the L-DPS group (Figure 6C;

Supplementary Table S9). In addition, M2 macrophages, a

primary population of myeloid-derived suppressor cells (MDSCs)

known for their tumor-promoting role in the TME (38), exhibited
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higher fractions in the H-DPS group (Figure 6C; Supplementary

Table S9). These findings indicated that PDAC samples in the H-

DPS group exhibited characteristics of “cold” tumors including

epithelial-mesenchymal transition hallmark, elevated numbers of

MDSCs, and reduced numbers of effector immune cells (39),

leading to an immune desert and eventually insensitivity to

ICB treatment.
3.5 myCAFs facilitated tumor development
in high DPS samples

To gain deeper insights into the potential factors of the

disulfidptosis-related prognostic signature, we utilized single-cell

RNA sequencing profiles. UMAP plots showed that S100A2,

SPRR1B, MET, and MACROD2 were mainly expressed in PDAC

tumor cells (Supplementary Figure S4A). Meanwhile, the

expression of other model genes including SLC3A2, HMGA1,

DUSP5, and CREB5 exhibited distribution across various cell

types (Supplementary Figure S4A). These findings gave few clues

for further exploration. Therefore, we conducted an integrated

analysis of the bulk RNA sequencing data and single-cell RNA

sequencing data to investigate the potential components in higher

dimensions. Utilizing the scissor algorithm with a binomial model,

we identified 1,985 H-DPS-associated cells and 2,804 L-DPS-related
FIGURE 4

Evaluation of the prognostic significance of disulfidptosis-related score in the CPTAC-PDAC cohort. (A) Kaplan-Meier curves demonstrate the
excellent prognostic value on overall survival in the CPTAC-PDAC cohort. (B) The forest plot shows a multivariate Cox regression analysis of DPS
and clinical characteristics. (C) A nomogram for patient stratification. (D) ROC curves demonstrate the predictive efficiency of DPS, nomogram, and
clinicopathological features at 3-year survival. (E) Time-dependent AUC curves of DPS, nomogram, and clinicopathological features. (F) DCA curves
show the net benefit of DPS, nomogram, and clinicopathological features for patients in the CPTAC-PDAC cohort at 2-year survival and 3-year
survival. DPS, disulfidptosis-related score; ROC curve, receiver operating characteristic curve; AUC, area under the curve; DCA, decision curve
analysis. **P < 0.01; ***P < 0.001.
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cells (Figure 6D). Expression analysis demonstrated higher

expression of the eight genes constituting the disulfidptosis-

related prognostic model in the H-DPS-associated cells compared

to the L-DPS-related cells (Supplementary Figure S4B), affirming

the accuracy of the screened DPS-related cells. Cell proportion

analysis revealed that H-DPS-related cells primarily consisted of

PDAC tumor cells and myofibroblastic cancer-associated

fibroblasts, with a few acinar cells and normal ductal cells

(Figure 6E). Conversely, L-DPS-associated cells encompassed

various cell types, including B cells, normal ductal cells, PDAC

tumor cells, endothelial cells, inflammatory CAFs (iCAFs), stellate

cells, C3+ macrophages, SPP1+ macrophages, conventional

dendritic cells (cDCs), and cytotoxic CD8+ T cells (Figure 6E).

These findings demonstrated that the TME of PDAC samples in the

L-DPS group was characterized by a variety of immune and stromal

cell types, which formed the basis of response to ICB treatment.

However, the TME of PDAC samples in the H-DPS group lacked

immune cells but comprised abundant myCAFs and tumor cells,

hindering the potential for ICB therapy, and aligning with TIDE

estimation. Given the intimate relationship between PDAC tissues

with high DPS and myCAFs, we aimed to understand the crosstalk

between them. Cellchat analysis revealed higher numbers of

interactions and interaction strength from myCAFs to tumor cells

compared to the reverse direction (Figure 6F). Detailed ligand-

receptor pairs revealed that ligands like COL1A1, COL1A2, FN1,

and COL6A3 from myCAFs and receptors such as SDC1, SDC4,

ITGA3_ITGB1, ITGA2_ITGB1, and CD44 were the most critical
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signal senders and receivers in promoting tumor development

(Figure 6G; Supplementary Table S10). Signaling patterns

between myCAFs and cancer cells showed that myCAFs were the

predominant signal senders and ductal2 tumor cells manifested as a

primary signal receiver (Figure 6H). Pathways like Collagen, FN1,

Laminin, THBS, and MK were found as key interaction patterns

between myCAFs and tumor cells (Figure 6H). Therefore, our

results suggested that myCAFs may influence the malignant

transformation of tumor cells in the TME with high DPS-

related features.
3.6 Spatial transcriptome data confirmed
the communication and colocalization of
myCAFs and tumor cells

To further validate the pivotal role of myCAFs in facilitating

tumor cell development through communication with cancer cells,

we obtained two PDAC samples with simultaneous spatial

transcriptome profiles and H&E staining slices. In the case of

sample A (Figure 7A), we clustered the spots into 11 niches using

the BayesSpace algorithm for a more precise investigation

(Figure 7B). The distribution of these niches aligned well with the

morphology, confirming the sample’s usability and the effectiveness

of the classification method. Using the scissor algorithm, we

identified 125 of 1,831 spots as H-DPS-associated and 248 of

1,831 spots as L-DPS-related (Figure 7C). Proportion analysis
FIGURE 5

Exploration of the potential components of DPS at the transcriptome level. (A) Differentially expressed genes between H-DPS and L-DPS groups.
(B, C) GSEA results exhibit the enriched GO terms (B) and KEGG pathways (C) in H-DPS and L-DPS groups. (D, E) GSEA curves demonstrate the
enriched cancer hallmarks in the H-DPS group (D) and L-DPS group (E). GSEA, gene set enrichment analysis.
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demonstrated that niche 6 and niche 11 were the distinct niches

associated with high DPS, while niche 5, niche 7, and niche 10 were

unique to the low DPS-related spatial zones (Figure 7D). DEGs

analysis showed that there were 82 upregulated genes like FN1,

IGFBP3, COL10A1, ACTA2, and SERPINE1 and 53 downregulated

genes in the high DPS-related niches compared to the low DPS-

related niches (Figure 7E, Supplementary Table S11). It is worth

noting that FN1 and COL10A1 are significant ligands in the FN1

and collagen signaling pathways, respectively. Meanwhile, ACTA2,
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which encodes aSMA, is an acknowledged marker of myCAFs.

These results indicated that the H-DPS-related niches were highly

enriched by myCAFs and extracellular matrix. Enrichment analysis

demonstrated that biological processes including extracellular

structure organization, extracellular matrix organization, external

encapsulating structure organization, and collagen fibril

organization were highlighted in the H-DPS-related niches

(Figure 7F). Meanwhile, metal homeostases such as zinc ion

homeostasis, response to copper ion, cellular zinc ion
FIGURE 6

Investigation of the difference in tumor microenvironment between H-DPS and L-DPS groups. (A) The boxplot shows the TIDE scores of PDAC
samples in H-DPS and L-DPS groups. (B) The point plot demonstrates the degrees of T cell dysfunction and exclusion of each PDAC sample in H-
DPS and L-DPS groups. (C) Box plots exhibit cell types with distinct tumor-infiltrating levels between H-DPS and L-DPS groups. (D) The UMAP plot
shows cell subpopulations associated with H-DPS and L-DPS. Cell population selection was conducted using the scissor algorithm. (E) Bar plots
demonstrate the proportions of cell types associated with different DPS groups. (F) Interaction number and strength among PDAC tumor cells and
myCAFs. (G) The chord diagram shows the top ligand-receptor pairs among PDAC tumor cells and myCAFs. (H) Heatmaps exhibit the relative
strength of outgoing and incoming signaling patterns among PDAC tumor cells and myCAFs. TIDE, tumor immune dysfunction and exclusion;
myCAF, myofibroblastic cancer-associated fibroblast.
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homeostasis, and cellular response to copper ion were characterized

in the L-DPS-associated niches (Figure 7F). These results suggested

that collagen, laminin, and FN1 signaling patterns constituted the

predominant signaling networks. Inter-niche and intra-niche

communications revealed that the interaction numbers and

strength between niche 6 and niche 11 were considerable,

however, the crosstalk among niche 5, niche 7, and niche 10 was

minimal (Figure 7G). Further investigation showed that collagen,

laminin, and FN1 signaling pathways were the top communication

networks (Figure 7H), consistent with our previous results. To

further confirm the crosstalk among niches, we generated the

spatial expression maps of representative ligand-receptor pairs

from collagen, laminin, and FN1 signal ing networks

(Supplementary Figures S5A, B). The spatial distribution of the
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representative ligands such as COL1A1, COL1A2, COL6A3, FN1,

LAMB3, and LAMC2 exhibited consistency with the representative

receptors including SDC1, SDC4, ITGA3, ITGA2, ITGAV, and

ITGB1, particularly in H-DPS-related niches (Supplementary

Figures S5A, B). Additionally, spatial locations of markers for

myCAFs, iCAFs, PDAC tumors, and normal ductal cells were

investigated, revealing colocalization of myCAFs and tumor cells,

especially in the H-DPS-related niches and nearby zones

(Supplementary Figure S5C). Conversely, the iCAF markers did

not show any obvious consistency with cancer cell markers, but

exhibited some colocalizations with the normal ductal cell markers

(Supplementary Figure S5C). Similar analyses on sample B yielded

comparable results (Supplementary Figures S6, S7, Supplementary

Table S12). Dissection of signaling networks dissection indicated
FIGURE 7

Investigation of the TME using spatial transcriptome data. (A) H&E staining for PDAC sample (A, B) Niches of PDAC sample A mapping with H&E
staining. (C) H-DPS and L-DPS associated spots mapping with H&E staining. (D) Stacked bar plots exhibit the proportions of niches associated with
H-DPS and L-DPS. (E) The volcano map shows DEGs between H-DPS and L-DPS-associated niches. The top five DEGs in H-DPS-associated niches
were labeled with symbols. (F) Bar plots exhibit the top enriched terms in H-DPS and L-DPS-associated niches. (G) Heatmaps demonstrate the
interaction number and strength among various niches. (H) The top three signaling pathway networks among niches in PDAC sample (A) H&E,
hematoxylin and eosin.
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that the H-DPS-related niches (niche 6 and niche 11 in sample A,

niche 1 and niche 3 in sample B) were found to play important roles

as sender, receiver, mediator, and influencer in collagen, laminin,

and FN1 signaling pathways (Supplementary Figure S8). Taken

together, our findings demonstrated that the communications

between myCAFs and PDAC tumors, especially in H-DPS-related

niches, through signaling networks like collagen, laminin, and FN1

patterns, promoted tumor progression and reduced sensitivity to

ICB treatment in patients with high DPS.
3.7 Validation of the disulfidptosis-related
prognostic signature using biospecimens

Since the establishment and validation of the disulfidptosis-

related prognostic signature were heavily based on public databases,

the generality of the signature is not very convincing. Hence, we

collected a total of 20 pairs of PDAC samples and adjacent normal

tissues from Shanghai East Hospital Biobank. The expression of

eight genes in the signature, two myCAF markers (ACTA2 and

COL10A1), and two iCAF markers (APOD and PTGDS) were

determined by qRT-PCR. As a result, compared to the adjacent

normal tissues, the expression levels of genes that constitute the

disulfidptosis-related signature were significantly higher in PDAC

samples (Figure 8A, all P < 0.05). Then, the DPS of each patient was

calculated using the established formula above. We observed a

significant positive correlation between the DPS and the expression

levels of the two myCAF markers and no obvious relationship

between DPS and the two iCAF markers (Figure 8B), agreeing with

the hypothesis that myCAFs instead of iCAFs play a crucial role in

fostering the development of pancreatic tumor cells. To evaluate the

prognostic value of DPS in our cohort, we divided the patients into

two groups. Patients who survived longer than 1 year with no

recurrence after surgery were assigned to the “no recurrence” group,

while patients who had tumor recurrence or deceased within one

year were classified into the “recurrence or deceased” group. As

shown in Figure 8C, the DPS of patients in the “recurrence or

deceased” group was distinctly higher (P < 0.001), demonstrating

the disulfidptosis-related prognostic signature worked well in

PDAC patients’ risk stratification.
4 Discussion

Despite significant strides in the molecular understanding of

PDAC in recent years, the prognosis remains exceedingly grim,

primarily attributed to late-stage diagnosis and limited therapeutic

options (40). Existing evidence revealed that KRAS, CDKN2A,

TP53, and SMAD4 gene mutations are the four major driver

alterations for PDAC (41). Among them, KRAS is the only

acknowledged oncogene while the others are generally

characterized as tumor suppressor genes. The Cancer Genome

Atlas Research Network has reported a staggering 93% mutation

rate of KRAS in pancreatic cancer, underscoring its pivotal

oncogenic role in PDAC tumorigenesis and progression (36).
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Although some certain KRAS inhibitors showed promising

clinical efficacy (e.g. KRASG12C inhibitor, adagrasib, in non-

small-cell lung cancer harboring a KRASG12C mutation (42)), their

effectiveness in PDAC necessitates further validation through

clinical trials. Chemotherapy remains the cornerstone of PDAC

treatment, and initiation immediately upon diagnosis is crucial to

maximizing potential benefits. Liposomal irinotecan, exhibiting an

enhanced permeability and retention effect in cancer and a longer

half-life compared to nonliposomal irinotecan, has recently entered

the market for advanced PDAC treatment (43). However, the

prognosis of this disease is still very poor. Even worse, PDAC is

considered one of the most immune-resistant tumor types, and a lot

of single-agent immune modulators have been proven clinically

ineffective (44). Thus, it is essential to discover novel molecular

biomarkers to assist PDAC clinical management and unravel the

underlying mechanisms.

Disulfidptosis is a newly discovered formation of programmed

cell death, which enables cells to regulate their fates and coordinate

their existence to benefit the living organism (6, 45). From our

perspective, disulfidptosis can be succinctly described as a condition

where limited NADPH production, resulting from glucose

starvation’s inability to counteract the excessive uptake of cystine

mediated by the overexpression of SLC7A11, leads to the

accumulation of disulfide bonds, the collapse of the actin filament

network, and ultimately, cell death. In recent years, numerous types

of programmed cell death, including apoptosis, pyroptosis,

ferroptosis, cuprotosis, and disulfidptosis, have been unveiled.

However, translating these discoveries into clinical applications

poses significant challenges. Therefore, we sought to explore

potential applications in the clinical management of PDAC and

elucidate the potential factors in this study. We noted that elevated

expression of SLC7A11 is a pivotal factor in the initiation of

disulfidptosis. To our surprise, the expression of SLC7A11 was

almost solely high in a small subset of PDAC cells, convincing us of

the occurrence of disulfidptosis in PDAC. Utilizing CRISPR-Cas9

screening results from a previous study (6), we identified a subset of

tumor cells whose marker genes were correlated to unfolded protein

and ferroptosis, providing corroborative evidence for the

disulfidptosis features of the selected cells. In our interpretation,

the unfolded protein may signify the collapsed actin filament

network. Besides, the shared characteristics between ferroptosis

and disulfidptosis involve insufficient reducing power and the

imbalance of redox reactions (6, 7).

Navigating clinical decision-making poses significant

challenges, particularly when determining the optimal regimen

for a specific PDAC patient and identifying therapies that can

enhance both longevity and quality of life. To address this pivotal

question, our investigation focused on identifying prognostic

markers for PDAC patients to facilitate effective risk stratification.

Through integrated analysis on a total of 1,250 bulk RNA

sequencing profiles and microarray data as well as extensive

modeling efforts , we successfully obtained an 8-gene

disulfidptosis-related prognostic signature and subsequently

calculated the DPS of each PDAC patient. The DPS exhibited

strong performance in both internal and external validation
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cohorts, highlighting its robustness and high efficiency. Moreover,

we established a nomogram by integrating the DPS and clinical

characteristics, which demonstrated top-notch AUC values and

may offer valuable support for clinical decision-making. Honestly,

with the development of bioinformatics and increasement of public

sequencing data, many researchers have tried to construct

prognostic models to predict the survival of patients and wish to
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improve the prognosis. However, these efforts often face various

shortcomings. Guo et al. constructed a 3-gene ubiquitination-

related signature associated with prognosis in PDAC. However,

the study’s limited sample size warrants cautious interpretation

(46). Chen et al. established a 7-gene hypoxia- and immune-related

prognostic signature for PDAC, yet the underlying mechanisms

were not investigated (47). Fang et al. built a 12-gene unfolded
FIGURE 8

Validation of the disulfidptosis-related prognostic signature using biospecimens. (A) The relative expression levels of SLC3A2, HMGA1, S100A2,
DUSP5, SPRR1B, MET, CREB5 and MACROD2 in 20 pairs of PDAC samples and adjacent normal tissues. (B) The correlation between the DPS and the
expression of ACTA2, COL10A1, APOD and PTGDS. (C) The DPS of each PDAC patient in the “no recurrence” and “recurrence or deceased” groups.
*P < 0.05, ***P < 0.001.
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protein response-associated prognostic signature for PDAC, while

its complexity hinders practical application in a clinical setting.

As for components of the disulfidptosis-related prognostic

model we built, there were eight genes namely SLC3A2, HMGA1,

S100A2, DUSP5, SPRR1B, MET, CREB5, and MACROD2. SLC3A2

encodes a cell surface, a transmembrane protein belonging to the

solute carrier family. It is reported that SLC3A2 forms a complex

with SLC7A11 to constitute the system xc-cystine/glutamate

antiporter (48), which was demonstrated indispensable in

disulfidptosis (6). Several studies indicated that SLC3A2 mediates

integrin signaling and drives integrin-dependent cancer cell

behavior (49, 50), which is consistent with the crosstalk between

myCAFs and tumor cells. HMGA1 is a chromatin-associated

protein participating in various cellular processes including

regulation of inducible gene transcription, DNA replication, and

the metastasis of cancer cells. Recently, HMGA1 has been reported

to induce FGF19 expression and drive PDAC tumorigenesis and

stroma formation (51), which agrees with the enriched fractions of

myCAFs in the TME of PDAC with high DPS. S100A2 was found to

play an important role in cytoskeleton organization and epithelial-

mesenchymal transition (52), reflecting the malignant hallmarks.

DUSP5 belongs to the dual specificity protein phosphatase

subfamily and inactivates ERK1/2, suppressing cell proliferation.

Interestingly, it has been found that DUSP5 could suppress F-actin

rearrangement (53), suggesting that DUSP5 is a mediator in

disulfidptosis. SPRR1B is an envelope protein of keratinocytes

and an acknowledged squamous differentiation marker (54). Our

study showed that PDAC samples with high DPS were

characterized by keratinization and filament organization, which

may result from the high expression of SPRR1B.MET gene encodes

a protein named hepatocyte growth factor receptor, which is a

single-pass transmembrane tyrosine kinase receptor essential for

embryonic development, organogenesis, and wound healing. It is

reported that aberrantly active MET triggers tumor invasion,

angiogenesis, and metastasis in several cancer types (55). Our

results highlighted that PDAC samples with high DPS showed

malignant hallmarks including cell proliferation and epithelial-

mesenchymal transition, which may be due to the high MET

expression. CREB5 is a member of the cAMP response element-

binding protein family. Existing evidence revealed that CREB5 can

directly activate MET, promoting cancer invasion and metastasis

(56). MACROD2 is a deacetylase involved in removing ADP-ribose

from mono-ADP-ribosylated proteins. Existing evidence

demonstrated that loss of MACROD2 represses PARP1 activity

and promotes chromosome instability and tumorigenesis (57, 58).

However, other researchers came to the opposite conclusion.

Morassa et al. found that MACROD2 overexpression mediated

estrogen-independent growth and tamoxifen resistance in breast

cancers (59). Hence, the role of MACROD2 is controversial in

carcinogenesis. However, the expression of these 8 genes provided

little information to dissect the underlying mechanisms of the DPS.

Therefore, we turned our focus to the TME for a more

comprehensive understanding.

The TME is typically composed of blood and lymphatic

vascular networks, immune cells, stromal cells, extracellular
Frontiers in Immunology 15
matrix, and secreted molecules (60). In our study, both TIDE and

CIBERSORT algorithms revealed significantly low levels of

infiltrating CD8+ T cells in PDAC samples with high DPS. This

observation indicated that PDAC patients with high DPS may lack

the foundational elements for a response to ICB. ICB, a form of

immunotherapy targeting molecules like CTLA-4, PD-1, PD-L1,

and LAG-3, aims to enhance the immune system’s recognition and

attack on cancer cells. ICB has shown success in the treatment of

various solid tumors, particularly melanoma and non-small cell

lung cancer (61). However, the application of ICB in PDAC is not as

so satisfactory and still has a long way to go. The single-cell RNA

sequencing profiles not only confirmed the very low fractions of

CD8+ T cells in samples with high DPS but also provided another

crucial insight: myCAFs accounted for the vast majority except for

tumor cells. CAFs are the most prominent cellular component in

the stroma of PDAC and secrete abundant extracellular proteins

including collagens and fibronectin, supporting tumor development

and contributing to drug resistance by acting as a “biological

barrier” (62). Increasing evidence showed that CAFs, a cell type

within the TME, stimulate angiogenesis and facilitate the

proliferation and metastasis of cancer cells by remodeling the

extracellular matrix and secreting cytokines (63, 64). Elyada et al.

classified CAFs into three subtypes including myCAFs, iCAFs, and

apCAFs (29). Among them, myCAFs, situated adjacent to cancer

cells, are characterized by high aSMA (encoded by ACTA2)

expression, activated TGFb/SMAD2/3 signaling, and activation of

transcription factors such as TWIST1, ZEB1, SNAI1, and SOX4,

promoting a mesenchymal cell state. The iCAFs are discovered in

the desmoplastic areas of cancer, farther away from the tumor cells,

and had features including low expression levels of aSMA but

upregulated cytokines and chemokines and activated IL1/JAK-

STAT3 signaling pathway. The apCAFs were highlighted with

expression of MHC class II-related genes and could induce T-cell

receptor ligation. Consequently, we hypothesized that it is myCAFs

that played an essential role in fostering tumorigenesis and

development. Targeting CAFs, particularly myCAFs, may be a

promising therapeutic strategy. However, the cautious approach is

necessary, as merely ablating the stroma may inadvertently facilitate

PDAC progression. Phase III trials evaluating the combination of

PEGPH20, an enzyme degrading hyaluronic acid, a major

component of the PDAC extracellular matrix (ECM), and nab-

paclitaxel/gemcitabine faced setbacks (65). Thus, targeted strategies

against CAFs should proceed judiciously.

However, our research also had some limitations. First, the

causal relationship between disulfidptosis markers and immune

evasion remained unproven, which weakened the rationale for

targeting disulfidptosis in cancer treatment. Second, our

validation cohort is not sufficiently large, which may lead to an

overestimation of the model’s performance. In addition, the causal

relationship between disulfidptosis and myCAFs needs further

validated by mouse models and PDAC organoids.

In summary, we established an 8-gene disulfidptosis-related

prognostic signature that demonstrated robust performance across

various PDAC cohorts. In addition, the DPS, as calculated by the

model, could provide insights into the PDAC TME and offer
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predictions on potential benefits from ICB treatment. For the easy

calculation of the DPS and better clinical application, we created an

online tool (https://mingshsmu.shinyapps.io/dps_pdac/).

Furthermore, the abundance of myCAFs in the TME may be in

connection with minimal immune cell infiltration and reduced

responsiveness to ICB. Our study sheds light on the role of

disulfidptosis in cancer clinical management and holds promise

for enhancing the survival outcomes of patients with PDAC.
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