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Background: By employing a high-dimensionality approach, this study aims to

identify mechanistically relevant cellular immune signatures that predict

poor outcomes.

Methods: This prospective study recruited 39 children with sepsis admitted to

the intensive care unit and 19 healthy age-matched children. Peripheral blood

mononuclear cells were studied with mass cytometry. Unique cell subsets were

identified in the paediatric sepsis immunome and depicted with t-distributed

stochastic neighbour embedding (tSNE) plots. Network analysis was performed

to quantify interactions between immune subsets. Enriched immune subsets

were included in a model for distinguishing sepsis and validated by flow

cytometry in an independent cohort.

Results: The median (interquartile range) age and paediatric sequential organ

failure assessment (pSOFA) score in this cohort was 5.6(2.0, 11.3) years and 6.6

(IQR: 2.5, 10.1), respectively. High-dimensionality analyses of the immunome in

sepsis revealed a loss of coordinated communication between immune subsets,

particularly a loss of regulatory/inhibitory interaction between cell types, fewer

interactions between cell subsets, and fewer negatively correlated edges than

controls. Four independent immune subsets (CD45RA−CX3CR1+CTLA4+CD4+ T

cells, CD45RA−17A+CD4+ T cells CD15+CD14+ monocytes, and Ki67+ B cells)
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were increased in sepsis and provide a predictive model for diagnosis with area

under the receiver operating characteristic curve, AUC 0.90 (95% confidence

interval, CI 0.82–0.98) in the discovery cohort and AUC 0.94 (95% CI 0.83–1.00)

in the validation cohort.

Conclusion: The sepsis immunome is deranged with loss of regulatory/inhibitory

interactions. Four immune subsets increased in sepsis could be used in a model

for diagnosis and prediction of poor outcomes.
KEYWORDS

sepsis, severe sepsis, septic shock, pediatric intensive care units, monocytes, Th17
cells, immunology
Highlights
• What is already known in this topic. Considered a key

healthcare priority by the World Health Organisation,

sepsis is a major contributor to global morbidity and

mortality with the burden of disease being highest in

children and neonates. Nonetheless, paediatric sepsis

pathobiology is poorly elucidated and there is no gold

standard diagnostic test. As a result, it remains a

challenge in clinical practice to differentiate paediatric

sepsis from non-infectious insults leading to both under-

recognition, overtreatment, and poor outcomes.

• What this study adds. This study adopts a high-

dimensionality approach using mass cytometry and

leverages on machine learning techniques to characterise

the diverse pathophysiological mechanisms in paediatric

sepsis. The immune derangement in paediatric sepsis

involved all the major immune lineages (CD4+ T cell,

CD8+ T cell, B cell, myeloid, and NK cells) and was

characterised by loss of physiological interactions between

immune cell subsets—in particular, there was loss of the

normal regulatory/inhibitory interactions between cell

types. Four pathogenic cell subsets were identified which

had good–excellent discriminative ability to distinguish

sepsis from healthy.

• How this study might affect research, practice or policy.

Paediatric sepsis is characterised by the loss of the normal

regulatory/inhibitory interactions between immune cell

types. The immune cell subset-based prediction model

developed in this study could be used to identify children

with sepsis and those with poor outcomes.
Introduction

Sepsis, identified as a key healthcare priority by the World

Health Organisation (WHO), is a major contributor to global
02
morbidity and mortality (1). The global burden of sepsis is

highest in children and neonates, with 48 sepsis cases in children

per 100,000 person-years and 2,202 per 100,000 live births (2). The

corresponding mortality is estimated to range from 1%–5% and

11%–19% in children and neonates, respectively (2). In paediatric

severe sepsis and septic shock, mortality can even be as high as 20%

in developed countries and 30% in developing countries (3). In

addition to the need to advance general medical care in developing

countries, a greater understanding of the pathogenic mechanisms

underlying paediatric sepsis is required to further lower the global

mortality rate in this disease by more targeted strategies (4).

Sepsis is a syndrome including a still-uncertain pathobiology,

although activation of both pro- and anti-inflammatory responses is

acknowledged, and with no gold standard diagnostic test (5). The

current adult and paediatric sepsis definitions consist of clinical and

non-specific laboratory criteria (5–7). This may be due to the

conventional oligo-dimensional and reductionist approach, which

is inadequate to address the mechanistic complexity of sepsis (e.g.,

examining serum procalcitonin, presepsin, or neutrophil CD64 in

isolation) (8). As a result, in clinical practice, it remains a challenge

to differentiate sepsis from non-infectious insults and this leads to

both under-recognition and overtreatment (9, 10). Another unmet

need relates to the inadequacy of existing clinical instruments, such

as the Pediatric Index of Mortality 3 (PIM-3) (11) and Pediatric

Logistic Organ Dysfunction 2 score (PELOD-2) (12), to predict the

likelihood of a poor prognosis, including mortality.

To unravel the complexity of paediatric sepsis, we adopted a

high-dimensionality approach using mass cytometry to characterise

the circulatory immunome for mechanistically relevant expression

of cytokines, chemokines, checkpoint inhibitors, and co-stimulatory

receptors. This approach capitalises on machine learning

techniques, which apply unsupervised learning to discover hidden

patterns in high-dimensional datasets, thus enabling the

characterisation of diverse and novel pathophysiological

mechanisms in paediatric sepsis (9). In this study, we aim to

identify the immune derangements in paediatric sepsis with mass

cytometry and depict the dysfunction with a systems biology
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approach using network analysis. We hypothesised that the

paediatric sepsis immunome is typified by multiple immune

cellular changes contributing to a perturbed immune network.

We also sought to explore the clinical relevance of immune

signatures identified by our approach as both support for

diagnosis and predictors of clinical fate.
Materials and methods

Study design

This study included 93 paediatric subjects: 59 with sepsis

admitted to the paediatric intensive care unit (PICU) and 34

healthy age-matched children. This was divided into a discovery

cohort of 39 sepsis and 19 healthy children, and a validation cohort

of 20 sepsis and 15 healthy children.

A high-dimensionality unsupervised approach using mass

cytometry was used to characterise the circulatory immunome in the

discovery cohort. Enriched cell subsets provided information on

pathophysiological mechanisms and were used as diagnostic and

prognostic markers in paediatric sepsis. Flow cytometry was used to

confirm the enrichment of identified cell subsets and their performance

in the prediction model in the independent validation cohort.

As we aimed to identify the common, overarching immune

response in sepsis regardless of the inciting infective agents, we

included all children who fulfilled the definition of sepsis

irrespective of the underlying infective source and agent. Sepsis

was defined as an acute rise in the paediatric sequential organ failure

assessment (pSOFA) score ≥2 points in the setting of proven or

suspected infection (6). All subjects also fulfilled the International

Pediatric Sepsis Consensus Conference (IPSCC) definition for

sepsis (13). Severe sepsis and septic shock were defined according

to the IPSCC criteria and PICU mortality referred to death prior to

discharge from the PICU. Patients with known immunodeficiency

or on immunosuppressants were excluded. Sepsis management in

the unit was based on the Surviving Sepsis Campaign

recommendations (14, 15). Ethical approval from the SingHealth

Centralised Institutional Review Board was obtained for this study

(CIRB ref. no. 2017–3076 and 2015-2231). Healthy children were

recruited among those undergoing elective surgeries with blood

obtained at the time of intravenous cannulation prior to the

induction of anaesthesia, or postoperatively if the former was not

available (CIRB ref no. 2019–2961 and 2015-2231).
Data extraction

Clinical data for enrolled subjects, including demographic,

laboratory, source of infection, and outcome data, were collected.

Microbiological tests were ordered at the discretion of the managing

physician and may include serology, immunofluorescence,

polymerase chain reaction (PCR), agglutination assays,

microscopy, isolation/culture, or sequencing techniques. The

specimens for these microbiological tests included blood, upper or
Frontiers in Immunology 03
lower tract aspirates/lavage, pleural/peritoneal/cerebrospinal fluid,

urine, stool, and swabs/fluid from sterile sites. Pathogens were

reported only if identified within a week of sepsis diagnosis and

considered to be the cause of sepsis by the treating physician.

Clinical severity scores including the PIM-3 and PELOD-2 were

calculated on PICU admission.
Cell isolation

Blood samples were collected in ethylenediaminetetraacetic acid

(EDTA) tubes within 48 h of sepsis diagnosis. Peripheral blood

mononuclear cells (PBMCs) were isolated by density centrifugation

using Ficoll-Paque Plus (GE Healthcare, UK) and subsequently

cryopreserved in foetal calf serum (FCS, Gibco, USA) with 10% (v/

v) dimethyl sulfoxide (DMSO, Sigma-Aldrich, UK).
Mass cytometry

Cryopreserved PBMCs were thawed in Roswell Park Memorial

Institute 1640 (RPMI) medium supplemented with 10% (v/v) human

serum (Corning, USA) and 1× (v/v) penicillin–streptomycin–glutamine

(Gibco, USA). Cells were then resuspended in the same medium and

rested for 30 min at 37°C. Subsequently, the cells were harvested and

stimulated with phorbol 12-myristate 13 acetate (PMA) at 150 ng/ml

and ionomycin at 250 ng/ml. PMA and ionomycin (both from Sigma-

Aldrich, UK) stimulationwas done for 5 h. PMA-ionomycin bypasses T-

cell receptor activation to induce cytokine production enabling it to be

detected. Brefeldin A andmonensin (eBioscience) were added during the

last 3 h of the incubation for blockade of protein transport.

The cells were processed using the standardised EPIC staining

protocol as described previously (16). In brief, PBMCs were washed

once with cell staining buffer (CSB) (phosphate-buffered saline

[PBS] with 4% FCS, 2 mM EDTA, 0.05% sodium azide) and

centrifuged at 524 ×g for 6 min at 4°C. The supernatant was

decanted and cells were stained with cisplatin viability stain (PBS

with 10 mM cisplatin) (DVS Sciences, USA) for 5 min on ice.

PBMCs were then washed and stained with fluorescein

isothiocyanate (FITC) anti-human TCR g/d (Invitrogen, USA) at

5 ml and a quadruplet barcode system comprising CD45 antibodies

conjugated with Y-89, Cd-106, Cd-113, or Sn-115 (17). After

incubation on ice for 20 min, PBMCs were washed three times

before they were combined and pelleted in preparation for surface

staining with the antibody panel (Supplementary Table S1). Mass

cytometry combines flow cytometry with mass spectrometry where

an antibody–antigen signal is identified by time of flight with heavy

metal isotopes [the reader is referred elsewhere for a comprehensive

review of mass cytometry technology (18)]. PBMCs were first

stained with lanthanide-conjugated surface marker antibodies in

room temperature for 15 min in a final reaction volume of 180 ml.
After washing twice (initially with CSB and then with 1× PBS),

PBMCs were fixed and permeabilised in 1 mL of fixation/

permeabilisation buffer (eBioscience, USA) for 45 min on ice.

PBMCs were then washed twice with permeabilisation wash
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buffer (eBioscience, USA) and centrifuged at 840 ×g for 6 min. After

decanting the supernatant, PBMCs were stained with lanthanide-

conjugated intracellular marker antibodies on ice for 45 min in a

final reaction volume of 180 ml. PBMCs were subsequently washed

once with permeabilisation wash buffer and resuspended in 1× PBS

with 1.6% paraformaldehyde (PFA) for 1 day at 4°C prior to

data acquisition.

On the day of data acquisition, the cells were pelleted and

stained with 500 ml DNA intercalator (DVS Sciences, USA) diluted

in 1.6% PFA/1× PBS for 20 min, RT. The cells were then washed

twice with CSB and twice with cell acquisition solution (CAS)

(Standard BioTools, USA). The pelleted cells were resuspended to a

density of 106/ml in UltraPure DNase/RNase-Free Distilled Water

with 10% (v/v) EQTM Six Element Calibration Beads (Standard

BioTools, USA) in accordance with the manufacturer’s instructions.

Data acquisition was then performed using an XT mass cytometer

(Standard BioTools, USA).
Processing of data output from XT mass
cytometer

The XT-generated output files were normalised using EQTM

Six Element Calibration Beads (19). The live single-cell events and

singlets were gated via two steps: first by identifying singlets via a

bivariate plot of DNA intercalator versus event length, and next by

detecting singlets that are negative for cisplatin as previously

described (17). De-barcoding was carried out using a bivariate

gating strategy in FlowJo (Version 10.7.1, Becton, Dickinson &

Company, USA) and exported for unsupervised analysis.
Clustering

To identify cell populations in an unsupervised manner, cytometry

analysis using self-organising maps (FlowSOM) clustering (20) using a

10 × 10 grid size was applied after random downsampling to 50,000 cell

events per subject as previously described (16) (clustering was

performed with multiple repeats to ensure stability of cluster

phenotype). All clustering and dimensionality reduction operations

were preceded by hyperbolic arcsine transformation with a scale factor

of 5 (asinh5). Cells were clustered using the FlowSOM algorithm into

100 nodes with subsequent merging based on phenotypic similarity

into 47 unique cell subsets. There were 46 subsets obtained after

excluding one cluster composed of a mixed cell population from our

analysis. Protein expression patterns of clusters were examined using

dendrogram heat maps constructed using the “heatmaply” R package.
Dimensionality reduction

Principal component analysis (PCA) was used to extract and

visualise the dominant patterns in the matrix prior to tSNE

dimensionality reduction (21). Non-linear dimensionality

reduction was performed using t-distributed stochastic neighbour
Frontiers in Immunology 04
embedding (tSNE) (22) to visualise multidimensional expression

landscapes in two dimensions (2D). “Relatedness” among different

clusters was visualised after embedding FlowSOM clustering

information onto the 2D tSNE plots.
Network analysis

The proportion of nodes (immune cell subsets) was calculated

for every patient, and the correlation between nodes was calculated

for healthy control and paediatric sepsis groups. To construct the

network, nodes were connected if they had an absolute correlation

coefficient >0.6. The network was visualised and analysed using the

igraph R package. The correlation network was plotted using a

force-directed Fruchterman–Reingold graph layout (23).
Flow cytometry validation

Significantly increased subsets identified on mass cytometry were

validated using flow cytometry in an independent cohort. Two flow

cytometry antibody panels (Supplementary Table S2) were designed

for the validation. The thawing, stimulation, and staining protocol

mirrored that of the mass cytometry protocol described above, with the

exception that Live/Dead blue dye (Invitrogen) was used for 15 min at

room temperature in PBS. Stained samples were then analysed using

the LSR Fortessa™ flow cytometer (BD Bioscience). Verification of the

FlowSOM clustering frequency (expressed as a percentage of CD45+

PBMCs) was performed with bivariate supervised gating in FlowJo

(Version 10.7.1, BD, USA) (Supplementary Figures S1, S2).
Statistical analysis

Cell subset frequencies were plotted as median with interquartile

range (IQR). Chi-squared/Fisher’s exact and Mann–Whitney U and

tests were used to compare groups where appropriate. To account for

type I error, Bonferroni correction was used when comparing the

FlowSOM cell clusters obtained from the mass cytometry data between

sepsis and control groups. Acknowledging the process of immune

development and maturity continues in early life (16, 24), a sensitivity

analysis stratifying children into age >/<1year was performed to

determine if any changes in cell subset frequencies differed with age.

Correlation between variables was calculated either with Pearson (r) or

Spearman (rs) correlation coefficients. Significantly increased cell

subsets in paediatric sepsis were considered for inclusion in a model

to differentiate sepsis from healthy, and to predict severe sepsis, septic

shock, and PICU mortality among septic patients. The discriminative

ability and performance of these models was assessed by calculating the

area under the curve from final receiver operating characteristics curve

(AUROC), sensitivity, and specificity. For comparison, AUROC was

similarly calculated to determine discriminative ability and

performance of clinical scores and routine laboratory markers (e.g.,

procalcitonin and lactate). Analyses were performed using SPSS,

version 23.0 (IBM Corp., NY, USA), and GraphPad Prism V.7
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(GraphPad Software, Inc., CA, USA) with statistical significance set at p

< 0.05.
Results

Baseline characteristics of the study
population

The median age and pSOFA score of the paediatric sepsis

cohort were 5.6 (IQR: 2.0, 11.3) years and 6.6 (IQR: 2.5, 10.1),

respectively (Table 1). Most patients had pneumonia/lower

respiratory tract infection [42/59 (71.2%)] and 11 (18.6%) had

blood culture-confirmed bacteraemia. Multiorgan dysfunction was

present in 41/59 (69.5%) and mortality occurred in 8/59 (13.6%) of

patients. Clinical characteristics of the PICU survivors and non-

survivors are presented in Supplementary Table S3. The

microbiological data are shown in Supplementary Table S4.
A high dimensionality approach reveals a
multitude of immune cellular
derangements and a dysregulated immune
network in paediatric sepsis

To holistically depict the immunome in paediatric sepsis, we

compared the circulatory immune profiles of children with sepsis to

healthy children with mass cytometry. We observed changes in the

immune cell composition within all the major immune lineages

(CD4+ T cell, CD8+ T cell, B cell, myeloid, and NK cells) between

the two groups (Figures 1A, B).

These immunological changes were able to segregate subjects

with sepsis and in health (Figure 1C). A plot of principal component

(PC) 1 and PC3 showed this separation when it was performed on the

46 cell subsets identified (Figure 1C, Supplementary Table S5). The

loading plot showed the coefficients of the linear combination of

different immune subsets from which the PCs are constructed

(Table 2). As illustrated, different subsets contributed variably to

the clinical dichotomisation observed with PCA. Eleven out of the 46

cell subsets were significantly different between the sepsis and healthy

groups and annotated onto the loading plot to depict their

contribution to the PCA. The four and seven subsets that were

increased and reduced in paediatric sepsis were coloured in red and

blue, respectively (Figure 1C).

Next, we used network analysis to determine how immune cells

interact and coordinate at the system level in sepsis. For this, a

correlation network was constructed with the 46 distinct cell subsets

(Figure 1D; Supplementary Table S6). The correlation of the frequency

of each node (cell subset), expressed as a percentage of total PBMC,

with other nodes was calculated. The correlations among the nodes

were used to define the edges (interconnections) between the nodes in

the cellular network. The colour of the edge denotes the direction of the
Frontiers in Immunology 05
TABLE 1 Demographic and clinical characteristics of sepsis and
control individuals.

Sepsis patients
(n=59)

Healthy controls
(n=34)

Demographics

Age(years) 5.6(2.0, 11.3) 6.6 (2.5, 10.1)

Age group

Neonate (<1month) 1 (1.7) 2 (6.1)

Infant (1–12 months) 11 (18.6) 3 (9.1)

Child (1–12 years) 33 (55.9) 25 (75.8)

Adolescent (>12 years) 14 (23.7) 4 (11.8)

Male gender, n(%) 35 (59.3) 28 (84.9)

Laboratory examinations

White blood count, 109/L 9.5 (5.4, 20.9)

C-reactive protein, mg/L 119.0 (32.1, 203.0)

Procalcitonin, ng/mL 6.1 (1.0, 62.0)

Lactate, mmol/L 1.6 (1.0, 3.1)

Severity of disease*

pSOFA 8 (5, 11)

PIM-3 3.4 (1.6, 6.4)

PELOD-2 6 (3, 8)

Sites of infection, n(%)

Respiratory 42 (71.2)

Systemic 5 (8.5)

Gastrointestinal 7 (11.9)

Central nervous system 2 (3.4)

Musculoskeletal 2 (3.4)

Genitourinary 1 (1.7)

Pathogen, n(%)

Bacteria 15 (25.4)

Virus 17 (28.8)

Negative 19 (32.2)

Mixed 7 (11.9)

Multiorgan dysfunction,
n(%)

41 (69.5)

Severe sepsis, n(%) 44 (74.6)

Septic shock, n(%) 43 (72.9)

Mortality in PICU, n(%) 8 (13.6)
*Scored at PICU admission. Data are expressed as median (interquartile range) unless
otherwise indicated. PELOD-2, paediatric logistic organ dysfunction 2 score; PIM3,
paediatric index of mortality 3; pSOFA, paediatric sequential organ failure assessment;
PICU, paediatric intensive care unit.
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FIGURE 1

Paediatric sepsis involves derangement in multiple immune cell subsets. (A) Density plots after t-SNE dimensionality reduction demonstrate
differences between paediatric sepsis and healthy immunomes. Each density plot is derived from the random sampling of 50,000 single events from
the concatenated mass cytometry data from 39 paediatric patients with sepsis and 19 healthy donors. The purple solid outlines demarcate the
regions of single-cell events that are CD45RA−, denoting a memory T-cell phenotype. The T regulatory cell clusters are demarcated with a solid
black line. (B) t-SNE plots with embedded marker expression included 50,000 randomly sampled single-cell events from the concatenated mass
cytometry from subjects with sepsis and healthy donors. The presence of CD25, Foxp3, and CD152 (CTLA4) expression defines the T regulatory
cells. (C) PCA segregates the subjects with sepsis from the healthy donors. PC1 and PC3 account for 24.5% of the observed variance. The loading
plot depicts the differential contribution of the 46 immune cell subsets to PC1 and PC3. The four and seven subsets that were increased and
reduced in paediatric sepsis were coloured in red and blue, respectively. (D) The paediatric sepsis immune network has a reduced number of
intercellular interactions and negatively correlated edges. Red: positive correlation, green: negative correlation. All represented correlations are
statistically significant. The phenotypes of the nodes (cell subsets) for (C, D) based on their node numbers, are listed in Supplementary Table S5.
The four increased cell subsets that are increased in sepsis are encircled in black.
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correlation (red, positive; green, negative), whereas its thickness

indicates the strength of the absolute correlation.

From this analysis, it is evident that the immune cell network of

children with sepsis differs from the network constructed with healthy

children (Figure 1D). There is a reduced number of interactions among

immune cell subsets in the sepsis network suggesting a loss of

coordinated communication between immune cell subsets in sepsis.

The network density, an overall measure of interaction among nodes in

the network, is lower (0.040) for paediatric sepsis compared with

healthy (0.103) (Supplementary Table S6).

The immune cell network showed that the number of negatively

correlated edges was 0 in the paediatric sepsis network compared

with 8 (7.48% of all edges) in the healthy network. The absence of

negatively correlated edges suggests a loss of counterbalancing

forces. Notably, the naïve T regulatory cell subset (node 23) and

PD1+CD152+TIGIT+ effector memory CD4+ T cells (node 36) are

among the nodes with negative edges.

Furthermore, the paediatric sepsis network had a higher

modularity (0.242) compared with the healthy network (0.002)

(Supplementary Table S6). The higher modularity in the paediatric

sepsis network is attributed to the formation of a restricted

communication module between CD4+ and CD8+ T-cell subsets

with each other. Comparatively, the cell subsets in healthy children

interact across different cell lineages. The CD4+ T-cell subsets

involve more pro-inflammatory factors such as TNFa and INFg
(Figure 1D; Supplementary Table S5). Henceforth, a loss of

negatively regulated intercellular connections characterises the

paediatric sepsis immunome network.

Enrichment of CD15+CD14+ monocytes,
CD45RA−CX3CR1+CTLA4+CD4+ T cells,
and CD45RA−17A+CD4+ T cells is
associated with greater disease severity

Figure 2A depicts the marker expression heatmap and cell

frequencies of the 11 cell subsets that were significantly different

between the sepsis and healthy groups after Bonferroni correction.
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CD15+CD14+ monocytes, CD45RA−17A+CD4+ T cells ,

CD45RA−CX3CR1+CTLA4+CD4+ T cells, and Ki67+ B cells were

significantly increased in patients with sepsis, with the

CD15+CD14+ monocytes having the largest normalised effect size

in sepsis (Figure 2B). The four cell subsets discovered with an

unsupervised analysis with FlowSOM clustering were validated with

a supervised analysis with traditional bivariate gating

(Supplementary Figures S3A, B). All except for the Ki67+ B cells

were significantly different on further validation with fluorescence-

based flow cytometry and were included for further downstream

analysis for association with clinical severity and outcomes.

To determine if the changes in these 11 cell subsets differed with age,

we performed a subgroup analysis by stratifying them into children with

age >1 year [74.4% (29/39) in the sepsis group and 73.7% (14/19) in the

healthy group] and those ≤1 year of age (Supplementary Figures S4, S5).

The CD15+CD14+ monocytes and CD45RA−CX3CR1+CTLA4+CD4+

T cells were only significantly increased in children with sepsis in those

>1 year of age (Supplementary Figures S4A, B). Contrastingly, the

CD45RA−17A+CD4+ T cells were significantly increased in those with

sepsis in both age groups (Supplementary Figure S4D). This was not due

to greater disease severity in the older children (>1 year old) as the

pSOFA and PELOD2 scores were comparable, and the PIM-3 score

was, in fact, higher in the ≤1-year group (Supplementary Figure S4E).

The other seven cell subsets that were significantly decreased in sepsis

were also only present in children >1 year of age (Supplementary

Figure S5).

Next, we evaluated the clinical relevance of these findings with

sepsis severity scores and the occurrence of multiorgan dysfunction

(Figures 2C, D). The increases in the CD15+CD14+ monocytes,

CD45RA−17A+CD4+ T cells, and CD45RA−CX3CR1+CTLA4+

CD4+ T-cell subsets were independent and not correlated with

each other (Figure 2C). There was a positive correlation between

the frequency of CD15+CD14+ monocytes with serum procalcitonin

(Pearson’s r=0.68, p<0.001), and CD45RA− CD45RA−17A+CD4+ T

cells with serum lactate (Pearson’s r=0.57, p<0.001). Although both

CD15+CD14+ monocytes and CD45RA−17A+CD4+ T cells were

significantly correlated with the clinical severity scores, pSOFA and
TABLE 2 Subset information for principal component analysis (PCA) loading plot.

Top 10 subsets in PC3 (PC score) Top 10 subsets in PC1 (PC score)

temraCD4 (−0.670) IL4+TIGIT+CX3CR1+CXCR3+CCR4+ naiveCD4 (0.762)

GATA3+CD56++ (−0.604) CD160+CX3CR1+CXCR3+CCR4+ effector memory CD4 (0.760)

Ki67+ B (0.589) Lineage negative- (0.746)

Lin-HLADR+IL8+ (−0.582) CD45RA-CX3CR1+CTLA4+CD4+ (0.664)

Tbet+CD244+ temraCD8 (−0.526) IL8+ naïve CD8 (−0.659)

CD45RA−IL17A+CD4+ (0.517) IL8+ naïve CD4 (−0.616)

PD1+CD152+TIGIT+ effector memory CD4 (0.513) Tbet+GB+CX3CR1+CXCR3+ gdT (0.607)

FOXP3+CD25+CD152+PD1+TIGIT+CCR4+ Treg (0.482) FOXP3+CD25+CD152+ naïve Treg (−0.593)

temraCD8 (−0.480) Double negative T cell (0.590)

PD1+CD152+Ki67+ central memory CD4 (0.414) CX3CR1+CXCR3+ naïve CD4 (0.582)
List of abbreviations can be found in the Supplementary Material.
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FIGURE 2

Immune cellular derangements in paediatric sepsis and their correlation with clinical scores. (A) Scaled median (arcsine transformed) marker
expression profiles (heat maps) of merged FlowSOM-derived cell clusters that are significantly altered in paediatric sepsis and their frequencies
depicted as a percentage of CD45+ PBMC (n = 39, paediatric sepsis and n = 19, healthy donors). Boxplots indicate median and IQR. Statistical
testing: p-values from Mann–Whitney U (two-tailed) test with Bonferroni correction are shown. A cutoff p-value of < 0.1 was used as our threshold
for type I error. Stimulated PBMCs (with PMA and ionomycin) were studied. (B) Effect size of each significantly deranged cell subset to paediatric
sepsis. Cohen’s d statistics (standardised effect size) with 95% confidence intervals are depicted. (C) Correlation matrix among significantly deranged
cell subsets and conventional laboratory tests and clinical severity scores. Correlation coefficients, r: Pearson, rS: Spearman. (D) Distribution of
immune subsets according to the number of organ dysfunction (groups 2 and 6 only had two patients and were collapsed into the preceding
group). Organ dysfunction was defined by the International Consensus Conference on Pediatric Sepsis. WBC, white blood cell; CRP, C-reactive
protein; PCT, procalcitonin; SOFA, paediatric sequential organ failure assessment; PELOD-2, paediatric logistic organ dysfunction score-2; PIM-3,
paediatric index of mortality 3. *p<0.05, **p<0.01, ***p<0.001.
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PELOD-2, serum procalcitonin, and lactate yielded a stronger

correlation with pSOFA and PELOD2, than the identified subsets.

There was a progressive increase in the frequency of the

CD15+CD14+ monocytes, CD45RA−17A+CD4+ T cells, and

CD45RA-CX3CR1+CTLA4+CD4+ T-cell subsets from control to

sepsis with organ dysfunction (Figure 2D).
Enrichment of CD15+CD14+ monocytes,
CD45RA−CX3CR1+CTLA4+CD4+ T cells,
and CD45RA−17A+CD4+ T cells aids
diagnosis and predicts mortality

ROC analysis was performed to discriminate paediatric sepsis

from healthy and to predict septic shock, severe sepsis, and

mortality among the discovery cohort (Figure 3A). Individually,

higher frequency of CD15+CD14+monocytes [0.83 (95%CI

0.71,0.94)], CD45RA-CX3CR1+CTLA4+CD4+ T cells [0.77 (95%

CI 0.64,0.90)], CD45RA−17A+CD4+ T cells [0.76 (95% CI

0.61,0.90)], and Ki67+ B cells [0.76 (95%CI 0.64, 0.88)] yielded

good AUROC for distinguishing sepsis from healthy. When all four

subsets were combined and adjusted for age, AUROC improved to

0.90 (95%CI 0.82, 0.98) with a sensitivity of 87.2%, specificity of

79.0%, positive predictive value of 89.5%, and negative predictive

value of 75.0%, thus suggesting that the determination of these

combined variables may be considered as a diagnostic aid for

paediatric sepsis. The AUROC of the four-subset model adjusted

for age was acceptable for the diagnosis of severe sepsis and septic

shock as well. When reduced to three cell subsets (excluding Ki67+

B cells), performance of the model to distinguish sepsis, severe

sepsis, and septic shock remained good–excellent.

The same three cell-subset model, adjusted for age, was

comparable with the tools currently used in clinical practice to

predict mortality [0.75 (95%CI 0.53, 0.98)], such as the PIM-3,

PELOD2, and pSOFA score, and better than biomarkers serum C-

reactive protein, procalcitonin, and lactate (Figure 3B).
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To validate these findings, the four cell subsets were identified by

a different technique, namely, flow cytometry, and shown to be

increased consistently in an independent cohort (Supplementary

Figure S6C). A representative gating strategy of one sepsis patient

and one healthy control is shown in Supplementary Figures S4A, B.

Repeat ROC analysis with flow cytometry-derived cell frequencies

produced consistent results with the four and three cell-subset model

adjusted for age yielding good–excellent AUROC to distinguish

sepsis from healthy [0.87 (95%CI 0.72, 1.00) and 0.86 (95%CI 0.71,

1.00), respectively] (Supplementary Figure S7). As flow cytometry

easily allowed determination of cell lineage frequency, the four and

three cell-subset information based on cell lineage frequency

performed even better to distinguish sepsis from healthy [0.94

(95%CI 0.83, 1.00) and 0.94 (95%CI 0.83, 1.00), respectively].
Discussion

Given the myriad of triggering microbiological agents and the

complexity of the host sepsis response, reductionist approaches

based on individual cellular or biochemical markers are unlikely to

provide suitable biomarkers for sepsis diagnosis or prognostic

stratification. Instead, multivariate approaches have been shown

to be more promising, even though the ones available to date are

still limited in scope to specific clinical subsets and do not employ

technologies which can comprehensively define the architecture of

the immune system (25–27). A high-dimensionality approach

where the architecture of the immunome is derived holistically at

the single-cell proteome level and analysed by machine learning

techniques using supervised (linking known variables to outcomes)

or unsupervised (to determine hidden patterns of unknown

variables to outcomes) algorithms may be the solution to

addressing the complex nature of sepsis.

In the discovery cohort, immune derangements in paediatric

sepsis were identified using single-cell mass cytometry with a systems

biology approach and network analysis. These derangements were
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FIGURE 3

Receiver operating characteristic (ROC) analysis of the discovery cohort for the diagnosis of sepsis, sepsis shock, and severe sepsis and for the
prediction of mortality. AUROC values derived from mass cytometry data from the discovery cohort (n = 58). *Indicates that the 95% confidence
intervals do not cross 0.5.
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characterised by the reduction in the interactions between otherwise

normally highly connected immune cell subsets as found in health. In

particular, there was a loss of the normal regulatory/inhibitory

interactions between cell types. This observation may provide a

novel contribution to understanding the pathogenesis of the

disease. Indeed, in response to an infective agent, the innate and

adaptive immune responses are triggered to defend the host from

pathogen invasion (28). Interactions between the innate and adaptive

immune elements are crucial for effective clearance of pathogens, and

yet this must also be regulated to avoid inadvertent/excessive

inflammatory injury (29). In our study, the immune cell network

of children with sepsis demonstrated fewer interactions compared

with healthy subjects indicating a loss of coordinated communication

between immune cell subsets in sepsis. There was an absence of

negatively correlated edges suggesting loss of regulatory/inhibitory

forces—notably, the T regulatory and PD1 inhibitory CD4+ T-cell

subsets did not produce regulatory/inhibitory effects as expected,

potentially leading to excessive inflammatory injury. Despite evidence

of interactions between CD4+ and CD8+ T-cell subsets, such

interactions occurred in restricted communication modules in

sepsis. In contrast, interaction between immune cell subsets in

healthy control subjects occurred in a balanced fashion across

functionally different subsets (including NK cells, myeloid cells, and

B cells). Altogether, the concept of centrality and connectivity of cell

subsets provides a different pathogenic perspective to the traditional

approach of simply measuring the number of cells to explain

their functional and pathogenic relevance in the network of a

diseased immunome.

Importantly, our approach also identified several immune cell

subsets which were significantly different with controls. We

combined the four immune cell subsets which were increased for

several reasons. They were independently increased (i.e., showing

no interdependency and correlation between them); they possessed

mechanistically meaningful markers such as CD15 (cell adhesion),

CX3CR1 (chemokine receptor), Ki67 (proliferation), and

IL17A (pro-inflammatory cytokine); they possessed significant

correlations with clinical scores (pSOFA, PIM-3, PELOD-2); and

lastly, being increased in the disease state allowed us to conduct

further downstream functional studies with sufficient cell numbers

with fluorescence activated flow sorting. When combined in a

model, higher frequency of these subsets had good-to-excellent

discriminative ability to distinguish sepsis from healthy, and fair-to-

moderate discriminative ability to predict non-survivorship.

The cell subsets identified are supported by evidence of biological

plausibility. Although functional experiments were not part of the

aims of this study, previous reports provide context on the

mechanistic relevance of these cell subsets. Classical monocytes,

part of the innate immune response, comprise the majority of

circulating monocytes (80%–90%) and perform several roles in

sepsis, including antigen presentation, phagocytosis of pathogens,

and production of pro- and anti-inflammatory cytokines (30, 31).

The CD15 marker indicates that this subset is likely in the mature
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monocyte stage of development. Specifically, CD15 functions as a

monocyte counter-receptor which engages endothelial cell E-selectin

leading to monocyte adhesion, activation, and pro-inflammatory

cytokine production (32). A greater abundance of CD15+

monocytes may be associated with a greater pro-inflammatory

potential. Central memory CD4+ T cells play a central immune

surveillance role, patrolling lymph nodes and proliferating to produce

both effector and effector memory T cells when encountering a

familiar antigen (33). CX3CR1 expression marks the most

differentiated Th1 effector population and functionally serves as a

tissue homing receptor toward the ligand CX3CL1 (fractalkine)

produced at sites of infection (34). High systemic levels of

CX3CL1, however, are associated with multiorgan dysfunction,

impaired pathogen clearance, and mortality (35). Lastly, IL-17-

driven inflammation has been established in mediating effects like

organ dysfunction (36, 37) and mortality (38, 39) in sepsis.

Altogether, this work corroborates the validity of the high-

dimensionality, machine learning-powered approach to understand

the diseased immunome in sepsis for its derangements also at the

level of network. Our findings, which were validated by the use of an

independent technology and independent cohort, provides a tool to

aid diagnosis and may be superior to existing clinical scoring

systems and clinically available biomarkers in predicting

mortality (40). This work would be certainly strengthened by

testing in a larger and more diverse cohort of patients including

infectious non-sepsis, non-infectious systemic inflammatory

response and immunosuppression. Further to this, our study

provides pilot data for a diagnostic clinical trial to determine if

early measurement of these biomarkers translate to improved/

appropriate treatment for sepsis. Moreover, neutrophils which are

known to play a significant role in sepsis and organ failure were not

considered in our analysis (due to the loss of neutrophils during the

cryopreservation process). Finally, our data may also help in

proposing further research into therapies employing CX3CR1

antagonists (AZD8797) (41) or humanised monoclonal antibody

of IL-17A (ixekizumab) (42, 43) as potential therapeutic targets

in sepsis.
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