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Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease

of the nervous system and amain cause of neurological disability in young adults.

Most disease-modifying therapies are administrated as long-term maintenance

therapies and may, thereby, increase the risk of infections and other immune-

mediated side effects. In the last years, several cerebrospinal fluid and soluble

blood biomarkers have been suggested as potential key tools for diagnosis,

prognosis, and treatment monitoring of MS. Recently, the specific ability of brain-

derived blood extracellular vesicles (EVs) that cross the blood-brain barrier into

the bloodstream, reflecting the current immune status of the central nervous

system, has kindled interest as potential biomarkers. In this review, we discuss the

current trends of clinical brain-derived blood biomarkers, with a special focus on

the emerging role of brain-derived blood EVs in MS.
KEYWORDS

multiple sclerosis (MS), cerebrospinal fluid (CSF), brain-derived blood biomarkers,
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1 Introduction

Almost 3 million people worldwide are affected by multiple sclerosis (MS), an immune-

mediated inflammatory and degenerative disease of the central nervous system (CNS) (1).

From a clinical perspective, MS is highly heterogeneous with most patients (85%–90%)

experiencing an initial relapsing-remitting course (RRMS) marked by episodic

inflammation and, if not treated effectively, followed by a secondary progressive (SPMS)

phase, associated with gradual increasing disability (2). Epidemiological data suggest that

Epstein–Barr virus is a prerequisite for developing MS, but the underlying pathogenic

mechanisms are still unclear (3, 4).

The MS diagnosis relies on the combination of clinical and paraclinical findings, with

no single definitive diagnostic test available (5). Currently, it is essential to determine
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inflammatory immune-mediated damage affecting at least two

distinct regions (dissemination in space) of the CNS at varied

time points (dissemination in time) to establish an MS diagnosis.

Since the incorporation in the diagnostic criteria (1983), magnetic

resonance imaging (MRI) of the brain and spinal cord holds a

pivotal role in the diagnostic process. In addition, cerebrospinal

fluid (CSF) analysis detecting intrathecal immunoglobulin G (IgG)

synthesis was highlighted in the update of the diagnostic criteria of

MS in 2017 (5).

Recent advancements have shed light on detecting brain-

derived proteins at remarkably low concentrations in blood,

paving the way for the exploration of early blood-based

biomarkers in MS (6). Specific markers of immunopathological

processes including neuroaxonal damage [neurofilament light chain

(NfL)] and astrocyte activation [glial fibrillary acidic protein

(GFAP)] are already rapidly emerging (7, 8). Extracellular vesicles

(EVs) are defined as membrane-bound particles, released from

virtually all cell types, with a sophisticated sorting mechanism of

their cargo inclusive of lipids, proteins, and nucleic acids, in

addition to carrying specific membrane proteins, mainly reflecting

their donor cell. This peculiarity, plus their ability to cross the

blood-brain barrier (BBB) into the blood stream, increased stability,

and involvement in the regulation of both the immune system and

CNS homeostasis, features brain-derived blood EVs, as improved

biomarkers in CNS diseases, including MS (9–12). This review aims

to summarize the current CSF and blood biomarkers in MS,

discussing the unmet needs and future perspectives.
2 MS pathogenesis and fluid
biomarkers

In the early stages of MS, the recurrent invasion of T and B cells

in the brain and spinal cord drives a cascade of pathophysiological

processes within the CNS (13). Several fluid biomarkers have

emerged as effective indicators of this complex interaction, which

contributes to the diverse clinical manifestations observed in the

disease (14). Early episodes of acute focal inflammation,

demyelination, and axonal damage, driven by infiltrating immune

cells (macrophages, CD8+ T cells, CD4+ T cells, B cells, and plasma

cells), could be typically detected through conventional MRI, showing

new lesions in T2-weighted and/or T1-weighted gadolinium

enhancing lesions (15, 16). Infiltrating immune cells are attracted

to the CNS by several chemotactic factors such as chemokine (C-X-C

motif) ligand 13 (CXCL13) for B cells (Figure 1) (17).
Abbreviations:MS, multiple sclerosis; CNS, central nervous system; BBB, blood-

brain barrier; CXCL13, chemokine (C-X-C motif) ligand 13; APCs, antigen-

presenting cells; k-FLCs, kappa-free light chains; NfL, neurofilament light chain;

CSF, cerebrospinal fluid; sTREM2, soluble triggering receptor expressed on

myeloid cells 2; CHIT1, chitotriosidase 1; CHI3L1, chitinase-3–like protein 1;

GFAP, glial fibrillary acidic protein; EVs, extracellular vesicles; miRNA,

microRNA; lncRNA, long non-coding RNA; MOG, myelin oligodendrocyte

glycoprotein; MBP, myelin basic protein.
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Invading T and B cells closely interact within the CNS (16, 17).

In contrast to T cells, the immune pathways involving B cell

activation have, so far, served as the most robust fluid biomarkers

for MS. Mature plasma cells secrete IgG and IgM antibodies

intrathecally, also leading to release of free light chains (due to a

mismatch between immunoglobulin light- and heavy-chain

synthesis) (18, 19). This inflammatory process results in axonal

damage and release of neuronal markers like NfL (20). Over time,

there is worsening of disability and accumulation of neurological

deficits in the absence of concurrent relapses defined as

“progression independent of relapse activity” (PIRA) (21).

Underlying mechanism driving PIRA is increasingly understood

as a pathophysiological continuum of the early “relapsing” phase

driven by a chronic “smouldering” inflammatory process

compartmentalized within the CNS, characterized by innate

immune cells and astrocytes (22). Recent studies on positron

emission tomography (PET) employing radioligands for innate

immunity activation assessment have revealed an interestingly

high prevalence of smouldering component in MS lesions (23).

Chronically active MS lesions are slowly expanding over time or as

paramagnetic rim lesions, expressing a dense network of activated

iron-laden microglia/macrophages (24). Activated microglia and

astrocytes release various mediators into the CSF, such as soluble

triggering receptor expressed on myeloid cells 2 (sTREM2),

chitinase 1 (CHIT1), chitinase-3–like protein 1 (CHI3L1), and

GFAP, impacting axon, synaptic integrity, and function (25–30).

The critical role of the complement system in MS is underlined

with the complement and Ig deposition across all areas of

demyelination regardless of the plaque subtype, including

complement-mediated myelin phagocytosis implying its importance

once the disease is established. In progressive MS and long-standing

disease patients, white matter plaques were consistently positive for

complement proteins (C3, factor B, and C1q), regulators (factor H,

C1inh, and clusterin) and activation products [C3b, iC3b, C4d, and

terminal complement complex (TCC)] providing evidence that, once

established, progression of inflammation in MS may not rely on

infiltrating cells but rather on innate immune mechanisms including

complement activation (31, 32).

EVs are pivotal in the intricate communication of neurons and glial

cells of the CNS system holding neuroprotective and homeostatic

effects but may have detrimental effects under pathological conditions

(33, 34). EVs derived from T cells containing chemokine CCL5 and

arachidonic acid can increase the expression of intercellular adhesion

molecule 1 (ICAM-1) on endothelial cells and of Mac-1 on monocytes,

contributing to the dysfunction of the BBB, leading to immune

infiltration, a characteristic of MS pathogenesis (35–37). Dendritic

cell (DCs) derived EVs carry cell surface molecules like major

histocompatibility complex (MHC), ICAM-1, and other

costimulatory molecules, which could aid in T-cell activation (38).

EVs from activated microglia express pro-inflammatory mediators

(Tumor Necrosis Factor-alpha (TNF-a) and Interleukin-1 (IL-1))

exhibiting a distinct proteomic profile enforcing inflammatory

stimuli throughout the CNS (39). Recent studies show the role of

astrocyte-derived EVs in the regulation of T-cell secretion and

biomarker utility of myelin basic protein (MBP) and myelin
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oligodendrocyte glycoprotein (MOG) content in oligodendrocytes-

derived EVs (40). Most immune cell–derived EVs seem to be

significantly higher in treatment naïve relapsing MS patients with

low disability, and their functions might depend on the physiological

environment, despite limited changes in circulating immune cells (33).
3 MS fluid biomarkers—current trends
and beyond

The diagnostic criterion for MS underscores the importance of

both MRI and biofluid biomarkers emphasizing the pivotal role of

accurate diagnosis, prognosis, and treatment response in the
Frontiers in Immunology 03
management of the disease (5). In addition to advancements in

MRI techniques (7-T MRI, PET, magnetization transfer imaging,

diffusion tensor imaging, and myelin water imaging), integrating

biofluid biomarkers would be beneficial because of their ability to

directly reflect the pathophysiological processes involved in the MS

disease course (41). Cumulative evidence shows that the blood-

based biomarker sNfL can predict relapses in relapsing MS patients,

whereas CSF IgM oligoclonal bands, CHI3L1, and GFAP seem to be

associated with a more progressive phenotype. Different aspects of

microglial involvement (CHIT1 and sTREM2), astroglia pathology

(CHI3L1 and GFAP), B-cell–related pathology (CXCL13), and

neuroaxonal damage (sNfL) have been evaluated in several

studies aiding in classifying MS disease activity (Table 1) (25–30).
FIGURE 1

Pathophysiology of multiple sclerosis and associated biomarkers. The pathogenesis of MS begins with immune cells, including macrophages,
autoreactive T cells targeting myelin, B cells, and plasma cells, infiltrating the CNS through a dysfunctional BBB. Lymphocyte recruitment is mediated
by chemokines like CXCL13, which specifically attracts B cells. Within the CNS, T and B cells interact, to amplify the immune response, with T cells
secreting cytokines and B cells acting as APCs. Activated B cells differentiate into plasma cells, producing immunoglobulins, including IgG and IgM
and releasing k-FLCs. The ongoing neuroinflammation leads to demyelination, axonal damage, and neurodegeneration, marked by NfL, which is
released into the interstitial space, CSF, and bloodstream as a result of axonal injury, along with MOG and MBP, major proteins of the myelin sheet of
oligodendrocytes. Resident immune cells within the CNS, such as microglia and astrocytes, contribute to the disruption of axonal integrity and
synaptic function. While activated, microglia and astrocytes release various mediators into the CSF, including sTREM2, CHIT1, and CHI3L1.
Additionally, astrocyte damage results in the release of structural proteins, such as GFAP, into the CSF and bloodstream. Another source of
biomarkers reflecting pathological processes occurring in the CNS are EVs. These nanovesicles, secreted by various cell types, including neurons,
astrocytes, microglia, and oligodendrocytes, carry a diverse molecular cargo, such as surface antigens, DNA, mRNA, miRNA, lncRNA, lipids, disease-
specific proteins, and metabolites, acting as mediators of intercellular communication. The bidirectional efflux of EVs and soluble biomarkers across
the compromised BBB enables their detection in peripheral fluids.
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TABLE 1 Summary of fluid biomarkers in multiple sclerosis.
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Brain-derived blood EVs (L1CAM, MOG, and GLAST) serve as

potential windows into the CNS reflecting the underlying MS-

related pathophysiology (Table 1) (33).

Certain limitations of the emerging fluid biomarkers intrude

their clinical transition. For example, NfL is a promising biomarker

but with limited diagnostic use due to its unspecific increase in the

blood connected to several neurological conditions (42). EVs hold

potential as biomarkers; however, existing knowledge gaps in terms

of EVs biology, biodistribution, and assay standardization are yet to

be fully elucidated (33). Although MS fluid biomarkers hold a

promising frontier, addressing standardization, data validation, and

accessibility are key in resolving ongoing challenges. Composite

scoring with integrated clinical and MRI metrics [e.g., the

MAGNIMS score or no evidence of disease activity 3 (NEDA-3)

and NEDA-4] and multimodal biomarker profiling (CSF and

blood-based biomarkers with neuroimaging) may be a way

forward in MS management (41). Furthermore, artificial

intelligence (automated lesion detection and improved diagnostic

accuracy) holds transformative potential in enhancing clinical

decision-making.

In conclusion, despite the limitations, the recent advances

within the field hold a promising frontier, giving a paradigm shift

from the conventional CSF (oligoclonal banding) analysis to a new

era of brain-derived blood biomarkers (NfL, GFAP, and EVs),

enabling improved longitudinal disease monitoring and

personalized treatment.
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