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Background: Systemic lupus erythematosus (SLE) is a persistent autoimmune

disorder marked by dysregulation of the immune system, resulting in extensive

tissue inflammation and subsequent damage. Fibroblasts are essential

contributors to the pathogenesis of SLE, particularly in driving the progression

of tissue fibrosis and inflammation. Recent research has proposed that the GEM

gene may regulate fibroblast activity in SLE. However, the precise molecular

mechanisms through which GEM modulates fibroblast functions in the context

of SLE are yet to be fully elucidated. Gaining insight into these mechanisms is

crucial for uncovering potential therapeutic targets aimed at addressing fibrosis

and inflammation associated with SLE.

Methods: Single-cell RNA sequencing was integrated with cell-based assays,

such as quantitative reverse transcription PCR (qRT-PCR) and functional cellular

experiments, to investigate the underlying mechanisms. The regulatory

mechanisms of GEM in fibroblasts were analyzed through functional cell assays.

Results: Differential gene expression in fibroblast subpopulations was identified

through single-cell RNA sequencing, with GEM emerging as a key gene implicated

in these alterations. Trajectory analysis indicated that GEM expression correlated

with fibroblast proliferation and migration. Subsequent experiments confirmed

that GEM regulates fibroblast viability and influences SLE disease progression

through modulation of cell proliferation, migration, and apoptosis.

Conclusions: GEM is highly differentially expressed in fibroblast subpopulations

within SLE, and its altered expression impacts fibroblast proliferation and

migration. GEM may regulate fibroblast activity and apoptosis, potentially

contributing to the progression of SLE.
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1 Introduction

Systemic lupus erythematosus (SLE) is a persistent autoimmune

disorder marked by extensive inflammation and tissue damage,

which impacts various organ systems such as the skin, kidneys,

heart, and nervous system (1, 2). Epidemiologically, SLE

predominantly affects women, with a higher prevalence observed

in individuals of African, Hispanic, and Asian descent (3). The

disease often presents during the reproductive years, with peak

onset between the ages of 15 and 45 (4). The global incidence of SLE

varies by region, but it is generally estimated to affect approximately

20-150 per 100,000 people, depending on the population studied

(5). Pathologically, SLE is characterized by immune system

dysregulation, resulting in the generation of autoantibodies that

attack the body’s own tissues, thereby inducing widespread

inflammation (6, 7). The underlying mechanisms of SLE involve

complex interactions between genetic susceptibility, environmental

triggers, and immune system dysfunction (8). However, the precise

molecular mechanisms driving disease onset and progression

remain poorly understood, presenting a significant challenge in

developing targeted therapies (9). Despite advancements in the

understanding of SLE, the treatment options remain limited, with

corticosteroids and immunosuppressive drugs being the mainstay

therapies (10). These treatments aim to manage symptoms and

prevent flare-ups but are associated with significant side effects and

do not address the root causes of the disease. The lack of effective

disease-modifying treatments and the incomplete understanding of

the molecular underpinnings of SLE highlight the critical need for

ongoing research to discover new therapeutic targets and strategies

aimed at enhancing patient outcomes and quality of life.

GEM (GTPase-activating protein for cell migration and

invasion), a member of the dynamin GTPase family, is crucial for

regulating a variety of cellular processes, including vesicle

trafficking, signal transduction, and cytoskeletal dynamics (11).

Recent studies have highlighted GEM’s involvement in the

differentiation of fibroblasts (12, 13), A critical mechanism in the

pathogenesis of fibrosis and autoimmune diseases, including SLE.

Fibroblast differentiation, particularly into myofibroblasts, is crucial

in the development of tissue fibrosis, a common complication in

SLE patients, leading to organ damage, especially in the kidneys,

skin, and lungs. In the context of SLE, aberrant fibroblast

differentiation and excessive extracellular matrix deposition are

central to disease progression (14). GEM has been shown to

influence the signaling pathways that regulate fibroblast activation

and differentiation, potentially contributing to the development of

fibrosis and the exacerbation of autoimmunity in SLE (15). The

dysregulation of GEM-mediated processes may also be linked to the

inflammatory milieu characteristic of SLE, where activated immune

cells interact with fibroblasts, leading to tissue damage and chronic

inflammation. Despite its potential relevance, research on GEM as a

therapeutic target for SLE remains relatively sparse. Although some

studies suggest that targeting GEM may mitigate fibroblast

differentiation and reduce fibrosis. A considerable gap remains in

elucidating the exact molecular mechanisms by which GEM
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contributes to the pathogenesis of SLE (16). Exploring GEM’s

involvement in fibroblast activation and tissue fibrosis may yield

crucial insights into the molecular mechanisms of SLE and present

novel avenues for developing personalized therapeutic approaches.

Targeting GEM in the context of SLE may help to address both the

inflammatory and fibrotic aspects of the disease, ultimately

improving patient outcomes and advancing the field of

precision medicine.

Single-cell technologies have greatly enhanced our

comprehension of disease mechanisms, offering in-depth

perspectives on cellular heterogeneity and the dynamic processes

underlying disease progression (17–19). In SLE, the ability to dissect

the differentiation and functional states of various immune and

non-immune cell populations is crucial for elucidating the

pathogenic mechanisms underlying the disease. SLE is marked by

impaired immune responses, such as the activation of autoreactive

B and T cells and the development of tissue fibrosis, all of which

play a role in the organ damage seen in affected patients. However,

the precise cellular mechanisms and the role of distinct cell types in

disease progression remain incompletely understood (20–22).

Single-cell RNA sequencing (scRNA-seq) has become an essential

tool for revealing the cellular landscape of SLE, facilitating the

identification of rare and distinct cell populations implicated in

inflammatory and fibrotic processes. This technology enables high-

resolution gene expression profiling at the single-cell level, essential

for studying the disrupted cellular networks and differentiation

pathways in SLE. Single-cell technologies enable researchers to

monitor cellular differentiation, discover new disease markers,

and identify specific molecular targets for therapeutic

intervention. In immunology, the advancement of precision

therapeutics has become a central focus, utilizing cutting-edge

multi-omics technologies to tailor immune treatments.

Immunotherapy, a fundamental aspect of precision medicine,

manipulates the immune system’s complex dynamics to address a

wide range of diseases, from cancer to autoimmune conditions. The

integration of multi-omics approaches—encompassing genomics,

transcriptomics, proteomics, and metabolomics—offers a

comprehensive view of immune responses at the molecular level.

Immune signatures derived from these methodologies highlight

individual patterns, providing crucial insights into disease

susceptibility and therapeutic effectiveness. By merging data from

techniques such as single-cell profiling and spatial transcriptomics,

we gain a deeper understanding of immune regulation and cellular

interactions within disease-specific microenvironments. Together,

these efforts aim to tailor therapeutic strategies to each patient’s

unique immune landscape, advancing personalized immune

modulation and ushering in a new era of precision therapeutics

for autoimmune diseases like SLE.

In this study, we apply single-cell sequencing to investigate the

role of the GEM gene in SLE. GEM, a GTPase involved in cellular

processes such as fibroblast differentiation, has been implicated in

fibrotic diseases but remains underexplored in the context of SLE.

By leveraging single-cell technologies, we aim to bridge the gap in

understanding GEM’s role in the differentiation of fibroblasts and
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other key cell types involved in SLE pathogenesis. This strategy

offers a distinctive opportunity to pinpoint GEM as a potential

therapeutic target and to elucidate its molecular mechanisms in

SLE, thereby advancing the evolving field of precision medicine for

autoimmune disorders.
2 Methods

2.1 Data source

The scRNA-seq data were retrieved from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/) under the GSE accession

number GSE179633. As the data utilized in this study were

obtained from a publicly available database, ethical approval was

not necessary (23).
2.2 Processing of single-cell derived data

The gene expression data were processed using R software (v

4.2.0) and analyzed with the Seurat package (v4.1.1). To ensure data

accuracy, we employed the DoubletFinder tool (version 2.0.3) to

identify and remove potential doublet cells from the dataset

(24–26). Low-quality cells were filtered out, and rigorous quality

control measures were implemented to ensure the reliability of the

single-cell dataset. Cells meeting the following criteria were retained

for analysis: 300 < nFeature < 6000 and 500 < nCount < 100,000.

Normalization of all samples was conducted using the

“NormalizeData” in the Seurat R package (27–29). After filtering,

the top 2,000 most variable genes were identified using the

“FindVariableFeatures” function. The generated data were

standardized using the ‘ScaleData’ function and subsequently

subjected to principal component analysis (PCA) (30, 31) for

dimensionality reduction. Harmony R package was used to

address batch effects. Subsequently, we utilized Seurat’s

“FindClusters” and “FindNeighbors” functions for cell clustering,

and “FindAllMarkers” to identify Differentially Expressed Genes

(DEGs) (32–35) for each cluster. Finally, we subsequently identified

the top 30 principal components for additional analysis and

displayed the data with uniform manifold approximation and

projection (UMAP) (36–39).
2.3 Cell type identification and annotation

We applied the “FindAllMarkers” function to identify

differentially expressed genes (DEGs) across various cell clusters

(40, 41). Visualizing the expression patterns of these markers using

Seurat’s “DotPlot” and “featureplot” tools provided insights into the

molecular characteristics of each cluster. Furthermore, our analysis

involved re-clustering to delve deeper into the diversity of

fibroblasts, focusing on subtype characterization based on unique

genetic profiles identified through marker identification techniques.
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2.4 Enrichment analysis

Gene Ontology (GO) enrichment analysis was conducted using

the ClusterProfiler R package (v4.6.0) to identify biological

processes and molecular functions associated with differentially

expressed genes. GO term significance was assessed with an

adjusted P-value threshold of < 0.05. This analysis provided

insights into the functional roles of the identified DEGs within

the biological context of the study.
2.5 Pseudotime analysis

The pseudotemporal trajectory of fibroblast differentiation was

reconstructed using the Monocle2 R package (version 2.22.0), a

computational framework specifically designed for single-cell

trajectory analysis. Differential gene expression analysis was

performed to identify statistically significant transcriptional

changes (adjusted p-value < 0.05, log2 fold change > 1) across

distinct cellular states. The trajectory was constructed using the

DDRTree (Discriminative Dimensionality Reduction with Trees)

algorithm, which enables dimensionality reduction while preserving

the topological relationships between cells. Cellular subtypes were

computationally ordered along the pseudotime continuum based on

their transcriptional profiles, allowing for the identification of

progressive molecular changes during fibroblast differentiation.

Genes exhibiting coordinated expression patterns along the

pseudotemporal axis were systematically identified through

correlation analysis and visualized using a pseudotime heatmap,

with hierarchical clustering to reveal co-regulated gene modules.

For lineage inference analysis, the Slingshot R package (version

2.6.0) was implemented to reconstruct the developmental

trajectories of fibroblast subpopulations. The “getLineages”

function was executed using cluster-based minimum spanning

trees (MST) to establish potential differentiation pathways, with

cluster identities determined through unsupervised clustering

analysis. Subsequently, the “getCurves” function was applied to fit

simultaneous principal curves, enabling the quantification of gene

expression dynamics across distinct lineages throughout the

inferred developmental timeline. The algorithm incorporated cell-

level weights to account for uncertainty in cellular state assignment,

and pseudotime values were normalized across lineages to facilitate

comparative analysis of differentiation kinetics. Both trajectory

inference approaches were validated through bootstrapping

analysis (n = 1000 iterations) to ensure the robustness of the

identified differentiation pathways.
2.6 Analysis of cell communication

In this study of cell-cell communication, the CellChat R package

(v1.6.1) was employed to analyze intercellular interactions across

various cell types. This tool facilitated the construction of regulatory

networks based on ligand-receptor interactions, allowing us
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to infer complex communication patterns. We utilized the

“netVisual_diffInteraction” function to visualize the variations in

communication strength between cells and employed

“identifyCommunicationPatterns” to identify and quantify the

distinct intercellular communication patterns. We set a

significance threshold of P < 0.05 to evaluate the statistical

relevance of these interactions, thereby deepening our

understanding of the complex cellular communication networks

revealed by our scRNA-seq data.
2.7 Gene regulatory landscape

To identify stable cell states and assess transcriptional activity,

we employed the pySCENIC package (v0.10.0) in Python (v3.7).

Using the AUCell matrix, we evaluated the enrichment of

transcription factors (TFs), gaining insights into the functional

status of regulatory modules and advancing our understanding of

the regulatory landscape across fibroblast subtypes.
2.8 Cell culture methodology

CCD-1066 (ATCC® CRL-2096™, RRID: CVCL_1849) and F-

2408 (ATCC® CRL-12047™, RRID: CVCL_1060) cell lines were

cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco,

Thermo Fisher Scientific, Cat. No. 11965092) supplemented with

10% fetal bovine serum (FBS) (Gibco, Thermo Fisher Scientific, Cat.

No. 16000044) and 1% penicillin-streptomycin (Gibco, Thermo

Fisher Scientific, Cat. No. 15140122). Cells were maintained at 37°C

in a 5% CO2 incubator and the medium was refreshed every 2-3

days. When cultures reached 80-90% confluence, cells were

trypsinized using 0.25% trypsin-EDTA (Gibco, Thermo Fisher

Scientific, Cat. No. 25200056) and subcultured at appropriate

densities for subsequent experiments.
2.9 Gene knockdown by transfection of
CCD-1066 and F-2408 cells

Gene knockdown of GEM in CCD-1066 (ATCC® CRL-2096™,

RRID: CVCL_1849) and F-2408 (ATCC® CRL-12047™, RRID:

CVCL_1060) cells was performed using GEM-targeting siRNA

(siGEM) and non-targeting control siRNA (siControl) obtained

from GenePharma. Cells were seeded in 6-well plates at 70-80%

confluence and transfected with 50 nM siRNA using Lipofectamine

3000 reagent (Invitrogen, Thermo Fisher Scientific, Cat. No.

L3000008) following the manufacturer’s instructions. After 6

hours, the medium was replaced with complete growth medium

(DMEM, 10% FBS, 1% penicillin-streptomycin). Cells were

harvested 48-72 hours post-transfection for RNA and protein

extraction. GEM knockdown efficiency was assessed by qRT-PCR

using PrimeScript RT Reagent Kit (Takara, Cat. No. RR047A) and
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SYBR Green Master Mix (Applied Biosystems, Cat. No. 4367659),

and confirmed by Western blotting with anti-GEM antibody (Santa

Cruz Biotechnology, Cat. No. sc-365839, RRID: AB_10835764).
2.10 RT-qPCR analysis of GEM gene
expression in CCD-1066 and F-2408 cells

Total RNA was extracted from CCD-1066 (ATCC® CRL-

2096™, RRID: CVCL_1849) and F-2408 (ATCC® CRL-12047™,

RRID: CVCL_1060) cells using the RNeasy Mini Kit (Qiagen, Cat.

No. 74104). RNA quality and quantity were assessed with a

NanoDrop spectrophotometer (Thermo Fisher Scientific). Reverse

transcription was performed using the PrimeScript RT Reagent Kit

(Takara, Cat. No. RR047A) following the manufacturer’s

instructions. cDNA was then analyzed by quantitative PCR using

SYBR Green Master Mix (Applied Biosystems, Cat. No. 4367659)

on an Applied Biosystems 7500 real-time PCR system (Applied

Biosystems, RRID: SCR_015135). The PCR conditions included an

initial denaturation at 95°C for 10 minutes, followed by 40 cycles of

95°C for 15 seconds and 60°C for 1 minute. Gene expression of

GEM (forward primer: 5’-GGAAGAGCTGGAAAGGCTGA-3’,

reverse primer: 5’-TGAGCCAGGGCGATAGAACT-3’) was

norma l i z ed to GAPDH ( forward pr imer : 5 ’ -GAAG

GTGAAGGTCGGAGTC-3’, reverse primer: 5’-GAAGATGGTG

ATGGGATTTC-3’) as an internal control. Relative expression

levels were calculated using the DDCt method, and statistical

significance was assessed using appropriate tests, with p-values <

0.05 considered significant.
2.11 CCK-8 assay for cell viability in CCD-
1066 and F-2408 cells

Cells were seeded in 96-well plates at a density of 1 × 10³ cells per

well. After incubation at 37°C for 2 hours, CCK-8 reagent (Vazyme,

A311-01) was added to the wells. Cell viability was measured by

assessing absorbance at 450 nm using an enzyme-linked

spectrophotometer (Thermo, A33978) at 0, 24, 48, 72, and 96 hours.
2.12 Colony formation assay in CCD-1066
and F-2408 cells

CCD-1066 and F-2408 cells were seeded in six-well plates at a

density of 500–1,000 cells per well and cultured for 7–10 days in

complete growth medium (DMEM with 10% FBS and 1%

penicill in-streptomycin). Colonies were fixed with 4%

paraformaldehyde for 15 minutes and stained with 0.5% crystal

violet for 30 minutes. Excess stain was removed with PBS, and

colonies with ≥50 cells were counted using a light microscope.

Colony numbers were compared between experimental and control

groups, with statistical significance determined at p < 0.05.
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2.13 Wound healing assay in CCD-1066
and F-2408 cells

CCD-1066 and F-2408 cells were seeded in six-well plates and

cultured to confluence in complete growth medium (DMEM with

10% FBS and 1% penicillin-streptomycin). A scratch was created

using a sterile 200 μL pipette tip, and debris was removed by

washing with PBS. Cells were then incubated in serum-free medium

for 24 hours. Wound closure was imaged at 0 and 24 hours using a

light microscope, and the wound area was quantified with ImageJ

software. Migration rate was calculated as the percentage of

wound closure.
2.14 Transwell migration assay in CCD-
1066 and F-2408 cells

CCD-1066 and F-2408 cells (1×105) were suspended in serum-

free DMEM and seeded into the upper chamber of a 24-well

Transwell plate with an 8 μm pore size membrane. The lower

chamber contained complete DMEM with 10% FBS as a

chemoattractant. After 24 hours of incubation at 37°C in 5%

CO2, cells that migrated to the lower surface were fixed with

methanol, stained with crystal violet, and counted under a light

microscope. The number of migrated cells was averaged from five

random fields per well.
2.15 Flow cytometry analysis of apoptosis
in CCD-1066 and F-2408 cells

Apoptosis in CCD-1066 and F-2408 cells was evaluated using

the Annexin V-FITC Apoptosis Detection Kit. Cells (1×106) were

seeded in 6-well plates and treated accordingly. After 24 hours, cells

were harvested, washed with PBS, and resuspended in 1× binding

buffer. The suspension was stained with 5 mL Annexin V-FITC and

5 mL propidium iodide (PI) for 15 minutes at room temperature in

the dark. Apoptosis was analyzed using a BD FACSCanto II flow

cytometer, with data acquired via BD FACSDiva software.

Apoptotic rates were calculated as the percentage of Annexin V-

positive cells.
2.16 Statistical analysis

Statistical analyses were conducted using GraphPad Prism 9.0.

Data normality was assessed with the Shapiro-Wilk test.

Comparisons between two groups were made using an unpaired

Student’s t-test, while multiple comparisons were analyzed by one-

way or two-way ANOVA, followed by Tukey’s post-hoc test. Results

are expressed as mean ± standard deviation (SD). A p-value < 0.05

was considered statistically significant, with all analyses performed

at a 95% confidence level.
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3 Results

3.1 Visualization of fibroblast subtypes

Fibroblasts were grouped into 6 clusters, and were ultimately

annotated as C0 ACKR3+ Fibroblasts, C1 APOE+ Fibroblasts, C2

GEM+ Fibroblasts, C3 ASPN+ Fibroblasts,C4 IGFBP2+ Fibroblasts

and C5CLDN1+ Fibroblasts (Figure 1A). Additionally, we

visualized the distribution of fibroblasts based on disease groups

and cell cycle phases (Figures 1B, C). And analysis of the

proportions of different fibroblast subtypes across disease groups

revealed that, compared to HC and DLE groups, C2 had a higher

proportion in SLE (Figure 1D). Additionally, the Ro/e score

indicated that C2 are more likely to be associated with SLE,

suggesting a correlation between C2 and the pathogenesis of SLE

(Figure 1E). We further analyzed the top 5 marker genes for each

subtype and their expression across disease groups, revealing that

C2 markers are significantly upregulated in SLE. (Figure 1F).

Subsequently, we analyzed the expression of subtype-specific

marker gene across subtypes and disease groups (Figures 1G, H)

and mapped their distribution within the fibroblasts (Figure 1I).

Notably, we observed a significant overlap between the distribution

of GEM, the subtype-specific marker genes of C2, and SLE. The

elevated expression of C2 marker genes in SLE might provide

additional evidence supporting the strong link between C2 and

SLE pathology.
3.2 Functional analysis of fibroblast
subtypes

To explore the functional characteristics of different fibroblasts,

we analyzed the differential genes across various fibroblast subtypes

(Figure 2A).We found that GREM1, CAV1, and THBS1 were highly

correlated with C0; HLA-DRB1, CD74, and CCL19 were strongly

associated with C1; SIRT1, IL16, and ZC3H12A were closely linked

to C2; WNT5A, BMP4, and SFRP1 were highly correlated with C3;

BMP4, SFRP1, and PTEN were associated with C4; and SOX9,

BMP7, and FOXC2 were highly correlated with C5 (Figure 2B). The

GO enrichment analysis of fibroblast subtypes showed that C0 is

primarily associated with the extracellular matrix organization, C1

with antigen processing and presentation, C2 with leukocyte

chemotaxis and migration, C3 with muscle tissue morphogenesis,

C4 with apoptotic signaling pathway, and C5 with type II interferon

response and endothelial cell differentiation (Figure 2C). We

subsequently performed gene set enrichment analysis (GSEA) on

C2, revealing upregulation of biological processes such as

cytoplasmic translation and protein refolding. These findings may

reflect heightened cellular activity during disease progression

(Figure 2D). Further enrichment analysis based on disease groups

revealed that fibroblasts in the HC group were predominantly

enriched in extracellular structure organization, whereas

fibroblasts in the disease groups were primarily enriched in
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defense response (Figure 2E). Additionally, the SLE group exhibited

enrichment in pathways related to immune response, further

highlighting the involvement of immunological mechanisms in

disease pathology(Figure 2F).
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We specifically visualized the expression levels of pro-

inflammatory genes in each fibroblast subtype and found that C2

expressed higher levels of pro-inflammatory genes (Figure 2G), with

the highest scores in the pro-inflammatory scoring (Figure 2H).
FIGURE 1

Visualization and Characterization of Fibroblast Subtypes in Disease Contexts. (A) The UMAP plot illustrated the distribution of six fibroblast subtypes.
The outer circle represents the total cell count for each subtype, while the middle and inner circles show the proportions of cell cycle and group
assignments, respectively. (B) The UMAP plot illustrated the distribution of disease groups in fibroblasts. (C) The UMAP plot illustrated the distribution
of cell cycles in fibroblasts. (D) The bar plots showed the proportion of fibroblast subtypes in different cell cycles and disease groups. (E) The Ro/e
score was used to evaluate the grouping preferences of each fibroblast subtype. (F) The heatmap displayed the top 5 differentially expressed genes
in each fibroblast subtype. (G, H) The bar plot displayed the distribution of the C2 subtype marker gene GEM across different fibroblast subtypes and
disease groups. The symbols represent the following significance levels: ** : P < 0.01, *** : P < 0.001, **** : P < 0.0001. ns : Not significant (P≥0.05).
(I) The UMAP plot showed the distribution of characteristic marker genes for the six fibroblast subtypes.
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Additionally, compared to the HC and DLE groups, fibroblasts in

the SLE group also exhibited elevated pro-inflammatory levels

(Figures 2I, J).
3.3 Fibroblast subtype development and
differentiation

To further understand the origins and development offibroblast

subtypes, we first used Monocle to determine the differentiation

trajectory of fibroblast subpotypes.

In Figure 3A we showed the general pseudotime differentiation

trajectory. The overall pseudotime trajectory (Figure 3B), with the

upper right corner as the starting point, differentiated to the lower

left to differentiation point 1, which was called state 1. From

differentiation point 1, it was divided into two branches, and one

branch differentiated to the lower right corner, which was called

state 2; the other branch differentiated to upper left corner to

differentiation point 2, which was called state 3; a branch

extending from differentiation point 2 to the upper left was called

state 4; and a branch extending from the lower left was called state 5.

Besides, we observed that the expression of ACXCL2, IER3, CXCL3,

IL6, GOS2, HSPA6, and NR2F2 increased during the differentiation

process (Figure 3C).We further visualized the fibroblast subtypes

along the pseudotime trajectory and observed that, compared to

other subtypes, the C2 subtype was predominantly localized at the

later stages of differentiation (Figures 3D, E). Finally, we observed

that, compared to HC, fibroblasts in the skin lesions of SLE and

DLE patients were more concentrated at the later stages of the

pseudotime trajectory (Figure 3F), which is consistent with the

progression of the disease.

Subsequently, Slingshot was employed to infer the

differentiation pathways of fibroblast subtypes. We utilized

UMAP plots to separate two cell lineage trajectories (Figure 3G).

Including: lineage 1:C5-C4-C3-C1-C2; lineage 2:C5-C4-C1-C3-C0.

We supposed that lineage 2 represented the differentiation lineage

related to SLE, as C2 was at the end of the lineage, and it may

represent the course of the disease. Then, we analyzed the

expression of different marker genes along the overall pseudotime

trajectory. It was observed that the marker gene IGFBP2 for C4 and

the marker gene APOE for C1 were primarily expressed in the early

stages of the differentiation trajectory, while the marker gene GEM

for C2 was predominantly expressed in the later stages of

differentiation (Figure 3H).
3.4 Cell stemness analysis of fibroblast
subtypes

To investigate the development and differentiation of

fibroblasts, we first analyzed the expression of stemness-

associated genes across the fibroblast subtypes (Figure 4A).

Notably, compared to other subtypes, the stemness genes CD44,
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EPAS1, TWIST1, KLF4, MYC and HIF1 exhibited higher

expression levels in C2 (Figure 4B). Similarly, the AUC score for

stemness further confirmed that C2 had the highest scores,

indicating higher activity of activity of stemness-related genes and

greater differentiation potential in C2 (Figure 4C).

We then employed CytoTRACE to further assess the

differentiation potential of each fibroblast subtype. Consistent with

the stemness AUC scores, C2 exhibited the highest CytoTRACE

scores, suggesting enhanced stemness and differentiation capacity

(Figures 4D, E). Subsequently, we applied the gene mining approach

in CytoTRACE to identify genes associated with the differentiation

levels of fibroblasts. This analysis revealed that members of the HLA

gene family, including HLA-B, HLA-A, and HLA-C, were

significantly correlated with stemness (Figure 4F). As key players in

immune recognition, the HLA genes underscore the immune-

functional characteristics of C2 subtype.
3.5 CellChat analysis among all cells and
key signaling crosstalk between the C2
subtype and other cells

We utilized cellchat to investigate intercellular communication

between all kinds of cells including fibroblasts and other cell types.

Initially, we visualized the number and strength of interactions

among different cell populations (Figures 5A, B). Subsequently, we

analyzed the outgoing and incoming communication patterns of

each cell subtype, corresponding to ligand and receptor expression

profiles, respectively. Through hierarchical clustering analysis, we

identified three distinct outgoing patterns and three incoming

communication patterns. Fibroblasts were predominantly

categorized under outgoing pattern 1, characterized by the

secretion of ligands associated with key signaling pathways,

including COLLAGEN, LAMININ and CD99. Similarly, all

fibroblast subtypes were classified under incoming pattern 1,

primarily modulated by signaling pathways such as CD99, PTN,

and MK (Figure 5C). Furthermore, we analyzed the expression

levels of outgoing and incoming signaling pathways across different

cell types (Figure 5D). Notably, the CXCL, FGF, VEGF, and ICAM

pathways were upregulated in the outgoing signaling of C2 subtype,

while VCAM and IFN II pathways were upregulated in the

incoming signaling of C2. Additionally, we visualized the

communication patterns of the C2 subtype with other cell types

in both outgoing and incoming signaling patterns using circular

plots (Figure 5E).

In the outgoing signaling pathways, we selected the significantly

upregulated CXCL and VEGF pathways in the C2 subtype for

further analysis. The CXCL signaling pathway was predominantly

secreted by the C2 subtype and primarily acted on endothelial cell in

a paracrine mode (Figures 6A, B). In the CXCL signaling pathway,

the ligand CXCL1, secreted by C2, interacted with the receptor

ACKR expressed on endothelial cell (Figures 6C, D).The VEGF

signaling pathway is primarily secreted by the C2 subtype and acted
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on endothelial cell in a paracrine mode (Figures 6E, F). In the VEGF

pathway, the ligand VEGFA1, secreted by C2, interacted with

the receptors VEGFR1 and VEGFR2 on endothelial cells

(Figures 6G, H).
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In the incoming signaling pathways, the significantly

upregulated IFN-II and VCAM pathways in C2 were selected for

further analysis. The IFN-II signaling pathway was primarily

secreted by NK cell and mainly acted on the C2 subtype in a
FIGURE 2

Functional Characterization of Fibroblast Subtypes (A) Volcano maps of top 5 up-regulated and top 5 down-regulated genes in fibroblasts subtypes.
(B) The word cloud maps exhibited gene enrichment of fobroblasts subsets. (C) The heatmap exhibited the genes enriched by various subsets of
fibroblast and the GOBP pathway. (D) GSEA of C2 subtype to identify key biological pathways. (E) The bar plot showed the enriched pathways across
different disease groups. (F) The network plot exhibited the enriched pathways in SLE group. (G) The bubble plot displayed the expression of pro-
inflammatory genes across different cell subtypes. The size of the bubbles represented the percentage of gene expression, while the color
indicateed normalized data. (H) The bar plots displayed the pro-inflammatory scores across different fibroblast subtypes. (I) The bubble plot
displayed the expression of pro-inflammatory genes across different disease groups. (J) The bar plots displayed the pro-inflammatory scores across
different disease groups. The symbols represent the following significance levels: **** : P < 0.0001. ns : Not significant (P≥0.05).
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FIGURE 3

Fibroblast Subtype Development and Differentiation. (A) General pseudotime differentiation trajectory of fibroblast subtypes analyzed using Monocle.
(B) Pseudotime trajectory showing differentiation from the starting point (upper right corner) to differentiation point 1 (state 1). From state 1, two
branches emerged: one leading to state 2 (lower right corner) and the other splitting into state 3 (upper left corner), which further branches into
state 4 (upper left) and state 5 (lower left). (C) Expression levels of differentiation-associated genes (CD44, TWIST1, NES, NOTCH1, HIF1A, EPAS1)
during the fibroblast differentiation process, indicating increasing expression as differentiation progresses. (D, E) Visualization of fibroblast subtypes
along the pseudotime trajectory, with the C2 subtype predominantly localized in the later stages of differentiation. (F) Comparison of fibroblast
subtype distribution in SLE and DLE skin lesions versus HC, showing a higher concentration of fibroblasts at the later stages of pseudotime in disease
samples, correlating with disease progression. (G) UMAP plots displaying two distinct fibroblast lineage trajectories inferred using Slingshot: Lineage 1
(C5-C4-C3-C1-C2) and Lineage 2 (C5-C4-C1-C3-C0). Lineage 2, with C2 at the terminal stage, is suggested to represent the differentiation pathway
associated with SLE. (H) Expression of fibroblast subtype-specific marker genes along the pseudotime trajectory.
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paracrine mode (Figures 7A, B). In the IFN-II signaling pathway,

the ligand IFNG, secreted by NK cell, interacted with the receptor

IFNGR1 expressed on the C2 subtype (Figures 7C, D). The VCAM

pathway was primarily secreted by plasma cell and acted on the C2

subtype in a paracrine mode (Figures 7E, F). In the VCAM pathway,

the ligand VCAM1, secreted by plasma cells, interacted with the

receptor ITGB1 on the C2 subtype (Figures 7G, H).
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3.6 Potential regulatory mechanism of C2
subtype

We applied pySCENIC to derive the RAS matrix. First, we

performed unsupervised clustering using the UMAP algorithm,

which revealed the distribution of transcription factors across the

fibroblast subtypes (Figure 8A). We then identified the top 5 ranked
FIGURE 4

Cell Stemness Analysis of Fibroblast Subtypes. (A) Expression of stemness-associated genes across different fibroblast subtypes, with a focus on C2
showing elevated levels of stemness markers. (B) Expression levels of key stemness genes (TWIST, MYC, HIF1A, EPAS1, KLF4, CD44) in fibroblast
subtypes, with C2 exhibiting significantly higher expression compared to other subtypes. (C) AUC scores for stemness, confirming that C2 exhibits
the highest activity of stemness-related genes, indicating greater differentiation potential. The symbols represent the following significance levels:
****: P < 0.0001. (D, E) CytoTRACE analysis showing that C2 fibroblasts have the highest differentiation potential, consistent with their stemness
AUC scores. (F) Gene mining approach in CytoTRACE identifying members of the HLA gene family (HLA-B, HLA-A, HLA-C) as strongly correlated
with stemness, highlighting the immune-functional characteristics of C2 fibroblasts.
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FIGURE 5

CellChat Analysis of Intercellular Communication and Crosstalk in the C2 Subtype. (A) Visualization of the number and strength of intercellular
interactions across all cell populations, including fibroblasts. (B) Hierarchical clustering analysis revealing three distinct outgoing and incoming
communication patterns. Fibroblasts were categorized under outgoing pattern 1, characterized by the secretion of ligands involved in key signaling
pathways, such as COLLAGEN, LAMININ, and CD99, and incoming pattern 1, modulated by signaling molecules like CD99, PTN, and MK. (C)
Expression analysis of outgoing and incoming signaling pathways across various cell types, highlighting upregulation of CXCL, FGF, VEGF, and ICAM
pathways in the outgoing signaling of C2, and VCAM and IFN II pathways in the incoming signaling. (D) Circular plots visualizing the communication
patterns of the C2 fibroblast subtype with other cell types, illustrating both outgoing and incoming signaling interactions.
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transcription factors for each fibroblast subtype (Figure 8B). Focusing

on the C2 subtype, we identified the top 5 regulons based on RSS:

REL, CEBP, NFKB1, ETS1, and MAFF (Figure 8C). We then

visualized these top regulons in (Figures 8D, E). Subsequently, we

visualized the distribution of transcription factors across the HC,

DLE, and SLE groups (Figure 8F). It was evident that there was

significant overlap between the transcription factors of SLE and C2,

suggesting that fibroblasts in SLE may share similar transcriptional

regulatory characteristics with C2. Further analysis revealed that the

regulons REL and NFKB1 exhibited the highest expression in SLE

(Figure 8G), which confirming this hypothesis.
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Additionally, based on the CSI of the regulons identified by

pySCENIC, we clustered the cells into three modules (M1-M3)

(Figure 8H). By comparing the RSS of fibroblasts subtypes across

the modules, we observed that the RSS of C2 was higher in M2

(Figure 8I). Additionally, we visualized the distribution of regulons

and observed a greater overlap between M2 and C2 (Figures 8J, K).

We further observed that the RSS of M2 in SLE was also

significantly higher compared to HC and DLE (Figure 8L),

supporting the hypothesis that C2 and SLE might share similar

transcriptional regulatory processes (Figure 8L). Finally, by

visualizing the expression levels of different modules across the
FIGURE 6

Analysis of Upregulated CXCL and VEGF Signaling Pathways in the C2 Subtype. (A, B) Visualization of the CXCL signaling pathway, predominantly
secreted by the C2 fibroblast subtype and acting on endothelial cells in a paracrine manner. (C, D) Interaction between the CXCL1 ligand, secreted
by C2 fibroblasts, and the ACKR receptor expressed on endothelial cells. (E, F) Visualization of the VEGF signaling pathway, secreted by the C2
subtype and acting on endothelial cells in a paracrine manner. (G, H) Interaction between the VEGFA1 ligand, secreted by C2, and its receptors
VEGFR1 and VEGFR2 on endothelial cells.
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groups, we found that, consistent with previous results, M2 showed

higher expression in SLE (Figure 8M).
3.7 GEM gene knockdown significantly
inhibits abnormal activity of fibroblasts

To investigate the effect of GEM gene knockdown on

fibroblasts, we transfected CCD-1066 and F-2408 fibroblasts with

siRNA targeting GEM, the transfection efficiency was verified by

RT-qPCR (Supplementary Figure 1) and performed colony
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formation assays. The results indicated that GEM knockdown

significantly reduced the colony size in both CCD-1066 and F-

2408 fibroblasts, suggesting that GEM suppression inhibited

fibroblast proliferation (Figures 9A, B).

To further validate these findings, we assessed the cell viability

of CCD-1066 and F-2408 fibroblasts using the CCK-8 assay, which

confirmed that GEM knockdown reduced the viability of both cell

lines (Figures 9H, I).

Next, we examined the effect of GEM on fibroblast migration

using scratch wound healing and transwell assays. The data revealed

that silencing GEM notably impaired the migratory capacity of
FIGURE 7

Analysis of Upregulated IFN-II and VCAM Signaling Pathways in the C2 Subtype. (A, B) Visualization of the IFN-II signaling pathway, predominantly
secreted by NK cells and acting on the C2 fibroblast subtype in a paracrine manner. (C, D) Interaction between the IFNG ligand, secreted by NK
cells, and the IFNGR1 receptor expressed on the C2 fibroblast subtype. (E, F) Visualization of the VCAM signaling pathway, secreted by plasma cells
and acting on the C2 subtype in a paracrine manner. (G, H) Interaction between the VCAM1 ligand, secreted by plasma cells, and the ITGB1 receptor
on the C2 fibroblast subtype.
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FIGURE 8

Potential Regulatory Mechanisms of the C2 Subtype. (A) UMAP clustering revealing the distribution of transcription factors across fibroblast subtypes.
(B) Identification of the top 5 ranked transcription factors for each fibroblast subtype. (C) Top 5 regulons for the C2 fibroblast subtype based on the RSS
analysis: REL, CEBP, NFKB1, ETS1, and MAFF. (D, E) Visualization of the top regulons (REL, CEBP, NFKB1, ETS1, MAFF) across the fibroblast subtypes.
(F) Distribution of transcription factors across the HC, DLE, and SLE groups, highlighting significant overlap between SLE and C2. (G) Higher expression
levels of REL and NFKB1 regulons in the SLE group, confirming the similarity with the C2 subtype. The symbols represent the following significance
levels: ****: P < 0.0001. (H) Clustering of cells into three modules (M1-M3) based on the regulons identified by pySCENIC. (I) Comparison of RSS values
across fibroblast subtypes in the three modules, with higher RSS observed for C2 in module M2. (J, K) Visualization of the regulon distribution showing
greater overlap between M2 and C2 fibroblast subtype. (L) Higher RSS in M2 for SLE compared to HC and DLE, supporting the hypothesis of shared
transcriptional regulatory characteristics. (M) Expression levels of different modules across the groups, with module M2 showing higher expression in
SLE. The symbols represent the following significance levels: ****: P < 0.0001.
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CCD-1066 and F-2408 fibroblasts (Figures 9C, D, F). These results

indicate that GEM knockdown inhibits both the proliferation and

migration of fibroblasts.

Since abnormal fibroblast proliferation is a key factor in the

pathogenesis of SLE skin lesions, and apoptosis plays a critical role

in regulating excessive cell growth, we further explored the impact

of GEM on fibroblast apoptosis. Flow cytometry analysis of

apoptosis showed that GEM knockdown significantly enhanced

the apoptosis of both CCD-1066 and F-2408 fibroblast cell lines

(Figures 9E, G). These findings suggest that GEM silencing

promotes fibroblast apoptosis, potentially as a mechanism to

counteract abnormal fibroblast proliferation.
4 Discussion

Systemic lupus erythematosus (SLE) is a complex autoimmune

disease that has long imposed a significant burden on patients’

health, with progress in treatment remaining relatively slow. While

current therapies such as immunosuppressants and anti-

inflammatory drugs can effectively control symptoms and slow

disease progression (42), the incomplete understanding of the

underlying pathogenic mechanisms of SLE limits the ability to

achieve full remission or precise treatment (43, 44). Therefore, it is

crucial to further explore the pathophysiology of SLE, particularly

the key cells and molecules involved in immune and inflammatory

responses. Recent studies have highlighted the pivotal role of

fibroblasts in the pathological process of SLE. Fibroblasts are

involved not only in fibrosis and immune modulation but also in

shaping the immune microenvironment, which may contribute to

the chronic and progressive nature of the disease. However, the

specific role offibroblasts in SLE pathogenesis remains insufficiently

studied, underscoring the need for more in-depth research to

elucidate their contributions. Despite the recognized potential of

precision immunotherapy in the treatment of SLE, advancements in

this area have been slow. Precision medicine aims to tailor

therapeutic strategies based on individual variations, particularly

in the immune system (45). However, due to the high heterogeneity

in clinical presentation and pathogenesis among SLE patients,

existing research and treatment approaches have yet to enable

truly personalized management. In this context, single-cell

sequencing technology offers a promising opportunity to

accelerate the progress of precision medicine. By performing

detailed analyses at the single-cell level, researchers can uncover

cellular and molecular alterations in SLE patients, identifying

specific cell populations and biomarkers associated with disease

progression. This technological advancement not only provides new

insights for early diagnosis of SLE but also lays a solid foundation

for developing personalized treatment strategies. Consequently,

future research should focus on leveraging single-cell sequencing

to further investigate the pathophysiological mechanisms of SLE,

particularly the role of fibroblasts in immune modulation, and to

promote the implementation of precision immunotherapy in

SLE management.
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This study provides new insights into the role of fibroblast

subtypes in the pathogenesis of systemic lupus erythematosus

(SLE), shedding light on the functional characteristics,

differentiation potential, and regulatory mechanisms of these cells

in disease contexts. Our results show that the C2 subtype, marked

by the expression of GEM, plays a particularly prominent role in

SLE. Fibroblasts in the SLE group were predominantly concentrated

within the C2 subtype, highlighting its relevance in disease

progression. Moreover, the elevated expression of pro-

inflammatory genes and its significant involvement in the

differentiation process of fibroblasts further underscores the

importance of C2 in SLE pathology (46, 47).

The finding that fibroblasts in the SLE group were enriched in

the C2 subtype is consistent with previous studies that have linked

fibroblasts to autoimmune diseases and chronic inflammation

(48, 49). Specifically, the C2 subtype demonstrated a higher

expression of pro-inflammatory markers, such as IL16 and SIRT1,

indicating its involvement in immune regulation (50). This aligns

with earlier research suggesting that fibroblasts contribute to

inflammation through the secretion of pro-inflammatory

cytokines, which play a pivotal role in sustaining the chronic

inflammatory environment characteristic of SLE. Furthermore,

our pseudotime analysis suggests that the C2 subtype

predominantly localizes at the later stages of differentiation,

which corresponds to disease progression. This finding is

significant because it suggests that the C2 subtype may not only

be involved in the early immune responses but also contribute to the

later, more chronic phases of SLE.

In comparison with previous studies, our findings further

elucidate the association of the C2 fibroblast subtype with

enhanced stemness and differentiation potential, thereby

advancing our understanding of fibroblast plasticity in

autoimmune diseases. Notably, C2 fibroblasts exhibited

significantly elevated expression of stemness-associated genes,

including MYC, TWIST, and HIF1A, indicating a more

differentiated and functionally active population (51). These

results align with prior research demonstrating that fibroblasts in

chronic diseases frequently exhibit a “fibrotic” phenotype, actively

contributing to tissue remodeling. Additionally, CytoTRACE scores

and gene mining analyses reinforced the notion that C2 fibroblasts

possess the highest differentiation potential, underscoring their

critical role in disease progression. These findings highlight the

therapeutic significance of modulating fibroblast differentiation as a

potential strategy in systemic lupus erythematosus (SLE).

With regard to intercellular communication, our CellChat

analysis provided a comprehensive mapping of the signaling

networks governing fibroblast interactions within the SLE

microenvironment. Specifically, the upregulation of CXCL and

VEGF signaling pathways in C2 fibroblasts suggests a pivotal role

in promoting endothelial cell migration and angiogenesis—

biological processes that are frequently dysregulated in SLE (52).

These observations are in concordance with previous studies

reporting that fibroblasts actively contribute to vascular

remodeling and inflammation in autoimmune conditions.
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Moreover, the pronounced responsiveness of C2 fibroblasts to

incoming IFN-II and VCAM signals underscores the dynamic

interplay between fibroblasts and immune cells in SLE pathogenesis.

A key discovery of this study is the identification of GEM as a

defining marker of the C2 fibroblast subtype and a potential

therapeutic target . Functional val idation experiments
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demonstrated that GEM knockdown in fibroblast cell lines

significantly impaired their proliferative, migratory, and survival

capacities, suggesting a critical role for GEM in driving fibroblast

dysfunction in SLE. Given the well-established contribution of

fibroblasts to tissue fibrosis and inflammation in SLE skin lesions,

the suppression of GEM expression not only attenuated fibroblast
FIGURE 9

Effect of GEM Gene Knockdown on Fibroblast Activity. (A, B) Colony formation assays demonstrating that GEM knockdown The symbols represent
the following significance levels: significantly reduced colony size in both CCD-1066 and F-2408 fibroblasts, indicating inhibited fibroblast
proliferation. (B–D, F) Quantification of colony formation assays, transwell migration assays and Scratch wound healing assays showing that GEM
knockdown significantly suppressed fibroblast proliferation and migratory capacity. The symbols represent the following significance levels: ** : P<
0.01, *** : P<0.001. (E, G) Flow cytometry analysis revealing that GEM knockdown significantly enhanced apoptosis in both CCD-1066 and F-2408
fibroblasts. (H, I) CCK-8 assay confirming that GEM knockdown reduced cell viability in both CCD-1066 and F-2408 fibroblasts.
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activity but also promoted apoptosis, thereby offering a potential

mechanism to mitigate fibroblast-mediated pathology. These

findings provide compelling evidence supporting the therapeutic

potential of targeting GEM in SLE and other autoimmune diseases.

Despite these significant findings, our study has certain

limitations. First, while we delineated the role of fibroblast

subtypes in SLE, the precise mechanisms through which

fibroblasts modulate immune responses remain incompletely

understood and warrant further investigation. Additionally, our

gene knockdown experiments utilized fibroblast cell lines, which

may not fully recapitulate the complex in vivomicroenvironment of

SLE. Future studies employing primary patient-derived fibroblasts

and in vivo models are necessary to validate these findings.

Furthermore, while single-cell RNA sequencing (scRNA-seq)

provided valuable insights into fibroblast heterogeneity, the

integration of spatial transcriptomics would enable a more

comprehensive understanding of fibroblast interactions within

SLE lesions.

From a clinical perspective, our findings suggest that targeting

specific fibroblast subtypes, particularly the C2 population, could

yield novel therapeutic strategies for SLE management. Given the

association of C2 fibroblasts with pro-inflammatory signaling,

interventions aimed at inhibiting C2-related pathways, such as

CXCL and VEGF signaling, may help modulate the inflammatory

milieu in SLE. Additionally, therapeutic strategies targeting GEM

expression or its downstream effectors may offer a promising

avenue for controlling fibroblast activity and attenuating tissue

fibrosis, a hallmark feature of SLE pathology.

Future research should focus on delineating the precise

molecular mechanisms underlying fibroblast-mediated immune

dysregulation in SLE. Investigating the transcriptional regulatory

networks and epigenetic modifications that govern fibroblast

differentiation and function will be essential for the development

of targeted therapies. Furthermore, elucidating the crosstalk

between fibroblasts and immune cells, including T cells and

macrophages, could provide deeper insights into their role in

disease pathogenesis.

In conclusion, this study offers critical insights into the role of

fibroblast subtypes in SLE, particularly highlighting the pathogenic

significance of the C2 subtype. The identification of GEM as a key

regulator of fibroblast activity presents novel therapeutic

opportunities for targeting fibroblast dysfunction in autoimmune

diseases. Collectively, these findings contribute to a more

comprehensive understanding of SLE pathogenesis and underscore

the potential of fibroblast-directed therapies in disease management.
5 Conclusions

In this study, we identified and characterized distinct fibroblast

subtypes associated with systemic lupus erythematosus (SLE),
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demonstrating the prominence of the C2 subtype in SLE

pathology. Our findings indicate that the C2 fibroblast subtype

exhibits elevated expression of pro-inflammatory genes, greater

stemness potential, and a pronounced differentiation capacity,

suggesting its critical role in disease progression. Functional

analysis revealed that the C2 subtype is involved in key signaling

pathways such as CXCL and VEGF, which may contribute to

inflammatory and vascular remodeling processes in SLE.

Furthermore, GEM gene knockdown significantly inhibited

fibroblast proliferation and migration, highlighting its potential as

a therapeutic target for regulating fibroblast activity in SLE. These

results provide new insights into the fibroblast-mediated

mechanisms underlying SLE and offer promising directions for

future therapeutic interventions aimed at modulating fibroblast

function in autoimmune diseases.
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SUPPLEMENTARY FIGURE 1

GEM gene transfection knock-down low efficiency verification. Compared

with untransfected cells, the mRNA level of CRYAB gene was significantly
decreased in the transfected knockdown group.
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