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High-mobility group box 1 (HMGB1) is expressed in almost all human cells.

During cell activation and cell death, the nucleoprotein HMGB1 can translocate

to the extracellular space, thus mediating the early inflammatory response as an

alarmin or damage-associated molecular pattern (DAMP). Extracellular HMGB1

interacts with immune cells by binding to pattern recognition Toll-like receptors

(TLRs), including TLR2 and TLR4, and the receptor for advanced glycation end

products (RAGE), thus mediating the immune response to protect the host

against pathogens and maintain immune balance. HMGB1 is reportedly

upregulated and is a critical biomarker for monitoring disease activity in several

chronic inflammatory or autoimmune disorders, including multiple sclerosis,

rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus

and vitiligo. Additionally, the inhibition of HMGB1 expression or its activity has

beneficial effects on disease activity in animal models of autoimmune diseases.

Thus, HMGB1 is an indispensable biomarker and an important therapeutic target

for autoimmune diseases. This review provides a detailed summary of the

biological function of HMGB1 and provides a comprehensive outlook in terms

of HMGB-focused diagnostic and therapeutic applications in autoimmune

skin diseases.
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Introduction

High mobility group box 1 (HMGB1) is the most abundant member of the high

mobility group (HMG) family of proteins and is expressed in almost all human cells (1).

HMGB1 is located predominantly in the nucleus and can also actively and passively shuttle

between the nucleus and the cytoplasm (2). During cell apoptosis and necrosis, HMGB1 is

released from dying cells into the extracellular space (3). Extracellular HMGB1 functions as

an alarmin or damage-associated molecular pattern (DAMP) and mediates immune cell
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migration to the site of tissue damage to protect against possible

infection (1, 4). However, extracellular HMGB1 also functions as a

proinflammatory cytokine that initiates an undesired immune

response in a chronic inflammatory environment (5). Increasing

numbers of studies have identified HMGB1 as an activity biomarker

in various autoimmune diseases, including multiple sclerosis,

rheumatoid arthritis, inflammatory bowel disease, systemic lupus

erythematosus and vitiligo (6, 7). Research has shown that released

HMGB1 binds to Toll-like receptors (TLRs) and receptor for

advanced glycation products (RAGE), which are expressed on

various cells, such as monocytes, macrophages, dendritic cells, T

cells and B cells, and then activates the innate and/or adaptive

immune response (8, 9). Recently, numerous studies have revealed

that HMGB1 is a potential therapeutic target in several

autoimmune diseases (10).

In this review, we summarize the biological functions and

signalling mechanisms of HMGB1 in healthy individuals and

patients with autoimmune skin diseases. Importantly, recent

advances regarding the clinical relevance of HMGB1 and

strategies to modify its release and biological activities for skin

disease treatment are also discussed.
The biological function of HMGB1

HMGB1 was discovered nearly fifty decades ago (11). HMGB1

is a highly conserved nonhistone nucleoprotein 30 kDa in size with

99% homology in mammals (12). HMGB1 comprises 215 amino

acid residues and contains two DNA-binding domains (A box

domain and B box domain) and a C-terminal acidic tail (13)

(Figure 1). HMGB1 plays an important role in development and

reproduction, as embryonic global deletion of HMGB1 or

conditional deletion of uterine HMGB1 leads to the death of mice

shortly after birth (14, 15). The location of HMGB1 in the cell

largely determines its function.

In most cells, HMGB1 is located in the nucleus and is highly

expressed (16). As a DNA chaperone, nuclear HMGB1 recognizes

specific DNA structures rather than specific DNA sequences (17).
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By binding DNA and histones, HMGB1 helps maintain the

structure of nucleosomes, thereby preventing DNA damage (18).

HMGB1 can also regulate the strength of histone and DNA

interactions, thereby affecting the packaging of DNA into

chromatin (19). By binding to small grooves of linear DNA and

bending into helical structures, HMGB1 affects the accessibility of

DNA to cellular factors involved in DNA replication, transcription,

DNA repair, chromatin remodelling, and V(D)J recombination in T

and B cells (20, 21). In mouse cells or tissues, the conditional

depletion of HMGB1 leads to genomic instability, telomere

shortening and nucleosome release, which results in inflammation

and activates innate immunity (22). In an extremely rare genetic

disease called congenital brachyphalangy and also in polydactyly

and tibial aplasia/hypoplasia syndrome (BPTA syndrome), a

frameshift variant in the acidic tail of HMGB1 alters HMGB1

phase separation and enhances its partitioning into the nucleolus,

which results in nucleolar dysfunction and eventually, body

development disorders (23). These findings provide direct

evidence that nuclear HMGB1 maintains nuclear homeostasis and

human development.

In addition to its nuclear location, some cells express HMGB1

in the cytoplasm or on the plasma membrane. In mouse fibroblasts

and human cancer cells, cytosolic HMGB1 promotes autophagy by

interacting with the autophagy core driver beclin 1 in response to

various environmental stresses, such as starvation and oxidative

damage (24). In lipopolysaccharide-treated brain microglia,

HMGB1 competitively interacts with nucleotide binding

oligomerization domain containing 2 (NOD2), thus inducing the

formation of autophagosomes (25). Membrane-associated HMGB1,

also referred to as amphoterin (26), is involved in the mediation of

neurite outgrowth (27), smooth muscle cell chemotaxis (28) and

tumour cell metastasis (29).

The post-translational modifications (PTMs) of HMGB1 are

important for determining its function and release mechanisms

(30). In addition, the proinflammatory cytokine activity of HMGB1

is closely related to the redox status of its three cysteine residues,

which are mainly divided into reduced, disulfide, and oxidized

forms. Reduced HMGB1 contains three cysteine residues (C23,
FIGURE 1

Structure and function of HMGB1. Human high-mobility group protein 1 (HMGB1) is an approximately 30 kDa protein composed of 215 amino acids.
HMGB1 consists of three domains, including two DNA-binding domains (A-box and B-box) and a negatively charged C-terminal (acidic tail). HMGB1
contains three redox-sensitive cysteine residues (C23, C45, and C106). HMGB1 has two nuclear localization signals (NLS1 and NLS2), which are
present mainly in the nucleus under normal physiological conditions. Nuclear HMGB1 is a DNA chaperone that maintains chromosome structure and
function. Under oxidative stress, HMGB1 can act as a danger signal and can bind to its primary receptors, including Toll-like receptor 4 (TLR4) and
receptor for advanced glycation end products (RAGE), to mediate an immune response.
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C45, and C106), all of which are in the reduced state (-SH). Reduced

HMGB1 primarily has chemotactic activity to attract immune cells

to sites of injury or infection (31). In contrast, in disulfide-

containing HMGB1, C23 and C45 form intramolecular disulfide

bonds (C23-S-S-C45), whereas C106 remains in the reduced state.

By binding to the TLR4 receptor, HMGB1 disulfide activates NF-kB
signalling pathway, induces the production of cytokines and

chemokines, and participates in the inflammatory response and

the immune response (32, 33). In contrast, fully oxidized HMGB1

does not exert a proinflammatory effect.
HMGB1 in autoimmune and
autoinflammatory skin diseases

The role of HMGB1 in skin diseases has been extensively

studied over the past 20 years (34). Increased levels of HMGB1

and increased numbers of HMGB1-secreting cells have been

identified in skin lesions, including in vitiligo, psoriasis, atopic

dermatitis, and pemphigus. Here, we discuss the role and new

insights of HMGB1 in these skin diseases.
HMGB1 in vitiligo

Vitiligo is a cutaneous depigmentation disorder characterized

by the selective loss of melanocytes. Genetic predisposition,

oxidative stress, and the autoimmune response have been

implicated in the loss of functional melanocytes in vitiligo. Recent

data have shown that HMGB1 is overexpressed in both blood and

lesional samples from vitiligo patients (7, 35, 36).

Due to the genetic background of vitiligo patients, melanocytes

are very sensitive to oxidative stress and ultraviolet radiation and

thus they are prone to damage and release HMGB1 (35). In

ultraviolet radiation B (UVB)-exposed melanocytes, nuclear

factor-kB (NF-kB) and Janus Kinase (JAK) signalling have been

implicated in HMGB1 translocation and release; by binding to

RAGE in melanocytes, extracellular HMGB1 functions in the

activation of downstream JAK1, JAK2, signal transducer and

activator of transcription 1 (STAT1) and phosphorylated-

extracellular signal-regulated kinase 1/2 (p-ERK1/2) signalling

and in the mediation of the UVB-induced senescence-associated

secretory phenotype as well as resistance to melanocyte cell death

(37). In addition to these signalling pathways, autophagy can

regulate the trafficking, secretion and degradation of HMGB1 in

several cell types (1, 38). Previous studies have revealed that

melanocytes in vitiligo exhibit dysregulated autophagy and

hypersensitivity to oxidative injury and that impairment of the

Nrf2-p62 pathway is responsible for defects in autophagy in these

melanocytes (39). Autophagy occurs in melanocytes from

nonlesional skin of vitiligo patients as a result of the metabolic

surveillance response (40). Thus, we believe that autophagy defects

may play a central role in the regulation of HMGB1 release under

oxidative stress conditions. Understanding the relationship between
Frontiers in Immunology 03
HMGB1 and autophagy in the context of cellular adaptation to

injury and unscheduled melanocyte death is crucial.

As an endogenous danger signal, HMGB1 acts on its receptors,

including several TLRs and RAGE, to initiate or amplify the

subsequent inflammatory and immune response (41). In the

perilesional skin of vitiligo patients, the expression of TLR2,

TLR4 and RAGE on the surface of dendritic cells (DCs) is

increased (36). Extracellular disulfide-HMGB1 binds to these

receptors and induces DC maturation and activation, which

activates melanocyte antigen-specific CD8+ T cells and thus

initiates an autoimmune response in patients with vitiligo (36).

In addition to melanocytes, oxidative stress can also induce

keratinocytes to release HMGB1 (36, 42, 43). By binding to RAGE

and TLRs on the surface of keratinocytes, HMGB1 affects

melanocyte survival and the expression of molecules associated

with melanin production, which is a newly discovered way in which

keratinocytes influence melanocyte function. More importantly,

HMGB1 activates NF-kB signalling and then promotes the

production of chemokines, including CXC chemokine ligand 16

(CXCL16) and interleukin-8 (IL-8), thereby inducing CD8+ T cell

migration and establishing an immune microenvironment unique

to vitiligo (36) (Figure 2).
HMGB1 in psoriasis

Psoriasis is a common, chronic papulosquamous skin disease

that is characterized by excessive hyperproliferation and aberrant

differentiation of keratinocytes and is caused mainly by the Th17/

IL-23 immune axis. Compared with those in healthy donors,

HMGB1 levels have been reported to be increased in the serum

and skin lesions of patients with psoriasis vulgaris (PV), and while

serum HMGB1 levels significantly increase with disease

progression, they are downregulated after standard therapies are

given (44, 45). Generalized pustular psoriasis (GPP) is a rare but

severe variant of psoriasis, and the levels of HMGB1 in both the skin

and serum are significantly greater in patients with GPP than in

those with PV and healthy controls (46). Similarly, serum HMGB1

levels are significantly decreased after systemic treatment in GPP

patients (46). These observations suggest that HMGB1 is

significantly associated with psoriasis morbidity.

It has been reported that, in PV patients, increased HMGB1 is

secreted from epidermal keratinocytes and some dermal cells (47)

and that IMQ induces psoriasis-like inflammation (48–50). The

abundant cytosolic and extracellular HMGB1 in lesional skin is

usually associated with increased expression of its receptor, RAGE,

on the cell surface of both keratinocytes and immune cells in

patients with PV (47). In keratinocytes, extracellular disulfide-

HMGB1 facilitates the expression of IL-18 through autocrine

activation of the NF-kB p65 signalling pathway and the

inflammasome; subsequently, in a mouse model of imiquimod

(IMQ)-induced psoriasis, the HMGB1 and IL-18 secreted from

keratinocytes contribute to IL-17 production in CD4+ T cells and

the development of psoriasis by binding to RAGE (51). In

lipopolysaccharide (LPS)-induced keratinocytes and IMQ-induced
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psoriasiform dermatitis in mice, once the translocation of HMGB1

from the nucleus to the cytoplasm is inhibited, the expression of

RAGE, TLR4, p-ERK1/2, and nuclear NF-kB p65 as well as that of

proinflammatory cytokines including IL-6, IL-1b, TNF-a, IL-17,
IL-22 and IL-23, is significantly decreased (49). These studies

suggest that HMGB1 can control the activation of various

mo l e cu l a r s i gna l l i n g pa thway s th e r eby ex e r t i ng a

proinflammatory effect on psoriasis.

Notably, CD8+ T cells and CD4+ Treg cells in patients with PV

also express increased levels of RAGE compared with healthy

controls (47). In proinflammatory diseases such as rheumatoid

arthritis, HMGB1 modulates the Treg/Th17 balance towards

Th17 cells and thus enhances the Th17-associated pathogenic

immune response (52); this may also occur in psoriasis since
Frontiers in Immunology 04
activated HMGB1-RAGE signalling and a Th17-dominated

immune response function in the progression of psoriasis. A

recent study demonstrated that HMGB1 can promote Th17 cell

differentiation from PBMCs derived from psoriasis patients and can

increase the production of its effective cytokine IL‐17A in a dose-

dependent manner (53). These processes occur, at least in part, due

to the binding of HMGB1 to the TLR4 receptor, which promotes

the expression of retinoid-associated orphan receptor gt (RORgt, a
Th17 cell-specific transcription factor) and IL-23 (Th17

differentiation associated key cytokine) (53). Th17 cell

differentiation is also orchestrated by a network of cytokines, with

IL-1b and IL-6 serving as pivotal molecular drivers of this process

(54). Previous studies have indicated that HMGB1 can promote the

secretion of IL-6 and IL-1b by monocytes, thereby sustaining the
FIGURE 2

Pathogenesis of HMGB1 in vitiligo. Stimulated melanocytes (MCs) exhibit activation of the nuclear factor-kB (NF-kB) and JAK signalling pathways,
both of which facilitate the nuclear translocation and subsequent release of HMGB1. Extracellular HMGB1 can bind to the receptor for advanced
glycation end products (RAGE) on melanocytes, thereby activating the Janus kinase (JAK)/signal transducer and activator of transcription (STAT)
signalling pathway and the extracellular signal-regulated kinase (ERK) pathway. This activation mediates the release of the senescence-associated
secretory phenotype (SASP). On the one hand, HMGB1 binds to Toll-like receptor 4 (TLR4) and RAGE receptors on the surface of keratinocytes
(KCs), which stimulates KCs to secrete CXC chemokine ligand 16 (CXCL16). On the other hand, HMGB1 binds to TLR4 and RAGE located on the
surface of dendritic cells (DCs), which promotes the migration of DCs to lymph nodes and the activation of T cells. After activated T cells migrate
from the lymph nodes into blood vessels, CXCL16 secreted by KCs recruits T cells to lesions and accelerates the progression of vitiligo disease.
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inflammatory response (55, 56). This may constitute an additional

pathway by which HMGB1 regulates Th17 cell differentiation,

which warrants further investigation.

In an IMQ-induced mouse model, skin injection of HMGB1

enhances the expression of multiple cytokines, including IL-6, IL-

17, TNF-a, and interferon-g (IFN-g), and results in increased

infiltration of CD3+ T cells, neutrophils, CD11c+ dendritic cells,

and gamma delta (gd) T cells (57). Previous studies have confirmed

the crosstalk between KC-specific HMGB1-associated secretion and

gdT cells in psoriasis (58) (Figure 3). These findings suggest that

HMGB1 acts as an important proinflammatory cytokine and

contributes to the balance of immune cells and the development

of psoriasis.
Frontiers in Immunology 05
HMGB1 in atopic dermatitis

Atopic dermatitis (AD) is the most common chronic

inflammatory skin disease and is often associated with different

atopic and allergic comorbidities induced by overactivated type 2

immunity. AD pathogenesis is related to the interplay between

defects in the skin barrier and immune dysregulation. Immune

dysregulation characterized by increased numbers of Th2 cells,

Th22 cells and Th17 cells plays an important role in the

development of AD. In human skin, HMGB1 stimulation inhibits

the expression of key structural proteins, including filaggrin and

loricrin, thereby damaging the epidermal barrier (59), which may

result in AD initiation. Compared with that in healthy controls, the
FIGURE 3

Pathogenesis of HMGB1 in psoriasis. When the normal epidermis of patients with psoriasis is subjected to external stimuli, such as infection, injury
and drug stimulation, human high mobility group protein 1 (HMGB1), produced by keratinocytes (KCs), is released into the extracellular space via
autosecretion, after which it activates the nuclear factor-kB (NF-kB) p65 signalling pathway. The KC inflammasome is activated to promote the
secretion of interleukin-18 (IL-18) by KCs. Simultaneously, the translocation of HMGB1 from the nucleus to the cytoplasm activates the receptor for
advanced glycation end products (RAGE), Toll-like receptor 4 (TLR4), and the phospho- extracellular signal-regulated kinase1/2 (p-ERK1/2) pathways,
as well as the expression of pro-inflammatory cytokines such as interleukin-1b (IL-1b), interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNF-
a).HMGB1 and IL-18 bind to RAGE and interleukin-18 receptor (IL-18R) located on the surface of T cells, respectively, which promotes the secretion
of interferon-g (IFNg) and TNF-a by T helper 1 (Th1) cells and that of IL-17 by T helper 17 (Th17) cells. The binding of HMGB1 to TLR4 on the surface
of Th17 cells promotes the transcription of retinoid-associated orphan receptor gt (RORgt) and the expression of interleukin-23 (IL-23). Additionally,
HMGB1 interacts with TLR4 on monocytes, which stimulates the secretion of IL-1b and IL-6. IL-1b and IL-6 further enhance Th17 cell differentiation,
thereby sustaining the inflammatory response. Various cytokines lead to the aggregation of neutrophils, gamma delta (gd) T cells and dendritic cells
(DCs), which forms a positive feedback loop that accelerates epidermal thickness and disease progression.
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serum HMGB1 level is significantly increased in patients with AD

and is positively correlated with the severity of skin lesions, as

indicated by the scoring atopic dermatitis (SCORAD) index (60);

the serum levels of total immunoglobulin E (IgE), IL-17, and IL-23

are also increased in AD and are inversely correlated with the serum

IL-10 level. These observations suggest that HMGB1 is an ideal

biomarker for the severity of AD. Increased expression levels of

cytoplasmic HMGB1 have been observed in both epidermal

keratinocytes and dermal infiltrating immune cells in AD patients

compared with healthy controls and those with psoriasis (61).

Consistently, increased NF-kB activation signals in skin

keratinocytes and immune cells in AD patients are significantly

stronger than those in PV patients and healthy controls (61), which

indicates increased HMGB1/NF-kB pathway activity in the skin of

patients with AD. Studies have indicated that, in dermatitis,

cytoplasmic HMGB1 activates the PI3K/AKT/NF-kB and ERK/

NF-kB signalling pathways, which contributes to increased

expression of HMGB1 and its receptors, such as RAGE and

TLR4, as well as the subsequent production of proinflammatory

cytokines, such as TNF-a and IL-6 (62). Since both RAGE and

TLR4 are prominently expressed in Th2 cells in AD patients, we

believe that extracellular HMGB1 interacts with RAGE or TLR4 and
Frontiers in Immunology 06
plays a critical role in the abnormal immune response in AD

development (Figure 4). The pathogenic role of HMGB1 in AD

has been confirmed in mouse models (62–65), but a more detailed

mechanism requires further investigation.
HMGB1 in alopecia areata

Alopecia areata (AA) is a T cell-mediated autoimmune disease

characterized by chronic and relapsing hair loss. Serum HMGB1

levels are elevated in patients with AA and are associated with

disease severity. The serum HMGB1 level in patients with alopecia

universalis is much higher than that in patients with patchy

alopecia, alopecia totals and healthy controls and is considered an

independent predictor of AA severity (66, 67). Moreover, it has

been reported that increased serum HMGB1 levels are correlated

with poor treatment responses (66). Histological examination

revealed substantially increased expression of HMGB1 in the

dermis of scalp tissues from patients with AA (66). Further

studies revealed that, in the outer root sheath cells of hair

follicles, HMGB1 is transported from the nucleus to the

cytoplasm and then released into the extracellular space in
FIGURE 4

Pathogenesis of HMGB1 in atopic dermatitis. After the skin of patients with atopic dermatitis is damaged by impairment of the skin barrier, microbial
infection or scratch, keratinocytes (KCs) produce HMGB1, which binds to Toll-like receptor 4 (TLR4) and the receptor for advanced glycation end
products (RAGE) on the surface of KCs, after which the phosphoinositide 3-kinase (PI3Ks)/AKT serine/nuclear factor-kB (PI3K/AKT/NF-kb) pathway
or the extracellular regulated protein kinase (ERK)/NF-kB pathway is activated. This leads to the production of the proinflammatory cytokines
interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-a). In contrast, HMGB1 binds to TLR4 or RAGE located on the surface of T helper 2 (Th2)
cells, which promotes the activation and secretion of IL-6 by Th2 cells and promotes an immune response in patients with atopic dermatitis during
disease progression.
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response to stimulation with the double-stranded RNA mimic

polyinosinic:polycytidylic acid. The secretion of HMGB1 is

controlled by NLRP3 inflammasome activation in outer root

sheath cells, which suggests that HMGB1 collaborates with IL-1b,
an effector of the NLR family pyrin domain-containing 3 (NLRP3)

inflammasome, to promote inflammation in patients with AA (68).

However, in ex vivo hair organ culture, HMGB1 significantly

increased the expression and secretion levels of prostaglandin E

from dermal papilla cells via interaction with its canonical receptor,

RAGE and thus increased hair shaft elongation (69). Importantly, in

damaged tissues, extracellular HMGB1 can accelerate wound

healing by promoting the differentiation of epidermal stem cells

through the “HMGB1-TLR4-Wnt/Notch” axis (70) (Figure 5).

These results suggest that HMGB1 can also promote hair growth

and tissue regeneration in response to damage. The detailed role of

HMGB1 in the pathogenesis of AA is far more complex than is

currently known. We speculate that the dual role of HMGB1 in AA

may be stage-specific and microenvironment-dependent and is

related to its cel lular origin as wel l as intercel lular

communication. Specifically, during the rapid progression of AA,

HMGB1 secreted by damaged follicle outer root sheath cells may

play a proinflammatory role mainly by enhancing the activation

and function of T cells. However, in the stable phase of AA, when
Frontiers in Immunology 07
the immunoinflammatory response is weakened, HMGB1 secreted

by dermal papilla cells may interact with receptors that on stem cells

in hair follicles, thereby promoting hair regeneration. We

hypothesize that extracellular HMGB1 is likely an important

molecule involved in the balance and regulation of the

“proinflammatory microenvironment-tissue repair and

regeneration” cycle in AA.
HMGB1 in other autoimmune skin
diseases

Polymyositis (PM) and dermatomyositis (DM) are the two

major inflammatory muscle diseases characterized clinically by

proximal muscle weakness. High cytoplasmic and extracellular

expression levels of HMGB1 have been consistently detected in

muscle fibres, endothelial cells and mononuclear inflammatory cells

of PM/DM patients in the early phase of their disease (71, 72).

Serum HMGB1 levels are also elevated in patients with PM/DM

(73). Studies have indicated that IFN-g increases both the nuclear

and the myoplasmic expression of HMGB1 in adult skeletal muscle

fibres. Moreover, studies have confirmed that HMGB1, an

important mediator, can drive MHC class I (MHC-I) expression
FIGURE 5

Pathogenesis of HMGB1 in alopecia areata. The NLR family pyrin domain-containing 3 (NLRP3) inflammasome is activated in the outer hair root
sheath cells of patients with alopecia areata. This results in the simultaneous release of interleukin-1b (IL-1b) and high mobility group protein 1
(HMGB1), which bind to the interleukin-1 receptor (IL-1R) and the receptor for advanced glycation end products (RAGE)/toll-like receptors (TLRs) on
the surface of CD8+ T cells, respectively, and promote the secretion of interferon-g (IFNg) by CD8+ T cells. Many CD8+ T cells accumulate to
accelerate the death of hair follicles, while injured hair follicle dermal papilla cells secrete HMGB1. This activates the WNT/Notch signalling pathway
through binding to TLR4 on the surface of stem cells to promote their proliferation, thereby regenerating hair.
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in muscle fibres by binding to TLR4 but not to RAGE (72, 74).

Given that an increase in MHC-I in muscle fibres is sufficient to

trigger muscle inflammation and weakness in animals (75),

HMGB1 is considered a necessary initial step in inducing PM/

DM onset and directly contributes to muscle weakness.

The impaired regeneration capacity of muscles is also

responsible for the development of muscle weakness in patients

with PM/DM. Notably, lower HMGB1 expression is accompanied

by impaired proliferation in primary muscle cell cultures obtained

from patients with PM/DM compared with cultures of healthy

muscles affected by coxarthrosis muscles (76). In addition, another

study showed that extracellular HMGB1 could improve the

differentiation of and attenuate the proliferation of rat myoblasts

through its interaction with RAGE (77). These findings suggest that

HMGB1 may also be involved in the progression of PM/DM by

affecting the proliferation and differentiation of muscles, which

requires further investigation. Another potential mechanism by

which HMGB1 contributes to PM/DM progression is the

induction of muscle dysfunction (74). Although HMGB1 can

increase autophagy in muscle fibres (78) and thus facilitate the

clearance of damaged cellular components under certain

conditions, in the case of PM/DM, it can also lead to excessive

degradation and functional loss of muscle fibres (79). Furthermore,

HMGB1 can activate inflammatory signalling pathways, such as the

NF-kB pathway, to promote the release of IL-1b, TNF-a, and IL-6,

thereby exacerbating inflammatory responses and tissue damage in

muscle (71, 80, 81). PM/DM can also present with systemic

manifestations, specifically a significant increase in interstitial

lung disease (ILD), which is an important complication that

affects disease prognosis. Serum HMGB1 is overexpressed in new-
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onset PM/DM patients with ILD; patients with higher serum

HMGB1 levels have lower overall survival, whereas those with

lower serum HMGB1 levels have higher overall survival (82).

This finding suggests that HMGB1 is a prognostic indicator of

disease progression and helps predict poor outcomes.

Pemphigus is a life-threatening autoimmune skin disease

characterized by blistering skin and/or mucous membranes

induced by antibodies that bind to desmoglein (DSG) 3 and 1. It

has been reported that serum HMGB1 levels are clearly increased in

pemphigus patients and are significantly decreased after treatment.

In skin samples, increased cytoplasmic expression of HMGB1 and

its receptor RAGE was observed in the epidermal keratinocytes of

patients with pemphigus (83, 84). In patients with bullous

pemphigoid, neither the serum HMGB1 levels nor the nuclear

HMGB1 expression in the skin are significantly different from

those in healthy controls (83). Therefore, we suggest that the

HMGB1/RAGE interaction may contribute to inflammatory

reactions and tissue damage in the pathogenesis of pemphigus

but not that of bullous pemphigoid.
HMGB1-targeting therapies

Several HMGB1-directed therapies are under investigation

(Table 1), although none are yet approved for dermatological

indications. Glycyrrhizin (GL), a natural triterpene derived from

liquorice root, directly binds to the A- and B-box domains of

HMGB1, which inhibits its interaction with RAGE and TLR4 (85).

GL, which is approved in Japan for the treatment of chronic

hepatitis, reduces serum HMGB1 levels and alleviates
TABLE 1 HMGB1-targeting therapies in clinical development progress.

Therapy
Mechanism
of Action

Current Status Efficacy
Limitations/

Adverse Effects
References

Glycyrrhizin
(GL)

Binds A- and B-box
domains of HMGB1,

inhibiting interaction with
RAGE and TLR4

Approved in Japan for chronic
hepatitis; tested in viral

dermatitis models

Reduces serum HMGB1 levels and
alleviates inflammation

Limited long-term use
for dose-dependent

hypertension,
hypokalaemia

(85) (86) (87)

Monoclonal
Antibodies

2G7 (targets A-box);
DPH1.1 (targets B-box)

Experimental arthritis models
and viral hepatitis; human

trials pending

Effectively improved arthritis in
mouse models

Pending human
trial data

(88) (89)

SB17170
(Prodrug)

Metabolized to HMGB1
inhibitor SB1703

Phase I/II trials for solid tumours
(NCT05795192; NCT05522868);

potential
dermatological applications

Promising in early clinical trials

Adverse effects not
fully characterized;

potential
immunosuppression

(NCT05795192;
NCT05522868)

Recombinant
A-box
(Box A)

Acts as a decoy receptor,
suppressing HMGB1-
mediated inflammation

Tested in arthritis models
Effective in preclinical
inflammation models

Mechanism
incompletely defined;

immunogenicity
concerns

(90)

Soluble
RAGE

(sRAGE)

Natural HMGB1 antagonist;
inhibits AT1R-HMGB1-

RAGE axis

Preclinical studies; reduces
arterial calcification

Reduces inflammation and
calcification in preclinical models

Limited clinical data (91)

Peptide
P5779

Disrupts HMGB1-TLR4
binding without affecting

pathogen-associated
TLR4 activation

Preclinical studies

Reduces mortality in rabbit and
rodent models of hepatic ischaemia/
reperfusion injury, chemical toxicity,

and sepsis

Early-stage research (92)
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inflammation in viral dermatitis models (86), but its long-term use

is limited by dose-dependent hypertension and hypokalaemia (87).

Monoclonal antibodies (mAbs) offer increased specificity: 2G7

(targeting the A-box) and DPH1.1 (targeting the B-box) show

efficacy in experimental arthritis models and viral hepatitis (88,

89), although human trials are pending. Notably, SB17170, an oral

prodrug that is metabolized to the HMGB1 inhibitor SB1703, is in

phase I/II trials as a treatment for solid tumours (NCT05795192;

NCT05522868) and therefore has potential dermatological

applications. The recombinant A-box (BoxA) protein acts as a

decoy receptor to suppress HMGB1-mediated inflammation in

arthritis models, but its mechanism is not completely defined,

and immunogenicity concerns persist (90). Soluble RAGE

(sRAGE), a natural HMGB1 antagonist, reduces arterial

calcification by inhibiting the AT1R-HMGB1-RAGE axis (91).

Emerging strategies include the peptide P5779, which disrupts

HMGB1-TLR4/TLR4 binding without affecting pathogen-

associated TLR4 activation (92). The adverse effects common

across these therapies include transient immunosuppression and

interference with the physiological roles of HMGB1 in DNA repair

and autophagy (93).
Bridging the gap between preclinical
findings and clinical applications

Despite promising preclinical evidence implicating HMGB1 as

a therapeutic target in autoimmune and autoinflammatory skin

diseases, significant challenges have impeded its clinical translation.

A key hurdle lies in the pleiotropic role of HMGB1, which varies

depending on its redox state, subcellular localization, PTMs, and

interaction partners. For example, extracellularly reduced HMGB1

exhibits chemotactic activity, while disulfide HMGB1 activates

proinflammatory cytokine release via TLR4 signalling, and fully

oxidized HMGB1 is inert or even anti-inflammatory (94, 95).

Emerging evidence suggests that PTM-specific isoforms, including

acetylation, phosphorylation, and methylation variants, affect the

secretion and release of HMGB1 (1, 96). This redox- and PTM-

dependent functional dichotomy complicates therapeutic targeting,

as broad HMGB1 inhibition may inadvertently be disrupted. Its

homeostatic roles include tissue repair and immune regulation (95).

Furthermore, HMGB1 inhibitors often lack specificity: indirect

inhibitors such as ethyl pyruvate exhibit pleiotropic anti-inflammatory

effects by suppressing the NF-kB and inflammasome pathways, which

raises concerns about off-target consequences (97). Even direct

inhibitors, such as glycyrrhizin (GL), bind HMGB1 with moderate

affinity (Kd ∼150 mM), and thus they may also affect structurally

similar proteins. Future efforts to design isoform-selective inhibitors

should focus on identifying PTM “hotspots” that differentiate

pathogenic HMGB1 variants from their physiological counterparts.

Clinical translation is further hampered by the flexible, solvent-

exposed structure of HMGB1, which lacks deep hydrophobic pockets

for high-affinity drug binding (85). While preclinical models of lupus

and atopic dermatitis have shown the efficacy of HMGB1 blockade

(62, 64, 98), dermatology-specific clinical trials are still lacking. No
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HMGB1-targeted therapies for skin diseases have advanced to clinical

trials, which is partly due to uncertainties about dosing, long-term

safety, and biomarker-guided patient stratification. Standardized

assays to quantify extracellular HMGB1 isoforms, including PTM-

specific variants, are urgently needed to stratify patients based on their

dominant HMGB1 pathogenic profile. Addressing these gaps requires

optimized inhibitors with redox-state specificity, standardized assays

to quantify extracellular HMGB1 isoforms, and rigorously designed

trials that evaluate both the efficacy and risks of immunosuppression.
The challenges of HMGB1 as a
biomarker

HMGB1 has emerged as a promising biomarker in autoimmune

and autoinflammatory skin diseases, as accumulating evidence links

its disease-specific expression patterns to inflammatory cascades in

conditions such as vitiligo, psoriasis, atopic dermatitis, and

pemphigus. Released by epidermal keratinocytes and immune cells,

HMGB1 activates innate immunity through the TLR4/NF-kB
pathway, which is correlated with disease flares and severity.

Clinically, reductions in serum HMGB1 levels parallel therapeutic

responses to systemic treatments, which supports its utility in

monitoring skin disease prognosis. However, challenges persist,

including its limited specificity as a standalone biomarker due to

the shared increase in infections and malignancies, which necessitates

combinatorial strategies with disease-specific markers like IL-17 for

psoriasis (99, 100). Technical limitations have also hindered progress,

as current ELISA-based assays exhibit interlaboratory variability,

particularly in distinguishing different HMGB1 isoforms

(nonacetylated vs. acetylated HMGB1) (93). Large-scale clinical

validation remains constrained by the lack of standardized

protocols and reproducible thresholds, which emphasizes the need

for harmonized detection methods and multiomics integration to

advance HMGB1 from its current position, where mechanistic

insights are known, to its use as an actionable clinical tool.
Conclusions and perspectives

HMGB1 has distinct functions inside and outside the cell. Over

the past 20 years, increasing numbers of studies have focused on the

role of extracellular and cytoplasmic HMGB1 in cellular stress and

immune responses, and it has been confirmed that extracellular

HMGB1 is a risk factor for many inflammatory and autoimmune

skin diseases. Elevated serum HMGB1 levels are positively

correlated with the activity or severity of multiple skin diseases.

Therefore, HMGB1 can be a useful biomarker for the diagnosis and

prognosis of various inflammatory skin diseases. HMGB1

antagonists have shown great success in multiple preclinical

animal models of autoimmune diseases, which suggests that

HMGB1 is an attractive therapeutic target. Thus, further

exploration of strategies that combine HMGB1 with other targets

is highly important for the treatment of skin diseases. Although

HMGB1-related research still faces many challenges, we anticipate
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future studies that will maximize the potential of HMGB1 as a

therapeutic target.
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