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Metabolic dysfunction-associated steatotic liver disease (MASLD) is a series of

obesity-related metabolic liver diseases, ranging from relatively benign hepatic

steatosis to metabolic-associated steatohepatitis (MASH). With the changes in

lifestyle, its incidence and prevalence have risen to epidemic proportions

globally. In recent years, an increasing amount of evidence has indicated that

the hepatic microenvironment is involved in the pathophysiological processes of

MASH-induced liver fibrosis and the formation of hepatocellular carcinoma

(HCC). The hepatic microenvironment is composed of various parenchymal

and non-parenchymal cells, which communicate with each other through

various factors. In this review, we focus on the changes in hepatocytes,

cholangiocytes, liver sinusoidal endothelial cells (LSECs), hepatic stellate cells

(HSCs), Kupffer cells (KC), dendritic cells (DC), neutrophils, monocytes, T and B

lymphocytes, natural killer cells (NK), natural killer T cells (NKT), mucosal-

associated invariant T cells (MAIT), gdT cells, and gut microbiota during the

progression of MASLD. Furthermore, we discuss promising therapeutic

strategies targeting the microenvironment of MASLD-MASH-HCC.
KEYWORDS

microenvironment, MASLD, MASH, HCC, therapeutics
Introduction

Current findings reveal a global prevalence of metabolic dysfunction-associated

steatotic liver disease (MASLD) at around 25% (1), with the Middle East exhibiting the

highest prevalence at 32%, followed by South America at 31%, and Africa at the lowest at

14% (2). Over the past three decades, there has been a significant increase in MASLD

prevalence, rising from 25.3% in 1990–2006 to 38.2% in 2016-2019 (3). Metabolic disorders

such as hyperglycemia, obesity, dyslipidemia, and hypertension are known contributors to

the development of MASLD (4). MASLD is characterized by hepatic steatosis, defined as

>5% accumulation of triglycerides in hepatocytes. In contrast, metabolically associated
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steatohepatitis (MASH) is identified by >5% hepatic steatosis

accompanied by hepatocytes damage, inflammation, and

potentially fibrosis (5). Approximately 20% of MASLD cases

progress to MASH, with a subset of MASH patients (about 2%)

advancing to MASH-associated hepatocellular carcinoma (MASH-

HCC) (see Figure 1 (5). Following the rebranding of the American

Association for the Study of Liver Diseases (AASLD) from non-

alcoholic fatty liver disease (NAFLD) to MASLD and from non-

alcoholic steatohepatitis (NASH) to MASH, the new nomenclature

has garnered significant recognition among scholars for its

enhanced applicability in both clinical and academic settings.

Approximately 10% (range 1-38%) of liver cancer cases are

linked to MASLD, with higher prevalence rates (>20%) observed in

studies conducted in the US, UK, India, Germany, and the Middle

East, and lower rates (1-2%) reported in China and Japan (6).

Utilizing mathematical models to forecast the incidence of MASH-

HCC, projections indicate a substantial increase between 2016 and

2030, with a predicted rise of 47% in Japan, 82% in China, 88% in

the UK, 117% in France, and 130% in the USA (7). Despite MASH-

HCC having a lower incidence compared to virus-induced

hepatocellular carcinoma (virus-HCC), the escalating prevalence

of MASLD in conjunction with advancements in viral hepatitis

treatment is anticipated to elevate its relative proportion and

incidence (5).

Novel insights propose that the liver microenvironment could

represent a pivotal determinant in the evolution of MASLD, MASH,

and MASH-related HCC, comprising parenchymal cells, non-

parenchymal cells, and the extracellular matrix (see Figure 2).

Parenchymal cells, such as hepatocytes and cholangiocytes, are

integral components of the liver microenvironment. Non-

parenchymal cells, including liver sinusoidal endothelial cells

(LSECs), hepatic satellite cells (HSCs), Kupffer cells (KCs),

dendritic cells (DCs), neutrophils, monocytes, T and B

lymphocytes, natural killer cells (NK), natural killer T cells
Frontiers in Immunology 02
(NKT), mucosal-associated invariant T cells (MAITs), and gdT
cells, are believed to have significant implications in the initiation

and progression of HCC (8).

The current therapeutic strategies for MASH-HCC mirror

those employed for other etiologies of HCC, encompassing

transplantation, resection, or locoregional therapies for early or

intermediate-stage disease (9). However, due to the distinct

pathological characteristics of MASH-HCC, its tumor

microenvironment differs substantially from virus-induced HCC.

Consequently, while the prognosis following local treatment for

early or intermediate-stage MASH-HCC and virus-induced HCC is

generally comparable, advanced MASH-HCC exhibits limited

efficacy and survival rates in immune checkpoint blockade (ICB)

therapy (10, 11). Therefore, further investigations into the intricate

interplay of the liver microenvironment in the pathogenesis of

MASLD, MASH, and MASH-HCC are imperative for advancing

our understanding of these conditions.
Hepatocytes

The accumulation of lipids within hepatocytes is associated with

lipotoxicity, leading to cellular stress and eventual cell death. This

process triggers the release of damage-associated molecular patterns

(DAMPs), which encompass a variety of molecules such as

metabolites, microRNAs, mitochondrial double-stranded RNA,

mitochondrial DNA, purine nucleotides, cytoplasmic proteins,

and mitochondrial compounds (12). Metabolites considered as

DAMPs mainly include fatty acid, uric acid, ceramide,

cardiolipin, cholesterol, citrate, succinate, ATP, etc. All of these

can induce the activation of the NLRP3 inflammasome (13).

Subsequently, these DAMPs are recognized by members of the

Toll-like receptor (TLR) family, such as TLR2, TLR4, TLR5, and

TLR9 (14), leading to the activation of Kupffer cells and the
FIGURE 1

The development of MASLD, MASH and HCC.
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recruitment of monocyte-derived macrophages (MDMs) and other

immune cells to orchestrate a sterile inflammatory response aimed

at restoring tissue homeostasis. For example, DAMPs can recruit

KCs through TLR on the cell surface and activate them to release

tumor necrosis factor-a (TNF-a), IL-1b, CCL2, etc. DAMPs can

also recruit mast cells through TLR on the cell surface and activate

them to release TNF-a, IL-1b, TGFb, etc. Additionally, DAMPs can

recruit DCs through TLR on the cell surface and activate them to

release TNF-a and IL-1s (14). However, in cases where the

proinflammatory stimulus persists, the inflammatory response

may become chronic, leading to tissue remodeling, fibrosis, and

sustained inflammation.

Furthermore, hepatocytes apoptosis is considered a pivotal

mechanism contributing to liver fibrosis in the pathogenesis of

MASH. Macrophages and apoptotic hepatocytes are significant

sources of reactive oxygen species (ROS) production (15). The

entry of long-chain fatty acids (LCFAs) into hepatocytes
Frontiers in Immunology 03
mitochondria via FAT/CD36 facilitates fatty acid oxidation

(FAO), consequently increasing ROS generation (16). Elevated

levels of ROS have the potential to activate c-Jun N-terminal

kinase (JNK), also known as stress-activated protein kinase. The

activation of JNK by ROS promotes the lipoapoptosis of

hepatocytes by upregulating the pro-apoptotic Bcl-2 protein Bax,

thereby initiating the mitochondrial apoptosis pathway (17).

Conversely, ROS can also stimulate AMP-activated protein kinase

(AMPK), which acts to suppress ROS production, thereby

preserving metabolic equilibrium and cell survival. Notably,

AMPK activity is diminished in MASLD and MASH, with AMPK

demonstrating the ability to alleviate liver fat accumulation and

MASH-associated hepatocytes apoptosis (18).

Ballooned hepatocytes represent a characteristic feature of

MASH and are implicated in the pathogenesis of the disease.

Hedgehog (Hh), a ligand involved in the developmental hedgehog

signaling pathway (19), is released from distended hepatocytes,
FIGURE 2

The parenchymal cells, non-parenchymal cells, and the extracellular matrix in the hepatic microenvironment function in the progression of MASLD,
MASH, and MASH-HCC. Some cells have opposite effects in different phenotypes or disease stages, such as cx3cr1-expressing myeloid DCs can
produce TNF-a to promote inflammation, while CD103+ dc plays a protective role in steatohepatitis by producing IL10. In addition, CD8T cells can
not only promote the progression of NALFD by producing a series of inflammatory factors such as granase, TNF-a, IFN-g, but also play an anti-
inflammatory and anti-tumor role by producing IL-10 and perforin. M1 M1 macrophage, M2 M2 macrophage.
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leading to the activation of LSECs and HSCs (20). However,

dysregulated activation of the Hedgehog signaling pathway during

MASH and fibrogenesis may ultimately contribute to the

development of liver cancer (21).
Cholangiocytes

Elevated levels of fatty acids (FAs) have been demonstrated to

induce cholangiocytes lipoapoptosis in a FoxO3/miR-34a-

dependent manner. MASLD patients present heightened levels of

Ductular reaction (DR) and fibrosis, serving as markers of

cholangiocytes damage. DR and biliary senescence are recognized

as characteristic features of cholangiopathies, with their prevalence

heightened in individuals with MASLD and MASH, suggesting a

pivotal role in the progression of MASLD (22).

During the development and progression of MASLD,

hepatocyte-derived DAMPs have been observed to interact with

TLR4 expressed by biliary epithelial cells, leading to the

manifestation of duct reactions and biliary senescence (23).

Senescent cholangiocytes exhibit an augmented secretion of

senescence-associated secretory phenotype (SASP) factors,

including transforming growth factor-beta (TGF-b), platelet-

derived growth factor (PDGF), TNF-a, and IL-1b (24). This

increased secretion plays a role in the attraction and infiltration

of immune cells, thereby worsening microvesicular steatosis and

fibrosis as MASLD progresses.

NKT cells have been shown to become activated upon

recognition of lipid antigens through cluster differentiation 1

molecules on bile duct cells, leading to the release of

inflammatory cytokines and active participation in the

inflammatory response (25). Furthermore, both secretin (SCT)

and its receptor (SCTR) exhibit upregulation in MASLD/MASH

patients compared to healthy controls. Notably, mice lacking SCT

or SCTR demonstrated reduced levels of DR and biliary cell

senescence, concomitant with an upregulation of miR-125b, a

specific inhibitor targeting various enzymes involved in lipid

biosynthesis, such as Elovl1 (26).
LSECs

Under normal physiological circumstances, LSECs orchestrate a

highly immunosuppressive microenvironment that acts as a

protective shield against intestinal antigen-induced inflammation

(27). In the initial phases of MASLD, LSECs demonstrate a

downregulation of pro-inflammatory chemokines via a mitogen-

activated protein kinase (MAPK)-dependent pathway, including

CCL2, potentially serving as a compensatory mechanism to impede

disease progression (28). The above conclusion is contrary to that

CCL2 is upregulated in other cells in MASLD. The downregulation

of CCL2 in LSECs may be related to the enhanced autophagy of

LSECs in the early stage of MASLD, which aims to maintain cellular

homeostasis (29). However, as MASH advances, LSECs transition

to a pro-inflammatory state characterized by the heightened
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expression of adhesion molecules and pro-inflammatory

mediators, such as intercellular adhesion molecule-1 (ICAM-1),

vascular cell adhesion molecule-1 (VCAM-1), vascular adhesion

protein-1 (VAP-1), TNF-a, IL-6, IL-1, and CCL2 (30, 31).

Consequently, dysfunctional LSECs contribute to the

inflammatory cascade and activation of KCs (32), thereby

accelerating the progression of MASLD towards MASH and HCC

(33). Furthermore, lipotoxicity has been shown to induce the

generation of ROS by LSECs, thereby fostering a pro-carcinogenic

milieu (31).

In addition to alterations in phenotype and functionality, the

morphology of LSECs undergoes changes during the progression

from MASLD to MASH. A prominent morphological change

observed in LSECs is capillarization, which manifests early in the

development of MASLD (34). The capillarization of LSECs hampers

the exchange of substances between sinusoids and blood, obstructs

the removal of hepatocyte-derived very low-density lipoprotein

(VLDL), and leads to the accumulation of cholesterol and

triglycerides within the liver (35), exacerbating hepatocellular

steatosis (36). Moreover, capillarization reduces the transfer of

chylomicrons to hepatocytes, stimulates new adipogenesis, and

triggers a compensatory rise in cholesterol and triglyceride

synthesis in hepatocytes (37). Notably, primary human LSECs

exposed to oxidized low-density lipoprotein (LDL) exhibited

reduced fenestrae diameter and porosity (38), while a 48-hour

fasting period in rats led to an enlargement in the diameter of

LSEC fenestrae (39). Additionally, consumption of a high-fat diet

has been linked to a reduction in both the size and number of

fenestrae in LSECs (40).
HSCs

The potential dual role of HSCs in MASH has been postulated,

suggesting a beneficial impact in the early stages and a deleterious

effect in the later stages of the disease progression (41). In the

context of MASLD, HSC activation is triggered by hepatocellular-

derived Hh ligands and osteopontin (OPN), leading to the

upregulation of transcription factors ETS1 and RUNX1 in HSCs

(42, 43). Utilizing single-cell RNA sequencing (scRNA-seq) analysis

in murine MASH models, it was observed that activated HSCs play

a role in modulating macrophage functions through the secretion of

stellakines, including CCL2, CCL11, and CXCL2 (44). Furthermore,

HSC activation is induced by the secretion of IL-10 from CD8+ T

cells, subsequently promoting CD8+ T cells proliferation and

exacerbating MASH progression (45). HSCs are pivotal in the

development of liver fibrosis (46), with quiescent HSCs capable of

differentiating into myofibroblasts in response to hepatocyte-

derived lipid mediators and pro-fibrotic cytokines such as TGF-b
in MASH (47). The therapeutic targeting of both apoptosis and

senescence of activated HSCs represents crucial strategies in

mitigating hepatic fibrosis (47).

However, significant upregulation of key signaling molecules,

including SHh, b-catenin, and Wnt10b, involved in the Hedgehog

and Wnt signaling pathways, was observed in senescent HSCs.
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These findings suggest a potential role for these molecules in the

process of hepatocellular malignant transformation within a

microenvironment characterized by steatosis, inflammation, and

fibrosis (48).
Gut microbiota

The composition of gut microbiota has been shown to influence

the immunological landscape of the liver, impacting both adaptive

immunity (Tregs, Th1, Th2, Th17, NKT, and B cells) and innate

immunity (Neutrophils, KCs, dendritic cells, and NK cells) (49).

Dysbiosis of the gut microbiota is frequently observed in MASLD

(50), with MASH patients exhibiting increased levels of

Actinomyces, Ruminococcus, Blautia, and Dorea, and decreased

levels of Bacteroides compared to healthy individuals (51).

Conversely, alternative studies have reported lower levels of

Faecalibacterium and Anaerosporobacter but higher levels of

Parabacteroides and Allisonella in MASH patients (52).

Furthermore, MASH fibrosis has been associated with higher

levels of Ruminococcus, Proteobacteria, and Escherichia coli, and

lower levels of Firmicutes (53).

In addition, the diameter and quantity of LSECs may exhibit a

negative correlation with the presence of Bacteroides and a positive

correlation with the abundance of Firmicutes (40). Furthermore, an

elevated prevalence of alcohol-producing bacteria has been noted in

individuals with MASH, suggesting a potential involvement of these

bacterial strains in the pathogenesis of MASH (54). Recent research

involving animal models has demonstrated that Faecalibacterium

prausnitzii can mitigate inflammation in adipose tissue and

enhance liver function in MASH mice (55).

The migration of bacterial byproducts from the gut microbiota,

such as lipopolysaccharide (LPS), peptidoglycan, and bacterial

DNA, through the portal vein can activate TLRs on KCs,

triggering an inflammatory response and exacerbating MASH

(56). Notably, individuals with MASLD often experience bacterial

overgrowth, leading to heightened levels of bacterial products like

LPS (57). Activation of KCs occurs upon binding of LPS to TLR4

(58). Oral administration of Lactobacillus casei to mice has been

shown to suppress methionine-choline-deficient (MCD) diet-

induced MASH by inhibiting TLR-4 signaling, resulting in

reduced serum LPS levels, decreased liver inflammation, and

fibrosis (59).

Recent findings suggest that the gut microbiota may play a role

in the development of MASH-HCC by virtue of the

immunomodulatory properties of their metabolites (50). Studies

have linked HCC with alterations in gut microbiota composition

and inflammation in MASLD patients, characterized by decreased

levels of Bifidobacterium but increased abundance of Bacteroides

and Ruminococcaceae (60). Furthermore, a recent investigation

revealed an enrichment of short-chain fatty acid (SCFA)-

producing bacteria in patients with MASLD-HCC, leading to an

immunomodulatory shift towards immunosuppression marked by

elevated IL-10+ Tregs and reduced CD8+ T cells (61). Notably,

interventions such as antibiotic administration and intestinal
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sterilization have been shown to decrease the incidence of HCC

in obese mice, underscoring the significant role of microbiota

dysbiosis in the pathogenesis of HCC (62).
Macrophages

In the conventional understanding, liver macrophages are

primarily composed of liver-resident KCs and circulating MDMs

(63). In patients with MASLD, the infiltration of portal

macrophages is detected at an early stage, preceding the onset of

inflammation, and their activation plays a role in the initiation and

advancement of the disease (64). The primary mechanism

underlying this process appears to involve lipid accumulation

leading to the depletion of KCs in the liver. In MASH,

hepatocytes damage induces the recruitment of CCR2+/CCR3+

MDMs by motivating KCs to release proinflammatory chemokines

such as CCL2, CCL5, and CXCL10. As MASH progresses, KCs are

gradually replaced by Ly-6C+ monocytes (65). These MDMs

demonstrate reduced efficacy in promoting liver triglyceride

storage and exacerbate liver damage in the context of MASH.

This phenomenon is supported by the significant decrease in liver

inflammation observed in CCR2-/- and CXCR3-/- MASH mice

(66). Apart from MDMs, KCs have the capacity to recruit other cell

types that contribute to the acceleration of MASH progression (67).

Furthermore, liver macrophages have the capacity to secrete a

diverse array of cytokines that play a role in driving the progression

of MASH. The balance between M1 and M2 phenotypes within

hepatic macrophages is disrupted by hepatic steatosis, influenced by

factors such as cytokines, lipid metabolites, and various signaling

molecules (68). In the context of MASLD, KCs are activated upon

recognition of DAMPs via TLR4 receptors (69). Upon activation,

KCs release cytokines such as IL-6, TNF-a, and IL-1b, which in

turn enhance the infiltration of NKT and CD8+ T cells into the

liver, thereby promoting the progression of MASH (70).

Additionally, the unsaturated fatty acid oleic acid (OA) has been

found to induce M2 macrophage polarization in the context of

MASLD -MASH (71). The polarization of macrophages towards the

M2 phenotype has been implicated in the promotion of MASH-

associated liver cancer by creating an immunosuppressive

microenvironment (72). Consequently, it has been postulated that

the activity of HSCs may exhibit a beneficial effect in the early stages

of MASH but a detrimental effect in the later stages (63). This

suggests a potential transition from a pro-inflammatory M1

macrophage phenotype to an anti-inflammatory M2 macrophage

phenotype during the progression of MASLD-MASH, mainly

attributed to the secretion of IL10 by M2 macrophage, which

activates arginase in M1 macrophage and promotes M1

apoptosis (73).

In the context of MASH, M2-type KCs exhibit the ability to

mitigate hepatic inflammation by suppressing the activation of M1-

type KCs, yet they possess the potential to promote fibrosis (74).

Various investigations have delineated a distinct subset of

macrophages characterized by the expression of myeloid cells 2

(TREM2), CD9, GPNMB, and SPP1 within the liver affected by
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MASH (75). These TREM2-expressing macrophages demonstrate

elevated levels of CCR2 and CX3CR1 and are recruited to hepatic

crown-like structures (CLSs) in the steatotic liver in a CCR2-

dependent manner (76). Correspondingly, a separate scRNA-seq

analysis has demonstrated a pathogenic subset of TREM2+CD9+

macrophages within the fibrotic microenvironment of human livers

affected by MASH, exhibiting a positive correlation with the degree

of MASH-induced liver fibrosis (77). Conversely, studies have

revealed that the absence of TREM2 accelerates the progression of

MASLD in murine models, potentially due to its anti-inflammatory

properties. Mechanistically, TREM2 interacts with and signals

through DAP12, leading to the downregulation of inflammatory

gene transcription, such as TNF-a, IL-1b, and NOS2 (78).

Consequently, investigations have demonstrated that

heightened recruitment of TREM2+ macrophages within the

hepatic milieu and elevated levels of soluble TREM2 in the

systemic circulation are linked to favorable prognoses in

individuals afflicted with fibrotic MASH (79). Furthermore,

prolonged exposure to excessive nutrition in the context of fatty

liver conditions results in the compromise of TREM2-dependent

macrophage efferocytic function, consequently exacerbating hepatic

inflammation and the advancement of MASH (80). Noteworthy is

the observation that the uptake and accumulation of fatty acids

prompt macrophage polarization towards an immunosuppressive

phenotype in HCC (81).
Dendritic cells

Alongside macrophages, the hepatic environment harbors a

population of DCs comprising distinct subsets of classical and

plasmacytoid DCs (pDCs) that are situated in the subcapsular

region, interstitial spaces between hepatocytes, and within the

vasculature (82). Investigations have revealed that DCs with lower

lipid content exhibit a more tolerogenic phenotype, capable of

promoting Tregs induction, whereas lipid-rich hepatic DCs

possess immunogenic properties, stimulating the activation of T

cells, NK cells, and NKT cells (83). Recent findings have indicated

an increase in CX3CR1-expressing myeloid DCs in mice subjected

to a MCD diet, which led to heightened TNF-a production;

conversely, blockade of CX3CR1 resulted in amelioration of

steatohepatitis in mice, implicating a disease-promoting role for

myeloid DCs in MASLD (84). Utilizing scRNA-seq and

transcriptional network analyses, it was demonstrated that

conventional type 1 dendritic cells (cDC1s) are more prevalent

and exhibit enhanced production of proinflammatory cytokines

and chemokines in both human and murine MASH (85). These

XCR1+ cDC1s were found to drive inflammatory T cell activation

and exacerbate MASH liver pathologies in murine models (86).

Conversely, a reduction in the frequency of pDCs is observed in

MASH patients, with the decline in pDCs correlating inversely with

the extent of liver damage as indicated by serum alanine transferase

levels (87). A study utilizing the MCD diet reveals an increase in

DCs within the liver of mice; however, following diphtheria toxin-

induced depletion of CD11c+ cells, the severity of steatohepatitis
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worsens, and DC ablation leads to the proliferation of CD8+ T cells

and reduction in Tregs, indicating a potential regulatory function

(88). Conversely, during the transition from MASH to HCC,

hepatic lipid accumulation may exacerbate DC impairment by

enhancing triglyceride uptake via scavenger receptor A, thereby

compromising tumor-specific antigen presentation to CD8+ T cells

and anti-tumor immune responses (89). A targeted investigation

has demonstrated that mice lacking CD103+ DCs exhibited more

pronounced steatohepatitis, underscoring a protective role for

CD103+ conventional dendritic cells (cDCs) (86). The divergent

outcomes regarding DC involvement in MASH could be attributed

to variations in distinct DC subtypes.
Neutrophils

In MASH, there is an upregulation of key chemokines that

attract neutrophils from hepatocytes (90). The extent of neutrophil

infiltration is positively associated with the severity of MASLD (64).

The involvement of neutrophils in MASLD is widely supported by

the observation of elevated levels of Myeloperoxidase (MPO) (91),

neutrophil elastase (NE) (64), and proteinase 3 (PR3) (92), as well as

neutrophil extracellular traps (NETs) (93) in MASLD patients, all of

which have been implicated in promoting liver injury and the

progression of MASH. Apart from their role in activating HSCs and

driving liver fibrosis through the induction of M2-macrophage

polarization (90), MPO has been implicated in the formation of

CLS in MASH (94). NE has been shown to modulate insulin

signaling, with its deletion leading to improved insulin sensitivity

in an obesity mouse model (95). Modulating the expression or

activity of MPO, NE, or PR3 through genetic manipulation or

pharmacological approaches presents a promising therapeutic

strategy for ameliorating pathological changes in MASH (64, 96).

NETs represent a novel mechanism for neutrophil elimination, with

elevated free fatty acids (FFAs) triggering NETs formation in

neutrophils, and inhibition of NETs resulting in reduced severity

of steatohepatitis (93). Indeed, NETs formation appears to foster an

immune-suppressive milieu through programmed death ligand 1

(PD-L1) signaling, contributing to T-cell exhaustion in murine

models of MASH-induced HCC. Specifically, NETs promote Treg

differentiation by binding and activating TLR4 in immature CD4+T

cells to enhance mitochondrial OXPHOS, while Treg can inhibit

Teffs’ inhibitory effect on tumors (97). Consequently, beyond their

traditional role in immune response, neutrophils are now

recognized as potential mediators of MASH-HCC progression.
NK cells

In individuals with MASH, elevated levels of hepatic CXCL9,

CXCL10, CXCL11, CCL3, CCL4, and CCL5 were observed

compared to healthy controls, with circulating CXCL10 levels

correlating with the severity of lobular inflammation (66).

Following MCD treatment, increased CXCL10 expression

facilitated the recruitment of NK cells to the liver (98). The
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upregulation of chemokine expression, including CXCL10, CCL2,

and CCL5, was found to be reliant on IL-15 signaling in hepatocytes

in response to a high-fat diet (HFD), with IL-15-deficient mice

exhibiting reduced MASH severity and diminished NK cell

presence in the liver (99). Similarly, NK cells are activated by

cytokines such as IL-12, IL-15, and IL-18 to produce interferon-

gamma (IFN-g), thereby driving the progression from MASLD to

MASH (99).

Studies have revealed a notable increase in the population of NK

cells expressing nature killer group 2D (NKG2D) in MASH

compared to healthy individuals (100). Additionally, elevated

levels of the NKG2D ligand major histocompatibility complex

(MHC) class I associated chains A and B (MICA/B) in the liver

have been observed in MASH patients, suggesting a potential

involvement of NK cells in MASH progression through

interactions with MICA/B (101). This interaction may trigger

JAK-STAT1/3 and nuclear factor kB (NF-kB) signaling pathways

in the liver, leading to hepatocytes damage (100). Interestingly, our

investigations have demonstrated that NK cells exhibit cytotoxic

activity against MICA-expressing cancer cells via the NKG2D

receptor during HCC progression (102). Conversely, NK cells

may play a protective role in the development of MASH-related

fibrosis. Notably, NK cells have been shown to regulate liver fibrosis

by directly targeting activated hepatic stellate cells through

receptors such as NKG2D and NKp46, as well as the p38/PI3K/

AKT pathway (103).

A recent investigation has reported a negative correlation

between liver stiffness measurement and the total number of NK

cells (104). In a murine model utilizing the MCD diet, an increase in

CD49b+ NKp46+ conventional NK (cNK) cells is observed to

inhibit fibrotic M2 phenotypic differentiation by skewing

macrophages towards M1-like phenotypes. This effect is

dependent on the cNK cells’ secretion of IFN-g rather than

granzyme-mediated cytotoxicity (105).
B cells

B lymphocytes constitute approximately 6% of intrahepatic cells

and represent around 50% of intrahepatic lymphocytes in mice

(106). Focal clusters of B cells have been identified in the livers of

both MASH patients and mice (107), which secrete pro-

inflammatory cytokines such as TNF-a and IL-6 (108). While it

is commonly believed that B cells produce fewer inflammatory

cytokines compared to macrophages and neutrophils, a subset of B

cells expressing high levels of BAFF-R has been detected during

MASH. Upregulated BAFF in the liver may serve as one of the

cytokines that facilitate the maturation and activation of these B

cells (109). Treatment with BAFF depletion or induction of B-cell

deficiency has been shown to ameliorate steatohepatitis in

mice (110).

In MASH, B cells exhibit not only the capacity to generate pro-

inflammatory mediators but also to participate in antigen

presentation. The activation of B cells during MASH is

mechanistically linked to signaling pathways involving the innate
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adaptor protein myeloid differentiation primary response protein

88 (MyD88). Specifically, the deletion of MyD88 in B cells has been

shown to diminish hepatic T cell-mediated inflammation and

fibrosis (109). Furthermore, RNA-sequencing analyses have

unveiled that intrahepatic B cells play a role in MASH by

expressing genes associated with fibrosis, such as TGF-b and

TIMP2 (111). The pro-fibrotic actions of B cells are mediated

through the production of pro-inflammatory molecules that

stimulate HSCs and macrophages. Activated HSCs, in turn,

promote the survival and maturation of liver B cells by releasing

retinoic acid. Notably, the presence of circulating IgA has been

identified as an independent predictor of advanced fibrosis and

HCC development in MASH (111). Collectively, these findings

underscore the dual role of B cells in driving inflammation and

fibrosis progression in MASH.
CD8+ T cells

The presence of ROS and its byproduct derived from lipid

peroxidation, malondialdehyde (MDA), has been shown to trigger

the recruitment of CD8+ T cells to the liver in both human subjects

and murine models of MASLD (10, 11, 67, 112). In response to

metabolic triggers like acetate and extracellular ATP, CXCR6+CD8

+ T cells demonstrate self-destructive tendencies regardless of

MHC-class-I molecules. This behavior is characterized by

increased expression of granase, TNF-a, IFN-g, and programmed

death 1 (PD-1), which is facilitated by IL-15-induced

downregulation of the transcription factor FOXO1. Consequently,

this cascade of events promotes hepatocytes injury and contributes

to the development of MASH and HCC (10).

Furthermore, a study has demonstrated that the administration

of anti-PD-1 immunotherapy to mice fed a choline-deficient high-

fat diet (CD-HFD) led to an increase in hepatic resident-like

(CXCR6+) and effector (GZMK+ and GZMA+) CD8+ T cells

expressing PD-1. These cells are found to secrete tumor necrosis

factor superfamily member 14 (TNFSF14/LIGHT) and

lymphotoxin, which respectively activate the lymphotoxin b
receptor (LTbR) and NF-kB signaling pathways in hepatocytes.

This activation serves as a crucial intrinsic regulatory mechanism in

hepatocytes, influencing the transition from MASH to HCC (67).

Moreover, B2 microglobulin knockout (b2m-/-) mice, which exhibit

a severe deficiency in CD8+ T cells, are found to be protected from

liver damage and tumorigenesis induced by a CD-HFD diet (67).

Additionally, in the murine model of MASH with cirrhosis,

hepatic fibrosis has been linked to an elevated CD8+/CD4+ T cell

ratio (113). Within the MASH mouse model, hepatic CD8+ T cells

expressing CXCR1 and CXCR6 have been identified to effectively

activate HSCs through the secretion of IL-10, CXCL4, and CXCL16.

The reduction of CD8+ T cells within the MASH liver has been

associated with decreased mRNA levels of fibrotic genes, including

a-smooth muscle actin, TGF-b, collagen type 1 alpha 1, and

collagen type 1 alpha 2 (112).

While the current evidence supports the pathogenic role of total

CD8+ T cells in MASH progression, the application of single-cell
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genomics has unveiled functionally distinct subsets within the CD8

+ T cell population. Through single-cell RNA analysis, researchers

have characterized a subset of hepatic resident memory T cells

marked by the expression of CD44+CD62L− CD69+CD8+ T cells,

which also exhibit CXCR6. These resident T cells have been found

to play a crucial role in resolving the fibrotic process. Specifically,

these cells interact with HSCs through CCR5-driven chemotaxis

and induce apoptosis in HSCs via Fas-FasL contact (114).

Concurrently, enhanced intrahepatic retention of activated

NKT cells and CD8+ T cells has been observed to mitigate

glucose intolerance, liver steatosis, the release of inflammatory

factors (such as IL-10), and tumor growth (via the IRF1/

CXCL10/CXCR3 axis) in MASH, consequently suppressing the

development of HCC (115–117). Furthermore, CD8+ T cells have

been identified to secrete perforin, which triggers apoptosis in M1

macrophages, thereby inhibiting the synthesis of pro-inflammatory

cytokines in MCD-fed mice (118). Hence, it is evident that specific

subsets of CD8+ T cells also exhibit a protective role in the context

of MASH.
CD4+ T cells

Linoleic acid has been shown to disrupt mitochondrial function

in CD4+ T cells, culminating in elevated ROS generation, activation

of caspases, and subsequent cell death, leading to an overall

reduction in CD4+ T cell numbers (119). Despite the decline in

the total count of CD4+ T cells observed in MASH and MASH-

HCC, a specific subset of T helper (Th) cells has been found to

increase (120). Based on their functional characteristics and

cytokine secretion profiles, CD4+ T cells are further categorized

into distinct subtypes including Th1, Th2, Th17, Th22, Tregs, and

other subsets (121).
Th1 cells

In MASLD, Th1 cells differentiate from naïve CD4+ T cells and

secrete cytokines such as IFN-g and TNF-a, exerting pro-

inflammatory effects (122). Clinical evidence further substantiates

these findings, demonstrating an increased proportion of liver and

circulating Th1 cells producing IFN-g in both pediatric and adult

patients with MASH (123, 124). Additionally, elevated plasma levels

of IFN-g have been positively correlated with the abundance and

size of hepatic lymphocyte clusters, as well as the severity of fibrosis

in MASH (107). IFN-g can activate KCs, leading to the progression

of MASH and MASH-associated HCC (125). Furthermore, the

IFN-g-induced chemokine CXCL10 is capable of attracting T cells

expressing the CXCR3 receptor, and the absence of CXCR3 or

deletion of CXCL10 has been shown to alleviate liver inflammation,

injury, and fibrosis (66). Studies have revealed an upregulation of

the TNF family co-stimulatory molecule OX40 in CD4+ T cells of

mice fed a high-fat diet, with OX40 deficiency resulting in reduced

infiltration of CD4+ T cells and diminished Th1 cell differentiation,

thereby ameliorating steatohepatitis (126).
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Currently, limited research exists on the role of Th2 cells in

MASLD and MASH, which predominantly secrete IL-4, IL-5, and

IL-13 and activate signal transducer and activator of transcription

(STAT) proteins 5 and 6 (124). While investigations have indicated an

elevated Th1/Th2 ratio in mesenteric lymph nodes ofMASLD-afflicted

mice (127), a contrasting scenario is observed in peripheral blood of

MASLD patients, where Th2 cell levels are heightened compared to

healthy individuals (128). Notable differences in Th2 cell populations

in peripheral blood or liver have not been observed among patients

with MASH, MASLD, or healthy controls (124). Despite the potential

anti-inflammatory role of Th2 cells in MASLD (129), their

involvement in liver fibrosis progression, particularly in the presence

of IL-13, is evident. Elevated levels of circulating IL-13 and increased

expression of IL-13 receptor alpha 2 (IL-13Ra2) in the liver have been

reported in individuals with MASH, with liver fibrosis mitigation

observed upon targeting IL-13Ra2+ cells, including HSCs (130).
Th17 cells

IL-17 secreted by Th17 cells exacerbates inflammation in

MASLD by inducing ROS and enhancing neutrophil infiltration,

thereby hastening disease progression (131). Both in MASLD

patients and murine models, hepatic Th17 cell populations

exhibit a continuous increase throughout disease advancement,

peaking at the onset of steatohepatitis and later stages of the

condition (132, 133). Steatotic hepatocytes display heightened

sensitivity to IL-17A, leading to upregulation of its receptor IL-

17RA, augmented cytokine release encompassing IL-6, TNF-a,
CXCL1, and increased lipid synthesis (134). Recent investigations

have unveiled that MASLD triggers a rise in circulating and liver-

resident CXCR3+ Th17 cells through glycolysis induction,

enhancing their capacity to produce IL-17A, IFN-g, and TNF-a
(134). Mice subjected to glycolytic inhibition or lacking IL-17A or

its receptor, IL-17RA, exhibited milder steatohepatitis symptoms

(131). Furthermore, Th17 cells prompt macrophages to release pro-

inflammatory cytokines such as IL-6, TGF-b, TNF-a, and IFN-g
through IL-17, thereby amplifying the inflammatory cascade (135).

Studies have documented that the expansion of Th17 cells,

along with their secretion of IL-17, IL-22, and IL-23, contributes to

the promotion of hepatocarcinogenesis in MASH (136). In mice fed

a CD-HFD diet, IL-17A released by hepatic Th17 cells induces

insulin resistance in the adjacent adipose tissue, leading to enhanced

influx of fatty acids into the liver, thereby triggering MASH-related

HCC. Inhibition of IL-17A signaling mitigates liver damage and

prevents the development of HCC (137).
Th22 cells

Within the context of MASH, CD4+ T cells producing IL-22

(Th22) are notably abundant during the initial and subsequent

expansions of Th17 cells (129). IL-22 has been implicated in
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exerting inhibitory and protective effects on the advancement of

MASLD. Administration of recombinant IL-22 has shown

significant improvement in the liver damage and steatohepatitis

in animal models of MASH, potentially mediated by STAT3

pathway (138). IL-22 also demonstrates the ability to mitigate

lipotoxicity induced by palmitate by inhibiting JNK in a

phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)-

dependent manner (129). Notably, the beneficial effects of IL-22

are observed in the absence of IL-17, as IL-17 can upregulate

phosphatase and tensin homolog (PTEN), an antagonist of PI3K-

AKT signaling (129). Furthermore, IL-22 can upregulate the

expression of anti-apoptotic genes such as bcl2 and suppress the

expression of lipid biosynthesis genes such as scd1 (139).
Tregs

In the MASH context, the generation of NETs has been

demonstrated to promote the differentiation of Tregs from naive

CD4+ T cells (93). Notably, the population of liver-resident Tregs

(CD4+Foxp3+) expands during MASH, with FOXP3+ Tregs

demonstrating the ability to suppress the proliferation and

activity of CD8+ T cells and Th1 cells, which play a crucial role

in immune surveillance against cancer. Notably, the depletion of

Tregs (CD4+Foxp3+) has been found to significantly impede the

progression of HCC in a MASH model induced by choline

deficiency, high-fat diet consumption, and diethylnitrosamine

administration (97). Conversely, the transfer of Tregs in MASH

exacerbates the severity of the disease (140). Furthermore, Tregs are

known to secrete TGF-b, which possesses pro-fibrotic properties

(141). However, a decline in hepatic Treg numbers has been

observed in MASLD, potentially attributed to the induction of

Treg apoptosis by KCs and DCs through the generation of

oxidative stress, TNF-a, and interferon I (142, 143).

Additionally, the upregulation of leptin production in obesity

has been demonstrated to impede the differentiation of Tregs while

concurrently promoting the activation of dendritic cells and the

polarization of CD4+ T cells towards the Th1 and Th17 subsets

(144). Remarkably, a recent investigation revealed that the

reduction in Treg numbers in mice achieved through the

combined deficiency of the co-stimulatory molecules CD80 and

CD86 exacerbated adipose tissue inflammation and steatohepatitis

induced by a high-fat diet (145). Moreover, the transfer of Tregs has

been shown to mitigate TNF-a signaling induced by a high-fat diet

and LPS-triggered hepatotoxicity (142). These seemingly

contradictory findings may be ascribed to the dual role of Tregs

in MASH, acting protectively during the inflammatory phase and

promoting tumor development in later stages.
Innate-like T lymphocytes

Hepatic innate-like T lymphocytes, such as gdT cells, NKT cells,

and MAITs, have been implicated in the pathogenesis of MASH in

humans and mice.
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gd T cells

gd T cells have been implicated in the advancement of MASLD.

In murine models of MASH, there is a notable increase in the

population of gd T cells within the liver, contributing to the

development of steatohepatitis, hepatic injury, and perturbed

glucose metabolism via the secretion of IL-17A (146). The

recruitment of gd T cells, particularly IL-17high Ly6C− CD44+ gd
T cells, is dependent on the chemokine receptors CCR2 and CCR5

in the liver afflicted with steatohepatitis, facilitating the infiltration

of inflammatory monocytes while dampening IFN-g production in

CD4+ T cells through the release of vascular endothelial growth

factor (VEGF) and IL-15 (147). Conversely, the cytokines VEGF

and IL-15 derived from gd T cells in a CD1d-dependent manner

have been shown to suppress IFN-g, which exerts protective effects

in certain cases of MASH (147). Additionally, gd T cells can

promote the progression of fibrosis by activating HSCs and KCs

through the production of IL-17 (148). Notably, MASH mice

lacking gd T ce l l s exhib i t s mi lder l iver in jury and

steatohepatitis (149).
NKT cells

An increase of 10% in NKT cells has been observed in the livers of

individuals with cirrhosis unrelated toMASH, while a 20% increase is

noted in those with MASH-related cirrhosis (150). In the context of

MASH, NKT cells not only instigate inflammation and steatosis by

releasing LIGHT, IFN-g, TNF-a, and IL-17A upon recognition of

lipid antigens but also motivate HSCs to promote fibrosis via the

secretion of OPN and Hh ligands in response to IL-15 stimulation

and Hh pathway activation (67, 150, 151). Mice lacking IL-15 or IL-

15Ra exhibit reduced intrahepatic CD4+, CD8+, NKT cells, and

HSCs and, when subjected to a high-fat diet, display less severe

steatosis and lobular inflammation compared to their wild-type

counterparts (152). While the aforementioned findings support the

role of NKT cells in driving the progression of MASH, their impact

on the development or inhibition of MASH-related liver cancer

remains uncertain. Research has indicated that liver NKT cells

secrete LIGHT, a ligand for the lymphotoxin beta receptor (LTbR),
which activates NF-kB signaling by binding to LTbR on hepatocytes

and collaborates with CD8+ T cells to facilitate malignant

transformation (67). Notably, targeted deletion of LTbR on

hepatocytes or depletion of NKT cells has been shown to mitigate

high-fat diet-induced HCC (67).

The involvement of distinct subpopulations of NKT cells in the

regulation of disease progression presents a complex scenario.

Several investigations have documented a decrease in the

abundance of NKT cells in both human and murine MASLD (11,

153). This reduction in NKT cell numbers has been linked to

heightened apoptosis triggered by IL-12 produced by KCs (154)

and intensified Tim-3/Gal-9 signaling pathways (155). Mice

deficient in Ja18 and CD1d, which lack NKT cells, exhibit

elevated rates of weight gain and liver steatosis in the context of

MASH (10). Conversely, leptin-deficient mice demonstrate
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diminished hepatic steatosis following the transfer of NKT cells,

potentially associated with the down-regulation of IL-10 (116).

Moreover, the accumulation of hepatic cholesterol selectively

impedes the anti-tumor immune surveillance function of NKT

cells through the buildup of lipid peroxidation and SREBP2-

dependent cytotoxic impairments in diet-induced mouse models

of MASH-HCC (156).
MAITs

CCR5 facilitates the migration of MAITs to sites of hepatic

steatosis through its interaction with CCL5 (157). In individuals

with MASLD-related cirrhosis, MALTs secrete IL-17 and TNF-a to

stimulate the activation of hepatic fibrotic cells (158). Concurrently,

the functions of circulating MALT cells undergo alterations,

characterized by an increase in IL-4 secretion and a decrease in

IFN-g production (157). IL-4, known for its anti-inflammatory

properties, may induce a shift KCs towards an M2 phenotype in

the context of MASLD (73). This protective role is underscored by

studies in animal models, where mice lacking MAITs exhibit

pronounced hepatic steatosis (157) or exacerbated diabetes (159).

In essence, MAITs appear to exert an anti-inflammatory protective

function in MASLD while simultaneously promoting the

progression of fibrosis.
Therapeutic targeting the
microenvironment of MASLD-MASH-
HCC

For the treatment of MASH, the goal should be to improve

clinical outcomes, that is, to reduce the MASH-related mortality

rate and decrease the incidence of progression to cirrhosis and

HCC. The only treatment that has been strongly proven to improve

liver injury in patients with MASLD without severe hepatic fibrosis

is weight loss through diet (160). In addition, some studies have

shown that in some patients, after lifestyle intervention and Roux-

en-Y gastric bypass, MASH has been improved. In these improved

patients, the inflammatory-related pathways, such as the

complement, TNF-a, and IL-6 signaling pathways, have all been

inhibited, mainly manifested by the downregulation of CXCL9,

CXCL10 and lysozyme (161).

With the in-depth research on the mechanisms of metabolic

damage, as well as the activation of inflammatory and fibrotic

pathways in MASH, some drugs targeting several cellular

components or molecular pathways of MASH have been

preliminarily explored. Resmetirom is a selective agonist of the

thyroid hormone receptor b (THR-b) and is the first treatment

approved by the US Food and Drug Administration (FDA) for

MASH (162–164). In MASH, the function of THR-b in the liver is

impaired, leading to reduced mitochondrial function and fatty acid

b-oxidation, which in turn increases fibrosis. Stimulating THR-b
can promote the regulation of hepatic lipid metabolism (165). THR
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increases cholesterol metabolism through the hepatic enzyme

CYP7A1 and reduces de novo lipogenesis (165). In contrast, the

thyroid hormone activity outside the liver, including in the heart

and bones, is mainly mediated by thyroid hormone receptor a
(THR-a) (166).

In a mouse model of MASH with fibrosis, Resmetirom

treatment significantly improved the MASLD activity score and

reduced hepatic fibrosis (167). Data from phase II/III clinical trials

reflect the safety and potential efficacy of Resmetirom in adult

patients with MASH (162, 163). The activation of THR-b in the

liver by Resmetirom has been shown to reduce triglycerides by

30.8%, low-density lipoprotein cholesterol (LDLC) by 22.3%, and

lipoprotein (a) by 37.9% (162). Both 80 mg and 100 mg of

Resmetirom can not only significantly improve the progression of

steatohepatitis (24.2% for 80 mg, 25.9% for 100 mg, compared with

14.2% in the placebo group), but also reverse the hepatic fibrosis in

MASH (25.9% for 80 mg, 29.9% for 100 mg, compared with 9.7% in

the placebo group) (168). Compared with the placebo, among every

1,000 patients treated with Resmetirom, the number of

decompensated cirrhosis events decreases by 87, the number of

HCC events decreases by 59, and the number of liver transplants

decreases by 30 (169). However, for patients with decompensated

cirrhosis (Child-Pugh class B or C), Resmetirom should be avoided

because as the dosage of Resmetirom increases, the risk of adverse

events also increases (170).

Since the immune response seems to play a key role in MASH

and its progression to HCC, methods to address this issue need to

be explored. Cenicriviroc, a CCR2/CCR5 antagonist targeting pro-

inflammatory monocytes, has been shown in a mouse model. In a

phase II clinical trial, it was confirmed that Cenicriviroc improved

the fibrosis in patients with MASLD (171). However, in a larger-

scale phase III (AURORA) clinical trial, after one year of treatment,

Cenicriviroc did not show sustained antifibrotic efficacy, leading to

the termination of the study on its monotherapy for MASH. In

another phase II clinical trial, Cenicriviroc was combined with the

farnesoid X receptor (FXR) agonist Tropifexor to improve the

hepatic fibrosis in patients with MASH, but the result analysis is

still ongoing (172). FXR is mainly expressed in the liver, intestine,

kidney, adipose tissue, and immune cells, participates in lipid

metabolism, and exerts anti-inflammatory and antifibrotic

effects (173).

In another phase IIa clinical trial, patients with MASH and type

2 diabetes mellitus received the treatment of CD3 monoclonal

antibody (OKT3) to induce Tregs, and the transaminase levels

and insulin resistance were improved (174). Currently, a phase II

clinical trial (NCT03291249) is ongoing to determine the safety and

effectiveness of Foralumab, a new CD3 monoclonal antibody, in

patients with MASH and type 2 diabetes mellitus (T2DM) (175).

However, despite a large number of explorations in regulating the

immune system to control the progression of MASLD, conclusive

evidence is still lacking.

In the clinical trials of drug development for MASH, the

improvement of hepatic fibrosis is often used as the primary or

secondary endpoint. Given the central role of HSCs in hepatic

fibrosis, inhibiting HSCs activation has long been proposed as a
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therapeutic strategy to prevent the progression of MASH-related

fibrosis. In MASH, the activation of the Notch signaling pathway in

hepatocytes induces an increase in the secretion of OPN, which in

turn activates HSCs (42). Therefore, Nicastrin antisense

oligonucleotide (Ncst ASO), an inhibitor of Notch, can reduce the

fibrosis in MASH diet-fed mice by inhibiting the activation of HSCs

through the secretion of OPN by hepatocytes (42).

In addition, in MASH, the nuclear factor of activated T cells 4

(NFATc4) in hepatocytes translocates from the cytoplasm to the

nucleus, which can inhibit the transcriptional activity of peroxisome

proliferator-activated receptor a (PPARa) and induce the

expression of OPN. Inhibiting the activation of NFATc4 can

alleviate the lipid deposition and the progression of fibrosis in

MASH mice (176). Widjaja et al. developed a neutralizing anti-IL-

11 antibody and a neutralizing anti-IL-11 receptor a (IL-11RA)

antibody, and found that they significantly alleviated the hepatic

steatosis, liver inflammation, and hepatic fibrosis in MASH mice by

inhibiting the activation of HSCs by IL-11 (177). Protease-activated

receptor-2 (PAR2) is an emerging new target expressed on hepatic

stellate cells and hepatocytes, which can regulate liver injury,

inflammation, and fibrosis (178). Pepducin PZ-235 is a complete

antagonist of PAR2. Pharmacological inhibition of PAR2 can not

only prevent the activation of HSCs and fibrosis, but also reduce the

production of ROS mediated by hepatocytes through inhibiting

PAR2 (178).

The therapeutic efficacy of MASH-related HCC is akin to virus-

related HCC in surgical, liver transplantation, radiofrequency

ablation (RFA), transarterial chemoembolization (TACE)
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interventions, and molecular targeted therapy (see Table 1) (179–

185), but variations in the immune milieu result in divergent

responses to ICB therapy. Although favorable outcomes are

observed across different etiologies, a meta-analysis indicates that

patients with MASLD etiology may derive comparatively lesser

benefits from anti-PD-1 treatment. Notably, a combinatorial

approach utilizing both anti-PD-L1 and anti-VEGF therapies has

demonstrated enhanced survival rates (186).

In a murine model of MASH-HCC, treatment with anti-PD-1

immunotherapy results in an escalation in the occurrence of MASH-

HCC and the quantity and dimensions of tumor nodules. This

augmentation is linked to heightened levels of hepatic CD8+ PD1+ T

cells and TNF+ T cells, and is averted by the depletion of CD8+ T

cells or TNF+ neutralization (10). The primary rationale behind this

phenomenon may stem from the fact that liver tumors in mice

treated with anti-PD1 exhibited an elevated presence of CD8+/PD1+

T cells, which, in contrast to resident hepatic CD8+ T cells, display

amplified expression of effector and exhaustion markers alongside

impaired proliferative capacity. These CD8+/PD1+ T cells not only

exhibit compromised immune surveillance capabilities but also

possess tissue-damaging effects (11). This mechanistic insight

could elucidate the observed acceleration in tumor progression in

around 13% of advanced HCC patients undergoing anti-PD-1

therapy, a phenomenon recognized as hyperprogressive syndrome

(11). Consequently, the imperative for improved stratification of

HCC patients undergoing immunotherapy based on the etiology of

liver cancer is underscored, necessitating the development of tailored

immunotherapeutic strategies for MASH-HCC.
TABLE 1 Therapeutic variance between MASH-HCC and virus-induced HCC.

Treatment Date n(MASLD/
non- MASLD)

Outcome

Liver resection (179) 2022.11.29 11477(2470/9007) Slightly higher overall survival (HR 0.87; 95% CI: 0.75–1.02) and recurrence-free survival (HR 0.93;
95% CI: 0.84–1.02) than those with HCC of other aetiologies.

All curative therapy
(resection, transplantation,
ablation) (180)

2021.01.13 5579(NA) Liver resection: improved disease-free survival (HR 0.85; 95% CI: 0.74–0.98, p = 0.03) and overall
survival (HR 0.87; 95% CI: 0.81–0.93; p < 0.0001) than those with HCC of other aetiologies.
All curative therapy: improved overall survival (HR 0.96; 95% CI: 0.86–1.06; p = 0.40) and disease-
free survival (HR 0.85; 95% CI: 0.74–0.98; p = 0.03) than those with HCC of other aetiologies.

Radiofrequency
ablation (181)

2022.01.05 520(62/458) There were no differences in morbidity, tumour recurrence and overall survival among patients with
MASLD-HCC vs other aetiologies as well as no prognostic impact of metabolic components (p
= 0.3168).

Transarterial
chemoembolization (182)

2019.11.04 220(30/190) There was a non-significant increased overall survival in the non-MASH [median 1078 days (95%
CI: 668–1594)] as compared to the MASH cohort [median 706 days (95% CI: 314–not reached)]
(p = 0.08)

ICIs, TKI and anti-
VEGF (183)

2021.06.12 22113(NA) ICIs: improved overall survival in patients with viral-related HCC (HR=0.64; 95% CI: 0.5–0.83)
compared with nonviral-related HCC (HR=0.92, 95% CI 0.77–1.11) (p = 0.0259).
TKI and anti-VEGF: no impact of etiology in outcome was observed with TKI/anti-VEGF therapies.
The overall survival in patients with viral-related HCC (HR=0.81; 95% CI: 0.71–0.92) compared with
nonviral-related HCC (HR=0.82; 95% CI: 0.67–1.01) (p = 0.8828).

Sorafenib (184) 2021.10.24 180(37/143) There was no significant differences in overall survival between the Virus/alcohol group and the
MASLD/MASH group in patients who received sequential therapy (median survival times was 23.4
and 27.0 months. p = 0.173, respectively).

Lenvatinib (185) 2021.11.27 1232(236/996) MASH-HCC was associated with longer overall survival (22.2 versus 15.1 months; HR 0.69; 95% CI:
0.56-0.85; p = 0.0006). MASH-HCC was associated with longer disease-free survival (7.5 versus 6.5
months; HR 0.84; 95% CI: 0.71-0.99; p = 0.0436).
ICI, immune checkpoint inhibitor; TKI, tyrosine kinase inhibitor.
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Conclusion

MASH represents a significant global health challenge and is

anticipated to emerge as a prominent contributor to HCC incidence

with the rise in metabolic disorders (5). The transition from MASH

to HCC is governed by a multitude of factors encompassing

molecular modifications, germline variability, fibrotic conditions,

immune milieu, and the microbiome. All cellular constituents

implicated in MASLD, MASH, and MASH-related HCC, such as

T lymphocytes, macrophages, hepatocytes, and hepatic stellate cells,

exhibit immunomodulatory characterist ics. Numerous

investigations have underscored the presence of a distinct

immune cell subset in MASH-related HCC in contrast to virus-

induced HCC, partially elucidating the dissimilarities in immune

checkpoint inhibitor responsiveness between the two conditions.

Nonetheless, the intricate interplay among tumor cells, immune

cells, and stromal cells remains largely unexplored. Consequently,

further exploration into the variances in the microenvironment

between MASH-related HCC and virus-induced HCC is imperative

to unravel the distinctions in treatment outcomes, facilitating the

implementation of more efficacious, personalized therapeutic

strategies in the foreseeable future.
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AASLD American Association for the Study of Liver Diseases
Frontiers in Immunol
AMPK AMP-activated protein kinase
ASH Alcoholic steatohepatitis
cDC1s Conventional type 1 dendritic cells
CD-HFD Choline-deficient high-fat diet
CTLA-4 Cytotoxic T-lymphocyte-associated protein 4
CHB Chronic hepatitis B
DCs Dendritic cells
DAMPs Damage-associated molecular patterns
DR Ductular reaction
FABP4 Fatty acid-binding protein 4
FAO Fatty acid oxidation
FDA Food and Drug Administration
FFAs Free fatty acids
HBV Hepatitis B virus
HCV Hepatitis C virus
HCC Hepatocellular carcinoma
Hh Hedgehog
HFD High-fat diet
ICB Immune checkpoint blockade
ICAM-1 Intercellular adhesion molecule-1
IFN-g interferon-gamma
IL-13Ra2 IL-13 receptor alpha 2
JNK C-Jun N-terminal kinase
KCs Kupffer cells
LSECs Liver sinusoidal endothelial cells
LCFAs Long-chain fatty acids
LDLC low-density lipoprotein cholesterol
LDL Low-density lipoprotein
LPS Lipopolysaccharide
LTbR Lymphotoxin b
MAPK Mitogen-activated protein kinase
MASLD Metabolic dysfunction-associated steatotic liver disease
MASH Metabolically associated steatohepatitis
MASH-HCC MASH-associated hepatocellular carcinoma
MAITs Mucosal-associated invariant T cells
MDMs Monocyte-derived macrophages
ogy 17
MCD Methionine-choline-deficient
MPO Myeloperoxidase
MICA/B Major histocompatibility complex (MHC) class I associated

chains A and B
MyD88 Myeloid differentiation primary response protein 88
NAFLD Non-alcoholic fatty liver disease
NASH Non-alcoholic steatohepatitis
NETs Neutrophil extracellular traps
NKG2D Nature killer group 2D
NF-kB Nuclear factor kB
NE Neutrophil elastase
NKT Natural killer T cells
NK Natural killer cells
OPN Osteopontin
PD-L1 Programmed death ligand 1
PR3 Proteinase 3
PD-1 Programmed death 1
PTEN Phosphatase and tensin homolog
RFA Radiofrequency ablation
ROS Reactive oxygen species
SASP Senescence-associated secretory phenotype
SCFA Short-chain fatty acid
STAT Signal transducer and activator of transcription
TACE Transarterial chemoembolization
TLR Toll-like receptor
TGF-b Transforming growth factor-beta
TNF-a Tumor necrosis factor-alpha
THR-b thyroid hormone receptor b
THR-a thyroid hormone receptor a
TKI Tyrosine kinase inhibitor
TNFSF14/LIGHT Tumor necrosis factor superfamily member 14
VEGF Vascular endothelial growth factor
Virus-HCC Viral associated hepatocellular Carcinoma
VCAM-1 Vascular cell adhesion molecule-1
VAP-1 Vascular adhesion protein-1
VLDL Very low-density lipoprotein.
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