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As the second most common non-melanoma skin cancer, cutaneous squamous

cell carcinoma (cSCC) has experienced a significant increase in incidence.

Although clinical detection is relatively easy, a considerable number of patients

are diagnosed at an advanced stage, featuring local tissue infiltration and distant

metastasis. Cemiplimab, along with other immune checkpoint inhibitors,

enhances T cell activation by blocking the PD-1 pathway, resulting in notable

improvements in clinical outcomes. Nonetheless, approximately 50% of the

patients with advanced cSCC remain unresponsive to this therapeutic

approach. It emphasizes the importance of finding innovative therapeutic

targets and strategies to boost the success of immunotherapy across a wider

range of patients. Therefore, we focused on frequently neglected functions of

innate immune cells. Emerging evidence indicates that innate immune cells

exhibit considerable heterogeneity and plasticity, fundamentally contributing to

tumor initiation and development. The identification and eradication of cancer

cells, along with the modulation of adaptive immune responses, are essential

roles of these cells. Consequently, targeting innate immune cells to activate anti-

tumor immune responses presents significant potential for enhancing

immunotherapeutic strategies in cSCC.
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1 Introduction

Cutaneous squamous cell carcinoma (cSCC) is a type of skin

cancer that develops from the abnormal growth of keratinocyte

(KC). It is the second most common non-melanoma skin cancer

worldwide, with around 2 million new cases annually (1, 2). cSCC is

one of the fastest-growing skin cancer types, but its actual incidence

rates may be underreported. This underreporting is frequently seen

in national cancer registries because they fail to record cSCC or only

note the initial tumor (3). Ultraviolet (UV) radiation, particularly

UVB and UVA, is linked to a heightened risk of developing skin

cancer. This connection highlights the necessity of protecting the

skin from overexposure to sunlight, as the harmful effects of these

types of radiation can lead to severe health consequences. Other

established risk factors encompass immunosuppression, human

papillomavirus infection, a history of cSCC, ionizing radiation

exposure, advanced age, chronic ulcers, burn wounds, persistent

scars, and pre-existing chronic skin conditions like dystrophic

epidermolysis bullosa and erosive lichen planus (4). After the

initial tumor has been surgically removed, the likelihood of local

recurrence or metastasis for cSCC is about 4%. The metastatic rate

among immunosuppressed individuals, especially solid organ

transplant recipients, is twice as high (1, 5). In advanced stages,

the prognosis is unfavorable, and half of the patients survived fewer

than 2 years (6). Potentially curative treatment options for localized

cSCC include surgery, photodynamic therapy, radiation therapy,

and topical immunotherapy, which can cause significant

morbidities such as pain, ulceration, and disfigurement, and affect

the quality of life (1, 7). Systemic therapies, including platinum-

based chemotherapies and inhibitors of the epidermal growth factor

receptor (like cetuximab), may be utilized for advanced cSCC.

Recently, there has been a significant advancement in the field

with the approval of the first immune checkpoint inhibitor (ICI)

that specifically targets PD-1, known as cemiplimab. This

innovative treatment has shown promising results, achieving an

overall response rate of approximately 50% when administered as a

first-line therapy for patients (8). Besides, a recent study highlights

the synergistic potential of combining PD-1 inhibitors (e.g.,

cemiplimab) with radiotherapy, enhancing both local and distant

tumor control through T-cell-dependent mechanisms (9).

Cemiplimab exerts its effects by inhibiting immunosuppressive

signals in T-cells, thereby activating the tumor-killing potential of

the adaptive immune system (10). However, many patients are

reluctant to receive these immunotherapies, and the long-term

survival impact of these ICIs on metastatic cSCC remains under

investigation, with current five-year survival estimates below

30% (4).

The innate immune system is a crucial component of defending

the host, functioning as the first line of protection against infections.

It comprises both physical and chemical barriers that help prevent

microbial invasion, alongside various specialized cell types that are

responsible for recognizing a wide range of microorganisms based

on conserved patterns (11). This system is crucial for sustaining the

body’s defenses, identifying, and responding to various pathogens.

Key components in the innate immunity include macrophages,
Frontiers in Immunology 02
neutrophils, dendritic cells (DCs), myeloid-derived suppressor cells

(MDSCs), and so on (12). These cells not only initiate a response to

infections but also essential in activating adaptive immunity. For

instance, macrophages engage in phagocytosis to engulf pathogens,

while NK cells exhibit natural cytotoxicity to eliminate infected or

malignantly transformed cells. Moreover, the innate immune

system contributes to adaptive immunity through processes like

antibody-dependent cell cytotoxicity and enhanced phagocytosis.

This is facilitated by the presence of Fc receptors (FcRs) on

macrophages and NK cells, which mediate interactions with

antibodies bound to pathogens or infected cells (13). Notably, the

activation of innate immunity may, counterintuitively, aid in tumor

progression. The innate immune cells present within tumors exhibit

heterogeneity and plasticity (14), with their phenotypes and functions

evolving in response to changes in the local environment. Depending

on interactions with other cells or tumors and the soluble factors

available in the microenvironment, innate cells can develop both pro-

and anti-tumor properties (15). Growing evidence indicates that

immune cells displaying immunosuppressive characteristics can still

preserve their anti-tumor capabilities, and successful strategies may

promote their reprogramming to an anti-tumor profile (10).

Consequently, innate immune cells and their relevant regulatory

targets present promising targets for enhancing the anti-tumor

responses or serve as complementary strategies to ICIs in therapy

(16). Therefore, developing a comprehensive understanding of innate

immune cells is essential to improve current immunotherapy

performance and increase the likelihood of favorable

patient outcomes.

Lately, single-cell RNA sequencing (scRNA-seq) and spatial

transcriptome sequencing have reignited interest in how innate

immunity contributes to cancer progression. Recent advancements

enable researchers to categorize cancers by their immune

composition, considering the types, phenotypes, and spatial

distribution in the tumor microenvironment (TME). Furthermore,

researchers have emphasized the adaptability of these cells,

specifically how their characteristics and roles shift according to

the surrounding environment. In this article, we summarize the

current insights into the roles that innate immune cells may play in

cSCC, as well as relevant preclinical studies utilizing innate

immunity as a therapeutic strategy.
2 The role of innate immune cells in
cSCC development

2.1 Macrophages

Macrophages exist in every tissue and are vital for maintaining

balance and managing diseases (17). They act as the initial defense

against infections and tissue damage by engulfing pathogens and

cell debris (18, 19). Tumor-associated macrophages (TAMs) are

macrophages found in the TME that are typically implicated in

angiogenesis, metastasis, tumor initiation, and tumor development

(20). However, TAMs can also exhibit tumouricidal functions by

enhancing phagocytic activity and pro-inflammatory responses to
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suppress tumor growth (21). Notably, TAMs can play dual roles

depending on the context. Classically activated macrophages (M1)

and alternatively activated macrophages (M2) are two different

subtypes of TAMs that exhibit extraordinary plasticity. M1

macrophages are distinguished by high major histocompatibility

complex class II (MHCII) expression and low mannose receptor

(CD206) expression (22). By releasing cytokines that promote

inflammation such as Interleukin (IL)-12, IL-23, and tumor

necrosis factor (TNF)-a, as well as nitric oxide (NO), these

macrophages contribute to activate immune system by preventing

the growth and proliferation of cancer cells (19). Conversely, M2

macrophages (CD163+) are distinguished by their elevated

mannose receptor and reduced MHC class II levels. They can be

activated by anti-inflammatory cytokines like IL-4, IL-10, or IL-13

(23). M2 macrophages release immunosuppressive cytokines,

including vascular endothelial growth factor (VEGF), arginase-1

(Arg-1), transforming growth factor-b (TGF-b) and IL-10, thereby

contributing to tumor progression by facilitating angiogenesis,

invasion, and migration (24).

Prior research indicates that TAMs in cSCC show varied

activation states, with macrophages undergoing dynamic

polarization due to the tumor’s diverse microenvironments (25).

These macrophages not only express functional M2-associated

markers, such as Arg-1 and matrix metalloproteinase 9 (MMP9),

but also significantly upregulate M1-associated markers, including

CD40 and CD127 (26) (Figure 1). Despite the presence of M1 signals,
Frontiers in Immunology 03
the weak classical activation of macrophages, coupled with the

substantial production of tumor-promoting growth factors,

impedes the complete eradication of tumors (27). Moreover,

increased M2 macrophages polarization was associated with higher

aggressiveness and poorer prognosis in cSCC. The substantial

infiltration of macrophages into the TME may facilitate tumor

progression by promoting angiogenesis and tissue remodeling, as

well as the production of lymphangiogenic factors, such as VEGF-C

(28). Consequently, enhancingM1 activation in TAMs is a promising

target for cancer therapy. Caley et al. identified the a3 chain of

laminin 332 as a potential immunotherapy target in cSCC, linking its

loss to high metastatic risk and elevated IL-13 secretion, which

promotes M2 macrophages recruitment (29).

Recent research emphasizes the influence of non-coding RNA on

macrophage polarization, with Circ_TNFRSF21 facilitating M2

polarization through the miR-214-3p/CHI3L1 pathway. By preventing

cSCC proliferation and metastasis in vivo, Circ_TNFRSF21 knockdown

advances our knowledge of themechanisms underlying cSCC and raises

the possibility that the Circ_TNFRSF21/miR-214-3p/CHI3L1 axis could

be a useful therapeutic target or diagnostic marker (30).

CD200 is an established immunosuppressive protein that is

predominantly found in the microvascular endothelial cells of

cSCC. Its homologous receptor, CD200 receptor (CD200R), is

mainly expressed in CD163+ macrophages and CD11c+ dendritic

cells. The interaction between CD200 and CD200R on these

immune cells inhibits pro-inflammatory activation, thereby
FIGURE 1

The role of macrophages in cSCC. TAM can regulate cSCC pathogenesis through divergent polarization states. Classically activated M1 macrophages
suppress tumor growth through anti-cancer immunity, whereas alternatively activated M2 macrophages promote tumor progression via
immunosuppressive cytokines (VEGF, Arg-1, TGF-b, IL-10) (21). M2 polarization is influenced by three critical pathways: (A) Circ_TNFRSF21 enhances
M2 polarization through the miR-214-3p/CHI3L1 signaling pathway (30); (B) Loss of the laminin 332 a3 chain triggers IL-13 secretion, recruiting M2
macrophages (29); (C) CD200-CD200R interactions stabilize the M2 phenotype and drive invasion by upregulating cathepsin K (Ctsk) (32).
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maintaining macrophages in an M2 polarized state (31).

Subsequent studies have shown that CD200 facilitates cSCC

invasion and migration by inducing cathepsin K (Ctsk)

expression in macrophages and DCs (32). In vitro studies have

demonstrated that inhibition of the CD200-CD200R interaction

and Ctsk can impede cSCC invasion and metastasis (33). These

findings suggest that CD200 and Ctsk have a role in the immune

evasion mechanisms of cSCC and could serve as promising

therapeutic targets.

A recent study utilizing both in vivo and in vitro experiments

revealed that activation of the neurotrophin receptor CD271

facilitates macrophage recruitment, potentially contributing to the

suppression of tumor aggressiveness. These findings indicate that

CD271 may serve as a promising therapeutic target for future drug

development (34).
2.2 Neutrophils

Neutrophils, the most prevalent cells in the bloodstream, are

among the first immune responders to damaged tissues. They

combat pathogens by engulfing them, releasing antimicrobial

proteins and protease, and creating neutrophil extracellular traps

(NETs) (14). Besides fighting infections, neutrophils can invade

cancer and participate in their progression, demonstrating

significant phenotypic and functional plasticity (35). Similar to

TAMs, neutrophils in the TME exhibit dual roles, with both anti-

tumor and pro-tumor functions. Tumor-associated neutrophils

(TAN) exhibit two phenotypes: the pro-tumor N2 phenotype,

driven by TGF-b, and the anti-tumor phenotype (or N1),

influenced by interferon-b (IFN-b) or TGF-b signaling

suppression (36). Involvement of N2 TANs spans every phases of

tumor progression, from its onset to metastasis and immune

suppression (37). These cells have the capacity to enhance tumor

proliferation, angiogenesis, and immunosuppression within the

TME through mechanisms such as the release of cytokines,

including neutrophil elastase (NE) and MMP-9, as well as the

suppression of NK cell function. Conversely, N1 neutrophils can

demonstrate anti-tumor activity by secreting cytotoxic mediators,

such as reactive oxygen species (ROS), or through direct

interactions with tumor cells (38, 39). Generally, a significant

presence of neutrophils in solid tumors suggests a negative

clinical outcome for patients (40). For example, poor survival

rates in a variety of solid tumors, especially advanced malignancy,

are associated with a high peripheral blood neutrophil-to-

lymphocyte ratio (NLR) (41). Moreover, their roles as poor

prognostic factors for cSCC have been confirmed in many studies

recently (42–44). Emerging evidence indicates that TANs may

impede cancer development by directly eliminating tumor cells or

enhancing innate and adaptive immunity (45, 46).

Neutrophils are delicate cells with a short half-life in vivo

(approximately 8 h) and are highly vulnerable in vitro,

complicating the capture and study of their functions within the

TME (47). Research on neutrophils in cancer has largely

concentrated on animal models or the roles of circulating human
Frontiers in Immunology 04
neutrophils (48). Khou et al. explored how TANs contribute to the

development of cSCC in animal models. Their study revealed a

positive correlation between TAN infiltration and tumor volume,

with TANs demonstrating immunosuppressive roles that hindered

effector CD8+ T cell responses and facilitated tumor progression

(49). However, additional clinical samples are required to validate

these phenomena observed in mouse models.

Moeller and colleagues recently identified NETs in metastatic

cSCC for the first time (50). They discovered that in cSCC, NET

formation extends beyond the ulcerated areas and is linked to

neutrophil aggregation. Earlier research has indicated that NETs

can cause CD8+ T lymphocytes to exhibit an exhausted phenotype

by attaching to the immunosuppressive ligand PD-L1, which tilts

the TME in the direction of immunosuppression (51). In animal

studies, DNase I-mediated removal of NETs enhances the

effectiveness of anti-PD-1 treatment by boosting the infiltration of

CD8+ T cell and increasing their cytotoxic activity (52). Therefore,

NETs represent promising therapeutic targets. However, we still

don’t fully grasp how NETs contribute to the evolution of cSCC,

underscoring the need for further investigation into the specific

mechanisms of NETs in tumor progression and exploration of

intervention strategies that target NETs to develop novel

therapeutic options.

Recent progress in single-cell sequencing technology have

increasingly enabled studies to elucidate the functions and

heterogeneity of tumor neutrophils at the single-cell level (53, 54).

However, no study has provided a comprehensive atlas of

neutrophils in the TME of patients with cSCC. The thorough

application of single-cell multiomics approaches may open new

directions for understanding neutrophil functions in the TME.
2.3 Dendritic cells

Originating from CD34+ hematopoietic stem cells located

within the bone marrow, DCs are extensively distributed across

the body (55). They comprise a diverse set of specialized cells that

present antigens and are vital for activating and modulating both

innate and adaptive immune responses (56). Conventional

dendritic cells (cDCs), originating from common dendritic cell

progenitors (CDPs), are categorized into two primary types:

cDC1 and cDC2. DCs encompass various developmentally

distinct cell types, such as monocyte-derived dendritic cells

(MoDCs), plasmacytoid dendritic cells (pDCs), and Langerhans

cells (LCs) (57). Tumor-associated cDCs are thought to capture

dead tumor cells or debris and convey cancer antigens as peptide-

MHC complexes to draining lymph nodes, facilitating T cell

activation and initiation (58, 59).

cSCC results from the malignant growth of epidermal KC,

positioning LCs as the initial APCs to encounter tumor antigens

(60). Fujita et al. showed that LCs in cSCC effectively induce type 1

immune responses in vitro, yet the patients’ immune systems

frequently do not eliminate cSCC tumors (61). The comparatively

limited numbers of LCs in TME provides a reasonable explanation

for this inconsistency. Specifically, cSCC lesions exhibited a decrease
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1570032
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


He et al. 10.3389/fimmu.2025.1570032
in the number of LCs, CD11c+ DCs, and CD123+ pDCs (62, 63).

Exposure to excessive UVB radiation, chemical carcinogens, or tumor

promoters significantly reduces LC density (64, 65). Under UVB

stimulation, LCs primarily exert their pro-tumor effects by enhancing

the epidermal IL-1b, IL-6, IL-23, and NOS2 expression, along with

raising the level of the epithelial growth factor IL-22 (66) (Figure 2).

Qu et al. established that the depletion of LC and local

immunosuppressive microenvironment are essential in the

progression of skin cancer, linking LC depletion to tumor

advancement (67). In animal models, Modi et al. found that under

the stimulation of the carcinogenic agent 7,12-dimethylbenz

anthracene (DMBA), LCs promote epithelial DNA damage as well

as enhance chemical carcinogenesis through polycyclic aromatic

hydrocarbon (PAH) metabolism, thereby facilitating the occurrence

of squamous cell carcinoma (68). Additionally, the impairment of

immune surveillance and the ability of LCs to promote regulatory T

cells (Tregs) in the context of DNA damage contribute to skin cancer

development (69). Moreover, high PD-L1 expression in DCs

mediates immunosuppression in the TME by influencing the

differentiation state of DCs and induce T cell anergy (70, 71). In

contrast to LCs, myeloid DCs in cSCC are not efficient at stimulating

T lymphocyte proliferation, and the existence of cytokines TGF-b, IL-
10, and VEGF-A in the TME is thought to inhibit the function of

myeloid DCs (63). Another notable feature of the cSCC

microenvironment is the abundant presence of pDCs, which

release IFN-a upon encountering foreign antigens, potentially

contributing crucially to anti-tumor immune responses (63, 72).

Overall, given their pivotal function integrating innate and adaptive
Frontiers in Immunology 05
immunity and trigger immunological responses, DCs present

promising prospects as candidates for cancer immunotherapies.
2.4 Myeloid-derived suppressor cells

MDSCs represent a varied group of myeloid cells at various

differentiation stages (73), comprising two major cell types:

granulocytes or polymorphonuclear cells (PMN-MDSCs) and

monocytes (M-MDSCs) (74). PMN-MDSCs resemble neutrophils

in both phenotype and morphology, while M-MDSCs are akin to

monocytes. The defining characteristic of these cells is their capacity

to impede immune responses, thereby enabling tumor cells to evade

recognition and elimination by the immune system (75). Evidence

suggested that MDSCs can prevent the actions of T cell and NK cell

by upregulating factors such as ARG1, ROS, TGF-b, IL-10, and PD-
L1. Moreover, MDSCs aid in carcinogenesis and metastasis by

supporting the survival of cancer cells, stimulating angiogenesis,

and facilitating tissue remodeling (76). A poor prognosis is

associated with high concentrations of MDSCs accumulating in

several solid tumors (77). Moreover, a variety of findings have

shown that MDSCs are crucial prognostic indicators for tumor

advancement and potential targets for anti-cancer therapies (78).

However, studies on MDSCs in cSCC are limited. A study

identified MDSCs as key NO producers in SCC, and inhibiting NO

may restore the expression of vascular E-selectin, which may in turn

improve the recruitment of T cells (79). As mentioned above, the

populations of circulating and intra-tumoral neutrophils and/or G-
FIGURE 2

The role of DCs in cSCC. Langerhans Cells (LCs) critically drive cSCC progression. Exposure to excessive UVB radiation significantly reduces LC
density and LC mainly promote tumor progression by upregulating pro-inflammatory cytokines (IL-1b, IL-6, IL-23) expression (66). When exposed to
the carcinogen DMBA, LCs enhance epithelial DNA damage through polycyclic aromatic hydrocarbon (PAH) metabolism, facilitating squamous cell
carcinoma development (68). And myeloid dendritic cells in cSCC demonstrate impaired T-cell activation, with their functionality further suppressed
by factors including TGF-b, IL-10, and VEGF-A (63).
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MDSCs are elevated (43). Transmembrane glycoprotein CD147, which

is a component of the immunoglobulin superfamily, shows substantial

expression in various cancers. Research suggests that CD147 is crucial

for malignant epidermal transformation and tumor initiation by

activation of KC and the recruitment of MDSCs through the RSK2/

AP-1 pathway (80). Furthermore, as previously mentioned, CD200 can

induce CTSK to stimulate cSCC invasion and metastasis through the

CD200-CD200R axis, with MDSCs and TAMs being the primary

sources of Ctsk protein (32). Stumpfova et al. observed that CD200

serves as an indicator of SCC metastasis and that metastatic survival

depends on CD200+ SCC KC’s capacity to directly interact with and

control CD200R+ MDSCs (81). MDSCs, as crucial elements of the

TME, have received increased attention for their impact on cancer

progression and treatment response. Therefore, establishing MDSC

subpopulations as therapeutic targets and biological markers that

reflect the response to prevailing cancer treatments requires a fuller

comprehension of the mechanisms underpinning MDSC genesis,

recruitment, and functionality.
2.5 NK and ILCs

ILCs are derived from a common lymphoid progenitor (CLP),

just like adaptive T and B cells, but they lack somatic rearrangement

of antigen receptors and exhibit no antigen specificity (82). They are

divided into five subsets: NK cells, lymphoid tissue inducer (LTi)

cells, and three groups of ILCs, namely ILC1, ILC2, and ILC3. The

three groups of ILCs demonstrate a resemblance to their

corresponding helper T cell subtypes (Th1, Th2, and Th17 cells)

and secrete cytokines that influence the immune system both

innately and adaptively (83). ILCs are tissue-resident cells that

sense microenvironmental changes and quickly secrete cytokines,

acting as initial coordinators of immune responses (84). The

biological function of ILCs, whether pro-tumor or anti-tumor, is

largely depended on the tissue type and cytokine environment. For

example, NK cells represent pivotal elements of intrinsic immunity,

endowed with the capacity to elicit potent anti-tumor responses

through direct cell death of neoplastic cells or the augmentation of

antibody- and T cell-mediated reactions (85). Conversely, NK cells

may express immune checkpoints like NKG2A, which suppresses

their ability to fight tumors. Additionally, NK cells can transform

into less effective anti-tumor ILC1s due to TGF-b signaling, where

surface immune checkpoints and TGF-b accumulation within the

TME encourage carcinogenesis (86). Similarly, type 2 ILCs have

been demonstrated to possess the capacity to release IL-4, IL-5, and

IL-13, which suppresses the immune system in the TME and exerts

a direct effect on tumor cells to promote their growth and metastasis

(87). Likewise, 17-type polarized ILC subtypes secrete IL-17A,

which contribute to metastasis by facilitating angiogenesis

through the stroma or stimulate tumor cells proliferation directly

(88, 89). The functional plasticity of ILCs offers opportunities for

the design of novel cancer immunotherapies.

NK cells have been demonstrated to exhibit direct interaction with

tumor cells (90) and CLEC2A-positive fibroblasts, thereby exerting a

suppressive effect on the growth of cSCC (91). Furthermore, NK and
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Langerhans cells collaborate to impede the development of tumors in

chemically induced mouse models of carcinogenesis (64). Through

transcriptomic and immunophenotypic analyses, Luci et al. detected

the presence of NK cells, ILC1s, and some ILC3s in mouse and human

tumor tissues (Figure 3). They also found an increase in inflammatory

ILC1s during the precancerous stage and observed compromised anti-

tumor functions in both NK cells and ILC1s, potentially facilitating

cSCC progression. During the developmental stages of cSCC,

characterized by the presence of papilloma and tumor, there is an

observed upregulation of traditional inhibitory receptors, such as

CTLA4 and PD-1, in ILC1s and NK cells (92). TIGIT-induced NK

cell depletion and the capacity to impede tumor progression by

blocking TIGIT corroborate the assertion that the TIGIT-induced

NK cell inhibitory axis is prominent in human cSCC (93). The

results indicate a potential approach for cSCC immunotherapy. The

proportion of NKp46 ILC1s in the premalignant lesion was

significantly higher than that of NKp46 NK cells expressing these

activating receptors in the tumor stage, suggesting ILCs’ significant

involvement in the initial malignant transformation of KC (94).

Additionally, Lewis and his colleagues revealed that long-term UV

exposure induces phenotypically distinct ILC3 populations, which

associate with p53+ KC islands and produce chemokines, such as IL-

22, playing a crucial role in promoting KC clonal expansion (95).

Therefore, a thorough analysis of ILCs in skin lesions is necessary to

fundamentally understand their role in tumor progression, enabling

the development of optimal immunotherapy approaches to prevent

cSCC progression. Overall, there is a critical need to comprehend (i)

the diversity within ILC subgroups, including their propensity to

transdifferentiate into other ILC subgroups within tumors and (ii)

the key role of tissue-derived cytokines in driving ILC-specific

responses to effectively target these populations.
2.6 Innate-like T cells

Innate-like T cells (ILTCs), or unconventional T cells, comprise

gd T cells that detect phosphorylated antigens, invariant natural

killer T (iNKT) cells with invariant ab T cell receptors (TCRs)

recognizing glycolipid antigens via CD1, and mucosal-associated

invariant T (MAIT) cells that identify riboflavin-derived antigens

with MR1 (96, 97). These cells exhibit pleiotropic functions and

exhibit a rapid response to non-peptide antigens through conserved

TCRs. Similar to ILCs, ILTCs are lymphocytes that reside in tissues

and are found abundantly at many tumor sites. Through

homologous receptors, they detect cytokines and alarmins,

prompting a rapid release of factors that protect tissues or

promote inflammation, thus serving as first responders in the

TME (98, 99).

The growth of tumors is influenced by ILTCs, which can

function in both pro-tumor and anti-tumor capacities. In an

environment induced by type 1 cytokines (mainly IL-12 and IL-

15), they can mediate anti-tumor effects through granzymes and

perforin or antibody-dependent cell cytotoxicity (ADCC) (98, 100).

ILTCs can also enhance cytotoxicity through TCR signaling,

thereby indirectly killing tumors by secreting IFNg (101).
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Additionally, NKT cells stimulate DC maturation through CD40-

CD40L interactions, enabling DCs to effectively present cancer-

derived antigens to CD8+ T cells, thereby enhancing tumor-specific

immunological responses (102). Research indicates that the number

and metabolic activity of NKT and gd T cells within tumors or in

circulation correlate with favorable prognoses across various cancer

types (102, 103). A hostile TME, however, can exploit ILTCs’ abilities

in tissue repair and homeostasis, steering them towards promoting

tumors (86). Like ILCs, type 2 primed ILTCs encourage cancer

growth and spread, while type 17 polarized ILTC release IL-17A,

enhance angiogenesis, and promoting tumor growth (14). The

disruption of TGF-b expression within the TME is pivotal to

tumor evasion of the immune system and poor response to anti-

tumor treatments. Furthermore, NK cells can become less cytotoxic

when transform into ILC1 and ILC1-like cells, thus failing to

effectively regulate tumor proliferation and dissemination.

Additionally, the TGF-b released by ILTCs can further promote an

immunosuppressive microenvironment (104).

Dendritic epidermal T cells (DETCs), a type of gd T cell located

in the mouse epidermis, serve as the primary anti-tumor

participants in this tissue (105). DETCs rely on the binding of gd
T cell surface receptors, TCRgd and NKG2D, to kill SCC cells (106)

(Figure 4). Another study suggests that gd T cells provide protection

against chemically induced SCC (107). Additionally, UV-damaged

KC trigger DETCs to produce IL-17A, which upregulates the

molecules involved in DNA repair responses (108). Therefore,
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DETCs may play a role in the prevention of UV-induced skin

cancer, although additional research is required. Nevertheless, IL-

17A can also stimulate the rapid growth of skin epithelial cells,

thereby promoting tumorigenesis (109). Our knowledge of DETC

biology remains limited, especially regarding DETC responses to

the skin TME (110). Exploring the anti-tumor mechanisms of

DETCs could provide valuable insights for research on human

epidermal gd T cells. NKT cells exert pro-cancer effects in

UVB-induced cSCC. The CD1d-NKT cell axis contribute

significantly to the promotion of UVB-mediated p53 mutations,

immunosuppression, and skin tumor development, whereas CD1d

knockout reduces UVB-induced processes such as inflammation,

tumorigenesis, and the absence of functional NKT cells (111, 112).

However, their contribution to the progression of human cSCC is

still uncertain. In conclusion, thoroughly investigating ILCs in skin

lesions is necessary to fundamentally understand their role in tumor

progression, enabling the development of optimal immunotherapy

approaches to prevent cSCC progression.
2.7 Mast cells

Mast cells (MCs) are essential components of immune systems

and are involved in conditions such as autoimmune disease,

cardiovascular disease and allergy (113). Originating from specific

bone marrow progenitor cells, MCs are part of the innate immune
FIGURE 3

The role of NK cells in cSCC. NK cells exhibit a context-dependent dual role in the carcinogenesis of cSCC. On one hand, NK cells suppress cSCC
growth by directly interacting with tumor cells and CLEC2A+

fibroblasts (91). However, inhibitory receptors (CTLA-4, PD-1) are upregulated in NK
cells and ILC1s within the tumor microenvironment (92), while TIGIT induces NK cell exhaustion to promote tumor progression (93). Furthermore,
chronic UV exposure expands IL-22-producing ILC3s, which drive keratinocyte (KC) clonal expansion, thereby accelerating tumor progression (95).
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system. They migrate to and mature in tissues in response to specific

microenvironmental conditions (114). Depending on their

function, the locations of MCs in human tissues vary, although

they are primarily abundant near blood vessels, epithelial cells,

fibroblasts, and nerves (115). Although the roles of MCs in allergic

and parasitic reactions are well characterized, their involvement in

carcinogenesis is not fully elucidated. Although they are not an

insignificant population in the TME, the involvement of MCs in

cancer is controversial. MCs may be found at the tumor margin or

within infiltrating tumors, and it has been reported that, depending

on their abundance, location, stimuli, and the tumor environment,

MCs can exhibit either pro-tumor or anti-tumor characteristics

(116, 117). MCs commonly accumulate in tumors and adjacent

tissues across various tumor types. Recruited to the TME by a

variety of cytokines, MCs are regulated by extracellular vesicles

(EVs) or active substances released from cancer cells or by

interacting directly with tumor cells (113, 118). Once activated

and degranulated, MCs become intensely pro-inflammatory, recruit

innate immune cells (mainly neutrophils, macrophages, and

eosinophils) as well as adaptive immune cells (B and T cells) to

coordinate anti-tumor immune responses (119, 120). However,
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MCs can also participate in tumor development by synthesizing

and storing angiogenic factors and matrix metalloproteinases,

which enhance tumor angiogenesis and invasion, respectively

(121). Mast cells can also induce immune suppression through

secreting IL-10, histamine, and TNF-a (122, 123).

MCs have been shown to exhibit an immunosuppressive

phenotype in skin cancer but a pro-inflammatory phenotype in

chronic skin inflammation, with the potential mechanisms and

transition pathways remaining unclear (124). Medler and colleagues

utilized a K14-HPV16 transgenic mouse model and demonstrated

that C5a mediates C5aR-dependent MC activation in SCC,

potentially influencing their suppressive impact on CD8+ T cell

cytotoxicity. Additionally, C5aR1−/− mice are less prone to

developing tumors (125). UVB stimulates vitamin D3 synthesis,

which is released by MCs via the vitamin D receptor expressed on

its surface. Vitamin D3 exerts immunosuppressive effects by

promoting IL-10 release (126). Another potential mechanism by

which MCs promote SCC progression is through the expression of

CYP27A1 and CYP27B1, which synthesize calcitriol (a metabolite

of vitamin D3 known for its immunosuppressive properties),

thereby inhibiting IgE-dependent MC activation (127). These
FIGURE 4

The role of ILTCs in cSCC. Innate-like T cells (ILTCs) exhibit dual pro-tumor and anti-tumor functions in cSCC pathogenesis. While they directly kill
SCC cells through surface receptors TCRgd and NKG2D (106), UV-damaged keratinocytes (KC) activate gd T cells to secrete IL-17A, which
paradoxically enhances DNA repair mechanisms (108) but simultaneously stimulates epithelial hyperproliferation to drive tumorigenesis (109).
Furthermore, the CD1d-NKT cell axis promotes UVB-induced p53 mutations and immunosuppression, synergistically accelerating cSCC
progression (111).
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results offer new insights and directions for exploring future cancer

immunotherapies targeting MCs.
2.8 Innate immune cells as therapeutic
targets for cSCC

Considering the crucial involvement of innate immune cells in

controlling cSCC progression and orchestrating anti-tumor

responses, there has been growing interest in therapeutic strategies

targeting innate immunity. Numerous preclinical investigations

underscore the potential of targeting innate immune cells, with

strategies including reprogramming, depletion, or reduction of

immunosuppressive cells demonstrating promise as therapeutic

approaches. While a number of clinical trials aimed at innate

immune cells are currently underway, clinical trials specifically

focusing on cSCC have yet to be initiated. In this context, we
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summarize the preclinical studies related to innate immunity in

cSCC to provide directions for future clinical research (Table 1).

A potential approach for targeting macrophages involves

leveraging their inherent plasticity. Research indicates that

alkannins can impede cSCC growth by promoting cell apoptosis

and the polarization of M1 macrophages through the upregulation of

PTEN (128). Furthermore, methionine enkephalin mitigated

immune suppression by decreasing the population of MDSCs and

polarizing TAMs toM1 phenotype in vivo (129). In a similar manner,

the administration of local imidazoquinoline has been demonstrated

to shift the macrophage population in cSCC towards a Th1 and M1

cytokine profile, thereby decelerating tumor progression (130).

Additionally, 5-aminolevulinic acid-mediated photodynamic

therapy (ALA-PDT), a non-invasive or minimally invasive

treatment for cSCC, induces the expression of CCL8 and recruits

M1 macrophages, consequently inhibiting tumor growth (131).

However, M1 macrophages exhibit the capacity to readily
TABLE 1 Therapeutic strategies targeting innate immunity in cSCC.

Immune
Cells

Therapeutic Targets Targeted Therapies Mechanisms and Functions

Macrophages

Macrophages Alkannin
Enhance cellular apoptosis and induce M1 macrophage
polarization through the upregulation of PTEN

Macrophages Methionine Enkephalin
Decrease the population of MDSCs and modulate the
polarization of TAMs

Macrophages Imidazoquinoline
Polarize the macrophage towards a Th1 and M1
cytokine profile

Macrophages ALA-PDT
induce the expression of CCL8 and recruit
M1 macrophages

Macrophages Nanoparticles encapsulating IL-12
Facilitate the conversion of macrophages from the M2
to the M1 phenotype

Arginase Arginase inhibitor Attenuate immune suppression

Neutrophil

COX-2 Celecoxib
Mitigate neutrophil infiltration and activation and the
synthesis of prostaglandin E2

CXCR2 CXCR2 inhibitors
Impede neutrophil recruitment and reduce the
formation of NETs

Myeloid-Derived
Suppressor Cells

NO iNOS inhibitors Augment anti-tumor immune responses

MDSC
Combined therapy of all-trans retinoic acid and
CTLA-4 blockers

Reduce circulating MDSC numbers, enhance treatment
response rates and effectiveness

Dendritic Cells

DC
Combining autologous CD16+ DC vaccination
and anti-PD-L1 antibody with radiotherapy

Enhance T cell-mediated anti-tumor efficacy

DC Methionine Enkephalin
Augment DC activation by inducing autophagy and
facilitating the release of DAMPs

ILCs and ILTCs

gd T cells Activin inhibitors
Promote proliferation of epidermal gd T cells, decrease
skin tumor formation and malignant progression

NKT CD1d knockout
Reduce UVB-induced inflammation, carcinogenesis, and
the absence of functional NKT cells

Mast cells
VEGF-C, VEGF-D VEGF-C and VEGF-D inhibitors Block MC-derived pro-angiogenic mediators

CXCR4, CXCL12 AMD3100 Disrupt migration of MCs to draining lymph nodes
TAMs, Tumor Associated Macrophages; ALA-PDT, 5-aminolevulinic acid-mediated photodynamic therapy; COX-2, Cyclooxygenase-2; MDSCs, Myeloid-Derived Suppressor Cells; iNOS,
Inducible nitric oxide synthase; DCs, Dendritic Cells; DAMPs, Damage-Associated Molecular Patterns; ILCs, Innate lymphoid cells; ILTCs, Innate-like T cells; MCs, Mast cells.
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transition back to the M2 phenotype upon stimulation, necessitating

sustained M1 differentiation to counteract this tendency (132). The

encapsulation of IL-12 in nanoparticles has been shown to facilitate

the transition of macrophages to M1 phenotype within the TME,

effectively protecting against melanoma development in murine

models (133). As stated previously, M2 macrophages secrete

arginase, which contributes to immune suppression. A recent

investigation employing a preclinical immune-privileged mouse

model of cSCC showed that the localized inhibition of arginase

significantly diminishes cSCC tumorigenesis. This effect is

particularly pronounced when combined with checkpoint

inhibitors, thereby providing promising prospects for the future

development of localized adjuvant therapies for cSCC (134).

Cyclooxygenase-2 (COX-2) is an enzyme implicated in

inflammatory processes, mainly by synthesizing prostaglandins,

and is associated with the pathogenesis of cSCC (135). Empirical

evidence indicates that applying the COX-2 inhibitor celecoxib

topically after UVB exposure successfully reduces neutrophil

infiltration, activation, and prostaglandin E2 production (136).

Furthermore, the topical administration of celecoxib decreases

chronic inflammation and inhibit the forming of UVB-induced

papillomas and carcinomas (137). These data strongly support the

clinical potential of using topical COX-2 inhibitors for the

prevention of human skin cancer. CXCR2, a critical receptor for

neutrophil chemoattraction, is essential for integrins activation and

neutrophils recruitment (138). Clinical trials designed to impede

neutrophil recruitment through the disruption of CXCR1/2

signaling pathways have already commenced (40). Targeting

CXCR2 has been shown to significantly reduce NET formation in

melanoma, and inhibition of NET formation has been observed to

enhance tumor sensitivity to double checkpoint blockade using PD-

1 and CTLA-4 inhibitors (51).

MDSCs exert direct immunosuppressive effects and facilitate

the proliferation of additional immunosuppressive cell populations,

including Tregs and TAMs, thereby perpetuating the

immunosuppressive TME (139). Strategic targeting of MDSCs to

selectively and effectively eradicate these immunosuppressive

elements within the tumor milieu is a promising avenue for

therapeutic intervention. Pharmacological agents that inhibit NO

production, including inducible nitric oxide synthase (iNOS)

inhibitors, have the potential to treat cSCC and its precancerous

lesions, such as actinic keratosis, by augmenting anti-tumor

immune responses (79). A considerable body of preclinical and

clinical research has evaluated the safety and efficacy of MDSC

inhibition, both as a monotherapy and in conjunction with other

therapeutic modalities, to improve anti-tumor responses and

address resistance mechanisms in cancer cells (140, 141). For

example, in patients with melanoma, combination therapy with

all-trans retinoic acid and CTLA-4 blockers has been shown to

reduce circulating MDSC numbers (142). Thus, combining

immunotherapy with targeting MDSCs may enhance treatment

response and effectiveness in other skin cancers.

DCs are important cells that present antigens, crucial for

activating T-cells and eliciting tumor-specific immune responses

(143). Therapeutic strategies aimed at augmenting the
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immunogenic function of DCs have successfully triggered anti-

tumor immune reactions in cancer patients. For instance, a

therapeutic regimen combining autologous CD16+ DC

vaccination and anti-PD-L1 antibody with radiotherapy

demonstrated enhanced T cell-mediated anti-tumor efficacy and

tumor size reduction in a patient with psoriasis and cSCC (144).

Beyond its role in modulating MDSCs, methionine enkephalin has

been shown to augments DC activation in cSCC by the induction of

autophagy and the facilitation of damage-associated molecular

patterns (DAMPs) release (145). These findings emphasize the

crucial function of DCs in orchestrating both innate and adaptive

immunity and underscore the substantial therapeutic promise of

targeting DCs.

ILCs and ILTCs play crucial roles as primary responders within

the TME during tumor initiation, immune surveillance, and

progression. Their ability to swiftly integrate and respond to

environmental cues makes them promising candidates for

immunotherapeutic interventions (84). For example, research by

Adhikary et al. indicated that hu man NK cells expanded ex vivo can

effectively inhibit the oncogenic characteristics of cSCC cells, leading

to a reduction in tumor growth. This study specifically found that

NK cell therapy impedes the formation, invasion, viability, and

growth of cSCC cell spheroids, indicating its potential utility as a

therapeutic approach for cSCC (146). Additionally, activin, a critical

factor in wound healing, was proven to prevent the proliferation of

epidermal gd T cells, thereby facilitating skin tumor formation and

malignant progression. Consequently, activin inhibition has shown

promise as a cancer therapy approach (147). Nonetheless, it is only

in recent times that ILCs and ILTCs have been identified as pivotal

components in cancer treatment. Consequently, immunotherapeutic

strategies aimed at these cells remain in the nascent stages of

development and require further investigation to evaluate their

viability as innovative targets for cancer treatment.

MCs accumulate near tumor cells before angiogenesis begins,

and tumor progression is closely associated with neovascularization.

Thus, focusing on MC activation or inhibiting pro-angiogenic

mediators from MCs might be an effective approach to prevent

skin tumor development. Prior research has demonstrated that

using soluble inhibitors to block the lymphangiogenic factors

VEGF-C and VEGF-D results in fewer squamous cell tumors in

transgenic mice (148). Furthermore, studies have demonstrated that

the expression of CXCR4 onMCs and its ligand CXCL12, expressed

by lymph node B cells, are crucial in the UV-induced migration of

MCs to draining lymph nodes (149). The team led by Sarchio

applied AMD3100, a CXCR4 antagonist, to interfere with this

trafficking process and noted a marked decrease in skin tumor

development (150).
3 Conclusion

Immunotherapy has fundamentally transformed cancer

treatment, particularly through strategies that target adaptive

immunity, like immune checkpoint inhibition and CAR T-cell

therapy, which have demonstrated considerable promise in
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specific instances. Nevertheless, the general response rates are still

low, underscoring the necessity of developing innovative

therapeutic approaches. Comprehensive investigations of the

TME in various cancers such as cSCC have elucidated the

intricate and dynamic interactions between neoplasms and the

host’s immune cells. These scientific advancements are

revolutionizing immunotherapy, fundamentally transforming the

therapeutic paradigm for metastatic cancers, and offering new

therapeutic options for advanced and metastatic cSCC.

Most immune system components play dual roles, contributing

to both the promotion and inhibition of tumors. This underscores

the intrinsic plasticity of the innate immune system that can be

strategically exploited for therapeutic interventions. Nonetheless,

more studies are needed to elucidate the molecular determinants

that reprogramming inflammatory cells towards an anti-tumor

phenotype to effectively capitalize on this potential. Although

treatments aimed at specific components of innate immunity

have demonstrated potential, the development of more precise

and efficacious strategies may require intricate combinations.

These combinations should not only augment the inflammatory

phenotype of immune cells, but also selectively inhibit or deplete

immunosuppressive cytokines and cell types. Importantly, targeting

immunosuppressive cells should avoid widespread elimination of

all innate immune cells within the TME, as this could adversely

affect the host. Considering the distinct characteristics of SCC in

individual patients, evaluating these attributes prior to treatment is

imperative to devise an optimal therapeutic regimen that enhances

response rates while minimizing toxicity. Furthermore, strategies

targeting the innate immune system must meticulously account for

potential off-target effects and the risk of inducing excessive

systemic inflammation. The identification of reliable biomarkers

to predict patient responses to treatments based on innate

immunity, along with the identification of optimal combination

strategies, will constitute critical challenges in future research.

Significant advancements in emerging technologies in the field of

immunomics have facilitated an unprecedented detailed examination

of tumor immunity. Single-cell technologies enable in-depth analysis

of immune cell subpopulations and spatial structures, thereby

providing a more comprehensive understanding of the TME.

Furthermore, artificial intelligence tools, including radiomics and

deep learning models derived from digital pathology, have

demonstrated considerable efficacy in predicting responses to

immunotherapy (151). The incorporation of these technologies has

markedly improved our capacity to predict drug efficacy and has

accelerated the progress of developing novel therapeutic strategies.

The integration of such innovations presents substantial potential for

addressing the existing limitations in our understanding of innate

immunity, potentially yielding transformative benefits for patients

and heralding a new era in cancer immunology.

In summary, innate immune cells are vital for detecting and

eradicating cancer cells as well as modulating adaptive immunity,

thereby establishing a robust platform for novel immunotherapy
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development. The synergistic activation of both innate and adaptive

immune responses presents significant potential for the

advancement of cancer immunotherapy. By uti l iz ing

contemporary technologies to comprehensively analyze the

intrinsic immune microenvironment of tumors, more effective

and personalized treatment strategies can be formulated. These

advancements are expected to propel the progress of cancer

immunotherapy and influence its future.
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