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Roles of microRNAs in acute
lung injury and acute respiratory
distress syndrome: mechanisms
and clinical potential
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Zhejiang, China, 2Department of Pediatrics, Jiaxing Hospital of Traditional Chinese Medicine,
Jiaxing, China
Acute lung injury (ALI) is characterized by a systemic and excessive inflammatory

response triggered by various direct or indirect pathogenic factors, resulting in

increased permeability of the alveolar-capillary membrane and the accumulation

of fluid in the alveolar and interstitial spaces. Clinical symptoms include reduced

lung compliance, respiratory distress, and severe hypoxemia that is difficult to

manage. Acute respiratory distress syndrome (ARDS) represents a more severe

form of ALI. The incidence of ALI/ARDS among critically ill patients is

approximately 10.4%, with a mortality rate as high as 45%. MicroRNA (miRNA) is

a small, non-coding RNA molecule approximately 22 nucleotides in length,

which plays diverse roles in cellular functions and exerts a significant

regulatory influence on disease progression. Research related to miRNAs,

particularly in the context of ALI/ARDS, has increased in recent years due to its

crucial involvement in the disease process. This article elucidates the molecular

mechanisms of miRNA and outlines the current research advancements in ALI/

ARDS, offering novel insights into the pathogenesis and potential clinical

applications of this condition.
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1 Introduction

Acute lung injury (ALI) is characterized by damage to alveolar epithelial cells and

capillary endothelial cells, leading to diffuse pulmonary interstitial and alveolar edema due

to incomplete respiratory function, resulting in severe clinical syndrome. In severe cases, it

can progress to acute respiratory distress syndrome (ARDS) (1). The direct risk factors for

acute lung injury (ALI) consist of severe pulmonary infection, drowning, pulmonary

contusion, and pulmonary embolism. Indirect risk factors encompass sepsis, massive blood

transfusion, trauma, pancreatitis, fat embolism, and cardiopulmonary bypass (2). At
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present, the pathogenesis of ALI/ARDS has not been elucidated,

and it is of great clinical significance to actively explore the specific

mechanism of the occurrence and development of ALI/ARDS.

MicroRNA (miRNA) is a kind of small, non-coding, single-

stranded RNA molecule with a length of about 22 nucleotides (3).

miRNA binds to the 3’ untranslated region (3’ UTR) of target

mRNAs to regulate gene expression, either by blocking translation

or promoting mRNA degradation. In humans, over 2000 mature

miRNAs are encoded by the genome. They perform diverse

functions, including inhibiting cell proliferation and apoptosis,

inducing DNA damage, regulating autophagy, modulating

immune system activity, and influencing cancer progression (4–6).

MicroRNAs (miRNAs) are a class of highly conserved single-

stranded Rnas with a length of about 22 nucleotides, which are

involved in the physiological and pathological functions of a variety

of diseases, including tuberculosis (7), ALI/ARDS (8), pulmonary

fibrosis (9), hepatitis (10), cardiovascular disease and cancer (10).

miRNA mainly binds to the 3 ‘-untranslated region (3’ -UTR) of

miRNA and controls multiple pathways and various cellular

processes, such as inflammation-immune response and cell-cell

interactions (11). Currently, it is understood that the

overactivation and recruitment of inflammatory cells in the lungs

lead to the production of numerous proinflammatory factors. The

interaction of these factors with effector cells is considered the

primary pathophysiological change in ALI/ARDS (12, 13). As a

crucial regulator of inflammation, miRNAs are believed to have a

significant impact on ALI/ARDS. Research has shown that abnormal

miRNA expression is commonly seen in ALI/ARDS. For instance, a

clinical trial revealed that miR-150 levels were lower in the serum of

ARDS patients and had a negative correlation with the acute

Physiology and Chronic Health assessment (APACHE) II score

(14), an indicator to evaluate the condition and prognosis of ICU

patients. The elevated expression of miR-122 is correlated with the

severity and prognosis of patients with Acute Respiratory Distress

Syndrome (ARDS). Combining miR-122 with the APACHE II score

provides a valuable assessment for predicting the prognosis of ARDS

patients (15). Given that miRNAs play an important role in ALI/

ARDS, miRNAs may become diagnostic indicators and therapeutic

targets for ALI/ARDS (16). This article examines the role of miRNAs

in the pathogenesis and progression of acute lung injury (ALI) and

acute respiratory distress syndrome (ARDS), aiming to offer novel

insights for the understanding, clinical diagnosis, and treatment of

these conditions.
2 Biological synthesis of microRNA

In 1993, Lee et al. discovered a 22-nt small non-coding RNA,

lin-4, in nematodes through genetic analysis. This RNA molecule

possesses unique characteristics: it is short in length, lacks protein-

coding capabilities, and is transcribed into a precursor RNA with a

hairpin structure. This precursor RNA is further processed into a

20-nucleotide RNA molecule through a specific mechanism (17).

Further studies showed that this RNA was an antisense translation
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inhibitor of the mRNA of heterochronic developmental timing

pathway proteins (LIN-14,LIN-28) in nematodes translational

repressor) (18, 19). The 3’ UTR sequence of mRNA can be

complemented by small temporal RNAs, inhibiting translation.

These small RNAs are normally involved in encoding proteins

that are repressed by the lin-4 gene product during the larval stage.

Mutations in the Lin-4 gene result in a loss of inhibition, leading to

abnormal development in mutants. In 2000, Reinhart (20)

discovered another small RNA molecule with post-transcriptional

regulatory function, known as let-7. Named small temporal RNAs

(stRNAs) for their precise temporal regulation, these molecules

have since been identified in various species including humans,

mice, and plants (21). In 2001, three research groups from different

countries identified nearly 100 genes in nematodes (Caenorhabditis

elegans), fruit flies (Drosophila melanogaster), and humans. As a

result, this type of small RNA was collectively named microRNA

(miRNA), sparking a surge in research interest. With the growing

number of miRNA family members, miRNA libraries have been

established globally to catalog and name new miRNAs. To date,

over 3,000 species of miRNA have been documented.

Currently, there is a well-established understanding of the

biosynthesis process of animal miRNA. Within the nucleus, the

primary transcript of miRNA gene, known as pri-miRNA (ranging

from 300–1000 bases in length), undergoes cleavage by the enzyme

RNaseIII – Drosha. This cleavage results in the formation of a

hairpin structure precursor miRNA (pre-miRNA) that is

approximately 70–90 bases in length (22). After initial cleavage,

the pre-miRNA is transported from the nucleus to the cytoplasm by

the transporter exportin-5. It is then further cleaved by the Rnase

III-Dicer enzyme to produce mature miRNA, which typically

ranges from 20 to 24 nucleotides in length. The mature miRNA,

along with other proteins in the RNA-induced silencing complex

(RISC), leads to degradation or inhibition of translation of target

mRNA. This process specifically targets precursor microRNAs (pre-

microRNAs) with a hairpin structure, rather than a continuous

double chain (23–25). The initial step in pri-miRNA cleavage

involves the enzyme Drosha, resulting in the formation of a 70-

nucleotide precursor hairpin structure (pre-miRNA). This structure

contains the necessary sequences for processing on both sides of the

hairpin. The double-stranded nature of pre-miRNA allows it to be

recognized by the nuclear protein DGCR8, which interacts with

Drosha to create the pri-miRNA processing complex (26). The

Drosha enzyme contains an RNaseIII domain that cleaves the

hairpin structure about 11 nucleotides from its base, releasing

pre-miRNA. RIIIDa cleaves the 3’ strand of pri-miRNA, while

RIIIDb cleaves the 5’ strand. CTT binding to RIIIDb is crucial for

Drosha stabilization. This cleavage reaction not only produces the

mature 3’ end of miRNA but also results in a 2 nucleotide

protrusion at the 3’ end, a characteristic of RNase III cleavage.

The cleavage occurs not at the base of the precursor hairpin but

rather 11 nucleotides away from it. Pre-miRNAs need the Dicer

enzyme in the cytoplasm for further processing, making their

translocation out of the nucleus a critical initial step in

maturation. The translocation of pre-miRNA from the nucleus to
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the cytoplasm is facilitated by a RanGTP/exportin-5 (Exp5)-

dependent mechanism. Exp5 recognizes the 2 nucleotide

protrusion at the 3’ end of pre-miRNA, facilitates its release from

the Drosha complex, binds to it, and transports it to the cytoplasm

for further processing. This process is regulated by the

concentration of RanGTP, where high levels in the nucleus allow

Exp5 to release pre-miRNA from the Drosha complex, while low

levels in the cytoplasm prompt Exp5 to release pre-miRNA for

binding with Dicer enzyme. The 3’ protruding end of the miRNA

precursor aids in its transport. In animal cells, Drosha cleavage

generates one end of the mature miRNA (3’ end), while Dicer

cleavage at the other end (5’ end) occurs in the cytoplasmic

envelope. Dicer, initially identified in studies on gene silencing by

small interfering RNA (siRNA), also plays a crucial role in miRNA

maturation (27–29). Figure 1 shows the biogenesis, function, and

regulation of miRNAs.

In fruit flies, nematodes, and mammals, Dicer plays a crucial

role in the processing of long dsRNA into mature miRNAs. This

process is akin to the production of double-stranded RNAs in RNA

interference. Initially, exportin-5 transports pre-miRNA into the

cytoplasm, where it is released due to the low concentration of

RanGTP. Dicer then recognizes the double-stranded region of the

pre-miRNA, which is phosphorylated at the 5’ end of the stem-loop

base and exhibits a distinctive structure at the 3’ end. Dicer unwinds

the two helices at the base of the stem-loop and cleaves both strands,

resulting in the production of a 22nt-long, 5’-phosphorylated,

siRNA-like, partially paired double-stranded RNA known as

miRNA. This RNA duplex consists of mature miRNA and its

complementary strand. Although Dicer can generate RNA

double-stranded intermediates during pre-miRNA processing,

these intermediates typically have a short lifespan and are

challenging to detect (30).
3 Pathophysiological mechanisms of
acute lung injury

The current conclusion suggests that alveolar cells play a crucial

role in maintaining the stability of the alveolar structure. Disruption

of the integrity of the alveolar capillary barrier or activation of the

inflammatory response can result in alveolar dysfunction, leading to

protein oedemas and the accumulation of inflammatory cells in the

alveolar space. This cascade of events ultimately culminates in the

development of ALI/ARDS (31, 32). During the acute phase seepage

(0 to 7 days), respiratory dysfunction rapidly develops, manifesting in

clinical symptoms such as shortness of breath, tachycardia, and

respiratory alkalosis. Diffuse alveolar damage, caused by disruption

of the epithelial-endothelial barrier, leads to excessive leakage of

protein-rich fluid and blood cells into the interstitium and alveoli.

Tissue damage triggers the migration of activated neutrophils, along

with alveolar macrophages, platelets, and other inflammatory and

fixed lung cells, contributing to inflammation (14, 33). Surfactant-

producing alveolar type II cells (AECIis) are damaged by plasma
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proteins and proinflammatory factors, leading to surfactant loss in

the alveoli. This loss causes atelectasis and decreased lung

compliance. Dysfunction of epithelial ion channels reduces

permeability needed to remove edematous fluid from the alveoli,

worsening gas exchange. This leads to hyaline membrane formation,

alveolar hemorrhage, and reduced lung compliance. Alveolar vascular

injury also alters vasoconstrictor and vasodilator tone, leading to

microthrombosis and pulmonary hypertension due to increased right

ventricular afterload. Inappropriate mechanical ventilation and fluid

overload can further worsen right ventricular dysfunction. Combined

airway epithelial and endothelial injury causes perfusion mismatch

and oxygenation difficulties (34, 35). However, the mechanisms of

microvascular endothelial and alveolar epithelial injury are likely to

be more complex and may vary depending on the intrapulmonary or

extrapulmonary events that are triggered (36).

Within 5 to 7 days after injury, the exudative phase transitions

smoothly to the proliferative phase. This phase is characterized by

fibroblast and type II alveolar cell proliferation, as well as

phenotypic changes and differentiation into type I alveolar cells.

The regeneration of the epithelial layer helps clear edematous fluid

in the lung, while remaining intraalveolar debris can be cleared by

inflammatory cells, particularly macrophages. As the repair

progresses, vasomotor tension decreases, leading to gradual

improvements in oxygenation, pulmonary hypertension, and

pulmonary compliance. In some patients, the proliferative phase

may advance to the fibrotic phase, marked by diffuse fibrotic

changes in lung tissue due to unsuccessful alveolar collagen

clearance (14, 33, 37). Fibroproliferative changes may occur

earlier than expected, with evidence suggesting collagen synthesis

starting as early as 24 hours into the course of ARDS, potentially

overlapping with inflammatory changes (36, 38).
4 miRNA: regulators in ALI/ARDS

Based on pathological and clinical manifestations, ARDS can be

categorized into early and late lung injuries, representing the

exudative phase and the fibroproliferative phase, respectively. The

primary damage occurs in pulmonary vascular endothelial cells and

alveolar epithelial cells (39). In the early stages, there is an increase

in capillary permeability and the recruitment of leukocytes to the

sites of inflammation. In the late stages of ARDS, there is the

presence of fibrous and granulation tissue, alveolar type II cells, new

blood vessels, and a disruption in the extracellular matrix during the

healing process (38, 40). Recent studies have shown that the

regulatory function of mirna in ARDS is mediated through a

variety of physiological and pathological processes, such as

inflammatory response and apoptosis (41). The role of lung

epithelial cells and vascular endothelium in the pathogenesis of

ARDS is well established. Various miRNAs play a role in epithelial

cell apoptosis and endothelial dysfunction. In cardiopulmonary

bypass-induced ALI, miR-320 was found to induce apoptosis and

inhibit proliferation of A549 cells (human alveolar type II epithelial
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cells) (42). Li et al. identified Bcl-2 as the target gene of miR-181a,

suggesting that downregulating miR-181a expression could

decrease apoptosis in A549 cells treated with lipopolysaccharide

(LPS) (43). Additionally, in a mouse model, miR-1246 was found to

mediate LPS-induced lung endothelial cell apoptosis through partial

inhibition of angiotensin-converting enzyme 2 (ACE2) (44). Shah.et
Frontiers in Immunology 04
al demonstrates that miR-34a regulates mechanisms-1 and the

expression of p53 to control endothelial cell apoptosis and

dysfunction (45). Furthermore, the delivery of miR-126 through

exosomes originating from endothelial progenitor cells enhances

the expression of tight junction proteins, thereby preserving the

integrity of the alveolar epithelial barrier (31).
FIGURE 1

Biogenesis, function, and regulation of miRNAs.
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Lung inflammation is a significant contributor to acute lung

injury (ALI). An imbalance between inflammatory and anti-

inflammatory responses exacerbates the development of ALI/

ARDS. In human lung epithelial cells, miR-454 was found to

inhibit CXCL12 mRNA translation by targeting its 3’-UTR. The

expression of miR-454 suppresses the production of inflammatory

cytokines and enhances the integrity of the alveolar epithelial

barrier (46). LPS-induced acute lung injury (ALI) was identified

by elevated levels of the proinflammatory cytokines IL-6 and miR-

181b. Previous studies have shown that miRNA-181b regulates the

expression of p65 protein via a specific signaling pathway, thus

playing a crucial role in the development of ALI (47). miR-140-5p

has been shown to increase the expression of toll-like receptor 4

(TLR4) and MyD88 protein in human lung A549 cells, along with

the activation of nf-kappa B. Up-regulation of miR-140-5p has been

found to inhibit the inflammatory response in an acute lung injury

(ALI) model by reducing the activation of the TLR4/MyD88/NF-kB
signaling pathway (48). In ALI/ARDS induced by viral and bacterial

lung infection, there was a significant increase in the expression of

miRNA-200c-3p, along with a decrease in the expression of ACE2

protein. The overexpression of miR-200c-3p, dependent on Nf-kb,
led to a reduction in ACE2 levels, subsequently increasing

angiotensin II levels and resulting in lung injury (49). Some

miRNAs (e.g., miR-140-5p, miR-200c-3p) not only suppress NF-

kB signaling but are also transcriptionally induced by NF-kB,
creating dynamic feedback loops that amplify or resolve

inflammation. Also, miRNA-mediated signaling pathways exerted

their roles by integrating mitochondrial cross-talk and regulating

production of inflammasomes. miRNA-466 family molecules are

secreted by the airway epithelium and regulate inflammatory

responses through the NLRP3 inflammasome pathway (50). The

inactivation of the Nlrp3 inflammatory corpuscle, mediated by

vesicle delivery of micrornas, particularly miR-223 and miR-142,

inhibits macrophage activation and lung inflammation (8). Yan

et al. discovered that miR-155 is expressed in bone marrow-derived

lymphocytes and is freely expressed in lymphatic lung parenchymal

cells. They found that miR-155–2 promotes acute lung injury (ALI)

induced by LPS through the Tie-2 channel in lung parenchymal

lymphocytes (51). MiR-223 plays a crucial role in acute lung injury

(ALI) induced by damage-associated molecular patterns (DAMPs).

Specifically, miR-223 downregulates NLRP3 expression and inhibits

IL-1b release, leading to a decrease in Ly6G+ neutrophils. This

ultimately mitigates ALI caused by mitochondrial DAMPs (52).

Studies have also indicated that miRNAs regulate inflammation

through various pathways. For instance, research conducted by Yin

et al. demonstrated that miR-34/449 suppresses inflammation by

targeting IGFBP-3, consequently inhibiting autophagy (53).

Macrophages in the occurrence and development of

inflammation and has an irreplaceable role in the fading. Of

interest is the involvement of macrophages in initiating the lung

repair process (54). The current study has shown that most

experiments involving ALI and miRNAs have focused on

macrophages. One study examined the processing of inactivated

RAW264.7 cells by Staphylococcus aureus and found that the
Frontiers in Immunology 05
expression of miR-128 was associated with MyD88 UTR.

MyD88 is a key downstream molecule in the Toll-like receptor

(TLR) and interleukin (IL) 1 receptor signaling pathways. The

interaction between miR-128 and MyD88 led to a significant

downregulation of miR-128 expression and inhibition of the NF-

kB signaling pathway (55). In RAW264.7 mouse macrophages, the

binding of miR-92a to the 3’-UTR of phosphatase and tensin

homologue (PTEN) resulted in decreased expression of miR-92a.

Inhibition of miR-92a led to reduced inflammation in LPS-induced

ALI mice by blocking the PTEN/AKT/nf-kB signaling pathway (56).

Macrophages exhibit two phenotypes in response to environmental

stimuli, one classically activated (M1) and the other alternative

activated (M2) (57). IFN-g and LPS stimulation led to the

development of an M1-type phenotype characterized by elevated

expression of iNOS and other genes linked to pathogen elimination,

along with genes that regulate the inflammatory response to

intracellular pathogens. Conversely, IL-4 and IL-13 triggered

increased expression of arginase-1 (ARG-1) in M2 macrophages.

These macrophages exhibited upregulation of genes associated with

wound healing, clearance of dead/dying cells or tissues, and

dampening of inflammation (58–60). M1 and M2 macrophages in

ALI/ARDS pathophysiologic process plays a vital role (61). Lps-

treated lung macrophages and U937 cell lines exhibited high

expression of miRNA-34a, which was due to increased iNOS

secretion by lung macrophages through the STAT3 pathway (62).

Partial inhibition of Notch 1 miR-146a leads to the inhibition of

macrophage M1 polarization and promotes the transition to the M2

phenotype. Furthermore, PPARg, which is also targeted by Mir-146a

for macrophage polarization, plays a role in driving the transition

toward the M2 phenotype (63).

Fibrosis is a prominent characteristic of advanced Acute Lung

Injury (ALI). Previous studies have demonstrated that miR-204 can

reduce fibrosis and inflammation in the pulmonary alveoli by

silencing IRF2 (64). Non-physiological stretching of alveolar type

II (ATII) cells can induce fibrosis and expedite the epithelial-

mesenchymal transition process, which is associated with

miRNAs like miR-15b, miR-25, and let-7d (65). The down-

regulation of miR-425 leads to the activation of the TGF-b
signaling pathway by up-regulating lysine demethylase 6A

(KDM6A), which in turn promotes lung fibroblast proliferation

and ultimately results in fibrosis (66). Stem cell therapy has emerged

as a popular non-invasive treatment for Acute Lung Injury (ALI),

showing significant efficacy in animal models. Previous experiments

have elucidated the biological process of miRNA regulation of

Mesenchymal Stem Cells (MSCs). For instance, miR-132-3p has

been shown to regulate the expression of ADAMTS-5, promoting

the differentiation of rat MSCs into cartilage (67). Moreover, miR-

302a and miR-34a have been identified as regulators of MSC

proliferation. These miRNAs, along with Parp1, function as

epigenetic switches that help maintain pluripotency. Interestingly,

miRNA-302a and miRNA-34a have been found to have contrasting

effects on PARP1 expression (68). Additionally, it has been

confirmed that Wnt5a is a target gene of miR-374 in rat bone

marrow mesenchymal stem cells. The Wnt5a/b-catenin signaling
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pathway plays a crucial role in regulating the proliferation and

migration of transformed MSCs (69).
5 Mechanism of action of miRNAs in
ALI/ARDS

ALI/ARDS primarily damages alveolar epithelial cells, vascular

endothelial cells, and macrophages, resulting in alterations in cell

morphology, structure, and function. As such, it is imperative to

investigate the associated mechanisms at the cellular and

molecular levels.
5.1 miRNAs associated with alveolar
epithelial cells

Alveolar epithelial cells are crucial elements of the alveolar

vascular barrier. Damage to these cells can result in a decline in

barrier function, loss of epithelial integrity, decreased surfactant

synthesis, impaired lung water clearance, and ultimately,

pulmonary fibrosis. MicroRNAs play a role in regulating cell

proliferation, apoptosis, and the expression of inflammatory

factors by modulating various signaling pathways, thereby

influencing the function of alveolar epithelial cells.

5.1.1 Protective miRNAs
miR-145-5P was s ign ificant ly down-regu la ted in

lipopolysaccharide (LPS)-induced alveolar type II epithelial cells

(ATII) (70). Additionally, miR-16 (71), miR-140 (72), and miR-

140-5p were also significantly decreased in adenocarcinomic

human alveolar epithelial cell (A549) (48). These miRNAs

interact with the 3’ UTR of toll-like receptor 4 (TLR4) mRNA.

TLR4, a pattern recognition receptor of LPS, is located in the cell

membrane and cytoplasm (73). Upon LPS binding, it initiates a

signaling cascade that activates the downstream NF-KB pathway

(74). Therefore, the overexpression of miR-145-5p, miR-16, miR-

140, and miR-140-5p can inhibit TLR4 expression, block NF-KB

pathway activation, and reduce inflammatory factor expression,

thereby alleviating acute lung injury (ALI). It was observed that

miR-16 expression significantly decreased in hyperoxia-induced

type 2 alveolar epithelial cells (AECII, T2AEC) (75), while miR-

216a expression was reduced in LPS-induced A549 cells (76).

Overexpression of miR-16 promotes cell proliferation and inhibits

apoptosis, potentially through the TGF-b/Smad2 and JAK/STAT3

pathways (75). MiR-216a targets JAK kinase 2 (JAK2) to modulate

JAK2/STAT3 and NF-KB signaling, inhibiting apoptosis,

autophagy, and inflammatory cytokine release (76). Studies have

shown that the TGF-b/Smad pathway primarily regulates cell

growth, proliferation, differentiation, apoptosis, and migration

(77), while the JAK/STAT pathway controls cytokine

transcription, adhesion molecules, and inflammatory factors (78).

Therefore, miRNAs can mitigate ALI/ARDS by influencing

multiple signaling pathways (TGF-b/Smad, JAK/STAT, and

NF-KB).
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5.1.2 Injurious miRNAs
miR-34a expression was significantly increased in LPS-induced

ATII cells (79), T2AEC and murine lung epithelial-12 (MLE12)

exposed to hyperoxia. The results confirmed that miR-34a could

bind to forkhead box 03 (Fox03) (79) and 3’-UTR of angiopoietin-1

(Ang1) (80), which are related to autophagy. Previous studies have

shown that FoxO3 can inhibit the activity of NF-kB (81), while Fang

et al. (82) found that Ang1 can inhibit the activity of NF-kB in

human T2AEC to restore the permeability of epithelial cells to

proteins. So the miR - 34 a mediated by target control FoxO3 or

Ang1 NF - KB pathways to regulate alveolar epithelial cell function.

In the LPS-induced AEC model, Targeting B cell lymphoma 2

related A1 A1,BCL2A1) gene miR-326 activated the NF-KB

signaling axis (83), and another study found that miR-300

targeted the inhibitor kappaB a (IkBa) protein and activated the

NF-KB pathway in A549 cells treated with LPS (84). And in the

resting state, NF - KB dimers with IkB protein in cytoplasm (85),

after lung injury, cells by exogenous stimuli, NF - KB activation into

the nucleus launched of the inflammatory response (86). The results

showed that overexpression of miR-326 and miR-300 could

increase the expression of pro-inflammatory factors and promote

the apoptosis of alveolar epithelial cells by mediating the NF-KB

signaling pathway, while inhibition of miR-326 and miR-300

expression could alleviate acute lung injury.
5.2 miRNAs associated with vascular
endothelial cells

ALI induces depolymerization of cytoskeletal proteins in

vascular endothelial cells, resulting in the loosening of

intercellular connections. This leads to increased vascular wall

permeability and the accumulation of inflammatory cells such as

monocytes, lymphocytes, and multinucleated cells. MiRNAs target

specific mRNAs in vascular endothelial cells, influencing

endothelial cell homeostasis by modulating processes such as the

cell cycle, apoptosis, cell layer permeability, and inflammatory

signaling. This regulation ultimately impacts the function of lung

injury associated with endothelial cells.

5.2.1 Protective miRNAs
The expression of miR-339-3p, miR-539-5p and miR-33 was

down-regulated in LMECs induced by LPS. miR-339-3p was

confirmed to target annexin A3(Anxa3), inhibit AKT/mTOR

pathway (87), while Anxa3 is involved in the regulation of

cytoskeletal protein interaction, cell differentiation, proliferation,

apoptosis and inflammatory response (88), and AKT/mTOR

pathway also regulates cell apoptosis and inflammatory response

(89).Luciferase reporter gene confirmed that Rho-associated coiled-

coil conta-ining protein kinase 1, ROCK1) is a target gene of miR-

539-5p (90), and ROCK1 is associated with oxidative stress and

apoptosis in ALI (91). Therefore miR - 339–3 p and miR - 539–5 p

reduce cell apoptosis of acute lung injury and the expression level of

inflammatory factors. miR-33 is negatively correlated with receptor

interacting protein 140(RIP140) (92), which is a co-activator of NF-
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KB. Overexpression of miR-33 reduced the inflammatory response

of ALI by recruiting cAMP response element binding protein

(CREB) to regulate the production of proinflammatory factors (93).

5.2.2 Injurious miRNAs
After LPS and hyperoxia stimulated endothelial cells (EC), it was

found that Mir-34a-5p-mediated endothelial dysfunction was related

to the decreased expression of histone deacetylase 1(SIRT1) and

increased expression of p53 (45), SIRT1 promotes the entry of

apoptotic protein Bax into mitochondria by mediating p53, leading

to mitochondrial oxidative stress damage (94, 95). LPS significantly

stimulated the expression of miR-1246 and miR-92a in pulmonary

microvascular endothelial cells. Because miR-1246 targets the

angiotensin-converting enzyme 2(ACE2) gene (44), ACE2 is through

pyrolysis Ang II produces angiotensin 1–7 to Ang II inactivation (96),

And Ang II receptors and regulating oxidative stress, inflammatory

reaction and apoptosis to relieve acute lung injury (97). The results

showed that inhibition of miR-34a-5p or miR-1246 expression could

inhibit oxidative stress, alleviate endothelial cell apoptosis, and reduce

the expression level of inflammatory factors. Inhibition of miR-92a

increased the expression of its target gene integrin a5(ITGA5) (98),

ITGA5 plays a key role in cell adhesion, proliferation, and migration

(99). The results also confirmed that ITGA5 significantly increased

pulmonary microvascular endothelial cell migration, enhanced

angiogenesis, improved endothelial cell function, and reduced the

release of pro-inflammatory cytokines. Studies have shown that the

above effects of miR-92a and ITGA5 may be related to PI3K/AKT and

NF-KB pathways (100).
5.3 miRNAs associated with macrophages

Macrophages play diverse roles including phagocytosis and

secretion. During the initial phase of acute lung injury, macrophages

release various cytokines to trigger the inflammatory response.

Numerous studies have demonstrated the involvement of miRNAs

in immune regulation, monocyte development, differentiation,

proliferation, and other key processes.
5.3.1 Protective miRNAs
The expression levels of miR-497 and miR-30b-5p were found to

be reduced in mouse peritoneal macrophage cells (RAW264.7) when

induced by LPS. Inhibition of miR-497 expression led to an increase

in interleukin 1 receptor associated kinase 2 (IRAK2) expression,

while simultaneously inhibiting the expression of proteins in the NF-

kB pathway (101). In the early stages of TLR, both IRAK1 and IRAK2

play important roles, but in the later stages IRAK2 plays a key role

(102). Previous studies have found that IRAK2 is involved in IL-

1induced activation of the NF-KB pathway (103). miR-30b-5p is

associated with the expression of suppressor of cytokine signaling 3,

which is associated with the expression of suppressor of cytokine

signaling 3. SOCS3) of 3 ‘UTR with (104), and a variety of cytokines
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mediated SOCS family (105), and negative regulation of SOCS3 JAK/

STAT3 pathway mediated pulmonary macrophage inflammatory

(106). Both miR-497 and miR-30b-5p have been shown to

suppress the expression of inflammatory factors in acute lung

injury (ALI). Lipopolysaccharide (LPS) exposure has been linked to

decreased expression of miR-495 and miR-802 in alveolar

macrophages. Research indicates that methylation of the miR-495

gene promoter leads to miR-495 degradation and activation of

NLRP3, while preventing miR-495 degradation can mitigate the

inflammatory response and pyroptosis in alveolar macrophages,

ultimately alleviating ALI (107). You et al. (108) confirmed that

miR-802 improved lung injury by targeting pellino E3 ubiquitin

protein ligase family member 2(Peli2). Peli2 mediates the activation

of NLRP3 by promoting the ubiquitination of NLRP3 induced by

LPS, which is closely related to the occurrence and development of

pulmonary inflammatory diseases (109). In conclusion, both miR-

495 and miR-802 can mediate inflammation and ameliorate ALI

through the NLRP3 signaling axis.

5.3.2 Injurious miRNAs
In LPS-induced RAW264.7 cells, there was a significant increase

in the expression of miR-92a and miR-34b-5p. It was observed that

miR-92a is linked to the phosphate and tension homology deleted

gene on chromosome ten. The PTEN 3’-UTR interacts with and

inhibits the PTEN/AKT/NF-KB signaling pathway, thereby

suppressing the inflammatory response (56). PTEN plays a key

role in various processes such as proliferation, apoptosis and

inflammation, and can inhibit the PI3K/AKT signaling pathway

(110). Studies have confirmed that progranulin (PGRN) is the

functional target of miR-34b-5p (111) and plays a key role in

pathological processes such as inflammation and apoptosis (112,

113). miR-199a directly targets SIRT1 gene in alveolar macrophages

(114), and SIRT1 has anti-inflammatory, anti-oxidation, inhibition

of DNA damage and reduction of apoptosis in various types of cells

(115, 116). Therefore, by inhibiting the miR - 92 - a and miR - 34 b -

5 p and miR - 199 - a expression, reduce the excessive inflammatory

reaction and apoptosis on ALI, ALI survival rate in mice.
6 The roles of microRNAs in
mitochondria damage associated ALI/
ARDS

Mitochondria also play a pivotal role in ALI/ARDS by

interacting with microRNA (miRNA). Based on current evidence,

mitochondria are central hubs in ALI and ARDS, orchestrating

metabolic dysfunction, inflammation, and cell death. Mitochondrial

quality control systems, including biogenesis, dynamics, and

mitophagy, interact with novel programmed cell death forms

such as pyroptosis, ferroptosis, and cuproptosis, shaping tissue

damage and repair processes. Mitochondrial impairment,

characterized by disrupted energy metabolism (e.g., TCA cycle
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collapse), excessive reactive oxygen species (mtROS), and

unbalanced fission/fusion dynamics, directly amplifies lung

damage. miRNAs, often shuttled via extracellular vesicles (EVs),

regulate these processes by targeting mitochondrial pathways:

Mitochondrial DNA (mtDNA) released as a damage-associated

molecular pattern (DAMP) via EVs or necroptosis activates

TLR9, fueling inflammasomes (e.g., NLRP3) and endothelial

injury. This mitochondria-miRNA crosstalk represents a

promising target for precision interventions in ALI/ARDS. In this

study, several studies have provided the experimental data of the

involvement of mitochondria in miRNA functioning of ALI

and ARDS.

Feng et al. (52) reported that miR-223 reduced the number of

Ly6G+ neutrophils and suppressed the activity of the NLRP3

inflammasome to alleviate ALI induced by mitochondrial

damage-associated molecular patterns (DAMPs). Mitochondria

provide energy through oxidative phosphorylation, while p53

plays a central role in maintaining mitochondrial homeostasis

(94). Mitochondria are involved in the regulation of apoptosis

(programmed cell death), a process critical for precise cell

number control and removal of unwanted/dangerous cells (95).

Under stress conditions, p53 regulates mitochondrial repair,

degradation, and apoptosis through multiple mechanisms. Dilip

Shah et al. (45) showed that miR-34a prompted the translocation of

p53 and Bax to the mitochondrial compartment by down-regulated

miR-34a-targeted sirtuin-1 (SIRT-1), which disrupted the

mitochondrial membrane potential, caused cytochrome C to be

released into the cytosol, and thereby triggered a cascade of

mitochondrial-mediated apoptosis in the lungs.

A recent study showed that a nanocarrier‐mediated synergistic

miRNA‐127 antagonist exerted an anti‐inflammatory effect on ALI

by restoring the mitochondrial functions of target cells (117). Almaz

Zaki et al. (118) demonstrated that elevated miR-495 might

represent a new target for future therapies in ALI by improving

mitochondrial function. In line with these findings, Zhang et al.

(119) found that increased miRNA-21 expression could prevent

and treat ALI by elevating mitochondrial membrane potential and

reducing the expression of mitochondrial fission proteins Drp1 and

Fis1. The above studies collectively demonstrated that mitochondria

serve as central hubs targeted by miRNAs to regulate key processes

like metabolic dysfunction, inflammation, and cell death in the

pathogenesis of ALI/ARDS.

7 miRNAs are potential biomarkers for
the diagnosis and prognosis of ALI/
ARDS

Recent research has focused on investigating the roles of

miRNAs in various cellular processes such as proliferation,

differentiation, body growth, development, and metabolism.

Studies have shown that miRNAs play a crucial role in organ

development and function (120). During lung development, the
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expression of miR-17–92 is initially high but decreases as

development progresses. This decrease in expression can lead to

increased proliferation and the maintenance of an undifferentiated

phenotype in lung epithelial progenitor cells (121). miRNAs play a

crucial role in the pathogenesis of lung cancer and the suppression

of tumor cell growth. Madhu et al. (122) discovered that the let-7

microRNA family exhibits low expression levels in lung cancer,

leading to a potential decrease in the disease burden. Boeri et al.

(123) illustrated that the expression levels of miRNAs in lung tissue

and plasma can serve as predictive markers for lung cancer

development and metastasis, offering both theoretical and clinical

implications for early detection of the disease.

The expression of specific miRNAs in serum is closely

associated with various human diseases. Recent research has

focused on using miRNAs as disease markers, with serum

miRNAs offering advantages such as specificity, ease of detection,

and high sensitivity. Combining multiple miRNAs to create an

equation for accurate disease prediction is considered a valuable

diagnostic approach. A significant number of patients with severe

trauma or multiple traumas develop ALI/ARDS, emphasizing the

importance of real-time evaluation and management. Current

clinical and biochemical indicators used in intensive care units

often fall short in assisting medical professionals. Studies have

indicated significant changes in certain miRNAs in patients with

ARDS, both in serum and cells, with varying degrees of miRNA

expression alterations observed in different diseases. For instance,

miR-21 is up-regulated in acute kidney injury due to renal ischemia/

reperfusion, while miR-199a-3p shows lower expression levels in

heart failure (124, 125). Another point is that miRNAs are

conserved (126), which is reflected in the fact that miRNAs share

some important sites with their precursor pre-miRNA, and the

conservation may be involved in the recognition and cleavage of

Dicer enzyme. The characteristics of these miRNAs indicate that we

can use miR-NAs to evaluate and monitor patients with ALI/ARDS,

and miRNAs can be used as biomarkers of the disease (127).

In a previous study, Yan et al. (128) investigated the impact of

miRNAs on the prognosis of ARDS/ALI by conducting a clinical

experiment involving 244 patients with ALI due to sepsis (44 severe

sepsis, 102 sepsis) and 19 healthy volunteers. Patients with severe

sepsis-induced ALI or ARDS exhibited notably higher APACHEII

scores, 30-day mortality rates, and days of noninvasive ventilation

compared to those with sepsis. The QRT-PCR results indicated that

the levels of miR-155 and miR-146a in the plasma of patients with

severe sepsis and sepsis-induced ALI were significantly elevated in

comparison to the control group. Subsequent follow-up of 26 patients

with increased miR-155 and miR-146a levels revealed that a majority

of the patients experienced reductions in these markers, suggesting

that their peak expression coincided with the most severe phase of

ALI. ROC curves were utilized to assess the predictive value of miR-

155 and miR-146a levels for 30-day mortality. The results

demonstrated that the AUC for miR-155 and miR-146a in

predicting 30-day mortality in sepsis patients were 0.782 and 0.733,

respectively, slightly below the APACHEII score of 0.835 (P < 0.05).
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Currently, clinical trials investigating the use of miRNAs as

therapeutic targets primarily focus on tumors like lung cancer and

liver cancer, with limited exploration in the context of ALI/ARDS

diagnosis or treatment. There is a pressing need for clinical trials to

evaluate the potential of miRNAs as therapeutic targets in ALI/

ARDS. MiRNAs play a crucial role in the pathogenesis of ALI/

ARDS and hold promising prospects for clinical intervention.

Advancements in human genome data and delivery vectors may

pave the way for the translation of miRNAs as therapeutic targets

into clinical practice for ALI/ARDS. The targets and function of

microRNAs in ALI/ARDS were summarized in Table 1.
8 Other interacted proteins or
pathways

LncRNAs also play important roles in ALI or ARDS (129). For

example, lncRNA ZFAS1 regulates the inflammatory responses in

sepsis-induced ALI via mediating miR-193a-3p (130). Extracellular

vesicles (EVs), such as exosomes, can carry miRNAs and other

bioactive molecules between cells (131). In ALI and ARDS, they can

mediate cell-to-cell communication and affect the inflammatory

process. Exosomes from macrophages can transfer miRNAs to

alveolar epithelial cells, regulating their function (132). EVs and

miRNAs affect the inflammatory process, including activation or

inhibition of inflammatory signaling pathways, such as the NF-kB
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pathway (133). Figure 2 displays the molecular mechanisms of

miRNAs in occurrence and development of ALI/ARDS.
9 Summary and prospectives

The etiology of ALI/ARDS is complex. Despite significant

advancements in understanding its pathogenesis, the exact

mechanisms remain incompletely understood. Currently,

uncontrolled inflammation is widely recognized as the primary

pathophysiological alteration in ALI/ARDS (134–136). Inhibition

of uncontrolled inflammation is a crucial strategy for treating ALI/

ARDS. Evidence suggests that miRNAs play a significant role in

regulating the inflammatory response in ALI/ARDS. Exploring

miRNAs associated with the inflammatory signaling pathway of

ALI/ARDS is clinically important for early diagnosis and treatment.

This article delves into the role of miRNA, particularly miR-21, in

the pathogenesis of ALI/ARDS and presents novel treatment

approaches. While ongoing research continues to update our

understanding of miRNA regulation in ALI/ARDS, current

findings already underscore its significance in the disease’s onset

and progression. Regulation of the relevant miRNAs occurs at the

cellular, receptor, signaling pathway, and gene transcription levels

(137). The intricate regulatory mechanism of miRNA within

signaling pathways holds promise as a therapeutic agent or drug

target for various pathological processes. Evidence suggests that
TABLE 1 Targets and function of microRNAs in ALI/ARDS.

Type Micro RNA Target Function Signaling pathway Reference

Protective miR-145-5p TLR4 anti-inflammatory NF-kB (70)

miR-16 TLR4 anti-inflammatory NF-kB (71)

miR-140 TLR4 anti-inflammatory NF-kB (72)

miR-140-5p TLR4 anti-inflammatory NF-kB (48)

miR-16 TGF-b anti-inflammatory JAK/STAT3 (75)

miR-216a JAK2 anti-inflammatory JAK/STAT3,NF-kB (76)

miR-339-3p Anxa3 anti-inflammatory AKT/mTOR (87)

miR-33 RIP140 anti-inflammatory NF-kB (92)

miR-497 IRAK2 anti-inflammatory NF-kB (101)

miR-30b-5p SOCS3 anti-inflammatory JAK/STAT3 (104)

miR-495 NLRP3 anti-inflammatory / (107)

miR-802 NLRP3 anti-inflammatory / (108)

Adverse miR-34a Foxo3/Ang1 inflammatory NF-kB (79)

miR-326 BCL2A1 inflammatory NF-kB (83)

miR-300 IKBa inflammatory NF-kB (84)

miR-34a-5p SIRT1 inflammatory / (45)

miR-1246 ACE2 inflammatory / (44)

miR-92a ITGA5 inflammatory PI3K/AKT,NF-kB (56)
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changes in specific miRNAs levels are linked to different diseases,

making miRNAs potential biomarkers for conditions like cancer

and cardiovascular diseases. Notably, miRNAs are pivotal in

regulating inflammatory responses, with altered expression in

ALI/ARDS. Some miRNAs have emerged as novel biomarkers for

diagnosing and predicting outcomes in ALI/ARDS. Multiple clinical

cohorts have validated specific miRNA signatures for ALI/ARDS

prognosis, including miR-122, miR-150, miR-155, and miR-146a.

Challenges in delivery standardization, manufacturing scalability,

and regulatory pathways are critically analyzed, providing a

framework for clinical implementation. Consequently, miRNAs

are being explored as potential therapeutic targets in diseases,

with ongoing clinical trials testing miRNA drugs. This article

elucidates molecular mechanisms of miRNAs in ALI/ARDS,
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outlines research advancements, and proposes future directions

including miRNA-ibrutinib synergies, PROTAC-mediated protein

degradation, and single-cell-resolved miRNA heterogeneity

mapping via scSTAR/scPDA. Clinical translation challenges

(e.g., inhalable nano-delivery, trial design) are addressed with

scalable solutions.

This review explores the involvement of miRNAs in the

development of ALI/ARDS. Numerous studies have shown that

enhancing the levels of beneficial miRNAs and suppressing

detrimental miRNAs can mitigate the symptoms of ALI/ARDS.

Additionally, certain miRNAs have been identified as potential

biomarkers for ALI/ARDS. Consequently, modulating the

expression of miRNAs in ALI/ARDS could offer a promising

avenue for future therapeutic interventions in lung injury.
FIGURE 2

The molecular mechanisms of miRNAs in occurrence and development of ALI/ARDS.
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