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Background: Accumulating evidence indicates that elevated polyamine levels

are closely linked to tumor initiation and progression. However, the precise role

of polyamine metabolism in hepatocellular carcinoma (HCC) remains

poorly understood.

Methods:We conducted differential expression analysis on bulk RNA sequencing

data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus

(GEO) to identify 65 polyamine metabolism-related genes. By employing

unsupervised consensus clustering, AddModuleScore, single-sample gene set

enrichment analysis (ssGSEA), and weighted gene co-expression network

analysis (WGCNA), we identified polyamine metabolism-related genes at both

the bulk RNA-seq and single-cell RNA-seq (scRNA-seq) levels. Utilizing 101

machine learning algorithms, we constructed a polyamine metabolism-related

signature (PMRS) and validated its predictive power across training, testing, and

external validation cohorts. Additionally, we developed a prognostic nomogram

model by integrating PMRS with clinical variables. To explore immune treatment

sensitivity, we assessed tumor mutation burden (TMB), tumor immune

dysfunction and exclusion (TIDE) score, mutation frequency, and immune

checkpoint genes expression. Immune cell infiltration was analyzed using the

CIBERSORT algorithm. Finally, RT-qPCR experiments were conducted to validate

the expression of key genes.

Results: Using 101 machine learning algorithms, we established a polyamine

metabolism-related signature comprising 9 genes, which exhibited strong

prognostic value for HCC patients. Further analysis revealed significant

differences in clinical features, biological functions, mutation profiles, and

immune cell infiltration between high-risk and low-risk groups. Notably, TIDE
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analysis and immune phenotype scoring (IPS) demonstrated distinct immune

treatment sensitivities between the two risk groups. RT-qPCR validation

confirmed that these 9 genes were highly expressed in normal cells but

significantly downregulated in tumor cells.

Conclusions: Our study developed a polyamine metabolism-based prognostic

risk signature for HCC, which may provide valuable insights for personalized

treatment strategies in HCC patients.
KEYWORDS

hepatocellular carcinoma, multi-omics analysis, single-cell RNA sequencing, polyamine
metabolism, immune therapy, machine learning
1 Introduction

Hepatocellular carcinoma (HCC) is the most prevalent primary

liver cancer and the second leading cause of cancer-related deaths

worldwide (1). In recent years, great progresses have been made in

HCC therapy, but the prognosis of HCC patients remains poor,

because of high rate of recurrence and being diagnosed at an

advanced stage (2). Conventional treatment options for HCC,

including surgery, chemotherapy, and radiofrequency ablation,

have been complemented by significant advances in targeted

immunotherapy combinations (3). The IMbrave150 clinical trial

results showed that, compared to traditional first-line

chemotherapy with sorafenib, the combination of atezolizumab

(an anti-PD-L1 antibody) and bevacizumab (an anti-VEGF

antibody) significantly improved advanced-stage HCC patient

outcomes (4). Despite these advancements, the efficacy of these

therapies remains limited for patients with advanced-stage HCC,

who often experience high recurrence rates and ultimately face a

worsened prognosis (4, 5).

Polyamines, including putrescine, spermidine (SPM), and

spermine (SPM), are molecules derived from ornithine through a

decarboxylation process catalyzed by ornithine decarboxylase

(ODC). Putrescine is subsequently converted into spermidine and

spermine through the catalytic action of spermidine synthase

(SRM) and spermine synthase (SMS), respectively (6). These

polyamines play essential roles in key cellular processes such as

proliferation, differentiation, and apoptosis, and are closely

a s s o c i a t e d w i t h t umo r i g e n e s i s ( 7 ) . Mo r e o v e r , S -

adenosylmethionine decarboxylase (AMD1) is a critical enzyme

involved in spermidine synthesis. AMD1 promotes the stemness of

HCC cells through mRNA demethylation mediated by fat mass and

obesity-associated protein (FTO). When AMD1 is upregulated in

HCC tissues, it is often linked to poor prognosis (8). Additionally,

studies have shown that oncogenes such as MYC and BRAF can

significantly regulate polyamine levels in cancer cells (9).
02
The tumor microenvironment (TME) is a complex, localized

milieu consisting of tumor cells, non-tumor cells, the extracellular

matrix (ECM), blood vessels, immune cells, signaling molecules,

and other components. The establishment of an immune-

suppressive microenvironment is closely associated with the

immune evasion of tumor cells (10). Within the TME, polyamine

levels in immune cells are typically elevated (6). Research by Chia

et al. demonstrated that inhibiting polyamine metabolism in cancer

could suppress tumor growth, possibly by promoting increased T-

cell infiltration and macrophage-driven pro-inflammatory

phenotypes (11). Studies have suggested that targeting polyamine

metabolism can modify the TME, thereby enhancing the immune

system’s ability to combat tumors. Inhibition of polyamine

synthesis has been shown to significantly slow tumor growth and

improve the efficacy of immunotherapy (12).

Currently, the precise molecular mechanisms through which

polyamine metabolism-related biomarkers influence HCC remain

unclear. In this study, we employed multi-omics analysis to

investigate the role of polyamine metabolism features in HCC. By

integrating bulk RNA sequencing and single-cell RNA sequencing

data, we identified key genes associated with polyamine

metabolism. We then applied machine learning techniques to

develop a risk score model for HCC patients, further elucidating

the tumor immune microenvironment characteristics across

different risk profiles.
2 Materials and methods

2.1 Data sources

We downloaded transcriptomic data, mutation data, copy

number variation (CNV) data, and clinical information for 424

HCC samples from The Cancer Genome Atlas (TCGA, https://

portal.gdc.cancer.gov/projects/TCGA), including 50 normal
frontiersin.or
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samples and 374 tumor samples. Additionally, we obtained the

GSE14520 dataset from the Gene Expression Omnibus (GEO,

https://www.ncbi.nlm.nih.gov/geo/), which contains 220 normal

samples and 225 tumor samples. The ICGC-LIRI dataset from the

International Cancer Genome Consortium (ICGC, https://

dcc.icgc.org/) was also retrieved, including 177 normal samples

and 212 tumor samples (Supplementary Tables S1–S3). Single-cell

RNA sequencing data were obtained from the GSE242889 dataset,

which consists of 5 normal samples and 5 tumor samples.
2.2 Differentially expressed genes (DEGs)
associated with polyamine metabolism in
HCC

Genes related to polyamine metabolism (PMRG) were sourced

from GeneCards (https://www.genecards.org/) and the MSigDB

database (http://www.gseamsigdb.org/), totaling 814 genes

(Supplementary Table S4). We performed differential expression

analysis between tumor and normal tissues in the TCGA-LIHC and

GSE14520 datasets using the R package “limma” (Supplementary

Table S5). After filtering, 65 differentially expressed genes associated

with polyamine metabolism in HCC were identified, with the

screening criteria set at an adjusted p-value < 0.05 and |log2 fold

change| > 1 (13).
2.3 Consensus clustering analysis

We performed consensus clustering of the differentially

expressed genes associated with polyamine metabolism in HCC

using the R package “ConsensusClusterPlus” and the K-means

algorithm. The cases were grouped into multiple clusters based

on specific markers or features. To determine the optimal number

of clusters, we conducted 1,000 resamplings using 80% of the

samples. Kaplan-Meier survival curve analysis was then

performed to compare overall survival (OS) rates of HCC patients

across different clusters. Finally, univariate Cox regression analysis

identified 33 genes significantly associated with HCC prognosis,

which were selected for further analysis (p-value < 0.05).
2.4 Single-cell RNA sequencing data
collection and processing

We preprocessed the GSE242889 dataset using the “Seurat”

package. Initially, cells with fewer than 250 or more than 7,000

expressed genes, or those with more than 15% unique molecular

identifiers (UMIs) derived from mitochondrial genes, were

excluded as low-quality cells. Next, we removed mitochondrial,

ribosomal, and hemoglobin genes from the dataset. A total of 37,330

cells were retained for further analysis. To correct for batch effects

between datasets, we applied canonical correlation analysis (CCA)

(14). Using the “FindVariableFeatures” function with default

parameters from the Seurat package, we identified the top 2,000
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most variable genes. Cells were then clustered using the

“FindClusters” and “FindNeighbors” functions, and the resulting

clusters were visualized using the Uniform Manifold

Approximation and Projection (UMAP) method. Cluster

annotation was performed using a combination of the SingleR

package and manual annotation (15). The annotation results for

each cell cluster are shown in Supplementary Table S6. We

quant ified the PMG scor e fo r each ce l l u s ing the

“AddModuleScore” function in Seurat. To identify differentially

expressed genes (DEGs) between high and low PMG score groups,

we applied the “FindMarkers” function from the Seurat package

and used the Wilcoxon test (p.adj < 0.05) for DEG selection. Genes

differentially expressed between cells with high and low PMG scores

were associated with polyamine metabolism.
2.5 Single-sample gene set enrichment
analysis and gene set enrichment analysis

Single-Sample Gene Set Enrichment Analysis (ssGSEA) is a

method based on gene expression data to assess the enrichment of

specific gene sets within individual samples. Using the ssGSEA

method, we calculated the PMG scores(PMGS) for the TCGA-

LIHC samples (16).

To identify potential biological pathways associated with these

features, we first calculated GSVA scores for 50 hallmark pathways

and analyzed significant differences in pathway activity between the

high-risk and low-risk groups using the “limma” package. Additionally,

to further investigate the biological processes (BP), cellular components

(CC), andmolecular functions (MF) involved in different risk subgroups,

we conducted GSEA using the “DOSE,” “clusterProfiler,” and “GseaVis”

R packages on the GO gene sets (c5.go.v7.5.1.symbols.gmt). The

screening criteria were set to a False Discovery Rate (FDR) < 0.05 and

|Normalized Enrichment Score (NES)| > 1 (17).
2.6 Weighted gene co-expression network
analysis

Weighted Gene Co-Expression Network Analysis (WGCNA) is

an unsupervised learning method based on gene co-expression

patterns. It constructs a weighted gene co-expression network to

identify cooperative expression relationships between genes and

organizes them into distinct modules. These modules can then be

correlated with clinical phenotypes, disease states, or other

characteristics.To identify gene sets associated with polyamine

metabolism, we performed WGCNA using the “WGCNA” R

package (18). Based on the TCGA-LIHC bulk transcriptome data,

we first calculated an appropriate soft-thresholding power (b) to
ensure that the network adhered to the scale-free topology property.

The weighted adjacency matrix was then transformed into a

Topological Overlap Matrix (TOM), and dissTOM (dissimilarity)

was computed. we used the dynamic tree cut algorithm to cluster

the genes and identify modules. Finally, we selected the modules

most strongly correlated with the PMG scores for further analysis.
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2.7 Development and validation of HCC
prognostic features

We used the “limma” R package to perform differential analysis

between the high PMG score group and low PMG score group in

the TCGA bulk RNA-seq data. The screening criteria were set at a

False Discovery Rate (FDR) < 0.05 and log2 fold change (FC) > 1.

we conducted an intersection analysis between the differentially

expressed genes (DEGs) and genes from the PMG score-related

modules identified by WGCNA, with the intersected genes used for

subsequent analysis.

To construct a robust prognostic model with high predictive

accuracy, we followed these steps based on previous studies (19, 20).

2.7.1 Univariate Cox regression analysis
We first performed univariate Cox regression analysis to

identify genes with prognostic significance in the TCGA-

LIHC dataset.

2.7.2 Dataset splitting and model construction
TCGA-LIHC was used as the training set, GSE14520 as the

testing set, and ICGC-LIRI as the external validation set.We applied a

10-fold cross-validation method, utilizing 101 machine learning

algorithms, including stepwise Cox regression, Lasso regression,

Ridge regression, Partial Least Squares regression (plsRcox),

CoxBoost, Random Survival Forest (RSF), Generalized Boosted

Regression Modeling (GBM), Elastic Net (Enet), Supervised

Principal Component Analysis (SuperPC), and Survival Support

Vector Machine (survival-SVM) to construct the model.

2.7.3 Model evaluation and selection
All constructed models were evaluated in the GSE14520 testing

set and ICGC-LIRI external validation set. For each model, we

calculated the concordance index (C-index) and assessed its

performance in the training, testing, and external validation sets.

The model with the highest C-index was selected as the final

prognostic model, named the Polyamine metabolism-related

signature (PMRS). Based on the median riskscore of the selected

model, we divided the samples into high-risk and low-risk groups.

To further evaluate the predictive ability of the model, we

performed kaplan-meier analysis to compare significant

differences in overall survival (OS), disease-specific survival

(DSS), disease-free survival (DFS), and progression-free survival

(PFS) between high-risk and low-risk groups (log-rank test, P <

0.05). Additionally, we used Receiver Operating Characteristic

(ROC) curves to assess the model’s accuracy.
2.8 Cell-cell communication analysis

We performed cell-cell interaction analysis using the “CellChat”

R package (21). By default, the CellChatDB ligand-receptor

database was used, following the standard CellChat analysis

protocol. We inferred the specific interaction patterns between
Frontiers in Immunology 04
tumor cells and various cell types by detecting the expression of

feature genes within the tumor cells. This approach enabled us to

uncover potential communication networks between tumor cells

and the surrounding immune and stromal cells, providing insights

into how cell-cell signaling might influence tumor progression and

the tumor microenvironment (TME).
2.9 Clinical feature analysis and prognostic
nomogram construction and evaluation

We explored the correlation between risk scores and various

clinical features, including age, gender, status, recurrence, grade, T

stage, non-fibrotic alcoholic liver disease (NFALD), hepatitis B virus

(HBV), hepatitis C virus (HCV), stage, and vascular invasion.

Additionally, univariate and multivariate Cox regression analyses

were performed on the TCGA-LIHC, GSE14520, and ICGC-LIRI

datasets to assess whether the riskscore serves as an independent

prognostic factor for HCC patients. Subsequently, we constructed a

prognostic nomogram using the “rms” and “replot” R packages. The

predictive performance of the nomogram was evaluated through ROC

curves, calibration curves, and decision curve analysis (DCA) (22).

These evaluations helped assess the nomogram’s ability to accurately

predict overall survival and guide clinical decision-making, providing

a valuable tool for individualized prognosis prediction in HCC.
2.10 Mutation landscape and copy number
variation analysis

We obtained somatic mutation data for HCC samples from the

TCGA database, stored in MAF (Mutation Annotation Format)

files. Using the R package “maftools,” we visualized the top 20

mutated genes in the high-risk group.

Mutant-Allele Tumor Heterogeneity (MATH) is a method used

to quantify variation in mutation allele frequencies within a tumor,

reflecting genetic heterogeneity. The MATH score indicates the

degree of variation in mutated alleles: higher MATH scores

correspond to greater genetic heterogeneity and a higher

mutation burden (23, 24). We calculated the MATH scores for

HCC based on the distribution of mutated allele frequencies at

tumor-specific mutation sites. Next, we performed copy number

variation (CNV) analysis on the top 20 genes exhibiting the most

significant CNV differences between the high- and low-risk groups.

This CNV analysis provides valuable insights into the genetic

alterations that may drive HCC progression and contribute to

tumor heterogeneity, aiding in the identification of potential

therapeutic targets for precision medicine in HCC treatment.
2.11 Tumor immune microenvironment
analysis

To investigate the impact of different risk features on the tumor

immune microenvironment (TIME) of HCC, we first assessed the
frontiersin.org
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immune response to HCC immunotherapy using the Tumor

Immune Dysfunction and Exclusion (TIDE) analysis (http://

tide.dfci.harvard.edu/). TIDE is a computational method designed

to predict tumor response to immunotherapy based on gene

expression profiles. We then employed the R package

“ESTIMATE” to evaluate the stromal score, immune score,

estimate score and tumor purity for each patient. The ESTIMATE

algorithm calculates these scores based on the expression of genes in

the stromal and immune components of the TME, helping to assess

the overall immune landscape of the tumor. To gain deeper insights

into the TIME, we applied the R package “IOBR” (https://

github.com/IOBR/IOBR), which integrates several deconvolution

methods and signature construction tools. The IOBR package

includes 8 immune infiltration analysis algorithms, such as

XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC,

CIBERSORT-ABS, CIBERSORT and IPS , enab l ing a

comprehensive evaluation of immune cell infiltration patterns and

TME composition (25). Additionally, we utilized the CIBERSORT

algorithm to compare immune cell infiltration profiles between

different risk subgroups. This method estimates the relative

abundances of various immune cell types based on gene

expression data, offering insights into how risk stratification

influences the immune landscape of HCC. Finally, we retrieved

immune-related pathway gene sets from the KEGG database

(https://www.genome.jp/kegg/) (Supplementary Table S7). These

pathways provide valuable information on the molecular

mechanisms by which immune cells interact with the tumor and

contribute to HCC progression or immune evasion.
2.12 Drug sensitivity analysis

To explore the relationship between different risk features and

drug sensitivity in HCC, we utilized the “oncoPredict” R package,

which compares drug IC50 values from the GDSC (Genomics of

Drug Sensitivity in Cancer) database. OncoPredict is designed to

predict cancer patients’ sensitivity to various drugs, assisting

researchers and clinicians in tailoring personalized treatment

strategies (26).Additionally, we obtained drug sensitivity data

from the CTRP (Cancer Therapeutics Response Portal) database

(https://portals.broadinstitute.org/ctrp.v2.1/) and the PRISM

(PharmacoGenomics of Cancer Cell Lines) database (https://

www.theprismlab.org/), which provide drug response profiles for

cancer cell lines (CCLs) (27–29). These databases offer valuable

insights into the drug response profiles of a wide range of cancer cell

lines, helping to predict patient-specific drug sensitivity. We also

collected transcriptomic data from the CCLE (Cancer Cell Line

Encyclopedia) database and applied a ridge regression model to

generate drug sensitivity estimates for each patient. Both the CTRP

and PRISM databases provide the area under the dose-response

curve (AUC) as a standard measure of drug sensitivity. A lower

AUC value indicates higher drug sensitivity, while a higher AUC

suggests lower drug sensitivity. In the last, we analyzed the

relationship between riskscore and the IC50 or AUC values to
Frontiers in Immunology 05
identify potential drugs that may be effective in treating HCC. This

analysis aids in understanding which drugs are likely to be most

effective for patients with different risk profiles and can inform

future therapeutic strategies.
2.13 Quantitative real-time polymerase
chain reaction

Total RNA was extracted from different HCC cell lines using

Trizol reagent (Takara, Japan). The RNA was then reverse

transcribed into complementary DNA (cDNA) using the

PrimeScript RT reagent kit (Takara, Japan) according to the

manufacturer’s instructions. Gene expression analysis was

performed by RT-qPCR using TB Green Premix Ex Taq (Takara,

Japan). PCR primers were synthesized by Tsingke (Beijing, China),

and primer details are provided in Supplementary Table S8. The

PCR conditions were as follows: initial denaturation at 95°C for 5

minutes, followed by 40 cycles of the three-step PCR process (95°C

for 40 seconds, 60°C for 50 seconds, and 72°C for 30 seconds). The

results were analyzed using the comparative Ct method, with the Ct

values of each gene normalized to the corresponding GAPDH Ct

values. Data are presented as the mean ± standard deviation (SD) of

three independent experiments. Gene expression levels were

quantitatively analyzed using the 2-DDCT method.
2.14 Statistical analysis

All statistical analyses were performed using R software (version

4.3.2). Continuous variables between two groups were compared

using either the Wilcoxon test or t-test, while categorical variables

were assessed using the c² test or Fisher’s exact test. The correlation
between two continuous variables was determined using spearman’s

correlation analysis. OS was compared using kaplan-meier survival

analysis and the log-rank test. All p-values were calculated using a

two-tailed test and adjusted for multiple comparisons using the

FDR method. A p-value of < 0.05 was considered statistically

significant. This statistical approach ensures the robustness of the

results and helps mitigate potential biases or errors arising from

multiple comparisons in high-dimensional data analysis.
3 Results

3.1 Consensus clustering analysis

The flowchart of this study is depicted in Figure 1. Initially, we

performed differential expression analysis between normal and tumor

samples in the TCGA-LIHC and GSE14520 cohorts, with selection

criteria of adjusted p-values < 0.05 and |log2 fold change| > 1. Among

the 814 genes related to polyamine metabolism, 65 differentially

expressed polyamine metabolism-related genes(PMRG) were

identified through intersection filtering (Figure 2A). Next, we
frontiersin.or
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conducted unsupervised consensus clustering analysis on these 65

differentially expressed PMRG. The results indicated that the optimal

clustering was achieved when K = 2, dividing the samples into two

groups: polyamine metabolism-enriched (clust1) and polyamine

metabolism-deficient (clust2) (Figures 2B–E). Principal Component

Analysis (PCA) demonstrated a clear distribution difference between

clust1 and clust2 (Figure 2F). Kaplan-Meier survival analysis revealed

that patients in the clust1 group had a significantly poorer prognosis

(Figure 2G). A heatmap further validated the consistency of the

clustering results with the differential expression analysis (Figure 2H).

This approach effectively identifies distinct polyamine metabolism-

related subtypes in HCC, which could have important implications

for prognosis and therapeutic strategies.
Frontiers in Immunology 07
3.2 TIME of different polyamine
metabolism subtypes

To further quantify the differences in immune cell infiltration

between the clust1 and clust2 subtypes, we utilized the CIBERSORT

algorithm to assess immune cell infiltration abundance in each

sample (Figure 3A). The results indicated that the clust1 subtype

exhibited higher abundance of immune cells with antitumor

functions, including Plasma cells, T cells CD8, T cells follicular

helper, T cells regulatory (Tregs), andMacrophages M0. In contrast,

the clust2 subtype was characterized by a higher prevalence of cell

types with weaker anticancer activity, such as naive B cells naive, T

cells CD4 memory resting, NK cells resting, Monocytes, and Mast
FIGURE 2

Consensus clustering construction. (A) Venn plot showing the intersecting genes between PMRG and DEGs in bulk RNA-seq. (B) Consistency matrix
heatmap. (C) Cumulative distribution function. (D) Delta area plot. (E) Tracking plot. (F) PCA plot. (G) Kaplan-Meier survival analysis. (H) Clinical
feature heatmap.
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FIGURE 3

Assessment of immune cell infiltration and checkpoint in HCC. (A) Composition and relative abundance of 22 immune cell types in TCGA-LIHC
samples. (B) Box plot illustrating the differential analysis of immune cell infiltration associated with clust1 and clust2. (C) Differences in the expression
of immune checkpoint genes between the clust1 and clust2. NS, not statistically significant; *p < 0.05;**p < 0.01; ***p < 0.001;****p < 0.0001.
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cells resting (Figure 3B). Additionally, we analyzed the expression of

46 immune checkpoint genes and found significant differences in

expression between the two subtypes, except for CD274, CD40,

ICOSLG, KIR3DL1, PDCD1LG2, and TNFSF14. Specifically,

ADORA2A and IDO2 showed lower expression in clust1, while

the other 37 immune checkpoints were expressed at higher levels in

clust1 (Figure 3C).

To evaluate the correlation between immune escape and

immune response, we employed the Tumor Immune Dysfunction

and Exclusion (TIDE) algorithm (http://tide.dfci.harvard.edu/). The

results revealed that clust1 had higher expression levels of IFNG,

Exclusion, MDSC, and TIDE, indicating a higher proportion of

non-responders to immunotherapy in this subtype. Conversely,

clust2 displayed higher Dysfunction scores (Supplementary Figures

S1A–F). The ImmuneScore, calculated using the ESTIMATE

algorithm, showed that the immuneScore of clust1 was

significantly higher than that of clust2 (Supplementary Figure

S1G). Furthermore, the immunotherapy response Score (IPS),

which predicts responses to CTLA-4 and PD-1 inhibitors, was

higher in clust1 patients under both ips_ctla4_neg_pd1_neg

(CTLA4-/PD1-) and ips_ctla4_pos_pd1_neg (CTLA4+/PD1-)

treatment conditions (Supplementary Figures S4H, I). These

findings suggest that the clust1 subtype may exhibit stronger

immune activity or anticancer potential.

In summary, the different polyamine metabolism subtypes

exhib i t s ignificant var ia t ions in the tumor immune

microenvironment. The clust1 subtype shows higher immune

activity, while the clust2 subtype may be associated with immune

suppression. These results highlight the importance of stratifying

HCC patients based on polyamine metabolism features to better

understand their TIME, which could inform potential

therapeutic strategies.
3.3 Differentially expressed genes and
functional enrichment analysis in different
polyamine metabolism subtypes

Using the “limma” package, we performed differential

expression analysis between the two polyamine metabolism

subtypes and identified 2,242 differentially expressed genes

(DEGs) associated with polyamine metabolism (Supplementary

Table S9). The volcano plot of these DEGs and the heatmap of

the top 50 genes are shown in Figures 4A, B, respectively. Next, we

conducted Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway analysis and Gene Ontology (GO) enrichment analysis.

The results revealed that the DEGs between clust1 and clust2 were

significantly enriched in pathways related to “Neuroactive ligand-

receptor interaction” and “Small molecule catabolic process”

(Figure 4C). In the Gene Set Enrichment Analysis (GSEA) based

on KEGG gene sets, we found that the highly expressed genes were

significantly enriched in the “IL-17 Signaling Pathway” (Figure 4D),

while the lowly expressed genes were significantly enriched in the

“Metabolism of Xenobiotics by Cytochrome P450” pathway

(Figure 4E). Finally, we performed univariate Cox regression
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analysis and correlation analysis on the 65 polyamine

metabolism-related genes, resulting in the identification of 33

genes for further analysis (Figure 4F, Supplementary Figure S1J).
3.4 Polyamine metabolic features in single-
cell transcriptome

To further investigate the polyamine metabolic features in the

single-cell transcriptome, we downloaded scRNA-seq data

(GSE242889) from the GEO database. After performing quality

control, the violin plots of the data are shown in Supplementary

Figures S2A–D. We then log-transformed and normalized the data,

identifying the top 2,000 most variable genes. Dimensionality

reduction was performed using PCA and Uniform Manifold

Approximation and Projection (UMAP), resulting in a reduced

dataset of 37,330 cells.

To address batch effects, we conducted CCA, with the batch-

corrected results displayed in Figure 5A. Clustering analysis

(resolution = 0.1) revealed 13 distinct clusters (Figure 5B). The

annotation of the cell clusters was as follows: Cluster 0 as T cell,

Clusters 1, 5, 8, and 11 as myeloid cell, Cluster 2 as macrophage cell,

Cluster 3 as hepatocyte, Cluster 4 as endothelial cell, Clusters 6 and

9 as B cell, Cluster 7 as tumor cell, Cluster 10 as mesenchymal cell,

and Cluster 12 as mast cell. The annotated UMAP plot is shown in

Figure 5C. Using the “FindAllMarkers” function in the Seurat

package, we identified the marker genes for each cluster, applying

thresholds of log2FC > 0.25 and minimum percentage of cells

(min.pct) > 0.25. The heatmap of the top 5 marker genes for each

cluster is presented in Figure 5D. To quantify the polyamine

metabolic gene (PMG) features in each cell type, we used the

“AddModuleScore” function in Seurat to calculate the expression

levels of a gene set consisting of 33 polyamine metabolism-related

genes (Figure 5E). The results revealed significant differences in

polyamine metabolic features between normal and tumor cells

(Figure 5F). Based on these PMG features, we classified the cells

into high PMGscore(PMGS) and low PMGscore(PMGS) groups

and identified 915 differentially expressed genes (Supplementary

Table S10).
3.5 WGCNA analysis and identification of
core modules related to PMGS

To explore genes associated with polyamine metabolism, we

quantified the PMGS for each TCGA-LIHC sample using the

single-sample gene ssGSEA method. To identify modules

significantly correlated with the PMGS, we constructed a

WGCNA based on differentially expressed PMRG at the single-

cell level (Figure 6A). The optimal soft threshold was selected as 5

(R² = 0.895), ensuring that the network adhered to the scale-free

topology criterion (Supplementary Figure S2E). The minimum

number of genes per module was set to 50, and the module

dendrogram was cut at a MEDissThres of 0.15, resulting in the

identification of six distinct modules (Figure 6B). Among these, the
frontiersin.org

http://tide.dfci.harvard.edu/
https://doi.org/10.3389/fimmu.2025.1570378
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2025.1570378
FIGURE 4

Differential expression and enrichment analysis between the clust1 and clust2 subtypes. (A) Volcano plot of differentially expressed genes between
the clust1 and clust2 subtypes. (B) The top 50 differentially expressed genes in the clust1 and clust2 subtypes. (C) A bar chart displaying the
functional enrichment analysis outcomes for both the clust1 and clust2 subtypes. (D, E) GSEA enrichment analysis based on KEGG pathways. (F) The
results of the univariate cox regression analysis of PMRG and the correlations among 65 genes.
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turquoise module showed a strong correlation with the PMG score

in TCGA-LIHC (Figure 6C). The scatter plot in Figure 6D

demonstrates the correlation between gene significance (GS) and

module membership (MM) within the turquoise module.In

summary, the genes within the turquoise module may play a key

role in the functional pathways related to polyamine metabolism

(Supplementary Table S11).
3.6 Differential analysis between high and
low PMGS

There was a significant difference in PMGS between the clust1

and clust2 subtypes (Figure 6E, P < 0.0001). Based on the median

PMGS in TCGA-LIHC, the samples were divided into high and low

PMGS groups. Kaplan-Meier survival analysis demonstrated that

HCC patients with high PMGS had a significantly better prognosis

compared to those with low PMGS (Figure 6F). Subsequently, we

conducted differential expression analysis using the “limma”

package between the high and low PMGS groups, identifying

1,194 differentially expressed genes (DEGs) (Supplementary Table

S12). Of these, 755 genes were upregulated, while 439 genes were

downregulated (Figure 6G).

To further investigate genes related to polyamine metabolism,

we performed an intersection analysis between the DEGs and the

genes in the turquoise module, which identified 138 PMRG
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(Figure 6H). Gene Ontology (GO) enrichment analysis of these

138 genes revealed significant associations with BP, CC, and MF,

particularly in processes such as small molecule catabolic processes,

blood microparticles, and enzyme inhibitor activity (Figure 6I).

We then performed univariate Cox regression analysis on these

138 genes and selected 53 genes for further analysis and machine

learning model construction (Supplementary Table S13).

Additionally, we analyzed the copy number variations (CNVs) of

these 53 genes and found that the CNV frequencies of MASP2 and

CPB2 were increased by more than 15% (Figure 6J). Finally, the

protein-protein interaction (PPI) network of these 53 genes is

shown in Supplementary Figure S2G.
3.7 Development of a prognostic gene
signature for HCC patients based on
machine learning

To develop a polyamine metabolism-related signature (PMRS),

we applied a comprehensive analysis using 101 machine learning

algorithms, selecting 53 prognostic genes identified through

univariate Cox regression analysis. TCGA-LIHC data was used as

the training set, GSE14520 data as the testing set, and ICGC-LIRI as

the external validation set. We evaluated the consistency index (C-

index) across all datasets (training, testing, and validation) using a

10-fold cross-validation approach (Figure 7A). Among the models
FIGURE 5

Polyamine metabolism characteristic in the single cell transcriptome. (A) The UMAP plot of ten samples from the GSE242889 dataset, colored to
indicate the sample names. (B, C) The results of cell clustering and annotation for the GSE242889 dataset. (D) Heatmap showing the top 5 marker
genes in each cell cluster. (E) The activity score of PMG score in each cell. (F) The distribution of the PMG score in different cell types.
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FIGURE 6

Identification of the immunogenic polyamine metabolism-related genes (PMRG). (A) Dendrogram showing the hierarchical clustering of TCGA-LIHC samples.
The bottom heatmap represents each sample’s PMG score, calculated by ssGSEA algorithm. (B) Cluster dendrogram of the WGCNA analysis. (C) Module-trait
heatmap showing that the turquoise module was closely related to the polyamine metabolism trait. (D) Scatter plot showing the relationship between gene
significance (GS) and module membership (MM) in the turquoise module. (E) The box plot displays the difference in PMG score between the clust1 and clust2
subtypes. (F) Kaplan-Meier survival analysis of overall survival (OS) in the TCGA-LIHC cohort, comparing high and low PMG scores (PMGS). (G) A volcano plot
showing the results of differential analysis between high PMG score (PMGS) and low PMG score (PMGS) samples in the TCGA-LIHC cohort. (H) A Venn diagram
illustrating the overlapping genes between the turquoise module and DEGs associated with high PMGS, as well as those associated with low PMGS in bulk RNA-
seq analysis. (I) GO enrichment of the overlapping genes. (J) Copy number variation (CNV) frequency of PMRG presented in Supplementary Table S13.
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FIGURE 7

Machine learning and PMRS model development and validation. (A). A total of 101 kinds of prediction models via a tenfold cross-validation
framework and further calculated the C index of each model across all validation datasets. (B) Visualization of LASSO regression in the TCGA-LIHC
cohort. (C) Analysis of the number of trees required to achieve minimal error in the model and the significance of the nine genes using the Random
Survival Forest (RSF) algorithm. (D, F) Kaplan-Meier survival curves showing overall survival (OS) based on the PMRS in the TCGA training set,
GSE14520 testing set, and ICGC external validation set. (G) Chromosomal distribution of the nine genes included in the PMRS. (H–J) Kaplan–Meier
survival curves for DSS, DFS, and PFS based on the PMRS in the TCGA-LIHC cohort. (K) Pie plot of the difference in clinical characteristics between
high- and low-risk groups.
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assessed, the top five, ranked by the average C-index, were all

developed using the Random Survival Forest (RSF) algorithm.

However, as the RSF model showed a lower C-index in the

testing set compared to the Lasso+RSF model, we selected the

Lasso+RSF model as the most accurate and clinically relevant

prediction model. Using this model, we developed a clinical

prognostic risk score model (PMRS) that includes 9 genes:

CYP2C9, PON1, HMGCS2, CFHR1, APOA1, ADH1C, G6PC,

CYP2D6, and FGA (Figures 7B, C, Supplementary Table S14).

Samples were divided into high-risk and low-risk groups based on

the median risk score. Kaplan-Meier survival analysis showed that

the high-risk group had a significantly poorer prognosis compared

to the low-risk group (Figure 7D). Similar results were observed in

both the testing set and external validation set (Figures 7E–F). The

chromosomal locations of the 9 genes are shown in Figure 7G. In

the TCGA-LIHC cohort, patients in the high-risk group exhibited

significantly poorer DSS, DFS, and PFS compared to the low-risk

group (Figures 7H–J). Moreover, we compared the clinical and
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pathological characteristics of patients in the high-risk and low-risk

groups and found significant differences in gender, T stage, stage,

and status (P < 0.05; Figure 7K).
3.8 PMRS model evaluation

To evaluate the predictive performance of the PMRS model, we

conducted PCA across three cohorts to confirm the separation

between high-risk and low-risk groups (Figure 8A). The

distribution of riskscores and the survival status plot revealed that

the high-risk group had higher riskscores and a greater proportion

of deceased patients (Figure 8B). The area under the receiver

operating characteristic (ROC) curve (AUC) was calculated for

different survival time points. In the TCGA training set, the AUC

values were 0.973 for 1-year, 0.976 for 3-year, and 0.977 for 5-year

survival. In the GSE14520 testing set, the AUC values were 0.699 for

1-year, 0.656 for 3-year, and 0.677 for 5-year survival. For the
FIGURE 8

Evaluation of the PMRS model. (A) Principal component analysis (PCA) plot based on the PMRS in the TCGA, GSE14520, and ICGC cohorts.
(B) Distribution of PMRS according to survival status and time in the TCGA, GSE14520, and ICGC cohorts. (C) Evaluating the predictive accuracy of
the PMRS for OS in the TCGA-LIHC, GSE14520, and ICGC cohorts using ROC curves.
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ICGC-LIRI external validation set, there were no deaths recorded

after the fifth year, resulting in a 5-year AUC of 0. The AUC values

for 1-year, 3-year, and 4-year survival intervals in this cohort were

0.762, 0.789, and 0.827, respectively (Figure 8C). These results

demonstrate that the PMRS model provides robust predictive

performance, particularly for 1-year, 3-year, and 4-year survival,

where the model shows statistically significant findings. The

predictive accuracy is well-supported by sufficient event data

across these time intervals.
3.9 Correlation of PMRS with single-cell
characteristics

To explore the impact of different risk features on the TME at

the single-cell transcriptomic level, we analyzed the expression of

nine genes across various cell types (Figure 9A). The results

indicated that these genes were most highly expressed in

hepatocyte, followed by immune cells, with the lowest expression

observed in tumor cell.

Based on the expression levels of these nine genes, we calculated

a riskscore for each cell and identified differentially expressed genes

between high-risk and low-risk groups. KEGG enrichment analysis

revealed that the differentially expressed genes were significantly

enriched in several pathways, including: Complement and

coagulation cascades, Metabolism of xenobiotics by cytochrome

P450, Drug metabolism − cytochrome P450, Chemical

carcinogenesis − DNA adducts, and Natural killer cell-mediated

cytotoxicity (Figure 9B). we calculated the riskscore for each cell

based on the PMRS model, classifying tumor cell into high-risk and

low-risk groups. We then examined their interactions with other

immune cells. The results showed significant differences in the

communication patterns between tumor cells with different risk

features (Figures 9C, D). In the TME, various cell types function as

senders, receivers, signal mediators, and regulators, facilitating the

transmission of intercellular signals. Tumor cell in the low-risk

group communicated with a broader range of immune cells and

exhibited stronger inbound and outbound signaling in the CXCL

and MIF signaling pathway networks. These cells acted as more

potent mediators and influencers (Figures 9E, F). In summary,

tumor cells with low-risk scores engage in complex signaling

exchanges with immune cells through the CXCL and MIF

pathways, potentially contributing to immune escape and

promoting tumor progression. The clinical significance of this

p h e n omenon i n t umo r immuno t h e r a p y wa r r a n t s

further investigation.
3.10 Comparison of clinical and
pathological characteristics of patients
with PMRS and construction of nomogram

We examined the relationship between clinical and pathological

characteristics and various risk features in HCC patients. The

results revealed that higher risk scores were strongly associated
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with several clinical features, including gender, status, recurrence,

grade, T stage, HBV, stage, and vascular invasion (Supplementary

Figures S3A–K). Supplementary Figure S3L illustrates the

correlation between the expression levels of the nine genes and

these clinical characteristics. Additionally, in the GSE14520 cohort,

riskscore significantly differed with Predicted risk Metastasis

Signature, such as Main Tumor Size, Multinodular, AFP levels,

Stage, and BCLC stage (Supplementary Figures S4A–J).

To evaluate the potential of riskscore as an independent

prognostic factor for HCC, we conducted univariate and

multivariate Cox regression analyses using data from the TCGA-

LIHC, GSE14520, and ICGC cohorts (Figures 10A, B). Univariate

analysis showed that riskscore was a significant prognostic factor for

HCC (HR > 1, P < 0.05), and multivariate analysis further

confirmed the independence of riskscore as a prognostic factor

(HR > 1, P < 0.05).

For clinical application, we constructed a nomogram

incorporating riskscore and clinical characteristics (Figure 10C).

In the TCGA-LIHC cohort, the nomogram demonstrated stable

and robust predictive performance, particularly for OS predictions

over 1 to 8 years. It outperformed other clinical features in terms of

accuracy, with the AUC for 1-year, 3-year, and 5-year survival

predictions being 0.973, 0.975, and 0.976, respectively. Calibration

curve analysis showed a strong agreement between predicted and

observed values. Additionally, decision curve analysis (DCA)

revealed that the nomogram provided higher net clinical benefit

compared to other clinical features (Figures 10D–G). In the

GSE14520 cohort, the nomogram achieved AUCs of 0.736, 0.740,

and 0.754 for 1-year, 3-year, and 5-year survival predictions,

respectively (Figure 10H). In the ICGC-LIRI cohort, the AUCs

for 1-year, 3-year, and 4-year survival predictions were 0.870, 0.764,

and 0.794, respectively (Figure 10I), further validating the model’s

predictive accuracy. These results suggest that the nomogram,

developed using risk scores and clinical characteristics, is a

reliable tool for personalized prognostic prediction in HCC

patients. Furthermore, we used an alluvial diagram to illustrate

the relationships between different polyamine metabolism subtypes,

PMGS, and risk groups (Figure 10J). The results show that the

clust1 subtype predominantly exhibits lower PMGS and higher risk

score, correlating with a poorer prognosis.
3.11 Biological functions of PMRS

To investigate the biological function differences associated with

prognosis between high-risk and low-risk groups, we performed

functional enrichment analysis. GSEA based on GO gene sets

revealed that the high-risk group was significantly enriched in

several cancer-related pathways, including HALLMARK E2F

TARGETS, HALLMARK G2M CHECKPOINT, HALLMARK

MTORC1 SIGNALING, HALLMARK MYC TARGETS V1, and

HALLMARK MYC TARGETS V2 (Figure 11A). In contrast, the

low-risk group exhibited significant enrichment in pathways

associated with metabolism and detoxification, such as

HALLMARK BILE ACID METABOLISM, HALLMARK
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FIGURE 9

The correlation of PMRS with single-cell characteristics. (A) Expression of CYP2C9, HMGCS2, APOA1, CFHR1, FGA, PON1, ADH1C, G6PC, and
CYP2D6 across various cell types as determined by single-cell RNA-seq analysis. (B) KEGG analysis of the DEGs between the high and low-risk cells.
(C, D) The ligand-receptor interactions sent from high-risk tumor cells and low-risk tumor cells. (E, F) Circos plots illustrating the CXCL and MIF
signaling pathway networks, along with heatmaps depicting the involvement of different cell types in these pathway networks.
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FIGURE 10

Construction and evaluation of the nomogram based on PMRS. (A, B) Univariate Cox and Multivariate Cox analysis of TCGA-LIHC,GSE14520 and
ICGC cohorts. (C) Nomogram for predicting the 1-, 3-, and 5-year survival rates based on the PMRS. (D) The comparison of the C index between the
nomogram and other clinical characteristics. (E) ROC curves illustrating the predictive performance of the nomogram for 1-, 3-, and 5-year OS in
the TCGA-LIHC cohort. (F) Calibration curve of the nomogram for 1, 3, and 5-year OS. (G) Decision curve analysis (DCA) showing the net benefit by
applying the nomogram and other clinical characteristics. (H) ROC curves illustrating the predictive performance of the nomogram for 1-, 3-, and 5-
year OS in the GSE14520 cohort. (I) ROC curves illustrating the predictive performance of the nomogram for 1-, 3-, and 4-year OS in the ICGC
cohort. (J) Alluvial diagram depicting the interrelationship between clust subtypes, PMGS, risk groups, and survival status in TCGA-LIHC patients.
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FIGURE 11

Transcriptome features of HCC patients with different PMRS. (A, B) GO terms enriched in the high-risk and low-risk groups based on GSEA analysis.
(C) Differences in hallmark pathway activities between the high-risk and low-risk groups, as scored by GSVA. (D) Correlation between the risk score
and hallmark pathway activities, as scored by GSVA. (E–J) Kaplan–Meier survival plots showing significant correlations between OS and GSVA scores
for HALLMARK DNA REPAIR (E), HALLMARK G2M CHECKPOINT (F), HALLMARK PI3K AKT MTOR SIGNALING (G), HALLMARK COAGULATION (H),
HALLMARK MYOGENESIS (I), and HALLMARK PANCREAS BETA CELLS (J).
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XENOBIOTIC METABOLISM, HALLMARK COAGULATION,

HALLMARK FATTY ACID METABOLISM, and HALLMARK

ADIPOGENESIS (Figure 11B). Furthermore, through GSVA

based on Hallmark gene sets, we observed that the high-risk

group exhibited stronger activation in pathways related to

HALLMARK MYC TARGETS V1, HALLMARK MYC

TARGETS V2, and HALLMARK UNFOLDED PROTEIN

RESPONSE. In contrast, the low-risk group showed more

prominent activity in pathways such as HALLMARK

COAGULATION, HALLMARK BILE ACID METABOLISM, and

HALLMARK XENOBIOTIC METABOLISM (Figure 11C).

Correlation analysis between riskscores and Hallmark pathway

scores further corroborated these findings (Figure 11D),

suggesting a strong association between risk scores and cancer-

related biological processes and metabolic pathways. To assess

whether these Hallmark pathway scores are linked to prognosis in

HCC patients, we performed survival analysis. The results indicated

that pathways such as HALLMARK DNA REPAIR, HALLMARK

G2M CHECKPOINT, and HALLMARK PI3K AKT MTOR

SIGNALING were positively correlated with poor prognosis

(Figures 11E–G, Supplementary Figures S4K–O), while pathways

like HALLMARK COAGULATION, HALLMARK MYOGENESIS,

and HALLMARK PANCREAS BETA CELLS were associated with

better prognosis (Figures 11H–J).

This analysis suggests that the biological functions of high-risk

patients are primarily enriched in pathways related to cancer

progression, such as tumor cell proliferation, DNA repair, and

cell cycle regulation. Activation of these pathways likely drives

tumor progression and contributes to poorer prognosis. In contrast,

the biological functions of low-risk patients are mainly concentrated

in metabolic pathways, including fatty acid and bile acid

metabolism. The maintenance of these metabolic processes may

help stabilize tumor growth and contribute to a better prognosis.

Thus, significant differences in the active states of biological

functions and related pathways between high-risk and low-risk

patients may play a crucial role in driving the prognostic disparities

observed between these two groups.
3.12 Mutation landscape and tumor
heterogeneity in PMRS

To investigate the differences in genomic mutations between the

high-risk and low-risk groups, we analyzed the mutation profiles of

these two subgroups (Figures 12A, B, Supplementary Figures S5A,

B). The results revealed significant differences in mutation spectra

between the groups: TP53 mutations were predominant in the high-

risk group, while CTNNB1 mutations were more prevalent in the

low-risk group. Fisher’s exact test identified significant differences

in the mutation frequencies of DOCK2, MAGI2, and PCDHA5

between the two groups (Supplementary Figure S5C, P < 0.01).

Specifically, the high-risk group had a higher mutation frequency in

DOCK2, while the low-risk group exhibited increased mutation

frequencies in MAGI2 and PCDHA5. Figures 12C, D further
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illustrate that the high-risk group displayed a higher frequency of

co-occurring mutations compared to the low-risk group.

ITH refers to the genetic differences present among various

cellular populations within a tumor, typically resulting from the

accumulation of mutations during tumor growth. ITH is closely

associated with rapid tumor progression, metastasis, and resistance

to chemotherapy, which can lead to treatment failure. To quantify

ITH in HCC patients, we applied the MATH algorithm, with higher

MATH scores indicating greater ITH. Our analysis revealed that the

high-risk group had significantly higher MATH scores than the

low-risk group (Figure 12E). Additionally, a significant positive

correlation was observed between the MATH score and risk score

(Figure 12F, R = 0.2, P < 0.05). Further investigation into the

relationship between ITH and prognosis showed that patients with

higher MATH scores had a poorer prognosis (Figure 12G). We also

analyzed the tumor mutation burden (TMB) and found that the

high-risk group had TMB values concentrated in the higher range,

suggesting a greater accumulation of mutations in this

group (Figure 12H).

Finally, we examined the copy number variations (CNV) of the

top 20 genes with the most significant differences between the high-

risk and low-risk groups. The results indicated that the high-risk

group exhibited copy number gains in genes such as CSMD3, FLG,

RYR2, DOCK2, APOB, and TTN, while showing copy number

losses in genes like TP53, MUC16, CTNNB1, PCLO, and XIRP2

(Figure 12I). These CNV differences suggest that the high-risk

group experiences greater genomic instability and tumor

heterogeneity, which may be closely linked to tumor invasiveness,

recurrence risk, and the regulation of the TIME.
3.13 Correlation between PMRS and TIME

To assess the relationship between different risk subgroups of

HCC patients and immune cell infiltration, we employed the

ESTIMATE algorithm to calculate stromal scores, immune scores,

ESTIMATE scores, and tumor purity across the different risk

subgroups. The results indicated that the high-risk group had

significantly lower stromal and estamate scores (Figure 13A),

while exhibiting higher tumor purity (Figure 13B). Correlation

analysis revealed significant negative associations between the

riskscore and both stromal score, estamate score, and the PMGS

(Figures 13C–E).

To further explore immune cell infiltration, we used several

immune cell quantification algorithms, including XCELL, TIMER,

QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and

CIBERSORT, to assess the abundance of immune cell populations

in each sample. The correlation analysis results between the risk

score and various immune cell types are shown in Figure 13F, while

a heatmap illustrating the expression levels of different immune cell

types in high-risk and low-risk groups is provided in Figure 13G. To

examine specific differences in immune cell infiltration between the

risk subgroups, we applied the CIBERSORTS algorithm, which

allowed us to compare immune cell abundances across the risk
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FIGURE 12

Distinct mutation landscapes between the high-risk and low-risk groups. (A, B) Waterfall plots of the top 20 genes by mutation frequency in the
high-risk and low-risk groups. (C, D) Co-mutation and mutually exclusive mutation maps of the top 20 genes in the high and low risk groups.
(E) The violin plot shows the difference in mutation allele tumor heterogeneity (MATH) scores between the high-risk and low-risk groups.
(F) Spearman correlation analysis between MATH score and riskscore. (G) The Kaplan-Meier survival curve shows the OS differences between high
and low MATH score groups. (H) Distribution of tumor mutational burden (TMB) in the high-risk and low-risk groups. (I) Distribution of CNV
frequencies among DEGs between the high-risk and low-risk groups. * P <0.05.
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FIGURE 13

The immune landscape associated with PMRS in HCC. (A, B) The StromalScore, ImmuneScore, ESTIMATEScore, and TumorPurity were used to
quantify the differences in immune status between the high-risk and low-risk groups. (C-E) Spearman correlation analysis between StromalScore,
ESTIMATEScore, PMG score (PMGS), and riskscore. (F, G) Different immune cell infiltration patterns between the high-risk and low-risk groups.
(H) Abundance of each TME-infiltrated cell type between the high-risk and low-risk groups, quantified using the CIBERSORT algorithm. (I) The
association between TME-infiltrated cells and genes included in the PMRS. NS, not statistically significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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groups (Figure 13H, Supplementary Table S15). This analysis

revealed that the high-risk group was enriched for Macrophages

M0 and Eosinophils, while the low-risk group showed higher

infiltration of T cells CD8, T cells CD4 memory resting, Mast

cells resting and Mast cells activated. Further investigation into the

relationship between immune cell types and OS in HCC patients

indicated that the infiltration of specific immune cell types was

closely associated with prognosis and disease progression. Notably,

T cells CD8, Macrophages M0, T cells CD4 memory resting, and

Eosinophils were significantly correlated with HCC prognosis

(Supplementary Figures S6A–K).

Lastly, we explored the correlation between the nine genes in

the PMRS model and the abundance of tumor-infiltrating immune

cells. Our analysis revealed that APOA1 was highly positively

correlated with the abundance of CD8+ T cells, while ADH1C,

CYP2C9, FGA, G6PC, HMGCS2, and PON1 showed strong

negative correlations with the abundance of macrophages

M0 (Figure 13I).
3.14 Relationship between PMRS, immune-
related pathways, and immunotherapy
response

To explore the immune characteristics of different risk

subgroups, we applied the ssGSEA algorithm to calculate activity

scores for immune-related pathways. The results indicated that the

high-risk group exhibited lower activity in several immune-related

pathways, including COMPLEMENT AND COAGULATION

CASCADES , HEMATOPO IET IC CELL L INEAGE ,

IINTESTINAL IMMUNE NETWORK FOR IGA PRODUCTION,

LEUKOCYTE TRANSENDOTHELIAL MIGRATION, B CELL

RECEPTOR SIGNALING PATHWAY, and CHEMOKINE

SIGNALING PATHWAY (Figure 14A). Previous studies have

shown that high expression of immune checkpoints can enhance

tumor cell sensitivity to immune checkpoint inhibitors (ICIs)

treatment (30–32). Consistent with these findings, we observed

that most immune checkpoints, including CTLA4, were more

highly expressed in the high-risk group, with the exceptions of

CD274, IDO2, and TMIGD2 (Figure 14B).

To further validate these results, we examined immune

response scores (IPS) from the TCIA database. The analysis

revealed that the high-risk group had significantly higher IPS

scores in both the CTLA4+/PD1- and CTLA4-/PD1- groups,

suggesting that these patients may benefit more from CTLA4-

targeted treatments (Figure 14C). Additionally, TIDE score

analysis indicated that the high-risk group exhibited higher TIDE

scores and a greater proportion of non-responder patients, which is

indicative of immune escape (Figures 14D, E). These results suggest

that while high-risk patients show elevated immune activity, they

are more prone to immune escape mechanisms.

To further evaluate the potential of riskscore in predicting

immunotherapy response, we analyzed data from the IMvigor210

cohort, which was treated with Atezolizumab. Basing the PMRS, we

classified patients into high-risk and low-risk groups based on their
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riskscore. The high-risk group showed a higher proportion of

patients with SD/PD (Figures 14F, G). Survival analysis confirmed

that high-risk patients had worse prognosis compared to the low-

risk group (Figure 14H). Finally, we validated the predictive power

of the riskscore in the GSE104580 cohort. The results demonstrated

that the high-risk group had a significantly higher proportion of

non-responder patients (Figures 14I–J). Furthermore, in predicting

the response to TACE treatment, the riskscore showed an AUC of

0.768 (CI: 0.691-0.846), confirming that the riskscore can be a

reliable predictive tool for TACE treatment outcomes in HCC

patients (Figure 14K).
3.15 Drug sensitivity analysis

In this drug sensitivity analysis, we aimed to optimize

therapeutic strategies for HCC patients by focusing on treatment

targets and drugs that were significantly associated with risk scores.

We analyzed the IC50 values of 198 compounds from the GDSC

database and performed Spearman correlation and differential

analysis between high-risk and low-risk groups. The filtering

criteria were set to |cor| > 0.1 and P < 0.05. Our findings revealed

that the IC50 values of 5-Fluorouracil, Afatinib, and Gefitinib were

negatively correlated with the risk score, suggesting that high-risk

patients may benefit more from these treatments. In contrast,

Sorafenib, Gemcitabine, and Axitinib showed positive correlations

with the risk score, indicating that low-risk patients are more

sensitive to these drugs (Figure 15A).

To identify additional candidate drugs with higher sensitivity in

high-risk patients, we used drug response data from the CTRP and

PRISM databases. First, we conducted a differential drug response

analysis between the high-risk group (top decile) and low-risk

group (bottom decile), with a log2FC > 0.10. Subsequently, we

performed Spearman correlation analysis between the AUC values

and the riskscore, identifying compounds that were significantly

negatively correlated with the riskscore (Figures 15B–E). Based on

these analyses, we identified five compounds from the CTRP

database (SB-743921, Vincristine, GSK461364, Paclitaxel, and BI-

2536) and three compounds from the PRISM database (Volasertib,

YM-155, and Dolastatin-10) that exhibited a consistent negative

correlation with riskscore. These compounds showed lower AUC

values in the high-risk group, suggesting their potential efficacy in

treating HCC patients with higher riskscore.
3.16 Relative expression of PMRS model
genes’ RNA

To explore the expression profiles of the genes included in the

PMRS model, we compared the expression levels of the nine genes

in normal and tumor tissues using the UALCAN online tool

(https://ualcan.path.uab.edu/index.html). The analysis revealed

that the average expression of these genes was significantly higher

in normal than in primary tumor (Supplementary Figures S7A–I).

Additionally, survival analysis indicated that higher expression
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FIGURE 14

Immunotherapy sensitivity analysis between the high-risk and low-risk groups. (A) Immune-related pathways’ activity showing a significant difference
between high- and low-risk groups. (B) The expression of immune checkpoints in high- and low-risk groups. (C) IPS score comparison between the
high-risk and low-risk groups. (D) Comparison of TIDE scores between the high-risk and low-risk groups. (E) Comparison of non-Responders and
Responders to immunotherapy based on the TIDE analysis between the high and low risk groups. (F) A boxplot depicting the difference in riskscore
between patients with CR/PR and those with SD/PD in the IMvigor210 cohort. (G) The proportion of CR/PR or SD/PD patients, who received
immunotherapy, in high- and low-risk groups of the IMvigor210 cohort. (H) The Kaplan-Meier survival curve shows the difference in OS between
high-risk and low-risk groups in the IMvigor210 cohort. (I) A boxplot depicting the difference in risk scores between patients with TACE response
and those with TACE non-response in the GSE104580 cohort. (J) The proportion of TACE response and TACE non-response patients in the high-
risk and low-risk groups of the GSE104580 cohort. (K) ROC curve to predict TACE treatment response using the riskscore.
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FIGURE 15

Association between the PMRS and drug sensitivity and validation of the genes. (A) Analyzing the association between IC50 values and the riskscores
in patients with HCC. (B-E) Analysis of correlation and differences in sensitivity to drugs among potential medications derived from the CTRP and
PRISM datasets. (F-N) Validation of the expression of ADH1C (F), APOA1 (G), CFHR1 (H), CYP2C9 (I), CYP2D6 (J), G6PC (K), FGA (L), HMGCS2 (M),
PON1 (N), NS, not statistically significant; *P < 0.05; **P < 0.01; ***P < 0.001.
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levels of these genes were associated with better prognosis in HCC

patients (Supplementary Figures S7J–R). Furthermore, we evaluated

the expression of these nine genes in three cell lines: one normal

hepatocyte cell line (LO-2) and two HCC cell lines (HepG2 and

HCC-LM3). The results showed that the expression of ADH1C,

APOA1, CFHR1, CYP2C9, CYP2D6, G6PC, FGA, HMGCS2, and

PON1 was significantly downregulated in the tumor cell lines

compared to the normal LO-2 cells (Figures 15F–N).
4 Discussion

HCC is often diagnosed at advanced stages due to the absence of

specific clinical symptoms, leading to delayed detection. As a result,

many patients miss the opportunity for curative surgical treatments

at diagnosis. Despite substantial advances in cancer prevention,

early detection, and treatment strategies over the past few years, the

prognosis for HCC patients remains poor, characterized by a low

survival rate (33). This underscores the critical need for the

identification of novel therapeutic targets to improve treatment

outcomes for HCC patients.

Polyamines are essential tumor metabolites that contribute to

immune suppression and are closely linked to tumor growth and

progression (34). During the early stages of tumorigenesis, various

oncogenic pathways increase the demand for polyamines, leading to

metabolic dysregulation (35). Elevated polyamine levels are therefore

considered crucial for tumor transformation and progression.

Polyamines and their metabolites have also been identified as

potential biomarkers in various cancers. For example, Xu et al.

observed significant alterations in polyamine metabolites in the

plasma and urine of lung and liver cancer patients, with notable

differences in polyamine concentrations (36). Similarly, Giskeødegård

et al. identified specific metabolites in prostate cancer as potential

invasive biomarkers (37). Asai et al. discovered that salivary

metabolites, including polyamines, could serve as valuable

screening tools for pancreatic cancer (38). Furthermore, Nakajima

et al. demonstrated that combining polyamine profiles with machine

learning techniques could enhance colorectal cancer screening (39).

However, the role of PMRG in HCC remains inadequately explored.

This study represents the first comprehensive investigation into the

potential applications of PMRG in HCC using a multi-omics

approach, offering new insights for prognosis prediction and

personalized medicine in HCC.

Machine learning (ML) techniques, particularly multimodal

machine learning, present exciting opportunities for integrating

multi-source data and constructing more accurate predictive

models, owing to their advanced data processing and pattern

recognition capabilities (40). As a significant branch of artificial

intelligence, ML has shown remarkable potential in the diagnosis,

prognosis prediction, and treatment of liver cancer (41). One

commonly used regression method in high-dimensional data

analysis is the least absolute shrinkage and selection operator

(Lasso), which is particularly effective for feature selection and

managing model sparsity. In cancer research, combining Lasso with

random survival forests (RSF) has become a powerful approach for
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constructing prognostic models and predicting postoperative

recurrence risk. These integrated models not only improve

prognosis prediction accuracy but also offer valuable insights into

personalized treatment and follow-up strategies (42–45). In this

study, we utilized the Lasso+RSF algorithm to demonstrate its

strong predictive capability for the prognosis of HCC patients.

Through comprehensive internal and external validation analyses,

we confirmed the robustness of the riskscore derived from the

PMRS in predicting the prognosis of HCC patients.

In this study, we constructed a 9-gene polyamine metabolism-

related signature (PMRS) based on 101 machine learning

algorithms, utilizing genes associated with polyamine metabolism

to predict the prognosis of HCC patients. These genes are involved

in various metabolic pathways and tumorigenesis processes,

showing promise as prognost ic b iomarkers . Alcohol

dehydrogenase 1C (ADH1C), a member of the alcohol

dehydrogenase family, plays a role in the metabolism of ethanol,

retinol, fatty alcohols, hydroxysteroids, and lipid peroxidation

products. Studies have shown that ADH1C expression is

significantly downregulated in HCC cells, with its silencing

promoting cell proliferation and migration (46). Low ADH1C

expression is linked to the activation of tumorigenic pathways,

while higher expression is associated with better prognosis in HCC

(47–49). Apolipoprotein A1 (ApoA1), the main protein component

of high-density lipoprotein (HDL), has anti-inflammatory,

immune-regulatory, and antioxidant properties. Its expression

decreases during HCC progression and is significantly correlated

with better prognosis in HCC patients (50). Complement factor H-

related 1 (CFHR1) is a secreted protein in the complement factor H

family. Homozygous deletion of CFHR1 has been associated with

acute myeloid leukemia, suggesting its role in immune regulation

(51). Cytochrome P450 2D6 (CYP2D6) is involved in drug

metabolism, cholesterol, and steroid synthesis. Studies indicate

that heterozygous deletion of CYP2D6 increases HCC sensitivity

to tazobactam, highlighting its potential as a therapeutic target (52).

Fibrinogen alpha chain (FGA) is a glycoprotein involved in blood

coagulation. Research by Han et al. showed that FGA has anti-

metastatic effects by inhibiting epithelial-mesenchymal transition

(EMT) and HCC cell migration through the PI3K/AKT pathway,

reducing metastasis (53). Glucose-6-phosphatase (G6PC) is crucial

for gluconeogenesis and glycogenolysis, and its downregulation in

HCC tissues is linked to tumor development and metastasis. G6PC

expression impacts glucose metabolism and homeostasis, playing a

key role in HCC progression (54). 3-Hydroxymethylpentanediol-

CoA synthase 2 (HMGCS2) is the rate-limiting enzyme for ketone

production, which synthesizes ketone bodies, b-hydroxybutyrate
(b-HB) and acetic acid. Suk et al. found that HMGCS2 expression

can affect the sensitivity of liver cancer cells to sorafenib (55). The

enzyme encoded by the para-hydroxyl oxygenase 1 (PON1) gene is

an aryl esterase, and PON1 is involved in various oxidative stress-

related diseases (56). Despite this, the regulatory mechanism of this

gene in liver cancer remains unclear and deserves further

exploration and research in the future.

Omics approaches have become essential tools in cancer

research, particularly for identifying and characterizing diagnostic
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1570378
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2025.1570378
and prognostic biomarkers. By integrating multi-dimensional data

from genomics, transcriptomics, proteomics, and metabolomics,

researchers can gain a more comprehensive understanding of the

mechanisms underlying cancer initiation and progression. This

approach provides valuable scientific evidence for early diagnosis,

precision treatment, and prognostic evaluation (57, 58). The

discovery and identification of various biomarkers have

significantly advanced cancer diagnosis and prognosis. For

example, biomarkers such as AFP, HER2, PSA, and EGFR are

widely used in liver cancer, breast cancer, prostate cancer, and non-

small cell lung cancer (NSCLC), respectively (58–61). Omics

technologies enhance our understanding of the molecular

mechanisms driving diseases. By performing risk stratification

and molecular subtype analysis based on omics data, clinical

treatment decisions can be better guided, facilitating personalized

treatment strategies (62). For instance, multi-omics analysis of

triple-negative breast cancer (TNBC) has revealed three distinct

metabolic subtypes: lipid synthesis, glycolysis, and mixed types,

each with unique metabolic characteristics. The lipid synthesis

subtype is more responsive to fatty acid synthase inhibitors, while

the glycolysis subtype shows greater sensitivity to glycolytic

inhibitors (63). In esophageal cancer, saliva-based sequencing

studies developed exosomal small RNA signatures that serve as

preoperative biomarkers for diagnosis and prognostic risk

stratification, helping to identify patients who would benefit from

adjuvant therapy (64). Similarly, NSCLC has been stratified into

different subtypes based on metabolic features, with varying

sensitivity to metabolism-related drugs (65). In gastric cancer, a

machine learning-based diagnostic model using serum exosomal

ncRNAs has been developed, allowing for early-stage detection and

revealing the key role of DGCR9 in gastric cancer progression,

along with its potential as a therapeutic target (66). Furthermore,

metabolic reprogramming signatures in colorectal cancer research

have been used to identify new therapeutic targets, driving the

development of targeted therapies based on these signatures (67).

However, the application of multi-omics analysis in the molecular

characterization of HCC remains underexplored. In our study, we

leveraged multi-omics approaches to establish a novel risk signature

for predicting the prognosis of HCC patients and conducted risk

stratification, thereby facilitating early prediction, targeted

prevention, and personalized treatment strategies. Furthermore,

our goal is to apply multi-omics methodologies to uncover the

molecular mechanisms underlying these signatures, providing a

molecular foundation for understanding the relationship between

PMRG and prognosis, as well as immune treatment response

in HCC.

Increasing evidence suggests that tumor cells promote the

formation of an immunosuppressive microenvironment by

enhancing polyamine synthesis and metabolism (68). These

immunosuppressive effects help cancer cells evade immune

surveillance, thereby facilitating tumor progression. For instance,

TP53 inhibits the urea cycle, leading to ammonia accumulation,

which directly downregulates the translation of ODC1 mRNA. This

results in reduced ODC activity, impairing polyamine synthesis and

slowing tumor cell proliferation. Thus, polyamine metabolism in
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HCC can serve as a valuable marker for assessing tumor malignancy

(69). Our study found that the clust1 has a poorer prognosis

compared to the clust2. Although clust1 exhibits higher immune

activity than clust2, TIDE analysis reveals that clust1 has stronger

immune evasion capabilities. This suggests that the clust1 is more

likely to foster an immunosuppressive microenvironment.

Furthermore, the PMRS model results show that the high-risk

group not only has lower immune activity but also higher TIDE

scores and tumor purity, further supporting the potential role of the

PMRS in immune evasion and treatment response.

Casero et al. discovered that polyamines possess anti-

inflammatory and immunosuppressive properties, suggesting that

modulating polyamine levels could potentially enhance the immune

response in tumors (70). Conversely, Holbert et al. highlighted that

alterations in polyamine levels may be associated with the

development of “immune desert tumors,” which generally show

poor responses to immune checkpoint inhibitors (71). In our study,

we found that the clust1 exhibited higher expression levels of

immune checkpoints. Moreover, the IPS score for the

ips_ctla4_pos_pd1_neg subgroup was significantly elevated. These

findings suggest that clust1 may play a pivotal role in immune

regulation and could influence tumor responsiveness to

immunotherapy. Future research should further investigate the

relationship between polyamine metabolism and immune evasion

mechanisms, as well as explore its potential therapeutic

implications for tumor immunotherapy.

In the PMRS model, the high-risk group is closely associated

with carcinogenic pathways, while the low-risk group is

predominantly linked to metabolic pathways. The risk score is

significantly correlated with the enrichment of various immune-

related pathways. Notably, patients with higher risk scores exhibit

elevated expression levels of immune checkpoints and higher IPS

scores for ips_ctla4_pos_pd1_neg, further suggesting potential

differences in immune treatment responses between the two risk

groups. High-risk patients undergoing anti-PD-L1 therapy are

more likely to experience SD or progression PD, whereas low-risk

patients tend to achieve CR or PR. Currently, transcatheter arterial

chemoembolization (TACE) is considered the standard first-line

treatment for intermediate-stage HCC, with an objective response

rate (ORR) of 52.5% according to recent studies (72). Thus,

developing reliable biomarkers to predict the efficacy of TACE

treatment is essential. Our study demonstrates that the PMRS has

strong predictive power in assessing TACE efficacy, highlighting its

potential as a tool for guiding clinical decision-making in

HCC treatment.

Given the significant role of polyamines in shaping the tumor

immune microenvironment and their broad impact on both tumor

and immune cells, therapies aimed at regulating polyamine levels

hold promise as a novel strategy in cancer treatment. Polyamine

blockade therapy (PBT) has emerged as a potential adjunctive

approach to enhance the efficacy of chemotherapy and

immunotherapy across various cancer types (70, 73, 74).

However, despite the advancements in polyamine-targeted

therapies in other cancers, their application in HCC remains

relatively underexplored.
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In this study, we integrated multi-omics data and performed

comprehensive bioinformatics analysis to identify key genes

associated with polyamine metabolism that could serve as

potential therapeutic targets in HCC. These targets provide a

promising foundation for the development of novel, precise, and

effective targeted therapies.
5 Limitations of the study

Despite the promising findings from our study, several

limitations warrant consideration. First, although we have

evaluated and validated the PMRS features across the training set,

testing set, and external validation set, larger-scale, multi-center

prospective studies are essential to further confirm and generalize

our results. Second, additional in vitro and in vivo studies are

needed to more thoroughly investigate the biological functions of

polyamine metabolism-related genes in HCC, as these studies will

provide a deeper understanding of their role in tumorigenesis and

treatment responses.
6 Conclusion

In this study, we utilized consensus clustering based on the

expression of PMRG to stratify the cohort into two distinct clusters.

We identified significant differences in immune features, molecular

characteristics, and the TME between these clusters, underscoring

their potential utility in the stratification of HCC patients.

Additionally, we developed the PMRS model, which demonstrates

robust predictive capability for the prognosis and immune

treatment response of HCC patients across multiple datasets. The

model also proved effective in predicting the efficacy of TACE. Our

findings lay a strong theoretical foundation for the development of

personalized treatment strategies tailored to the unique molecular

and immune profiles of HCC patients.
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