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Background: Accumulating evidence indicates that elevated polyamine levels
are closely linked to tumor initiation and progression. However, the precise role
of polyamine metabolism in hepatocellular carcinoma (HCC) remains
poorly understood.

Methods: We conducted differential expression analysis on bulk RNA sequencing
data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus
(GEO) to identify 65 polyamine metabolism-related genes. By employing
unsupervised consensus clustering, AddModuleScore, single-sample gene set
enrichment analysis (ssGSEA), and weighted gene co-expression network
analysis (WGCNA), we identified polyamine metabolism-related genes at both
the bulk RNA-seq and single-cell RNA-seq (scRNA-seq) levels. Utilizing 101
machine learning algorithms, we constructed a polyamine metabolism-related
signature (PMRS) and validated its predictive power across training, testing, and
external validation cohorts. Additionally, we developed a prognostic nomogram
model by integrating PMRS with clinical variables. To explore immune treatment
sensitivity, we assessed tumor mutation burden (TMB), tumor immune
dysfunction and exclusion (TIDE) score, mutation frequency, and immune
checkpoint genes expression. Immune cell infiltration was analyzed using the
CIBERSORT algorithm. Finally, RT-gPCR experiments were conducted to validate
the expression of key genes.

Results: Using 101 machine learning algorithms, we established a polyamine
metabolism-related signature comprising 9 genes, which exhibited strong
prognostic value for HCC patients. Further analysis revealed significant
differences in clinical features, biological functions, mutation profiles, and
immune cell infiltration between high-risk and low-risk groups. Notably, TIDE
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analysis and immune phenotype scoring (IPS) demonstrated distinct immune
treatment sensitivities between the two risk groups. RT-gPCR validation
confirmed that these 9 genes were highly expressed in normal cells but
significantly downregulated in tumor cells.

Conclusions: Our study developed a polyamine metabolism-based prognostic
risk signature for HCC, which may provide valuable insights for personalized
treatment strategies in HCC patients.

hepatocellular carcinoma, multi-omics analysis, single-cell RNA sequencing, polyamine
metabolism, immune therapy, machine learning

1 Introduction

Hepatocellular carcinoma (HCC) is the most prevalent primary
liver cancer and the second leading cause of cancer-related deaths
worldwide (1). In recent years, great progresses have been made in
HCC therapy, but the prognosis of HCC patients remains poor,
because of high rate of recurrence and being diagnosed at an
advanced stage (2). Conventional treatment options for HCC,
including surgery, chemotherapy, and radiofrequency ablation,
have been complemented by significant advances in targeted
immunotherapy combinations (3). The IMbravel50 clinical trial
results showed that, compared to traditional first-line
chemotherapy with sorafenib, the combination of atezolizumab
(an anti-PD-L1 antibody) and bevacizumab (an anti-VEGF
antibody) significantly improved advanced-stage HCC patient
outcomes (4). Despite these advancements, the efficacy of these
therapies remains limited for patients with advanced-stage HCC,
who often experience high recurrence rates and ultimately face a
worsened prognosis (4, 5).

Polyamines, including putrescine, spermidine (SPM), and
spermine (SPM), are molecules derived from ornithine through a
decarboxylation process catalyzed by ornithine decarboxylase
(ODCQ). Putrescine is subsequently converted into spermidine and
spermine through the catalytic action of spermidine synthase
(SRM) and spermine synthase (SMS), respectively (6). These
polyamines play essential roles in key cellular processes such as
proliferation, differentiation, and apoptosis, and are closely
associated with tumorigenesis (7). Moreover, S-
adenosylmethionine decarboxylase (AMD1) is a critical enzyme
involved in spermidine synthesis. AMD1 promotes the stemness of
HCC cells through mRNA demethylation mediated by fat mass and
obesity-associated protein (FTO). When AMDI is upregulated in
HCQC tissues, it is often linked to poor prognosis (8). Additionally,
studies have shown that oncogenes such as MYC and BRAF can
significantly regulate polyamine levels in cancer cells (9).
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The tumor microenvironment (TME) is a complex, localized
milieu consisting of tumor cells, non-tumor cells, the extracellular
matrix (ECM), blood vessels, immune cells, signaling molecules,
and other components. The establishment of an immune-
suppressive microenvironment is closely associated with the
immune evasion of tumor cells (10). Within the TME, polyamine
levels in immune cells are typically elevated (6). Research by Chia
et al. demonstrated that inhibiting polyamine metabolism in cancer
could suppress tumor growth, possibly by promoting increased T-
cell infiltration and macrophage-driven pro-inflammatory
phenotypes (11). Studies have suggested that targeting polyamine
metabolism can modify the TME, thereby enhancing the immune
system’s ability to combat tumors. Inhibition of polyamine
synthesis has been shown to significantly slow tumor growth and
improve the efficacy of immunotherapy (12).

Currently, the precise molecular mechanisms through which
polyamine metabolism-related biomarkers influence HCC remain
unclear. In this study, we employed multi-omics analysis to
investigate the role of polyamine metabolism features in HCC. By
integrating bulk RNA sequencing and single-cell RNA sequencing
data, we identified key genes associated with polyamine
metabolism. We then applied machine learning techniques to
develop a risk score model for HCC patients, further elucidating
the tumor immune microenvironment characteristics across
different risk profiles.

2 Materials and methods
2.1 Data sources

We downloaded transcriptomic data, mutation data, copy
number variation (CNV) data, and clinical information for 424

HCC samples from The Cancer Genome Atlas (TCGA, https://
portal.gdc.cancer.gov/projects/TCGA), including 50 normal
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samples and 374 tumor samples. Additionally, we obtained the
GSE14520 dataset from the Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/), which contains 220 normal
samples and 225 tumor samples. The ICGC-LIRI dataset from the
International Cancer Genome Consortium (ICGC, https://
dccicge.org/) was also retrieved, including 177 normal samples
and 212 tumor samples (Supplementary Tables S1-S3). Single-cell
RNA sequencing data were obtained from the GSE242889 dataset,
which consists of 5 normal samples and 5 tumor samples.

2.2 Differentially expressed genes (DEGs)
associated with polyamine metabolism in
HCC

Genes related to polyamine metabolism (PMRG) were sourced
from GeneCards (https://www.genecards.org/) and the MSigDB
database (http://www.gseamsigdb.org/), totaling 814 genes
(Supplementary Table S4). We performed differential expression
analysis between tumor and normal tissues in the TCGA-LIHC and
GSE14520 datasets using the R package “limma” (Supplementary
Table S5). After filtering, 65 differentially expressed genes associated
with polyamine metabolism in HCC were identified, with the
screening criteria set at an adjusted p-value < 0.05 and [log2 fold
change| > 1 (13).

2.3 Consensus clustering analysis

We performed consensus clustering of the differentially
expressed genes associated with polyamine metabolism in HCC
using the R package “ConsensusClusterPlus” and the K-means
algorithm. The cases were grouped into multiple clusters based
on specific markers or features. To determine the optimal number
of clusters, we conducted 1,000 resamplings using 80% of the
samples. Kaplan-Meier survival curve analysis was then
performed to compare overall survival (OS) rates of HCC patients
across different clusters. Finally, univariate Cox regression analysis
identified 33 genes significantly associated with HCC prognosis,
which were selected for further analysis (p-value < 0.05).

2.4 Single-cell RNA sequencing data
collection and processing

We preprocessed the GSE242889 dataset using the “Seurat”
package. Initially, cells with fewer than 250 or more than 7,000
expressed genes, or those with more than 15% unique molecular
identifiers (UMIs) derived from mitochondrial genes, were
excluded as low-quality cells. Next, we removed mitochondrial,
ribosomal, and hemoglobin genes from the dataset. A total of 37,330
cells were retained for further analysis. To correct for batch effects
between datasets, we applied canonical correlation analysis (CCA)
(14). Using the “FindVariableFeatures” function with default
parameters from the Seurat package, we identified the top 2,000
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most variable genes. Cells were then clustered using the
“FindClusters” and “FindNeighbors” functions, and the resulting
clusters were visualized using the Uniform Manifold
Approximation and Projection (UMAP) method. Cluster
annotation was performed using a combination of the SingleR
package and manual annotation (15). The annotation results for
each cell cluster are shown in Supplementary Table S6. We
quantified the PMG score for each cell using the
“AddModuleScore” function in Seurat. To identify differentially
expressed genes (DEGs) between high and low PMG score groups,
we applied the “FindMarkers” function from the Seurat package
and used the Wilcoxon test (p.adj < 0.05) for DEG selection. Genes
differentially expressed between cells with high and low PMG scores
were associated with polyamine metabolism.

2.5 Single-sample gene set enrichment
analysis and gene set enrichment analysis

Single-Sample Gene Set Enrichment Analysis (ssGSEA) is a
method based on gene expression data to assess the enrichment of
specific gene sets within individual samples. Using the ssGSEA
method, we calculated the PMG scores(PMGS) for the TCGA-
LIHC samples (16).

To identify potential biological pathways associated with these
features, we first calculated GSVA scores for 50 hallmark pathways
and analyzed significant differences in pathway activity between the
high-risk and low-risk groups using the “limma” package. Additionally,
to further investigate the biological processes (BP), cellular components
(CC), and molecular functions (MF) involved in different risk subgroups,
we conducted GSEA using the “DOSE,” “clusterProfiler,” and “GseaVis”
R packages on the GO gene sets (c5.go.v7.5.1.symbols.gmt). The
screening criteria were set to a False Discovery Rate (FDR) < 0.05 and
[Normalized Enrichment Score (NES)| > 1 (17).

2.6 Weighted gene co-expression network
analysis

Weighted Gene Co-Expression Network Analysis (WGCNA) is
an unsupervised learning method based on gene co-expression
patterns. It constructs a weighted gene co-expression network to
identify cooperative expression relationships between genes and
organizes them into distinct modules. These modules can then be
correlated with clinical phenotypes, disease states, or other
characteristics.To identify gene sets associated with polyamine
metabolism, we performed WGCNA using the “WGCNA” R
package (18). Based on the TCGA-LIHC bulk transcriptome data,
we first calculated an appropriate soft-thresholding power () to
ensure that the network adhered to the scale-free topology property.
The weighted adjacency matrix was then transformed into a
Topological Overlap Matrix (TOM), and dissTOM (dissimilarity)
was computed. we used the dynamic tree cut algorithm to cluster
the genes and identify modules. Finally, we selected the modules
most strongly correlated with the PMG scores for further analysis.

frontiersin.org


https://www.ncbi.nlm.nih.gov/geo/
https://dcc.icgc.org/
https://dcc.icgc.org/
https://www.genecards.org/
http://www.gseamsigdb.org/
https://doi.org/10.3389/fimmu.2025.1570378
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Yu et al.

2.7 Development and validation of HCC
prognostic features

We used the “limma” R package to perform differential analysis
between the high PMG score group and low PMG score group in
the TCGA bulk RNA-seq data. The screening criteria were set at a
False Discovery Rate (FDR) < 0.05 and log2 fold change (FC) > 1.
we conducted an intersection analysis between the differentially
expressed genes (DEGs) and genes from the PMG score-related
modules identified by WGCNA, with the intersected genes used for
subsequent analysis.

To construct a robust prognostic model with high predictive
accuracy, we followed these steps based on previous studies (19, 20).

2.7.1 Univariate Cox regression analysis

We first performed univariate Cox regression analysis to
identify genes with prognostic significance in the TCGA-
LIHC dataset.

2.7.2 Dataset splitting and model construction

TCGA-LIHC was used as the training set, GSE14520 as the
testing set, and ICGC-LIRI as the external validation set. We applied a
10-fold cross-validation method, utilizing 101 machine learning
algorithms, including stepwise Cox regression, Lasso regression,
Ridge regression, Partial Least Squares regression (plsRcox),
CoxBoost, Random Survival Forest (RSF), Generalized Boosted
Regression Modeling (GBM), Elastic Net (Enet), Supervised
Principal Component Analysis (SuperPC), and Survival Support
Vector Machine (survival-SVM) to construct the model.

2.7.3 Model evaluation and selection

All constructed models were evaluated in the GSE14520 testing
set and ICGC-LIRI external validation set. For each model, we
calculated the concordance index (C-index) and assessed its
performance in the training, testing, and external validation sets.
The model with the highest C-index was selected as the final
prognostic model, named the Polyamine metabolism-related
signature (PMRS). Based on the median riskscore of the selected
model, we divided the samples into high-risk and low-risk groups.

To further evaluate the predictive ability of the model, we
performed kaplan-meier analysis to compare significant
differences in overall survival (OS), disease-specific survival
(DSS), disease-free survival (DFS), and progression-free survival
(PFS) between high-risk and low-risk groups (log-rank test, P <
0.05). Additionally, we used Receiver Operating Characteristic
(ROC) curves to assess the model’s accuracy.

2.8 Cell-cell communication analysis

We performed cell-cell interaction analysis using the “CellChat”
R package (21). By default, the CellChatDB ligand-receptor
database was used, following the standard CellChat analysis
protocol. We inferred the specific interaction patterns between
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tumor cells and various cell types by detecting the expression of
feature genes within the tumor cells. This approach enabled us to
uncover potential communication networks between tumor cells
and the surrounding immune and stromal cells, providing insights
into how cell-cell signaling might influence tumor progression and
the tumor microenvironment (TME).

2.9 Clinical feature analysis and prognostic
nomogram construction and evaluation

We explored the correlation between risk scores and various
clinical features, including age, gender, status, recurrence, grade, T
stage, non-fibrotic alcoholic liver disease (NFALD), hepatitis B virus
(HBV), hepatitis C virus (HCV), stage, and vascular invasion.
Additionally, univariate and multivariate Cox regression analyses
were performed on the TCGA-LIHC, GSE14520, and ICGC-LIRI
datasets to assess whether the riskscore serves as an independent
prognostic factor for HCC patients. Subsequently, we constructed a
prognostic nomogram using the “rms” and “replot” R packages. The
predictive performance of the nomogram was evaluated through ROC
curves, calibration curves, and decision curve analysis (DCA) (22).
These evaluations helped assess the nomogram’s ability to accurately
predict overall survival and guide clinical decision-making, providing
a valuable tool for individualized prognosis prediction in HCC.

2.10 Mutation landscape and copy number
variation analysis

We obtained somatic mutation data for HCC samples from the
TCGA database, stored in MAF (Mutation Annotation Format)
files. Using the R package “maftools,” we visualized the top 20
mutated genes in the high-risk group.

Mutant-Allele Tumor Heterogeneity (MATH) is a method used
to quantify variation in mutation allele frequencies within a tumor,
reflecting genetic heterogeneity. The MATH score indicates the
degree of variation in mutated alleles: higher MATH scores
correspond to greater genetic heterogeneity and a higher
mutation burden (23, 24). We calculated the MATH scores for
HCC based on the distribution of mutated allele frequencies at
tumor-specific mutation sites. Next, we performed copy number
variation (CNV) analysis on the top 20 genes exhibiting the most
significant CNV differences between the high- and low-risk groups.
This CNV analysis provides valuable insights into the genetic
alterations that may drive HCC progression and contribute to
tumor heterogeneity, aiding in the identification of potential
therapeutic targets for precision medicine in HCC treatment.

2.11 Tumor immune microenvironment
analysis

To investigate the impact of different risk features on the tumor
immune microenvironment (TIME) of HCC, we first assessed the
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immune response to HCC immunotherapy using the Tumor
Immune Dysfunction and Exclusion (TIDE) analysis (http://
tide.dfci.harvard.edu/). TIDE is a computational method designed
to predict tumor response to immunotherapy based on gene
expression profiles. We then employed the R package
“ESTIMATE” to evaluate the stromal score, immune score,
estimate score and tumor purity for each patient. The ESTIMATE
algorithm calculates these scores based on the expression of genes in
the stromal and immune components of the TME, helping to assess
the overall immune landscape of the tumor. To gain deeper insights
into the TIME, we applied the R package “IOBR” (https://
github.com/IOBR/IOBR), which integrates several deconvolution
methods and signature construction tools. The IOBR package
includes 8 immune infiltration analysis algorithms, such as
XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC,
CIBERSORT-ABS, CIBERSORT and IPS, enabling a
comprehensive evaluation of immune cell infiltration patterns and
TME composition (25). Additionally, we utilized the CIBERSORT
algorithm to compare immune cell infiltration profiles between
different risk subgroups. This method estimates the relative
abundances of various immune cell types based on gene
expression data, offering insights into how risk stratification
influences the immune landscape of HCC. Finally, we retrieved
immune-related pathway gene sets from the KEGG database
(https://www.genome.jp/kegg/) (Supplementary Table S7). These
pathways provide valuable information on the molecular
mechanisms by which immune cells interact with the tumor and
contribute to HCC progression or immune evasion.

2.12 Drug sensitivity analysis

To explore the relationship between different risk features and
drug sensitivity in HCC, we utilized the “oncoPredict” R package,
which compares drug IC50 values from the GDSC (Genomics of
Drug Sensitivity in Cancer) database. OncoPredict is designed to
predict cancer patients’ sensitivity to various drugs, assisting
researchers and clinicians in tailoring personalized treatment
strategies (26).Additionally, we obtained drug sensitivity data
from the CTRP (Cancer Therapeutics Response Portal) database
(https://portals.broadinstitute.org/ctrp.v2.1/) and the PRISM
(PharmacoGenomics of Cancer Cell Lines) database (https://
www.theprismlab.org/), which provide drug response profiles for
cancer cell lines (CCLs) (27-29). These databases offer valuable
insights into the drug response profiles of a wide range of cancer cell
lines, helping to predict patient-specific drug sensitivity. We also
collected transcriptomic data from the CCLE (Cancer Cell Line
Encyclopedia) database and applied a ridge regression model to
generate drug sensitivity estimates for each patient. Both the CTRP
and PRISM databases provide the area under the dose-response
curve (AUC) as a standard measure of drug sensitivity. A lower
AUC value indicates higher drug sensitivity, while a higher AUC
suggests lower drug sensitivity. In the last, we analyzed the
relationship between riskscore and the IC50 or AUC values to
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identify potential drugs that may be effective in treating HCC. This
analysis aids in understanding which drugs are likely to be most
effective for patients with different risk profiles and can inform
future therapeutic strategies.

2.13 Quantitative real-time polymerase
chain reaction

Total RNA was extracted from different HCC cell lines using
Trizol reagent (Takara, Japan). The RNA was then reverse
transcribed into complementary DNA (cDNA) using the
PrimeScript RT reagent kit (Takara, Japan) according to the
manufacturer’s instructions. Gene expression analysis was
performed by RT-qPCR using TB Green Premix Ex Taq (Takara,
Japan). PCR primers were synthesized by Tsingke (Beijing, China),
and primer details are provided in Supplementary Table S8. The
PCR conditions were as follows: initial denaturation at 95°C for 5
minutes, followed by 40 cycles of the three-step PCR process (95°C
for 40 seconds, 60°C for 50 seconds, and 72°C for 30 seconds). The
results were analyzed using the comparative Ct method, with the Ct
values of each gene normalized to the corresponding GAPDH Ct
values. Data are presented as the mean + standard deviation (SD) of
three independent experiments. Gene expression levels were
quantitatively analyzed using the 2-AACT method.

2.14 Statistical analysis

All statistical analyses were performed using R software (version
4.3.2). Continuous variables between two groups were compared
using either the Wilcoxon test or t-test, while categorical variables
were assessed using the % test or Fisher’s exact test. The correlation
between two continuous variables was determined using spearman’s
correlation analysis. OS was compared using kaplan-meier survival
analysis and the log-rank test. All p-values were calculated using a
two-tailed test and adjusted for multiple comparisons using the
FDR method. A p-value of < 0.05 was considered statistically
significant. This statistical approach ensures the robustness of the
results and helps mitigate potential biases or errors arising from
multiple comparisons in high-dimensional data analysis.

3 Results
3.1 Consensus clustering analysis

The flowchart of this study is depicted in Figure 1. Initially, we
performed differential expression analysis between normal and tumor
samples in the TCGA-LIHC and GSE14520 cohorts, with selection
criteria of adjusted p-values < 0.05 and |log2 fold change| > 1. Among
the 814 genes related to polyamine metabolism, 65 differentially
expressed polyamine metabolism-related genes(PMRG) were
identified through intersection filtering (Figure 2A). Next, we
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Consensus clustering construction. (A) Venn plot showing the intersecting genes between PMRG and DEGs in bulk RNA-seq. (B) Consistency matrix
heatmap. (C) Cumulative distribution function. (D) Delta area plot. (E) Tracking plot. (F) PCA plot. (G) Kaplan-Meier survival analysis. (H) Clinical

feature heatmap.

conducted unsupervised consensus clustering analysis on these 65
differentially expressed PMRG. The results indicated that the optimal
clustering was achieved when K = 2, dividing the samples into two
groups: polyamine metabolism-enriched (clustl) and polyamine
metabolism-deficient (clust2) (Figures 2B-E). Principal Component
Analysis (PCA) demonstrated a clear distribution difference between
clustl and clust2 (Figure 2F). Kaplan-Meier survival analysis revealed
that patients in the clustl group had a significantly poorer prognosis
(Figure 2G). A heatmap further validated the consistency of the
clustering results with the differential expression analysis (Figure 2H).
This approach effectively identifies distinct polyamine metabolism-
related subtypes in HCC, which could have important implications
for prognosis and therapeutic strategies.
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3.2 TIME of different polyamine
metabolism subtypes

To further quantify the differences in immune cell infiltration
between the clustl and clust2 subtypes, we utilized the CIBERSORT
algorithm to assess immune cell infiltration abundance in each
sample (Figure 3A). The results indicated that the clustl subtype
exhibited higher abundance of immune cells with antitumor
functions, including Plasma cells, T cells CD8, T cells follicular
helper, T cells regulatory (Tregs), and Macrophages MO0. In contrast,
the clust2 subtype was characterized by a higher prevalence of cell
types with weaker anticancer activity, such as naive B cells naive, T
cells CD4 memory resting, NK cells resting, Monocytes, and Mast
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cells resting (Figure 3B). Additionally, we analyzed the expression of
46 immune checkpoint genes and found significant differences in
expression between the two subtypes, except for CD274, CD40,
ICOSLG, KIR3DL1, PDCDILG2, and TNFSF14. Specifically,
ADORA2A and IDO2 showed lower expression in clustl, while
the other 37 immune checkpoints were expressed at higher levels in
clustl (Figure 3C).

To evaluate the correlation between immune escape and
immune response, we employed the Tumor Immune Dysfunction
and Exclusion (TIDE) algorithm (http://tide.dfci.harvard.edu/). The
results revealed that clustl had higher expression levels of IFNG,
Exclusion, MDSC, and TIDE, indicating a higher proportion of
non-responders to immunotherapy in this subtype. Conversely,
clust2 displayed higher Dysfunction scores (Supplementary Figures
S1A-F). The ImmuneScore, calculated using the ESTIMATE
algorithm, showed that the immuneScore of clustl was
significantly higher than that of clust2 (Supplementary Figure
S1G). Furthermore, the immunotherapy response Score (IPS),
which predicts responses to CTLA-4 and PD-1 inhibitors, was
higher in clustl patients under both ips_ctla4_neg_pdl_neg
(CTLA4-/PD1-) and ips_ctla4_pos_pdl_neg (CTLA4+/PDI-)
treatment conditions (Supplementary Figures S4H, I). These
findings suggest that the clustl subtype may exhibit stronger
immune activity or anticancer potential.

In summary, the different polyamine metabolism subtypes
exhibit significant variations in the tumor immune
microenvironment. The clustl subtype shows higher immune
activity, while the clust2 subtype may be associated with immune
suppression. These results highlight the importance of stratifying
HCC patients based on polyamine metabolism features to better
understand their TIME, which could inform potential
therapeutic strategies.

3.3 Differentially expressed genes and
functional enrichment analysis in different
polyamine metabolism subtypes

Using the “limma” package, we performed differential
expression analysis between the two polyamine metabolism
subtypes and identified 2,242 differentially expressed genes
(DEGs) associated with polyamine metabolism (Supplementary
Table S9). The volcano plot of these DEGs and the heatmap of
the top 50 genes are shown in Figures 4A, B, respectively. Next, we
conducted Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis and Gene Ontology (GO) enrichment analysis.
The results revealed that the DEGs between clustl and clust2 were
significantly enriched in pathways related to “Neuroactive ligand-
receptor interaction” and “Small molecule catabolic process”
(Figure 4C). In the Gene Set Enrichment Analysis (GSEA) based
on KEGG gene sets, we found that the highly expressed genes were
significantly enriched in the “IL-17 Signaling Pathway” (Figure 4D),
while the lowly expressed genes were significantly enriched in the
“Metabolism of Xenobiotics by Cytochrome P450” pathway
(Figure 4E). Finally, we performed univariate Cox regression
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analysis and correlation analysis on the 65 polyamine
metabolism-related genes, resulting in the identification of 33
genes for further analysis (Figure 4F, Supplementary Figure S17J).

3.4 Polyamine metabolic features in single-
cell transcriptome

To further investigate the polyamine metabolic features in the
single-cell transcriptome, we downloaded scRNA-seq data
(GSE242889) from the GEO database. After performing quality
control, the violin plots of the data are shown in Supplementary
Figures S2A-D. We then log-transformed and normalized the data,
identifying the top 2,000 most variable genes. Dimensionality
reduction was performed using PCA and Uniform Manifold
Approximation and Projection (UMAP), resulting in a reduced
dataset of 37,330 cells.

To address batch effects, we conducted CCA, with the batch-
corrected results displayed in Figure 5A. Clustering analysis
(resolution = 0.1) revealed 13 distinct clusters (Figure 5B). The
annotation of the cell clusters was as follows: Cluster 0 as T cell,
Clusters 1, 5, 8, and 11 as myeloid cell, Cluster 2 as macrophage cell,
Cluster 3 as hepatocyte, Cluster 4 as endothelial cell, Clusters 6 and
9 as B cell, Cluster 7 as tumor cell, Cluster 10 as mesenchymal cell,
and Cluster 12 as mast cell. The annotated UMAP plot is shown in
Figure 5C. Using the “FindAllMarkers” function in the Seurat
package, we identified the marker genes for each cluster, applying
thresholds of log2FC > 0.25 and minimum percentage of cells
(min.pct) > 0.25. The heatmap of the top 5 marker genes for each
cluster is presented in Figure 5D. To quantify the polyamine
metabolic gene (PMG) features in each cell type, we used the
“AddModuleScore” function in Seurat to calculate the expression
levels of a gene set consisting of 33 polyamine metabolism-related
genes (Figure 5E). The results revealed significant differences in
polyamine metabolic features between normal and tumor cells
(Figure 5F). Based on these PMG features, we classified the cells
into high PMGscore(PMGS) and low PMGscore(PMGS) groups
and identified 915 differentially expressed genes (Supplementary
Table S10).

3.5 WGCNA analysis and identification of
core modules related to PMGS

To explore genes associated with polyamine metabolism, we
quantified the PMGS for each TCGA-LIHC sample using the
single-sample gene ssGSEA method. To identify modules
significantly correlated with the PMGS, we constructed a
WGCNA based on differentially expressed PMRG at the single-
cell level (Figure 6A). The optimal soft threshold was selected as 5
(R* = 0.895), ensuring that the network adhered to the scale-free
topology criterion (Supplementary Figure S2E). The minimum
number of genes per module was set to 50, and the module
dendrogram was cut at a MEDissThres of 0.15, resulting in the
identification of six distinct modules (Figure 6B). Among these, the
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turquoise module showed a strong correlation with the PMG score
in TCGA-LIHC (Figure 6C). The scatter plot in Figure 6D
demonstrates the correlation between gene significance (GS) and
module membership (MM) within the turquoise module.In
summary, the genes within the turquoise module may play a key
role in the functional pathways related to polyamine metabolism
(Supplementary Table S11).

3.6 Differential analysis between high and
low PMGS

There was a significant difference in PMGS between the clustl
and clust2 subtypes (Figure 6E, P < 0.0001). Based on the median
PMGS in TCGA-LIHC, the samples were divided into high and low
PMGS groups. Kaplan-Meier survival analysis demonstrated that
HCC patients with high PMGS had a significantly better prognosis
compared to those with low PMGS (Figure 6F). Subsequently, we
conducted differential expression analysis using the “limma”
package between the high and low PMGS groups, identifying
1,194 differentially expressed genes (DEGs) (Supplementary Table
S12). Of these, 755 genes were upregulated, while 439 genes were
downregulated (Figure 6G).

To further investigate genes related to polyamine metabolism,
we performed an intersection analysis between the DEGs and the
genes in the turquoise module, which identified 138 PMRG
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(Figure 6H). Gene Ontology (GO) enrichment analysis of these
138 genes revealed significant associations with BP, CC, and MF,
particularly in processes such as small molecule catabolic processes,
blood microparticles, and enzyme inhibitor activity (Figure 6I).

We then performed univariate Cox regression analysis on these
138 genes and selected 53 genes for further analysis and machine
learning model construction (Supplementary Table S13).
Additionally, we analyzed the copy number variations (CNVs) of
these 53 genes and found that the CNV frequencies of MASP2 and
CPB2 were increased by more than 15% (Figure 6]). Finally, the
protein-protein interaction (PPI) network of these 53 genes is
shown in Supplementary Figure S2G.

3.7 Development of a prognostic gene
signature for HCC patients based on
machine learning

To develop a polyamine metabolism-related signature (PMRS),
we applied a comprehensive analysis using 101 machine learning
algorithms, selecting 53 prognostic genes identified through
univariate Cox regression analysis. TCGA-LIHC data was used as
the training set, GSE14520 data as the testing set, and ICGC-LIRI as
the external validation set. We evaluated the consistency index (C-
index) across all datasets (training, testing, and validation) using a
10-fold cross-validation approach (Figure 7A). Among the models
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assessed, the top five, ranked by the average C-index, were all
developed using the Random Survival Forest (RSF) algorithm.
However, as the RSF model showed a lower C-index in the
testing set compared to the Lasso+RSF model, we selected the
Lasso+RSF model as the most accurate and clinically relevant
prediction model. Using this model, we developed a clinical
prognostic risk score model (PMRS) that includes 9 genes:
CYP2C9, PON1, HMGCS2, CFHR1, APOA1, ADHI1C, G6PC,
CYP2D6, and FGA (Figures 7B, C, Supplementary Table S14).
Samples were divided into high-risk and low-risk groups based on
the median risk score. Kaplan-Meier survival analysis showed that
the high-risk group had a significantly poorer prognosis compared
to the low-risk group (Figure 7D). Similar results were observed in
both the testing set and external validation set (Figures 7E-F). The
chromosomal locations of the 9 genes are shown in Figure 7G. In
the TCGA-LIHC cohort, patients in the high-risk group exhibited
significantly poorer DSS, DFS, and PFS compared to the low-risk
group (Figures 7H-J). Moreover, we compared the clinical and

10.3389/fimmu.2025.1570378

pathological characteristics of patients in the high-risk and low-risk
groups and found significant differences in gender, T stage, stage,
and status (P < 0.05; Figure 7K).

3.8 PMRS model evaluation

To evaluate the predictive performance of the PMRS model, we
conducted PCA across three cohorts to confirm the separation
between high-risk and low-risk groups (Figure 8A). The
distribution of riskscores and the survival status plot revealed that
the high-risk group had higher riskscores and a greater proportion
of deceased patients (Figure 8B). The area under the receiver
operating characteristic (ROC) curve (AUC) was calculated for
different survival time points. In the TCGA training set, the AUC
values were 0.973 for 1-year, 0.976 for 3-year, and 0.977 for 5-year
survival. In the GSE14520 testing set, the AUC values were 0.699 for
1-year, 0.656 for 3-year, and 0.677 for 5-year survival. For the
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ICGC-LIRI external validation set, there were no deaths recorded
after the fifth year, resulting in a 5-year AUC of 0. The AUC values
for 1-year, 3-year, and 4-year survival intervals in this cohort were
0.762, 0.789, and 0.827, respectively (Figure 8C). These results
demonstrate that the PMRS model provides robust predictive
performance, particularly for 1-year, 3-year, and 4-year survival,
where the model shows statistically significant findings. The
predictive accuracy is well-supported by sufficient event data
across these time intervals.

3.9 Correlation of PMRS with single-cell
characteristics

To explore the impact of different risk features on the TME at
the single-cell transcriptomic level, we analyzed the expression of
nine genes across various cell types (Figure 9A). The results
indicated that these genes were most highly expressed in
hepatocyte, followed by immune cells, with the lowest expression
observed in tumor cell.

Based on the expression levels of these nine genes, we calculated
a riskscore for each cell and identified differentially expressed genes
between high-risk and low-risk groups. KEGG enrichment analysis
revealed that the differentially expressed genes were significantly
enriched in several pathways, including: Complement and
coagulation cascades, Metabolism of xenobiotics by cytochrome
P450, Drug metabolism - cytochrome P450, Chemical
carcinogenesis — DNA adducts, and Natural killer cell-mediated
cytotoxicity (Figure 9B). we calculated the riskscore for each cell
based on the PMRS model, classifying tumor cell into high-risk and
low-risk groups. We then examined their interactions with other
immune cells. The results showed significant differences in the
communication patterns between tumor cells with different risk
features (Figures 9C, D). In the TME, various cell types function as
senders, receivers, signal mediators, and regulators, facilitating the
transmission of intercellular signals. Tumor cell in the low-risk
group communicated with a broader range of immune cells and
exhibited stronger inbound and outbound signaling in the CXCL
and MIF signaling pathway networks. These cells acted as more
potent mediators and influencers (Figures 9E, F). In summary,
tumor cells with low-risk scores engage in complex signaling
exchanges with immune cells through the CXCL and MIF
pathways, potentially contributing to immune escape and
promoting tumor progression. The clinical significance of this
phenomenon in tumor immunotherapy warrants
further investigation.

3.10 Comparison of clinical and
pathological characteristics of patients
with PMRS and construction of nomogram

We examined the relationship between clinical and pathological

characteristics and various risk features in HCC patients. The
results revealed that higher risk scores were strongly associated
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with several clinical features, including gender, status, recurrence,
grade, T stage, HBV, stage, and vascular invasion (Supplementary
Figures S3A-K). Supplementary Figure S3L illustrates the
correlation between the expression levels of the nine genes and
these clinical characteristics. Additionally, in the GSE14520 cohort,
riskscore significantly differed with Predicted risk Metastasis
Signature, such as Main Tumor Size, Multinodular, AFP levels,
Stage, and BCLC stage (Supplementary Figures S4A-]).

To evaluate the potential of riskscore as an independent
prognostic factor for HCC, we conducted univariate and
multivariate Cox regression analyses using data from the TCGA-
LIHC, GSE14520, and ICGC cohorts (Figures 10A, B). Univariate
analysis showed that riskscore was a significant prognostic factor for
HCC (HR > 1, P < 0.05), and multivariate analysis further
confirmed the independence of riskscore as a prognostic factor
(HR > 1, P < 0.05).

For clinical application, we constructed a nomogram
incorporating riskscore and clinical characteristics (Figure 10C).
In the TCGA-LIHC cohort, the nomogram demonstrated stable
and robust predictive performance, particularly for OS predictions
over 1 to 8 years. It outperformed other clinical features in terms of
accuracy, with the AUC for 1-year, 3-year, and 5-year survival
predictions being 0.973, 0.975, and 0.976, respectively. Calibration
curve analysis showed a strong agreement between predicted and
observed values. Additionally, decision curve analysis (DCA)
revealed that the nomogram provided higher net clinical benefit
compared to other clinical features (Figures 10D-G). In the
GSE14520 cohort, the nomogram achieved AUCs of 0.736, 0.740,
and 0.754 for 1-year, 3-year, and 5-year survival predictions,
respectively (Figure 10H). In the ICGC-LIRI cohort, the AUCs
for 1-year, 3-year, and 4-year survival predictions were 0.870, 0.764,
and 0.794, respectively (Figure 10I), further validating the model’s
predictive accuracy. These results suggest that the nomogram,
developed using risk scores and clinical characteristics, is a
reliable tool for personalized prognostic prediction in HCC
patients. Furthermore, we used an alluvial diagram to illustrate
the relationships between different polyamine metabolism subtypes,
PMGS, and risk groups (Figure 10]). The results show that the
clustl subtype predominantly exhibits lower PMGS and higher risk
score, correlating with a poorer prognosis.

3.11 Biological functions of PMRS

To investigate the biological function differences associated with
prognosis between high-risk and low-risk groups, we performed
functional enrichment analysis. GSEA based on GO gene sets
revealed that the high-risk group was significantly enriched in
several cancer-related pathways, including HALLMARK E2F
TARGETS, HALLMARK G2M CHECKPOINT, HALLMARK
MTORCI SIGNALING, HALLMARK MYC TARGETS V1, and
HALLMARK MYC TARGETS V2 (Figure 11A). In contrast, the
low-risk group exhibited significant enrichment in pathways
associated with metabolism and detoxification, such as
HALLMARK BILE ACID METABOLISM, HALLMARK
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XENOBIOTIC METABOLISM, HALLMARK COAGULATION,
HALLMARK FATTY ACID METABOLISM, and HALLMARK
ADIPOGENESIS (Figure 11B). Furthermore, through GSVA
based on Hallmark gene sets, we observed that the high-risk
group exhibited stronger activation in pathways related to
HALLMARK MYC TARGETS V1, HALLMARK MYC
TARGETS V2, and HALLMARK UNFOLDED PROTEIN
RESPONSE. In contrast, the low-risk group showed more
prominent activity in pathways such as HALLMARK
COAGULATION, HALLMARK BILE ACID METABOLISM, and
HALLMARK XENOBIOTIC METABOLISM (Figure 11C).
Correlation analysis between riskscores and Hallmark pathway
scores further corroborated these findings (Figure 11D),
suggesting a strong association between risk scores and cancer-
related biological processes and metabolic pathways. To assess
whether these Hallmark pathway scores are linked to prognosis in
HCC patients, we performed survival analysis. The results indicated
that pathways such as HALLMARK DNA REPAIR, HALLMARK
G2M CHECKPOINT, and HALLMARK PI3K AKT MTOR
SIGNALING were positively correlated with poor prognosis
(Figures 11E-G, Supplementary Figures S4K-0O), while pathways
like HALLMARK COAGULATION, HALLMARK MYOGENESIS,
and HALLMARK PANCREAS BETA CELLS were associated with
better prognosis (Figures 11H-]).

This analysis suggests that the biological functions of high-risk
patients are primarily enriched in pathways related to cancer
progression, such as tumor cell proliferation, DNA repair, and
cell cycle regulation. Activation of these pathways likely drives
tumor progression and contributes to poorer prognosis. In contrast,
the biological functions of low-risk patients are mainly concentrated
in metabolic pathways, including fatty acid and bile acid
metabolism. The maintenance of these metabolic processes may
help stabilize tumor growth and contribute to a better prognosis.
Thus, significant differences in the active states of biological
functions and related pathways between high-risk and low-risk
patients may play a crucial role in driving the prognostic disparities
observed between these two groups.

3.12 Mutation landscape and tumor
heterogeneity in PMRS

To investigate the differences in genomic mutations between the
high-risk and low-risk groups, we analyzed the mutation profiles of
these two subgroups (Figures 12A, B, Supplementary Figures S5A,
B). The results revealed significant differences in mutation spectra
between the groups: TP53 mutations were predominant in the high-
risk group, while CTNNBI1 mutations were more prevalent in the
low-risk group. Fisher’s exact test identified significant differences
in the mutation frequencies of DOCK2, MAGI2, and PCDHA5
between the two groups (Supplementary Figure S5C, P < 0.01).
Specifically, the high-risk group had a higher mutation frequency in
DOCK?2, while the low-risk group exhibited increased mutation
frequencies in MAGI2 and PCDHAS5. Figures 12C, D further
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illustrate that the high-risk group displayed a higher frequency of
co-occurring mutations compared to the low-risk group.

ITH refers to the genetic differences present among various
cellular populations within a tumor, typically resulting from the
accumulation of mutations during tumor growth. ITH is closely
associated with rapid tumor progression, metastasis, and resistance
to chemotherapy, which can lead to treatment failure. To quantify
ITH in HCC patients, we applied the MATH algorithm, with higher
MATH scores indicating greater ITH. Our analysis revealed that the
high-risk group had significantly higher MATH scores than the
low-risk group (Figure 12E). Additionally, a significant positive
correlation was observed between the MATH score and risk score
(Figure 12F, R = 0.2, P < 0.05). Further investigation into the
relationship between ITH and prognosis showed that patients with
higher MATH scores had a poorer prognosis (Figure 12G). We also
analyzed the tumor mutation burden (TMB) and found that the
high-risk group had TMB values concentrated in the higher range,
suggesting a greater accumulation of mutations in this
group (Figure 12H).

Finally, we examined the copy number variations (CNV) of the
top 20 genes with the most significant differences between the high-
risk and low-risk groups. The results indicated that the high-risk
group exhibited copy number gains in genes such as CSMD3, FLG,
RYR2, DOCK2, APOB, and TTN, while showing copy number
losses in genes like TP53, MUC16, CTNNBI, PCLO, and XIRP2
(Figure 12I). These CNV differences suggest that the high-risk
group experiences greater genomic instability and tumor
heterogeneity, which may be closely linked to tumor invasiveness,
recurrence risk, and the regulation of the TIME.

3.13 Correlation between PMRS and TIME

To assess the relationship between different risk subgroups of
HCC patients and immune cell infiltration, we employed the
ESTIMATE algorithm to calculate stromal scores, immune scores,
ESTIMATE scores, and tumor purity across the different risk
subgroups. The results indicated that the high-risk group had
significantly lower stromal and estamate scores (Figure 13A),
while exhibiting higher tumor purity (Figure 13B). Correlation
analysis revealed significant negative associations between the
riskscore and both stromal score, estamate score, and the PMGS
(Figures 13C-E).

To further explore immune cell infiltration, we used several
immune cell quantification algorithms, including XCELL, TIMER,
QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and
CIBERSORT, to assess the abundance of immune cell populations
in each sample. The correlation analysis results between the risk
score and various immune cell types are shown in Figure 13F, while
a heatmap illustrating the expression levels of different immune cell
types in high-risk and low-risk groups is provided in Figure 13G. To
examine specific differences in immune cell infiltration between the
risk subgroups, we applied the CIBERSORTS algorithm, which
allowed us to compare immune cell abundances across the risk
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groups (Figure 13H, Supplementary Table S15). This analysis
revealed that the high-risk group was enriched for Macrophages
MO and Eosinophils, while the low-risk group showed higher
infiltration of T cells CD8, T cells CD4 memory resting, Mast
cells resting and Mast cells activated. Further investigation into the
relationship between immune cell types and OS in HCC patients
indicated that the infiltration of specific immune cell types was
closely associated with prognosis and disease progression. Notably,
T cells CD8, Macrophages MO, T cells CD4 memory resting, and
Eosinophils were significantly correlated with HCC prognosis
(Supplementary Figures S6A-K).

Lastly, we explored the correlation between the nine genes in
the PMRS model and the abundance of tumor-infiltrating immune
cells. Our analysis revealed that APOA1 was highly positively
correlated with the abundance of CD8+ T cells, while ADHIC,
CYP2C9, FGA, G6PC, HMGCS2, and PON1 showed strong
negative correlations with the abundance of macrophages
MO (Figure 13I).

3.14 Relationship between PMRS, immune-
related pathways, and immunotherapy
response

To explore the immune characteristics of different risk
subgroups, we applied the ssGSEA algorithm to calculate activity
scores for immune-related pathways. The results indicated that the
high-risk group exhibited lower activity in several immune-related
pathways, including COMPLEMENT AND COAGULATION
CASCADES, HEMATOPOIETIC CELL LINEAGE,
IINTESTINAL IMMUNE NETWORK FOR IGA PRODUCTION,
LEUKOCYTE TRANSENDOTHELIAL MIGRATION, B CELL
RECEPTOR SIGNALING PATHWAY, and CHEMOKINE
SIGNALING PATHWAY (Figure 14A). Previous studies have
shown that high expression of immune checkpoints can enhance
tumor cell sensitivity to immune checkpoint inhibitors (ICIs)
treatment (30-32). Consistent with these findings, we observed
that most immune checkpoints, including CTLA4, were more
highly expressed in the high-risk group, with the exceptions of
CD274, IDO2, and TMIGD2 (Figure 14B).

To further validate these results, we examined immune
response scores (IPS) from the TCIA database. The analysis
revealed that the high-risk group had significantly higher IPS
scores in both the CTLA4+/PD1- and CTLA4-/PD1- groups,
suggesting that these patients may benefit more from CTLA4-
targeted treatments (Figure 14C). Additionally, TIDE score
analysis indicated that the high-risk group exhibited higher TIDE
scores and a greater proportion of non-responder patients, which is
indicative of immune escape (Figures 14D, E). These results suggest
that while high-risk patients show elevated immune activity, they
are more prone to immune escape mechanisms.

To further evaluate the potential of riskscore in predicting
immunotherapy response, we analyzed data from the IMvigor210
cohort, which was treated with Atezolizumab. Basing the PMRS, we
classified patients into high-risk and low-risk groups based on their
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riskscore. The high-risk group showed a higher proportion of
patients with SD/PD (Figures 14F, G). Survival analysis confirmed
that high-risk patients had worse prognosis compared to the low-
risk group (Figure 14H). Finally, we validated the predictive power
of the riskscore in the GSE104580 cohort. The results demonstrated
that the high-risk group had a significantly higher proportion of
non-responder patients (Figures 14I-]). Furthermore, in predicting
the response to TACE treatment, the riskscore showed an AUC of
0.768 (CI: 0.691-0.846), confirming that the riskscore can be a
reliable predictive tool for TACE treatment outcomes in HCC
patients (Figure 14K).

3.15 Drug sensitivity analysis

In this drug sensitivity analysis, we aimed to optimize
therapeutic strategies for HCC patients by focusing on treatment
targets and drugs that were significantly associated with risk scores.
We analyzed the IC50 values of 198 compounds from the GDSC
database and performed Spearman correlation and differential
analysis between high-risk and low-risk groups. The filtering
criteria were set to |cor| > 0.1 and P < 0.05. Our findings revealed
that the IC50 values of 5-Fluorouracil, Afatinib, and Gefitinib were
negatively correlated with the risk score, suggesting that high-risk
patients may benefit more from these treatments. In contrast,
Sorafenib, Gemcitabine, and Axitinib showed positive correlations
with the risk score, indicating that low-risk patients are more
sensitive to these drugs (Figure 15A).

To identify additional candidate drugs with higher sensitivity in
high-risk patients, we used drug response data from the CTRP and
PRISM databases. First, we conducted a differential drug response
analysis between the high-risk group (top decile) and low-risk
group (bottom decile), with a log2FC > 0.10. Subsequently, we
performed Spearman correlation analysis between the AUC values
and the riskscore, identifying compounds that were significantly
negatively correlated with the riskscore (Figures 15B-E). Based on
these analyses, we identified five compounds from the CTRP
database (SB-743921, Vincristine, GSK461364, Paclitaxel, and BI-
2536) and three compounds from the PRISM database (Volasertib,
YM-155, and Dolastatin-10) that exhibited a consistent negative
correlation with riskscore. These compounds showed lower AUC
values in the high-risk group, suggesting their potential efficacy in
treating HCC patients with higher riskscore.

3.16 Relative expression of PMRS model
genes’ RNA

To explore the expression profiles of the genes included in the
PMRS model, we compared the expression levels of the nine genes
in normal and tumor tissues using the UALCAN online tool
(https://ualcan.path.uab.edu/index.html). The analysis revealed
that the average expression of these genes was significantly higher
in normal than in primary tumor (Supplementary Figures S7A-I).
Additionally, survival analysis indicated that higher expression
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levels of these genes were associated with better prognosis in HCC
patients (Supplementary Figures S7J-R). Furthermore, we evaluated
the expression of these nine genes in three cell lines: one normal
hepatocyte cell line (LO-2) and two HCC cell lines (HepG2 and
HCC-LM3). The results showed that the expression of ADHIC,
APOAL1, CFHRI1, CYP2C9, CYP2D6, G6PC, FGA, HMGCS2, and
PONI1 was significantly downregulated in the tumor cell lines
compared to the normal LO-2 cells (Figures 15F-N).

4 Discussion

HCC is often diagnosed at advanced stages due to the absence of
specific clinical symptoms, leading to delayed detection. As a result,
many patients miss the opportunity for curative surgical treatments
at diagnosis. Despite substantial advances in cancer prevention,
early detection, and treatment strategies over the past few years, the
prognosis for HCC patients remains poor, characterized by a low
survival rate (33). This underscores the critical need for the
identification of novel therapeutic targets to improve treatment
outcomes for HCC patients.

Polyamines are essential tumor metabolites that contribute to
immune suppression and are closely linked to tumor growth and
progression (34). During the early stages of tumorigenesis, various
oncogenic pathways increase the demand for polyamines, leading to
metabolic dysregulation (35). Elevated polyamine levels are therefore
considered crucial for tumor transformation and progression.
Polyamines and their metabolites have also been identified as
potential biomarkers in various cancers. For example, Xu et al.
observed significant alterations in polyamine metabolites in the
plasma and urine of lung and liver cancer patients, with notable
differences in polyamine concentrations (36). Similarly, Giskeodegard
et al. identified specific metabolites in prostate cancer as potential
invasive biomarkers (37). Asai et al. discovered that salivary
metabolites, including polyamines, could serve as valuable
screening tools for pancreatic cancer (38). Furthermore, Nakajima
et al. demonstrated that combining polyamine profiles with machine
learning techniques could enhance colorectal cancer screening (39).
However, the role of PMRG in HCC remains inadequately explored.
This study represents the first comprehensive investigation into the
potential applications of PMRG in HCC using a multi-omics
approach, offering new insights for prognosis prediction and
personalized medicine in HCC.

Machine learning (ML) techniques, particularly multimodal
machine learning, present exciting opportunities for integrating
multi-source data and constructing more accurate predictive
models, owing to their advanced data processing and pattern
recognition capabilities (40). As a significant branch of artificial
intelligence, ML has shown remarkable potential in the diagnosis,
prognosis prediction, and treatment of liver cancer (41). One
commonly used regression method in high-dimensional data
analysis is the least absolute shrinkage and selection operator
(Lasso), which is particularly effective for feature selection and
managing model sparsity. In cancer research, combining Lasso with
random survival forests (RSF) has become a powerful approach for
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constructing prognostic models and predicting postoperative
recurrence risk. These integrated models not only improve
prognosis prediction accuracy but also offer valuable insights into
personalized treatment and follow-up strategies (42-45). In this
study, we utilized the Lasso+RSF algorithm to demonstrate its
strong predictive capability for the prognosis of HCC patients.
Through comprehensive internal and external validation analyses,
we confirmed the robustness of the riskscore derived from the
PMRS in predicting the prognosis of HCC patients.

In this study, we constructed a 9-gene polyamine metabolism-
related signature (PMRS) based on 101 machine learning
algorithms, utilizing genes associated with polyamine metabolism
to predict the prognosis of HCC patients. These genes are involved
in various metabolic pathways and tumorigenesis processes,
showing promise as prognostic biomarkers. Alcohol
dehydrogenase 1C (ADHIC), a member of the alcohol
dehydrogenase family, plays a role in the metabolism of ethanol,
retinol, fatty alcohols, hydroxysteroids, and lipid peroxidation
products. Studies have shown that ADHIC expression is
significantly downregulated in HCC cells, with its silencing
promoting cell proliferation and migration (46). Low ADHI1C
expression is linked to the activation of tumorigenic pathways,
while higher expression is associated with better prognosis in HCC
(47-49). Apolipoprotein Al (ApoAl), the main protein component
of high-density lipoprotein (HDL), has anti-inflammatory,
immune-regulatory, and antioxidant properties. Its expression
decreases during HCC progression and is significantly correlated
with better prognosis in HCC patients (50). Complement factor H-
related 1 (CFHR1) is a secreted protein in the complement factor H
family. Homozygous deletion of CFHRI has been associated with
acute myeloid leukemia, suggesting its role in immune regulation
(51). Cytochrome P450 2D6 (CYP2D6) is involved in drug
metabolism, cholesterol, and steroid synthesis. Studies indicate
that heterozygous deletion of CYP2D6 increases HCC sensitivity
to tazobactam, highlighting its potential as a therapeutic target (52).
Fibrinogen alpha chain (FGA) is a glycoprotein involved in blood
coagulation. Research by Han et al. showed that FGA has anti-
metastatic effects by inhibiting epithelial-mesenchymal transition
(EMT) and HCC cell migration through the PI3K/AKT pathway,
reducing metastasis (53). Glucose-6-phosphatase (G6PC) is crucial
for gluconeogenesis and glycogenolysis, and its downregulation in
HCC tissues is linked to tumor development and metastasis. GGPC
expression impacts glucose metabolism and homeostasis, playing a
key role in HCC progression (54). 3-Hydroxymethylpentanediol-
CoA synthase 2 (HMGCS2) is the rate-limiting enzyme for ketone
production, which synthesizes ketone bodies, B-hydroxybutyrate
(B-HB) and acetic acid. Suk et al. found that HMGCS2 expression
can affect the sensitivity of liver cancer cells to sorafenib (55). The
enzyme encoded by the para-hydroxyl oxygenase 1 (PON1) gene is
an aryl esterase, and PONT1 is involved in various oxidative stress-
related diseases (56). Despite this, the regulatory mechanism of this
gene in liver cancer remains unclear and deserves further
exploration and research in the future.

Omics approaches have become essential tools in cancer
research, particularly for identifying and characterizing diagnostic
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and prognostic biomarkers. By integrating multi-dimensional data
from genomics, transcriptomics, proteomics, and metabolomics,
researchers can gain a more comprehensive understanding of the
mechanisms underlying cancer initiation and progression. This
approach provides valuable scientific evidence for early diagnosis,
precision treatment, and prognostic evaluation (57, 58). The
discovery and identification of various biomarkers have
significantly advanced cancer diagnosis and prognosis. For
example, biomarkers such as AFP, HER2, PSA, and EGFR are
widely used in liver cancer, breast cancer, prostate cancer, and non-
small cell lung cancer (NSCLC), respectively (58-61). Omics
technologies enhance our understanding of the molecular
mechanisms driving diseases. By performing risk stratification
and molecular subtype analysis based on omics data, clinical
treatment decisions can be better guided, facilitating personalized
treatment strategies (62). For instance, multi-omics analysis of
triple-negative breast cancer (TNBC) has revealed three distinct
metabolic subtypes: lipid synthesis, glycolysis, and mixed types,
each with unique metabolic characteristics. The lipid synthesis
subtype is more responsive to fatty acid synthase inhibitors, while
the glycolysis subtype shows greater sensitivity to glycolytic
inhibitors (63). In esophageal cancer, saliva-based sequencing
studies developed exosomal small RNA signatures that serve as
preoperative biomarkers for diagnosis and prognostic risk
stratification, helping to identify patients who would benefit from
adjuvant therapy (64). Similarly, NSCLC has been stratified into
different subtypes based on metabolic features, with varying
sensitivity to metabolism-related drugs (65). In gastric cancer, a
machine learning-based diagnostic model using serum exosomal
ncRNAs has been developed, allowing for early-stage detection and
revealing the key role of DGCRY in gastric cancer progression,
along with its potential as a therapeutic target (66). Furthermore,
metabolic reprogramming signatures in colorectal cancer research
have been used to identify new therapeutic targets, driving the
development of targeted therapies based on these signatures (67).
However, the application of multi-omics analysis in the molecular
characterization of HCC remains underexplored. In our study, we
leveraged multi-omics approaches to establish a novel risk signature
for predicting the prognosis of HCC patients and conducted risk
stratification, thereby facilitating early prediction, targeted
prevention, and personalized treatment strategies. Furthermore,
our goal is to apply multi-omics methodologies to uncover the
molecular mechanisms underlying these signatures, providing a
molecular foundation for understanding the relationship between
PMRG and prognosis, as well as immune treatment response
in HCC.

Increasing evidence suggests that tumor cells promote the
formation of an immunosuppressive microenvironment by
enhancing polyamine synthesis and metabolism (68). These
immunosuppressive effects help cancer cells evade immune
surveillance, thereby facilitating tumor progression. For instance,
TP53 inhibits the urea cycle, leading to ammonia accumulation,
which directly downregulates the translation of ODC1 mRNA. This
results in reduced ODC activity, impairing polyamine synthesis and
slowing tumor cell proliferation. Thus, polyamine metabolism in
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HCC can serve as a valuable marker for assessing tumor malignancy
(69). Our study found that the clustl has a poorer prognosis
compared to the clust2. Although clustl exhibits higher immune
activity than clust2, TIDE analysis reveals that clustl has stronger
immune evasion capabilities. This suggests that the clustl is more
likely to foster an immunosuppressive microenvironment.
Furthermore, the PMRS model results show that the high-risk
group not only has lower immune activity but also higher TIDE
scores and tumor purity, further supporting the potential role of the
PMRS in immune evasion and treatment response.

Casero et al. discovered that polyamines possess anti-
inflammatory and immunosuppressive properties, suggesting that
modulating polyamine levels could potentially enhance the immune
response in tumors (70). Conversely, Holbert et al. highlighted that
alterations in polyamine levels may be associated with the
development of “immune desert tumors,” which generally show
poor responses to immune checkpoint inhibitors (71). In our study,
we found that the clustl exhibited higher expression levels of
immune checkpoints. Moreover, the IPS score for the
ips_ctla4_pos_pdl_neg subgroup was significantly elevated. These
findings suggest that clustl may play a pivotal role in immune
regulation and could influence tumor responsiveness to
immunotherapy. Future research should further investigate the
relationship between polyamine metabolism and immune evasion
mechanisms, as well as explore its potential therapeutic
implications for tumor immunotherapy.

In the PMRS model, the high-risk group is closely associated
with carcinogenic pathways, while the low-risk group is
predominantly linked to metabolic pathways. The risk score is
significantly correlated with the enrichment of various immune-
related pathways. Notably, patients with higher risk scores exhibit
elevated expression levels of immune checkpoints and higher IPS
scores for ips_ctla4_pos_pdl_neg, further suggesting potential
differences in immune treatment responses between the two risk
groups. High-risk patients undergoing anti-PD-L1 therapy are
more likely to experience SD or progression PD, whereas low-risk
patients tend to achieve CR or PR. Currently, transcatheter arterial
chemoembolization (TACE) is considered the standard first-line
treatment for intermediate-stage HCC, with an objective response
rate (ORR) of 52.5% according to recent studies (72). Thus,
developing reliable biomarkers to predict the efficacy of TACE
treatment is essential. Our study demonstrates that the PMRS has
strong predictive power in assessing TACE efficacy, highlighting its
potential as a tool for guiding clinical decision-making in
HCC treatment.

Given the significant role of polyamines in shaping the tumor
immune microenvironment and their broad impact on both tumor
and immune cells, therapies aimed at regulating polyamine levels
hold promise as a novel strategy in cancer treatment. Polyamine
blockade therapy (PBT) has emerged as a potential adjunctive
approach to enhance the efficacy of chemotherapy and
immunotherapy across various cancer types (70, 73, 74).
However, despite the advancements in polyamine-targeted
therapies in other cancers, their application in HCC remains
relatively underexplored.
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In this study, we integrated multi-omics data and performed
comprehensive bioinformatics analysis to identify key genes
associated with polyamine metabolism that could serve as
potential therapeutic targets in HCC. These targets provide a
promising foundation for the development of novel, precise, and
effective targeted therapies.

5 Limitations of the study

Despite the promising findings from our study, several
limitations warrant consideration. First, although we have
evaluated and validated the PMRS features across the training set,
testing set, and external validation set, larger-scale, multi-center
prospective studies are essential to further confirm and generalize
our results. Second, additional in vitro and in vivo studies are
needed to more thoroughly investigate the biological functions of
polyamine metabolism-related genes in HCC, as these studies will
provide a deeper understanding of their role in tumorigenesis and
treatment responses.

6 Conclusion

In this study, we utilized consensus clustering based on the
expression of PMRG to stratify the cohort into two distinct clusters.
We identified significant differences in immune features, molecular
characteristics, and the TME between these clusters, underscoring
their potential utility in the stratification of HCC patients.
Additionally, we developed the PMRS model, which demonstrates
robust predictive capability for the prognosis and immune
treatment response of HCC patients across multiple datasets. The
model also proved effective in predicting the efficacy of TACE. Our
findings lay a strong theoretical foundation for the development of
personalized treatment strategies tailored to the unique molecular
and immune profiles of HCC patients.
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