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Oncolytic viruses (OVs) are natural or recombinant viruses that can directly lyse

tumor cells without damaging normal cells. They enhance anti-tumor immunity

by releasing antigens and activating inflammatory responses within the tumor

microenvironment (TME). This offers a new therapeutic approach for MPE and

solid tumors. This review discusses the progress of OVs administered via

intrapleural and intratumoral routes, emphasizing their potential in MPE

treatment and the challenges posed by the complex intrapleural environment,

which affects the direct interaction between OVs, tumor cells, and immune cells.

This review also discusses the regulatory barriers, safety concerns and

accessibility of oncolytic virus therapy.
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1 Introduction

Oncolytic viruses (OVs), either naturally occurring or genetically engineered, are

emerging cancer immunotherapies that selectively replicate in tumor cells, leading to

tumor cell lysis (1). OVs exert their antitumor effects through several mechanisms,

including selective replication in tumor cells (2), induction of immunogenic cell death

(3, 4), targeting tumor vasculature (5), and genetic modification to enhance specificity and

efficacy (6, 7).

The most common route of administration for oncolytic viruses (OVs) is intratumoral

injection (8). The approvedOVs, T-VEC andG47D, have demonstrated good safety and efficacy

following intratumoral administration (9, 10). Additionally, multiple clinical trials have shown

that intratumoral injection not only reduces the size of injected tumors but also decreases the

size of distant, non-injected tumors, leading to prolonged patient survival (11, 12). These

findings indicate that OVs, in addition to directly lysing tumor cells, can also modulate local

antitumor immunity within the tumor microenvironment.
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Intracavitary administration serves as an intermediate route

between intratumoral and intravenous administration. Compared

to intratumoral injection, intracavitary administration allows OVs

to interact more broadly with tumor and immune cells while being

relatively easier to perform. Compared to systemic intravenous

administration, intracavitary delivery achieves higher local viral

concentrations in the tumor microenvironment while minimizing

potential systemic adverse effects (13). Therefore, intracavitary

administration is an important delivery method for OVs and has

demonstrated promising efficacy in several clinical trials (14–16).

Malignant pleural effusion (MPE), affecting 8-15% of cancer

patients, is mainly caused by lung and breast cancers (17–19). It

leads to poor quality of life and a median survival of 3-12 months.

Current treatments are primarily palliative (20, 21).

Effective treatment of malignant pleural effusion (MPE)

requires meeting three critical conditions: killing tumor cells in

the effusion (22), activating the antitumor immunity of

lymphocytes in the effusion (23), and repairing damaged blood

vessels and lymphatic vessels (24, 25). OVs have shown potential in

addressing these aspects, making them a promising therapeutic

option for MPE.

This review discusses the progress of OVs in monotherapy and

combination therapies, focusing on intratumoral and intrapleural

administration as well as their application in MPE treatment.

Additionally, it explores the regulatory challenges, cost

considerations, safety concerns, and accessibility of OV therapies.
2 Mechanisms, combination
strategies, and delivery methods of
oncolytic viruses

Oncolytic viruses (OVs), a novel class of cancer immunotherapy

agents, have garnered increasing attention. OVs include both naturally

occurring and genetically engineered viruses capable of selectively

replicating in tumor cells, leading to tumor cell lysis and

immunogenic tumor cell death (1). OVs exert their antitumor effects

through several mechanisms: Selective replication in tumor cells: OVs
Abbreviations: AEs, Adverse events; APC, Antigen-presenting cell; CBR, Clinical

benefit rate; CIS, Carcinoma in situ; CMC, Chemistry, Manufacturing, and

Controls; CR, Complete response; DCR, Disease control rate; DLTs, Dose-

limiting toxicities; ICD, Immunogenic cell death; ICIs, Immune checkpoint

inhibitors; IDO, Indoleamine 2,3-dioxygenase; IV, Intravenous; MIBC, Muscle-

invasive bladder cancer; MPE, Malignant pleural effusion; MTD, Maximum

tolerated dose; NAC, Neoadjuvant chemotherapy; NETs, Neutrophil

extracellular traps; NMIBC, Non-muscle-invasive bladder cancer; NSCLC,

Non-small cell lung cancer; ORR, Objective response rate; OS, Overall survival;

OVs, Oncolytic viruses; PFS, Progression-free survival; PR, Partial response;

PROC, Platinum-resistant or refractory ovarian cancer; PTX, Paclitaxel; QOL,

Quality of life; RCB, Residual cancer burden; ROS, Reactive oxygen species;

SCLC, Small cell lung cancer; TAA, Tumor-associated antigen; TCID50, 50%

tissue culture infective dose; TME, Tumor microenvironment; TNBC, Triple-

negative breast cancer; VEGFR-2, Vascular endothelial growth factor receptor 2.
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specifically target and replicate within tumor cells (2). Induction of

immunogenic cell death: OVs kill tumor cells, releasing tumor antigens

that activate dendritic cells, enhance T-cell infiltration, recruit immune-

related molecules, and transform “cold” tumors into “hot” tumors,

ultimately leading to the eradication of distant, uninfected tumor cells

(3, 4). Targeting tumor vasculature: OVs can infect and disrupt the

tumor vascular system, causing neutrophil infiltration, vascular

collapse, and tumor cell death (5). Genetic modification: OVs can be

genetically engineered to delete genes that recognize normal cells and to

insert genes that enhance the antitumor response, thereby improving

their specificity and efficacy against certain tumor cells (6, 7).

Oncolytic viruses play an important role in directly killing

tumor cells and activating the anti-tumor immunity of immune

cells (26, 27). Therefore, the combination of oncolytic viruses with

immune checkpoint inhibitors, chemotherapy, and radiotherapy

can enhance their anti-tumor efficacy (28).

Oncolytic viruses combined with immune checkpoint inhibitors

(ICIs): Oncolytic viruses can upregulate the expression of immune

checkpoint molecules, such as PD-1/PD-L1, NKG2A/HLA-E, and

others, on the surface of immune and tumor cells. This upregulation

provides potential therapeutic targets for subsequent combination

with immune checkpoint inhibitors (29). However, OVs with ICIs

requires careful consideration of the anti-viral immune response

induced by T-cell activation. The activation of T cells by ICIs may

enhance anti-viral immunity, potentially leading to the premature

clearance of OVs, thereby compromising their therapeutic efficacy.

The sequence and timing of administration of OVs and ICIs are

critical factors for the success of this combination. Proper

scheduling can maximize anti-tumor effects while minimizing the

risk of OV clearance by activated T cells (30).

Oncolytic viruses combined with Radiotherapy: Both OVs and

radiotherapy can induce immunogenic cell death (ICD) in tumor

cells, leading to increased release of tumor-associated antigens

(TAAs), enhanced antigen presentation by antigen-presenting

cells (APCs), and activation of T cells (31). However, it is

important to consider the potential immunosuppressive effects

induced by radiotherapy. Radiation can alter the tumor

microenvironment (TME) and suppress the function of immune

cells, which may attenuate the efficacy of OVs.

Oncolytic viruses combined with chemotherapy: chemotherapy

indices direct tumor cell death through DNA damage, thereby

enhancing the oncolytic effects of OVs. Furthermore,

chemotherapy can selectively deplete immunosuppressive cells

such as regulatory T cells (Tregs) and myeloid-derived suppressor

cells (MDSCs) (32, 33), thereby reversing immune tolerance in the

TME and facilitating OV replication and spread. OVs can further

induce apoptosis and autophagy in tumor cells, targeting specific

signaling pathways (such as NF-kB and PI3K/AKT) involved in

chemotherapy resistance, ultimately enhancing chemosensitivity

and overcoming tumor resistance (34).

Common delivery methods for OVs include: 1) Intratumoral

Injection: This involves directly injecting OVs into the tumor,

producing a localized therapeutic effect. This method allows

precise control of OV concentration at the target site, reducing

off-target effects and related adverse events. Intratumoral injection
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offers significant advantages in maintaining optimal OV

concentrations at the tumor site, often resulting in clearer

therapeutic outcomes. Researchers can better correlate in vitro

and in vivo results using this method. However, the technical

challenges associated with administration make it more suitable

for superficial tumors like melanoma rather than deeper tumors

such as glioblastoma. This limitation also hinders repeated

administration of OVs. 2) Intravenous Injection: After injection

into peripheral veins, OVs travel through the circulatory system

to reach tumor lesions in nonspecific organs or systems. Compared

to intratumoral injection, intravenous delivery is simpler and

can overcome the challenge of treating distal metastases. 3)

Intracavitary Perfusion: OVs are administered into cavities such

as the peritoneal, pleural, or bladder cavities. They can either diffuse

directly to tumors within the cavity or be absorbed into the

bloodstream to target tumor lesions. Intracavitary perfusion offers

faster absorption compared to subcutaneous injection but slower

absorption than intravenous administration. It is relatively simple

to perform and requires less technical expertise, making it an ideal

choice for targeting cavity-based organs (35). Current data indicate

that intratumoral injection remains the most used delivery method

for OVs (8). Intracavitary administration of oncolytic viruses is

an intermediate form between intratumoral local administration

and intravenous systemic administration. It can exert both direct

tumor cell killing and modulation of immune cells to enhance anti-

tumor immunity (36). Oncolytic virus intravenous systemic

administration is one of the important methods of delivery and a

potential direction for future development.
3 Challenges and advances in the
management of malignant pleural
effusion

3.1 The pathogenesis and composition of
MPE

Malignant pleural effusion (MPE) refers to the accumulation of

fluid between the lungs and the chest wall due to the presence and

activity of cancer cells within the pleura. MPE is the second leading

cause of exudative effusions (17) and represents a common

complication of cancer, occurring in approximately 8–15% of

cancer patients (18). MPE can be associated with almost any type

of cancer. In men, most cases of MPE are caused by metastatic lung

cancer, whereas in women, breast cancer metastases are the

predominant cause. Together, lung and breast cancers account for

50–65% of all MPE cases. Lymphomas contribute to approximately

10% of MPE cases, while ovarian and gastric cancers account for

around 5%. Malignant pleural mesothelioma is the most common

primary pleural tumor, with over 90% of patients with malignant

pleural mesothelioma presenting with MPE (19).

The presence of MPE is strongly associated with a poor quality of

life due to symptoms such as dyspnea, pain, cachexia, fatigue, and

reduced daily activity. Additionally, MPE is linked to a poor prognosis,

with a median survival time of only 3–12 months. Current treatment
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strategies for MPE are primarily palliative and aim to alleviate

symptoms (20, 21). MPE is typically composed of tumor cells,

proteins, extracellular fluid, lymphocytes, and other metabolic

products. Interactions between tumor cells and host immune cells

create a specific immune microenvironment within the pleural cavity,

favoring MPE formation. MPE microenvironment includes

lymphocytes, particularly T cells (CD4+, CD8+), B cells, natural killer

(NK) cells, and regulatory T cells (Tregs).
3.2 Current therapeutic approaches for
MPE

3.2.1 Thoracentesis
Thoracentesis is the initial treatment approach for MPE and is

commonly performed to alleviate symptoms such as dyspnea and

chest compression caused by unilateral or bilateral pleural effusion,

pneumothorax, or pleural decompression. While thoracentesis

provides symptom relief in most patients, its effects are generally

transient, with recurrence typically occurring within one month. As

a result, patients may require repeated procedures, with a maximum

of 1.5 liters of fluid removed per session (37).

3.2.2 Pleurodesis
Pleurodesis is a procedure aimed at obliterating the pleural

space by inducing adhesion between the visceral and parietal pleura,

thereby preventing the reaccumulation of fluid. It improves

dyspnea, enhances survival rates (38), and reduces hospital stays

and the need for future interventions (39–41). Although the optimal

agent for pleurodesis remains undefined, talc is the most widely

used due to its availability and cost-effectiveness. Talc can be

administered via two methods: aerosolized talc insufflation

through a thoracoscopic tube (talc poudrage) or as a suspension

via an intercostal tube (talc slurry) (17). Other agents, such as

antibiotics (tetracycline, doxycycline, and bleomycin), bacterial

products (Bacillus Calmette–Guérin, OK432), silver nitrate, and

povidone-iodine, have also been employed. A meta-analysis of 80

studies involving 5,507 patients demonstrated that talc is an

effective pleurodesis agent with lower failure rates compared to

bleomycin and doxycycline (42).
3.2.3 Indwelling pleural catheters
IPCs are silicone tubes placed in the pleural cavity with a distal

one-way valve and a subcutaneous tunnel. They enable outpatient

fluid drainage, providing symptomatic relief by removing pleural

effusion. Major guidelines recommend IPCs for symptomatic

management of MPE, particularly in cases of trapped lung or

failed prior pleurodesis. IPCs are now considered a first-line

treatment option (43, 44). A TIME2 trial compared IPCs with

chest tube drainage and talc pleurodesis for improving dyspnea and

quality of life. The primary endpoint was the difference in dyspnea

scores between the two groups at 42 days. The study found both

methods equally effective in relieving dyspnea, with neither

approach showing significant advantages in improving quality of

life or dyspnea scores (45). The main drawback of IPCs is the risk of
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infection, including cellulitis, blockage, catheter dysfunction,

pleural infection, and septated pleural effusion. The overall

infection rate associated with IPCs is approximately 4.9%, with

infection-related mortality at only 0.29% (46–48).

3.2.4 Other therapeutic approaches
Current standard treatments for malignant pleural effusion

(MPE) are predominantly palliative and include interventions

such as thoracentesis, pleurodesis, and indwelling pleural

catheters. However, the therapeutic efficacy of these approaches is

limited, and patients often experience adverse effects such as chest

pain and dyspnea. Thus, palliative interventions alone are

insufficient to halt the progression of MPE, underscoring the

importance of focusing on controlling the underlying malignancy.

In recent years, advances in chemotherapy, targeted therapy, and

immunotherapy have shown promise in managing cancers such as

lung cancer, breast cancer, and lymphoma, which frequently lead to

MPE. A phase II clinical trial evaluating the efficacy and safety of

osimertinib combined with bevacizumab in patients with EGFR-

mutant non-small cell lung cancer (NSCLC) with MPE

demonstrated good safety but failed to significantly prolong

progression-free survival (PFS) (49). Several phase III trials have

shown that immune checkpoint inhibitors (ICIs) combined with

chemotherapy significantly improve survival in advanced NSCLC

patients with MPE compared to platinum-based doublet

chemotherapy (50–53). Additionally, a retrospective study found

that the combination of ICIs and chemotherapy significantly

extended PFS compared to pembrolizumab monotherapy (54).

For metastatic triple-negative breast cancer (mTNBC), a phase II

study demonstrated that atezolizumab combined with paclitaxel

and bevacizumab had tolerable safety (55). Another study showed

that atezolizumab combined with nab-paclitaxel delayed disease

progression without compromising patients’ quality of life (56). A

randomized phase II trial indicated that lapatinib combined with

trastuzumab was well-tolerated in HER2-positive breast cancer

patients without chemotherapy (57). Intrathoracic drug delivery

has also been reported for the treatment of MPE caused by solid

tumors. A meta-analysis demonstrated that intrapleural cisplatin

combined with low-dose interleukin-2 (IL-2) improved objective

response rate (ORR), disease control rate (DCR), and quality of life

(QOL) compared to cisplatin alone, without increasing the

incidence of adverse events (AEs), apart from fever (58). A

systematic review by Rong et al. revealed that Endostar combined

with chemotherapy significantly improved ORR, DCR, and QOL

compared to chemotherapy alone, without increasing the incidence

of AEs (59). Nie et al. showed that intrapleural bevacizumab was

more effective and safer than intravenous bevacizumab for NSCLC-

related MPE (60). Wu et al. conducted a study where patients

received intrapleural bevacizumab at three dose levels (2.5 mg/kg on

days 1 and 8, 5 mg/kg on days 1 and 8, and 7.5 mg/kg on days 1 and

8). The ORR was 50%, and the PFS was 7.0 months, with the second

dose group showing superior outcomes (61). Furthermore, a meta-

analysis of intrapleural hyperthermic chemotherapy revealed a

higher ORR for MPE patients without an increase in AEs (62).

Anwarul et al. reported complete resolution of pleural effusion after
Frontiers in Immunology 04
four months of intrapleural rituximab in a patient with advanced

low-grade B-cell lymphoma and MPE, with no recurrence for one

year (63). Given the critical role of angiogenesis in MPE

development, anti-angiogenic therapies have become a focus of

treatment. Agents such as bevacizumab, apatinib, anlotinib, and

recombinant human endostatin have shown promising results.

Multiple studies have demonstrated that bevacizumab combined

with chemotherapy is effective and well-tolerated in patients with

lung cancer and MPE (64–66). Apatinib, a small-molecule tyrosine

kinase inhibitor, selectively binds to vascular endothelial growth

factor receptor 2 (VEGFR-2), strongly inhibiting its activity and

reducing VEGF-mediated endothelial cell migration, proliferation,

and tumor microvessel density (67). One study reported that

apatinib combined with gemcitabine and cisplatin chemotherapy

significantly improved DCR, ORR, tumor marker levels, and

immune function in patients with advanced lung cancer and

MPE. Anlotinib, a novel multi-target tyrosine kinase inhibitor,

inhibits tumor angiogenesis and proliferation signaling (68). A

phase II trial reported a DCR of 63.0% in small cell lung cancer

(SCLC) patients treated with anlotinib, compared to 0% in the

placebo group, with a median overall survival (OS) of 6.5 months

versus 2.8 months in the placebo group (69).
4 Progress in oncolytic virus-based
intrapleural therapy for MPE

Since systemic therapies are often ineffective for MPE due to

limited access via the circulatory system, localized therapies such as

intrapleural administration should be considered for MPE patients

(70, 71). Intracavitary chemotherapy is a common treatment for

MPE but often has low specificity for cancer cells, poor tumor

localization, limited response rates, and significant side effects.

Common delivery methods for oncolytic viruses (OVs) include

intratumoral and intravenous injections. However, intratumoral

injection faces significant challenges for deep-seated tumors (72),

while intravenous administration must overcome physiological

barriers and neutralizing antibodies (73, 74). Intracavitary

administration offers a localized delivery approach targeting body

cavities, minimizing systemic toxicity. This method allows OVs to

interact more directly with tumor cells and immune cells,

facilitating direct tumor cell lysis and breaking immune tolerance.

Intracavitary administration is primarily suitable for malignant

pleural and peritoneal effusions, as well as primary and metastatic

malignant tumors in the thoracic and abdominal cavities (75).

The treatment of MPE should meet the following conditions:

killing tumor cells within the effusion, activating the antitumor

immunity of lymphocytes in the effusion, and repairing damaged

blood vessels and lymphatic vessels. Oncolytic viruses (OVs) have

been reported to directly kill tumor cells, including inducing

apoptosis, which is their fundamental antitumor mechanism (76).

Oncolytic viruses can induce immunogenic cell death (ICD) in

tumor cells, leading to increased release of tumor-associated

antigens (TAAs), enhanced antigen presentation by antigen-

presenting cells (APCs) (77, 78). Additionally, OVs can
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upregulate the expression of immune checkpoint molecules on both

immune and tumor cells, including PD-1/PD-L1 and NKG2A/

HLA-E (79, 80). This upregulation provides potential targets for

subsequent combination therapy with immune checkpoint

inhibitors (81, 82). Moreover, OVs can activate the antigen-

presenting capacity of immune cells such as dendritic cells (DCs)

and recruit T cells through the STING pathway (83–85), thereby

enhancing T-cell-mediated antitumor responses (86, 87). Oncolytic

virus can reduce the number of FoxP3+CD4+ T cells in the tumor

microenvironment and facilitate the polarization of M2

macrophages into M1 macrophages (10, 88). Furthermore, OVs

can recruit neutrophils and stimulate their antitumor activity (24)

(Figure 1). Neutrophils have been shown to release reactive oxygen

species (ROS) and neutrophil extracellular traps (NETs), which

contribute to tumor cell killing. NETs are formed when neutrophils

undergo cell death, releasing nuclear DNA and histones to create a

highly adhesive web-like structure. Due to the high viscosity of

DNA, these NETs serve as effective biological materials that adhere

to the surface of damaged blood vessels, preventing fluid leakage

and sealing off injured endothelial cells (25). Therefore, OVs exhibit

multiple functions, including killing tumor cells, enhancing

antitumor immune responses, and promoting vascular repair, all

of which provide a strong foundation for the effective treatment of

malignant pleural effusion (MPE).

Current clinical reports on the use of OVs for the treatment of

MPE include:
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H101 (Recombinant Adenovirus Type 5): A study involving 643

Chinese patients with MPE or malignant ascites showed an

objective response rate (ORR) of 60.3%. In the monotherapy

group, 60.4% achieved partial response (PR), with no significant

differences between monotherapy and combination therapy groups.

The main AEs were fever, nausea, and vomiting, with no severe

events reported (89).

AdV-tk: A Phase I dose-escalation trial of gene-mediated

cytotoxic immunotherapy (GMCI) with intrapleural AdV-tk

combined with chemotherapy in MPE patients demonstrated

safety and tolerability. Among 19 patients, 3 had prolonged stable

disease. Notably, one patient survived 29 months after GMCI,

showing significant efficacy (90).

ONCOS-102: In a randomized Phase I/II study for malignant

pleural mesothelioma (MPM), ONCOS-102 combined with

chemotherapy enhanced T-cell infiltration and upregulated

immune response-related genes. Median OS was 20.3 months in

first-line treatment patients compared to 13.5 months in the control

group. Results support combining ONCOS-102 with immune

checkpoint inhibitors (91).

HSV1716: A Phase I/IIa trial evaluated intrapleural HSV1716 in

MPM patients. Thirteen patients received weekly injections,

demonstrating good tolerability and minimal virus-related AEs. Viral

replication was observed in 7 of 12 evaluable patients, and half the

patients had stable disease at 8 weeks. Additionally, some patients

developed novel tumor-specific IgG and Th1 cytokine responses (92).
FIGURE 1

Mechanism of oncolytic viruses activating immune cells to exert antitumor immunity. OVs infect tumor cells, upregulating immune checkpoint
molecules on tumor cells and releasing tumor-associated antigens (TAAs) upon tumor cell lysis. OVs reduce the number of FoxP3+CD4+ T cells in
the tumor microenvironment and enhance the antitumor activity of CD8+ T cells. OVs promote the expression of immune checkpoint molecules on
NK cells, enhance their antigen-presenting ability, and increase NK cell-mediated tumor cell killing. OVs stimulate the maturation of dendritic cells
(DCs), leading to increased infiltration of CD8+ T cells at the tumor site. OVs induce the polarization of M2 macrophages into M1 macrophages,
enhancing the antitumor immune response.
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5 Oncolytic virus therapy for
intracavitary administration

In addition to intrapleural administration for the treatment of

malignant pleural effusion, extensive research has been conducted

on the intracavitary administration of oncolytic viruses (OVs) for

other solid tumors. The underlying mechanism primarily involves

using OVs to break local immune tolerance and activate antitumor

immunity within the tumor microenvironment (75, 93). The

immunosuppressive tumor microenvironment (TME) and poor

immune infiltration are key reasons for the suboptimal efficacy of

immunotherapy in solid tumors. The TME comprises tumor cells,

vascular endothelial cells (ECs), cancer-associated fibroblasts

(CAFs), and various resident or migratory immune cell subsets,

such as T cells, dendritic cells (DCs), and natural killer (NK) cells

(94). The immune suppression in TME arises from several

mechanisms: 1) Tumor and stromal cells produce factors like

transforming growth factor-b (TGF-b), prostaglandin E2 (PGE2),

and interleukin-10 (IL-10), which impair the maturation of antigen-

presenting cells (APCs) in the TME (95, 96). Consequently, DCs

isolated from the TME often exhibit a partially mature,

immunosuppressive phenotype. 2) Tumors suppress the

production of T-cell-attracting chemokines CXCL9 and CXCL10,

thereby reducing effector T-cell infiltration (95, 97). The effector T

cells that infiltrate tumors are further weakened by prolonged

antigen exposure and the expression of multiple immune

checkpoint molecules. Thus, helper T cells and cytotoxic T

lymphocytes (CTLs) isolated from the TME often display an

exhausted phenotype. 3) Regulatory immune cells, such as CD4+

regulatory T cells (Tregs) and myeloid-derived suppressor cells

(MDSCs), are recruited to tumor sites. Tregs secrete IL-10,

indoleamine 2,3-dioxygenase (IDO), and TGF-b, which further

suppress T-cell responses (95, 98). Additionally, Tregs consume

IL-2, an essential cytokine for T-cell activation (95). MDSCs

suppress effector T cells by producing arginase and nitric oxide,

depriving T cells of amino acids required for proliferation (99, 100).

Oncolytic viruses (OVs) promote tumor-specific T-cell recruitment

and activation in the TME by mediating tumor cell lysis and

inducing various forms of immunogenic cell death (ICD),

including necrosis, necroptosis, pyroptosis, autophagic cell death,

and immunogenic apoptosis (101, 102). OV infection of tumor

cells triggers inflammation and local cytokine production,

promoting the infiltration of innate immune cells and CTLs. This

process helps reprogram the TME into a less immunosuppressive

phenotype (100).
5.1 Bladder cancer

CG0070 is a replication-competent oncolytic adenovirus

engineered to target RB-deficient tumor cells and express GM-

CSF (103). A Phase II single-arm multicenter trial evaluated the 6-

month efficacy of CG0070 in 45 patients, including 24 with

carcinoma in situ (CIS), 8 with CIS and Ta tumors, 4 with CIS

and T1 tumors, 6 with Ta tumors, and 3 with T1 tumors. The
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overall 6-month complete response (CR) rate was 47%, with 58%

for CIS alone, 50% for CIS with Ta/T1 tumors, and 33% for Ta/T1

tumors alone. The only patient who progressed to muscle-invasive

disease within 6 months had baseline Ta and T1 tumors. No

patients with T1 tumors alone achieved CR at 6 months (14).

Another study reported the safety and efficacy of CG0070 combined

with nivolumab as neoadjuvant therapy in cisplatin-ineligible

patients with muscle-invasive bladder cancer (MIBC). Among 21

enrolled patients, 15 were evaluable, and 8 (53%) achieved

CR (104).

Cretostimogene grenadenorepvec is an oncolytic adenovirus

type 5 that selectively replicates in cancer cells with abnormal RB

pathways. Previously, it was used as monotherapy in non-muscle-

invasive bladder cancer (NMIBC) patients who had failed

bacillus Calmette-Guérin (BCG) therapy. A Phase II trial

evaluated intravesical Cretostimogene combined with systemic

pembrolizumab in BCG-unresponsive NMIBC patients with CIS.

Among 35 treated patients, 82.9% achieved CR at 3 months. With a

median follow-up of 26.5 months, the CR rate was 57.1% at 12

months and 51.4% at 24 months. No patients progressed to muscle-

invasive disease. Adverse events (AEs) related to Cretostimogene

were low-grade, self-limiting, and primarily bladder-related.

Among 35 patients, 5 (14.3%) experienced grade 3 treatment-

related AEs (15).

Nadofaragene firadenovec (nadofaragene firadenovec-vncg;

Adstiladrin®) is a non-replicating adenoviral vector-based gene

therapy developed by Ferring Pharmaceuticals. Adstiladrin®

contains vector DNA encoding interferon-alpha2b (IFN-a2b) and
is the first gene therapy approved for bladder cancer treatment

(105). A study by Stephen et al. reported the efficacy of intravesical

nadofaragene firadenovec in BCG-unresponsive NMIBC patients.

Among 157 enrolled patients, 151 were analyzable. Of the 103

patients with CIS (with or without high-grade Ta/T1 tumors), 55

(53.4%) achieved CR within 3 months of the first dose, and 25

(45.5%) of these 55 maintained CR at 12 months. The most

common grade 3–4 AE related to the therapy was urinary

urgency (2 patients, both grade 3). No treatment-related deaths

occurred (106).
5.2 Ovarian cancer

Olvimulogene nanivacirepvec (Olvi-Vec; also known as GL-

ONC1; laboratory name: GLV-1h68) is a modified oncolytic

vaccinia virus engineered by inserting three expression cassettes

encoding a Renilla luciferase-GFP fusion protein, b-galactosidase,
and b-glucuronidase into the F14.5L, J2R, and A56R loci,

respectively (107, 108). A study by Robert et al. evaluated the

clinical activity of Olvi-Vec oncolytic immunotherapy combined

with or without bevacizumab, followed by platinum-based doublet

chemotherapy, in women with platinum-resistant or refractory

ovarian cancer (PROC). Among 27 enrolled patients with

platinum-resistant ovarian cancer (median of four prior treatment

lines), 24 evaluable patients achieved an objective response rate of

54%, with a progression-free survival (PFS) of 11.0 months and

manageable safety (16).
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5.3 Peritoneal cancer (peritoneal
mesothelioma)

A Phase I study evaluated the safety, maximum tolerated dose

(MTD), and antitumor activity of intraperitoneal injection of GL-

ONC1 in patients with advanced peritoneal cancer. Nine patients

(seven with advanced peritoneal cancer and two with advanced

peritoneal mesothelioma) received 24 doses of GL-ONC1. Adverse

events (AEs) were limited to grades 1–3, including transient flu-like

symptoms and treatment-induced peritonitis causing increased

abdominal pain. No dose-limiting toxicities (DLTs) were

reported, and the MTD was not reached. Eight out of nine

patients demonstrated effective intraperitoneal infection,

replication of GL-ONC1, and oncolytic activity during the first

cycle. All patients developed neutralizing activity against GL-

ONC1 (109).
6 Intratumoral administration of
oncolytic viruses in solid tumors

Both the approved and commercially available oncolytic

viruses, T-VEC and G47D (9, 10), adopt the method of

intratumoral administration. Intratumoral administration is a

common and effective treatment approach in oncolytic virus

therapy and has demonstrated favorable therapeutic effects in the

treatment of a variety of solid tumors (110, 111). After intratumoral

administration for the treatment of multiple solid tumors, there

have been observations such as the reduction in the size of tumors at

the injection site, the decrease in the size of tumors at distant non-

injection sites, and the extension of patients’ survival periods (11,

12). These results indicate that in addition to directly killing tumor
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cells, OVs can stimulate antitumor immune responses by activating

immune cells within the tumor microenvironment (Table 1).
6.1 Melanoma

6.1.1 Talimogene laherparepvec
T-VEC, derived from herpes simplex virus type 1 (HSV-1), has

been genetically modified to express granulocyte-macrophage

colony-stimulating factor (GM-CSF), enhancing local immune

responses against tumors. It is the first FDA-approved OV for

treating advanced melanoma (112, 113). T-VEC demonstrates good

tolerability and outperforms GM-CSF monotherapy, particularly in

untreated patients or those with stage IIIB, IIIC, or IVM1a disease,

achieving an overall response rate (ORR) of 31.5% and overall

survival (OS) of 23.3 months versus 18.9 months (9, 11, 112, 114).

Further studies explored combining T-VEC with immune

checkpoint inhibitors (ICIs) like ipilimumab and pembrolizumab

to enhance efficacy. Chesney et al. conducted a randomized trial

showing that T-VEC combined with ipilimumab achieved a

significantly higher ORR than ipilimumab monotherapy, with

enhanced antitumor activity and no additional safety concerns

(115). Antoni et al. reported that T-VEC therapy could improve

PD-1 antibody (pembrolizumab) efficacy by altering the TME (76).
6.1.2 CAVATAK
CAVATAK, derived from coxsackievirus A21, targets tumor

cells with high expression of intercellular adhesion molecule-1

(ICAM-1), commonly found on melanoma cells. By infecting

these tumor cells, CAVATAK induces oncolysis and an

inflammatory response, attracting immune cell infiltration and

stimulating antitumor immunity (116). In a phase II study of 57
TABLE 1 Different types of OV and clinical applications.

Name of viral vector Clinical indications Name of Oncolytic Virus Route of Administration

Reovirus Malignant gliomas, ovarian cancer, and
pancreatic cancer, etc.

Reolysin Intravenous injection

Coxsackie virus Melanoma Coxsackievirus A21 Intratumoral injection

Adenovirus Glioblastoma Delta-24-RGD Intratumoral injection

Bladder cancer CG0070 intrapleural administration

Vaccinia virus (VV) Hepatocellular carcinoma JX-594 Intratumoral injection

Soft tissue sarcoma Intravenous injection

Herpes simplex virus (HSV) Melanoma T-VEC Intratumoral injection

RP1 Intratumoral injection

Glioblastoma G47D Intratumoral injection

CAN-3110 Intratumoral injection

Melanoma, sarcoma, and tumors of the
digestive system

OH2 Intratumoral injection
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patients with unresectable stage IIIC or IV melanoma, the ORR was

28.1%, with a durable response rate of 19.3% lasting ≥6 months.

Median response time was 2.8 months, and the 1-year survival rate

was 75.4%. CAVATAK demonstrated good tolerability and

sustained local and systemic antitumor responses (117).

6.1.3 RP1
RP1, a modified HSV-1, expresses GALV-GP R- fusion

glycoprotein and GM-CSF to recruit and activate antitumor

immune cells. Mohammed M. et al. reported that 36.1% of

melanoma patients achieved partial (PR) or complete response

(CR). Among patients who had not received prior anti-PD-1

therapy, 62.5% achieved the best response, compared to 37.5%

among those who failed anti-PD-1/anti-PD-1+CTLA-4 therapy.

RP1 was well-tolerated, with no new safety concerns (118).

6.1.4 OrienX010
OrienX010, developed by OrienGene Biotechnology (China), is an

HSV-1-based OV expressing GM-CSF (119). Cui et al. reported its

safety and efficacy in unresectable stage IIIC-IV melanoma patients.

Only one patient experienced grade ≥3 adverse events, and no dose-

limiting toxicity (DLT) was observed. ORR was 19.2%, disease control

rate (DCR) was 53.8%, and median duration of response (mDOR) was

6.0 months. Antitumor effects were observed in 54.6% of injected

lesions and 48.8% of non-injected metastases. Median progression-free

survival (PFS) and OS were 2.9 and 19.2 months, respectively (120).

6.1.5 HF10
HF10 is a naturally occurring HSV-1 with unique genomic

mutations (121). Robert et al. demonstrated that HF10 combined

with ipilimumab showed both local and systemic antitumor activity,

significantly improving response rates over ipilimumab monotherapy.

At 24 weeks, the ORR was 37.8%, and DCR was 56.8% (122).
6.2 Lung cancer

A Phase II trial investigated the efficacy of intratumoral

injection of oncolytic virus ADV/HSV-tk followed by stereotactic

body radiotherapy (SBRT) at the same tumor site in patients with

stage IV non-small cell lung cancer (NSCLC), including those who

were treatment-naïve or resistant to prior PD-1 therapy. Among

PD-1 therapy-naïve patients, the objective response rate (ORR) was

28.5%, and the clinical benefit rate (CBR) was 61.9%. For patients

with prior immune checkpoint inhibitor (ICI) treatment, the ORR

and CBR were 14.2% and 64.2%, respectively. This combination

therapy was shown to restore sensitivity to ICIs in previously

treated patients and benefit some tumors that lacked PD-L1

expression (123).

MEM-288 is a conditionally replicating oncolytic adenovirus

with deletions in the E1A, E1B, and E3 regions of the viral genome.

It expresses human interferon-beta (IFNb) and a recombinant

membrane-stable tumor necrosis factor-associated activation

protein (TRAP) CD40L (124, 125). In a Phase I trial involving

patients with refractory solid tumors, including 11 NSCLC patients,
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tumor shrinkage was observed at the injection site in 4 of 10

evaluable patients, with stabilization or shrinkage of distal non-

injected lesions in several cases (126).

CAN-2409 is a non-replicating adenovirus serotype 5

expressing the herpes simplex virus thymidine kinase (HSV-TK)

gene (127). A study evaluated its efficacy in patients with stage III/

IV NSCLC who were non-responders to ICIs. Patients were treated

with CAN-2409 in combination with valacyclovir while continuing

ICI therapy. Among 73 treated patients, the median overall survival

(mOS) was 22.0 months. Systemic clinical responses were observed

in 64% of evaluable patients, with tumor shrinkage in both injected

and non-injected lesions (128).
6.3 Gastrointestinal cancer

Oncorine (H101) is an oncolytic adenovirus derived from

serotype 5, with deletions in the E1B-55k gene and four regions

of the E3 gene. These modifications ensure selective replication in

p53-deficient tumor cells while maintaining safety (129, 130). A

retrospective analysis of 95 patients compared outcomes among

three groups: H101 treatment alone, chemotherapy alone, and

H101 combined with chemotherapy. The disease control rate

(DCR) and ORR in the combined treatment group were 81.3%

and 50.0%, respectively, significantly higher than those in the H101-

only group (63.3% and 30.0%) and the chemotherapy-only group

(66.7% and 33.3%). Additionally, the combined therapy group

demonstrated superior 1-year and 2-year survival rates and

progression-free survival (PFS) (131).

OH2 is a novel oncolytic herpes simplex virus (HSV) type II

engineered to express human granulocyte-macrophage colony-

stimulating factor (hGM-CSF) and to lack the ICP34.5 and ICP47

genes (132). Zhang et al. reported the results of a study evaluating

OH2 as a monotherapy and in combination with the anti-PD-L1

antibody HX008 in patients with advanced solid tumors. Among 54

patients, including 18 with colorectal cancer, four patients achieved

an immune partial response. Biopsy results after treatment revealed

that OH2 modulates the tumor microenvironment (TME).

Intratumoral injection of OH2 was well-tolerated and showed

durable antitumor activity in colorectal cancer patients (133).
6.4 Hepatocellular carcinoma

VG161 is a type I oncolytic HSV that carries genes encoding

interleukin (IL)-12, IL-15, the IL-15 receptor alpha subunit isoform 1

(IL-15RA), and a fusion protein (TF-Fc) that blocks PD-1/PD-L1

interactions. It also has deletions in the ICP34.5 gene to mitigate

neurotoxicity (134). Shen et al. conducted a Phase I clinical trial in

HCC patients who had failed two prior lines of therapy. The ORR was

17.14%, and the DCR was 60.00%, with a median PFS of 2.9 months

and a median OS of 9.4 months. A significant OS benefit was observed

in HCC subgroups, particularly in patients with prior treatment failure

or specific genetic profiles. VG161 received breakthrough therapy

designation from China’s National Medical Products Administration
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(NMPA) and became the first oncolytic virus product approved for

HCC patients who had failed standard therapy (135).
6.5 Breast cancer

Pelareorep is an unencapsulated double-stranded RNA (dsRNA)

virus with oncolytic activity capable of targeting multiple cancer cell

types (136, 137). A randomized Phase II trial in HR+/HER2-metastatic

breast cancer patients included 48 participants assigned to three

treatment arms: paclitaxel (PTX) alone, PTX plus pelareorep, and

PTX plus pelareorep with avelumab. At week 16, the ORRs were 20%,

31.3%, and 17.6%, respectively, while the DCRs were 46.7%, 62.5%, and

70.6%. Median PFS was 6.4 months, 9.6 months, and 7.5 months,

respectively. The addition of pelareorep to PTX extended survival

significantly; however, adding avelumab to the combination did not

enhance efficacy (138).

Hatem et al. reported results from a Phase II trial investigating T-

VEC in combination with neoadjuvant chemotherapy (NAC) for non-

metastatic triple-negative breast cancer (TNBC). Among 37 evaluated

patients, the residual cancer burden (RCB) 0 rate was 45.9%, and the

RCB 0–1 rate was 65%. Two-year disease-free survival was 89%, with

no recurrences observed in RCB 0–1 patient (139).
6.6 Brain tumors

G47D is a third-generation oncolytic herpes simplex virus type 1

(HSV-1) engineered with triple mutations. It was constructed by

deleting the a47 gene and the overlapping US11 promoter from its

parent virus, G207. Compared to G207, G47D demonstrates

enhanced tumor-specific replication and cytopathic effects while

maintaining high safety levels (140–142). In a Phase II single-arm

trial, G47D was evaluated in 19 adult patients with supratentorial

glioblastoma who had residual or recurrent disease following

radiotherapy and temozolomide treatment. The 1-year survival

rate after G47D administration was 84.2%, with an overall

survival (OS) of 20.2 months and an OS of 28.8 months from the

initial surgery. Magnetic resonance imaging (MRI) revealed

repeated enlargement of the target lesion followed by clearance of

contrast enhancement after each G47D administration. These

findings highlight the survival benefits and favorable safety profile

of G47D, which led to its approval as the first oncolytic virus

product in Japan (10).

DNX-2401 (Delta-24-RGD, tasadenoturev) is an oncolytic

adenovirus designed for tumor selectivity, enhanced infectivity,

and replication capability. Tumor selectivity is achieved by a 24-

base pair deletion in the E1A gene, preventing replication in

normal cells with functional Rb pathways but allowing full

replication in tumor cells (72). In a study of 49 patients with

recurrent glioblastoma, intratumoral administration of DNX-

2401 combined with intravenous pembrolizumab (an anti-PD-1

antibody) was evaluated. The objective response rate (ORR) was

10.4%, with a 12-month OS of 52.7% and a median OS of 12.5

months. Patients who achieved an objective response
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demonstrated longer survival, and 56.2% of patients experienced

clinical benefit. Overall, intratumoral DNX-2401 combined with

pembrolizumab was safe and provided significant survival benefits

in select patients (143).

CAN-3110 retains the viral neurovirulence gene ICP34.5 under

the control of the nestin promoter. Nestin is overexpressed in

glioblastoma (GBM) and other aggressive tumors but is not

expressed in adult brains or healthy differentiated tissues. These

modifications enable CAN-3110 to preferentially replicate in tumor

cells (144). Clinical data from the first-in-human trial of CAN-3110

in recurrent glioblastoma, reported by Alexander et al.,

demonstrated that intratumoral oncolytic virus therapy can

enhance antitumor immune responses even within the

immunosuppressive tumor microenvironment. This approach

also provides a biological rationale for treating tumors resistant to

other immunotherapies (145).

PVSRIPO is a non-neurotoxic chimera of rhinovirus and

poliovirus that enters cells via the poliovirus receptor CD155,

expressed on tumor cells and antigen-presenting cells. It

promotes antitumor immune responses (146–148). A study

evaluating PVSRIPO in recurrent glioblastoma reported that

patients reached an OS plateau beginning at 24 months, with 24-

month and 36-month OS rates of 21%. In contrast, historical

controls showed continued declines, with OS rates of 14% at 24

months and 4% at 36 months (149).
7 Regulatory hurdles, cost impacts,
and safety concerns for oncolytic
virus treatment

7.1 Regulatory hurdles

7.1.1 Virus spread and potential infection risk
Although oncolytic viruses are typically genetically modified to

reduce toxicity, the risks of in vivo spread and latent infections still

require long-term monitoring (150). Clinical trials of oncolytic

viruses require testing of samples, such as swabs from injection

sites, blood, and urine, for viral nucleic acids and TCID50 (74).

However, detecting viral nucleic acids does not necessarily indicate

the presence of live viruses (151). Moreover, the sensitivity of

TCID50 testing is lower than that of nucleic acid detection

methods (typically qPCR) (152). Therefore, establishing detection

methods with higher sensitivity for live viruses could help reduce

the potential spread risk during clinical treatment (153).

Additionally, regarding latent infections, preclinical safety

evaluations should assess whether the administration of oncolytic

viruses could enhance the toxicity of latent wild-type viruses in

the body.
7.1.2 Tolerance and immune response
Due to differences in oncolytic virus vectors, their

immunogenicity can lead to the generation of neutralizing

antibodies after repeated administration, potentially affecting
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subsequent treatments (154, 155). Therefore, long-term follow-up is

necessary to monitor virus tolerance and immune memory effects.

7.1.3 Clinical trial design and endpoint
determination

The unique mechanism of action of oncolytic viruses (OVs)

presents significant regulatory challenges in endpoint

determination. OVs not only exert direct antitumor effects by

lysing tumor cells but also activate the immune system, leading to

an abscopal effect that targets distant, non-injected tumor sites (156,

157). Tumor responses following OV treatment can be complex, as

newly emerging lesions may signify either disease progression or

delayed responses caused by treatment-induced inflammation or

immune activation. This complexity makes it difficult to assess

treatment outcomes using traditional criteria (158). The RECIST

1.1 guidelines, commonly used for evaluating solid tumor

responses, are inadequate for capturing the full therapeutic

potential of OVs, necessitating the adoption of immune-related

response criteria (irRECIST) and other specialized evaluation

frameworks that account for immune-mediated effects (159).
7.2 Cost implications

Compared to cell therapies, particularly chimeric antigen

receptor T-cell (CAR-T) therapy, oncolytic viruses (OVs) can be

produced on a large-scale using bioreactors, making their

production costs relatively lower (160, 161). However, several

challenges remain in the chemistry, manufacturing, and controls

(CMC) process, including the stability of viral titers in each batch,

the stability of expressed transgenes (especially when multiple genes

are inserted), and issues related to host cell DNA and protein

residues (162, 163). In terms of cost, compared to intratumoral

administration, intrapleural administration of OV therapy does not

significantly increase the required viral dose, thus avoiding a

substantial rise in production costs (90, 123). However,

differences in the dosing requirements of various OVs lead to

variations in production costs (164). This is particularly evident

in cases where the harvest fluid must be concentrated during the

production process to obtain the final OV product, which increases

the complexity and cost of impurity control (165, 166).
7.3 Accessibility of OV therapy

The accessibility of oncolytic virus (OV) therapy involves

limitations in administration routes, challenges in virus

manufacturing processes, and a limited range of approved indications.

Currently, OV therapy mainly relies on intratumoral injection,

which is effective for tumors that are easily accessible or can be

injected under image guidance (13). However, this method has

limited efficacy for deep-seated tumors, restricting the widespread

application of OVs in treating a broad range of solid tumors (167).

Therefore, systemic intravenous (IV) administration or

intracavitary administration has become a critical direction to
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enhance the accessibility of OVs. Despite its potential to target

distant metastases, IV administration still faces challenges such as

rapid neutralization by the host immune system (168), potential

liver toxicity associated with high viral loads (169), limited tumor

specificity (170), reducing therapeutic efficacy. Intracavitary

administration, while providing a transition between intratumoral

and systemic administration, it encounters challenges due to the

complex intracavitary environment, including the presence of

cellular debris (171), plasma proteins, and fibrin (172), which

hinder the uniform diffusion of OVs and reduce viral infection

efficiency within the cavity.

The manufacturing and purification processes for different OV

platforms vary significantly, leading to differences in host cell selection

(Vero (173), HEK293 (174), BHK-21 (175) cell lines are used

depending on the virus platform), culturing methods (adherent

culture and suspension culture) (176, 177), chromatography column

selection (ion exchange chromatography, affinity chromatography)

(178, 179), virus concentration techniques (tangential flow filtration

(TFF), PEG precipitation, and density gradient centrifugation) (180,

181), host DNA and protein removal (ensuring residual DNA and

protein levels meet regulatory requirements) (182, 183). These

differences create challenges in achieving consistent, high-yield, and

high-purity virus production, impacting the scalability and accessibility

of OVs.

The range of approved OV therapies is limited (184), with most

OVs only approved for a narrow spectrum of tumor types (185).

Expanding the indications of OV therapy to a broader range of

cancers requires extensive clinical data to support safety and

efficacy. Further clinical validation across multiple tumor types is

essential to increase the accessibility and applicability of OVs in

clinical practice.

To improve the accessibility of OV therapy, overcoming

limitations in administration routes, optimizing virus manufacturing

processes, and expanding indications through clinical validation are

critical steps. Successfully addressing these challenges will enhance the

clinical application of OVs and broaden their therapeutic potential for a

wider range of cancers.
7.4 Safety

In the preclinical safety evaluation, long-term toxicity studies

conducted on cynomolgus monkeys using the HSV2-based

oncolytic virus OH2 (HSV2 knockout of ICP34.5 and ICP47,

insertion of hGM-CSF) and the oncolytic virus oHSV2-PDL1/

CD3-BsAb (which shares the same viral backbone as OH2 but

inserts PD-L1/CD3 bispecific antibody) demonstrated good safety

following multiple subcutaneous administrations (186, 187). Other

oncolytic viruses with different vectors, including adenovirus (188),

vaccinia virus (189), and M1 virus (190), also exhibited good

preclinical safety.

In the clinical trials that have been conducted, oncolytic virus

intratumoral administration showed good safety profiles. The

oncolytic virus OH2 did not cause any grade 3 or higher adverse

events in various solid tumors (133). Other oncolytic viruses also
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showed good safety, with most adverse events being grade 3 or

lower. A few grade 4 adverse events were reported, including

cellulitis, gastrointestinal issues, lymphocytopenia, leukopenia,

brain edema, speech disorders, hemiplegia, and urinary urgency,

but no deaths related to oncolytic virus therapy occurred (8).

Immunological toxicities reported with oncolytic viruses mainly

included cytokine release syndrome (CRS) and viral infections in

the body (191). In a study by Aggarwal et al., 3 patients briefly

experienced CRS after administration, which resolved within 3

days. In subsequent trials, the team added celecoxib to reduce the

incidence or severity of CRS (90).
8 Conclusion and perspectives

In conclusion, malignant pleural effusion (MPE) remains a severe

complication of malignant tumors, affecting a significant number of

patients worldwide, and is associated with high mortality. The most

common cancers causing MPE are lung cancer, followed by breast

cancer, lymphoma, gynecological malignancies, and mesothelioma

(19). MPE is typically a late-stage manifestation of disease, leading to

poor prognosis, with median survival ranging from 3 to 12 months

depending on the underlying malignancy and risk stratification.

Patients with small cell lung cancer (SCLC) accompanied by MPE

have a worse prognosis compared to those without MPE. Lymphoma

patients with MPE at diagnosis have a higher risk of disease recurrence

after chemotherapy. Lung cancer patients generally have the shortest

survival, while mesothelioma and hematologic malignancy patients

tend to have the longest survival. Other factors influencing survival

include the degree of tumor infiltration into the pleura, characteristics

of pleural effusion, biomarkers, the malignancy’s response to systemic

treatment, and the patient’s baseline functional status (20, 21).

Patients with MPE commonly present with dyspnea, as tumor

cells spread to the pleura and grow on its surface, which impairs

lymphatic drainage and causes atelectasis and fluid accumulation

within the pleural cavity. Malignant cells also stimulate the release

of cytokines and upregulate angiogenesis factors, such as vascular

endothelial growth factor (VEGF), which alter the osmotic pressure

and permeability of the pleura and vasculature, contributing to the

formation of MPE. However, most current treatments for MPE are

palliative, with limited effectiveness in halting the progression of

MPE. Future treatment strategies should focus on controlling the

underlying tumor itself.

Oncolytic viruses can directly lyse tumor cells and stimulate

immune cells to mount an anti-tumor response. The most common

route of OV administration is intratumoral injection, which has

been shown to have good safety and efficacy in clinical trials

conducted for various solid tumors. Additionally, combining OVs

with chemotherapy, radiotherapy, and other immunotherapies has

been proven to enhance anti-tumor activity (28). Intracavitary

perfusion of OVs is an intermediate approach between

intratumoral and systemic intravenous administration. Compared

to intratumoral injection, intracavitary delivery allows for more

uniform distribution of the virus, enabling contact with multiple

tumor lesions, and the procedure is relatively simple. Compared to
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intravenous administration, intracavitary administration achieves

higher local concentrations of the virus, thereby reducing the

potential systemic adverse effects associated with intravenous

delivery (13). However, the intracavitary environment is relatively

complex. Cellular debris, fibrin, and plasma protein can hinder the

direct interaction between the virus and both tumor cells and

immune cells (171, 172). One potential approach involves

isolating lymphocytes from malignant pleural effusion ex vivo and

co-incubating them with OVs in vitro to activate their anti-tumor

activity. Clinical trials using this approach are already underway

(NCT 05565014).

In addition, systemic intravenous administration of OVs is

another important area of OV research. To achieve effective

systemic delivery, future research can focus on the following

aspects: modifying the viral capsid and envelope to better evade

the host’s antiviral immune response during multiple intravenous

administrations, thus reducing the production of neutralizing

antibodies and avoiding liver toxicity (192); genetic modifications

to the virus genome to enhance tumor specificity, replication ability,

and immune evasion (193); using delivery systems, such as

nanoparticle carriers, to improve the stability of oncolytic viruses,

ensuring that, at safe doses, the virus has sufficient titer to

specifically target tumor cells (194).
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172. Nemet M, Vasilić M, Ergelas ̌ev S, Kuhajda I, Ergelas ̌ev I. Intrapleural
fibrinolytic therapy with alteplase for the management of multiloculated Malignant
pleural effusion: A case series. Cureus. (2022) 14:e27549. doi: 10.7759/cureus.27549

173. Shen CF, Burney E, Gilbert R, Elahi SM, Parato K, Loignon M. Development,
optimization, and scale-up of suspension Vero cell culture process for high titer
production of oncolytic herpes simplex virus-1. Biotechnol J. (2024) 19:e2300244.
doi: 10.1002/biot.202300244

174. Moroz VD, Gasanov NB, Egorov AD,Malogolovkin AS, NagornykhMO, Subcheva
EN, et al. A method for the production of recombinant VSVs with confirmation of biological
activity. Acta Naturae. (2024) 16:59–66. doi: 10.32607/actanaturae.27314

175. Torres-Ortega PV, Smerdou C, Ansorena E, Ballesteros-Briones MC, Martisova
E, Garbayo E, et al. Optimization of a GDNF production method based on Semliki
Forest virus vector. Eur J Pharm Sci. (2021) 159:105726. doi: 10.1016/j.ejps.2021.105726

176. Göbel S, Jaén KE, Fernandes RP, Reiter M, Altomonte J, Reichl U, et al.
Characterization of a quail suspension cell line for production of a fusogenic oncolytic
virus. Biotechnol Bioeng. (2023) 120:3335–46. doi: 10.1002/bit.28530

177. Swartz AR, Shieh Y, Gulasarian A, Curtis E, Hofmann CF, Baker JB, et al.
Glutathione affinity chromatography for the scalable purification of an oncolytic virus
immunotherapy from microcarrier cell culture. Front Bioeng Biotechnol. (2023)
11:1193454. doi: 10.3389/fbioe.2023.1193454

178. Gerstweiler L, Billakanti J, Bi J, Middelberg A. Comparative evaluation of
integrated purification pathways for bacterial modular polyomavirus major capsid
protein VP1 to produce virus-like particles using high throughput process technologies.
J Chromatogr A. (2021) 1639:461924. doi: 10.1016/j.chroma.2021.461924

179. Swartz AR, Shieh Y, Gulasarian A, Olson JW, Rustandi RR. Binding of
Coxsackievirus A21 procapsids to immobilized glutathione depends on cell culture
conditions during infection. Virology. (2022) 573:167–75. doi: 10.1016/j.virol.2022.06.013

180. Gautam S, Xin D, Garcia AP, Spiesschaert B. Single-step rapid
chromatographic purification and characterization of clinical stage oncolytic VSV-
GP. Front Bioeng Biotechnol. (2022) 10:992069. doi: 10.3389/fbioe.2022.992069
Frontiers in Immunology 16
181. Mendes JP, Silva RJS, Berg M, Mathiasson L, Peixoto C, Alves PM, et al.
Oncolytic virus purification with periodic counter-current chromatography. Biotechnol
Bioeng. (2021) 118:3522–32. doi: 10.1002/bit.27779

182. Turco F, Wegelius A, Lind O, Norrman N, Magnusson AC, Sund-Lundström
C, et al. Combined clarification and affinity capture using magnetic resin enables
efficient separation of rAAV5 from cell lysate. Mol Ther Methods Clin Dev. (2023)
30:394–402. doi: 10.1016/j.omtm.2023.07.010

183. Lorenzo E, Miranda L, Gòdia F, Cervera L. Downstream process design for Gag
HIV-1 based virus-like particles. Biotechnol Bioeng. (2023) 120:2672–84. doi: 10.1002/
bit.28419

184. Wang X, Shen Y, Wan X, Hu X, Cai WQ, Wu Z, et al. Oncolytic virotherapy
evolved into the fourth generation as tumor immunotherapy. J Transl Med. (2023) 21
(1):500. doi: 10.1186/s12967-023-04360-8

185. Hong Y, Cheng K, Qu H, Wang Y, Wang Y, Fan G, et al. Safety of talimogene
laherparepvec: a real-world retrospective pharmacovigilance study based on FDA
Adverse Event Reporting System (FAERS). J Pharm Health Care Sci. (2024) 10:79.
doi: 10.1186/s40780-024-00388-0

186. Wang Y, Zhou X, Wu Z, Hu H, Jin J, Hu Y, et al. Preclinical safety evaluation of
oncolytic herpes simplex virus type 2. Hum Gene Ther. (2019) 30:651–60. doi: 10.1089/
hum.2018.170

187. Wang Y, Wang R, Hu H, Jin J, Cai L, Zhang S, et al. Preclinical safety
assessment of an oncolytic herpes simplex virus type 2 expressed PD-L1/CD3
bispecific antibody. Int Immunopharmacol. (2023) 124:110975. doi: 10.1016/
j.intimp.2023.110975

188. Dong J, Kong L, Wang S, Xia M, Zhang Y, Wu J, et al. Oncolytic adenovirus
encoding apolipoprotein A1 suppresses metastasis of triple-negative breast cancer in
mice. J Exp Clin Cancer Res. (2024) 43:102. doi: 10.1186/s13046-024-03011-0

189. Futami M, Sato K, Miyazaki K, Suzuki K, Nakamura T, Tojo A. Efficacy and
safety of doubly-Regulated vaccinia virus in a mouse xenograft model of multiple
myeloma. Mol Ther Oncolytics. (2017) 6:57–68. doi: 10.1016/j.omto.2017.07.001

190. Zhang H, Li K, Lin Y, Xing F, Xiao X, Cai J, et al. Targeting VCP enhances
anticancer activity of oncolytic virus M1 in hepatocellular carcinoma. Sci Transl Med.
(2017) 9:eaam7996. doi: 10.1126/scitranslmed.aam7996

191. Hoang HD, Said A, Vaidya N, Gilchrist VH, Malone K, Kabilan U, et al.
Adaptation of transgene mRNA translation boosts the anticancer efficacy of oncolytic
HSV1. J Immunother Cancer. (2023) 11:e006408. doi: 10.1136/jitc-2022-006408

192. Jirovec E, Quixabeira DCA, Clubb JHA, Pakola SA, Kudling T, Arias V, et al.
Single intravenous administration of oncolytic adenovirus TILT-123 results in systemic
tumor transduction and immune response in patients with advanced solid tumors.
J Exp Clin Cancer Res. (2024) 43:297. doi: 10.1186/s13046-024-03219-0

193. Shi Z, Liu B, Huang C, Xie W, Cen Y, Chen L, et al. An oncolytic vaccinia virus
armed with anti-human-PD-1 antibody and anti-human-4-1BB antibody double genes
for cancer-targeted therapy. Biochem Biophys Res Commun. (2021) 559:176–82.
doi: 10.1016/j.bbrc.2021.04.078

194. Kasala D, Lee SH, Hong J, Oh E, Yoon AR, Yun CO. Bioreducible polymer-
mediated delivery of oncolytic adenovirus can attenuate antiviral immune response and
concurrently enhance the induction of antitumor immune response to effectively
prevent metastasis. Biomater Sci. (2022) 10:4293–308. doi: 10.1039/d2bm00200k
frontiersin.org

https://doi.org/10.1038/s41598-019-49624-w
https://doi.org/10.1038/s41417-020-0192-9
https://doi.org/10.3390/ijms24043681
https://doi.org/10.1016/j.cell.2024.12.010
https://doi.org/10.1016/j.phrs.2020.105094
https://doi.org/10.1002/dc.25201
https://doi.org/10.7759/cureus.27549
https://doi.org/10.1002/biot.202300244
https://doi.org/10.32607/actanaturae.27314
https://doi.org/10.1016/j.ejps.2021.105726
https://doi.org/10.1002/bit.28530
https://doi.org/10.3389/fbioe.2023.1193454
https://doi.org/10.1016/j.chroma.2021.461924
https://doi.org/10.1016/j.virol.2022.06.013
https://doi.org/10.3389/fbioe.2022.992069
https://doi.org/10.1002/bit.27779
https://doi.org/10.1016/j.omtm.2023.07.010
https://doi.org/10.1002/bit.28419
https://doi.org/10.1002/bit.28419
https://doi.org/10.1186/s12967-023-04360-8
https://doi.org/10.1186/s40780-024-00388-0
https://doi.org/10.1089/hum.2018.170
https://doi.org/10.1089/hum.2018.170
https://doi.org/10.1016/j.intimp.2023.110975
https://doi.org/10.1016/j.intimp.2023.110975
https://doi.org/10.1186/s13046-024-03011-0
https://doi.org/10.1016/j.omto.2017.07.001
https://doi.org/10.1126/scitranslmed.aam7996
https://doi.org/10.1136/jitc-2022-006408
https://doi.org/10.1186/s13046-024-03219-0
https://doi.org/10.1016/j.bbrc.2021.04.078
https://doi.org/10.1039/d2bm00200k
https://doi.org/10.3389/fimmu.2025.1570698
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Oncolytic viruses: a promising therapy for malignant pleural effusion and solid tumors
	1 Introduction
	2 Mechanisms, combination strategies, and delivery methods of oncolytic viruses
	3 Challenges and advances in the management of malignant pleural effusion
	3.1 The pathogenesis and composition of MPE
	3.2 Current therapeutic approaches for MPE
	3.2.1 Thoracentesis
	3.2.2 Pleurodesis
	3.2.3 Indwelling pleural catheters
	3.2.4 Other therapeutic approaches


	4 Progress in oncolytic virus-based intrapleural therapy for MPE
	5 Oncolytic virus therapy for intracavitary administration
	5.1 Bladder cancer
	5.2 Ovarian cancer
	5.3 Peritoneal cancer (peritoneal mesothelioma)

	6 Intratumoral administration of oncolytic viruses in solid tumors
	6.1 Melanoma
	6.1.1 Talimogene laherparepvec
	6.1.2 CAVATAK
	6.1.3 RP1
	6.1.4 OrienX010
	6.1.5 HF10

	6.2 Lung cancer
	6.3 Gastrointestinal cancer
	6.4 Hepatocellular carcinoma
	6.5 Breast cancer
	6.6 Brain tumors

	7 Regulatory hurdles, cost impacts, and safety concerns for oncolytic virus treatment
	7.1 Regulatory hurdles
	7.1.1 Virus spread and potential infection risk
	7.1.2 Tolerance and immune response
	7.1.3 Clinical trial design and endpoint determination

	7.2 Cost implications
	7.3 Accessibility of OV therapy
	7.4 Safety

	8 Conclusion and perspectives
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


