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Distribution and potential
involvement of PTEN in the
innate immune response during
viral infections in Cherry
Valley ducks
Wende Chen1†, Shaojie Han2†, Rong Li1, Shuo Li1, Zhi Cao1*,
Qing Pan1* and Gen Li1*

1College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China,
2Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health,
Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
Introduction: Phosphatase and tensin homolog (PTEN) is a well-established

tumor suppressor gene that antagonizes the PI3K/AKT signaling pathway and plays

a critical role in regulating both innate and adaptive immune responses. However, its

function in avian species, particularly in ducks, remains largely unexplored.

Methods: In this study, the full-length cDNA of duck PTEN (duPTEN) was cloned

from the spleen of healthy Cherry Valley ducks. Sequence alignment and

phylogenetic analysis were performed to evaluate its structural conservation

and evolutionary relationships. The tissue distribution of duPTEN mRNA was

examined using quantitative real-time PCR (qRT-PCR). Furthermore, duPTEN

expression was assessed in the spleen, lung, and brain at 1, 3, and 5 days post-

infection (dpi) following exposure to Duck Tembusu Virus (DTMUV), Duck Plague

Virus (DPV), and Novel Duck Reovirus (NDRV).

Results: Sequence analysis demonstrated that duPTEN shares a high degree of

conservation with PTEN from other avian species, displaying 100% identity with

sequences from Gallus gallus andMeleagris gallopavo. qRT-PCR results revealed

that duPTEN is ubiquitously expressed across multiple tissues, with the highest

expression observed in the brain. Upon DTMUV and DPV infection, duPTEN

expression was significantly upregulated in the spleen and lung but

downregulated in the brain. In contrast, NDRV infection led to consistent

downregulation of duPTEN across all three tissues.

Discussion: This study is the first to characterize the molecular cloning, tissue-

specific expression, and virus-induced regulation of duPTEN in ducks. The

findings suggest that duPTEN plays a role in the host immune response to

diverse viral infections, highlighting its potential involvement in the regulation of

antiviral innate immunity in avian species.
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Introduction

As one of the most famous and frequently mutated tumor

suppressor genes, the phosphatase and tensin homolog (PTEN) is

mapped to human chromosome 10q23 (1–3). Its canonical role is to

dephosphorylate phosphatidylinositol 3,4,5-trisphosphate (PIP3),

thereby negatively regulating the PI3K pathway (4, 5).

The structure of PTEN is relatively simple, primarily consisting

of two folded globular domains (a phosphatase domain (15–185

amino acids (aa)) and a C2 domain (192-353aa)) and a C-tail

(carboxyl-terminal) (6). The phosphatase domain shares homology

with tensin and auxilin, and contains a highly conserved

phosphatase active site: HCxxGxxR. This domain can interact

intramolecularly, thereby mediating the formation of PTEN

dimers (7). The C2 domain of PTEN is structurally similar to the

C2 domains of other phospholipases, such as Cd1 and A2

phospholipases, and plays a role in regulating PTEN subcellular

localization (8). In addition, the C2 domain is critical for PTEN

dimers formation and interacts with phosphatase domain to

regulate its phosphatase activity (7). The C-tail is mainly

composed of some disordered segments, such as the PEST (Pro-

Glu-Ser-Thr) sequences and PDZ domain binding motif (PDZ-BM)

(9, 10). These disordered segments are key regulators of PTEN

activity, stability, homo-dimer formation and post-translational

modification (6, 11). Additionally, the eight residues

‘HTQITKVT’ at the PTEN C-terminal are essential for PDZ

domain recognition, while phosphorylation of the Ser380/Thr382/

Thr383 reduces PDZ domain binding (8, 12, 13). The

dephosphorylation activity of PTEN is determined by the

structure of the N-terminal phosphatase domain, but it is

regulated collaboratively by the C2 and C-tail domains (14). It

can be seen that the simplicity of PTEN’s structure cannot conceal

the complexity of its regulation.

With increasing research on PTEN, it has become evident that

its structure is growing more diverse and its activity is becoming

increasingly complex. PTEN is located both in the cytoplasm and

nucleus, and its optimal substrate is PIP3. One of its central

functions is to control plasma membrane binding, as this is where

the PIP3 substrate is located (6). To date, several translational

variants of PTEN have been characterized, including PTEN-Long

(PTEN-L) and PTEN-b (15–17). PTEN-L contains a 173-amino

acid N-terminal extension (NTE) variant, translated from an

upstream start site CUG (15). Similarly, PTEN-b includes a 146-

amino acid amino-terminal extension variant, which is localized

primarily in the nucleolus (17). Research has shown that the amino-

terminal extensions of PTEN-L and PTEN-b may be disordered,

but these extensions can affect the localization and activity of PTEN

(18, 19).

Previous studies have identified a pivotal role for PTEN in the

induction of type I interferon, a hallmark of antiviral innate

immunity (20). PTEN is also capable of controlling the nuclear

import of IRF3, a master transcription factor responsible for IFN-b
production (20). These findings may just be the tip of the iceberg of

PTEN’s antiviral innate immune function. As the world’s largest

producer of meat ducks, China must undertake in-depth research
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on the immune system of ducks (21). In the present study, we

cloned the CDs of the duck PTEN (duPTEN) and examined its

tissue distribution. To further explore the antiviral capability of

duPTEN, we investigated its response to various viruses. Our

findings revealed that duPTEN plays a crucial role in regulating

the inflammatory response and influencing the progression of

viral infection.
Materials and methods

Animals and viruses

One-day-old Cherry Valley ducks were purchased and raised

for three weeks. Before starting the experiment, enzyme-linked

immunosorbent assays (ELISAs) were performed to confirm that

the ducks were negative for Novel duck reovirus (NDRV), Duck

Tembusu virus (DTMUV), and Duck Plague virus (DPV). All ducks

used in this study were verified to be free of these viruses. The

DTMUV, NDRV, and DPV strains used in this study were obtained

from our laboratory and have been used in previous studies (22–

24). The viral titers were determined using DEFs (duck embryo

fibroblast) infection assays and calculated as the median tissue

culture infective dose (TCID50)/mL, following the method of Reed

and Muench (25).

One hundred and twenty 3-week-old ducks were randomly

divided into four groups, with 30 ducks in each group. Three groups

of Cherry Valley ducks were injected intramuscularly with DTMUV

(105.2 TCID50/mL, 0.4 mL per duck, containing 105.8 TCID50 virus)

(26), NDRV (104.5 TCID50/mL, 0.5 mL per duck, containing 104.8

TCID50 virus) (27), and DPV (106.5 TCID50/mL, 0.3 mL per duck,

containing 107.0 TCID50 virus) (28), respectively. The control

group was injected intramuscularly with 0.4 mL of phosphate-

buffered saline (PBS). For PTEN tissue distribution analysis, three

healthy Cherry Valley ducks were used. Additionally, the spleen,

lung and brain of virus-infected ducks were collected at 1-, 3-, and

5-days post infection (dpi) for gene expression analysis. Over time,

the clinical symptoms of infected ducks gradually decreased and

returned to normal, the remaining ducks were euthanized by

injecting lethal doses of pentobarbital sodium at 14 dpi.
RNA extraction

Total RNA was extracted from heart, liver, spleen, lung, kidney,

brain, cerebellum, brainstem, trachea, esophagus, proventriculus,

gizzard, duodenum, jejunum, ileum, cecum, bursa of Fabricius,

thymus, muscle and skin of 3-week-old Cherry Valley ducks using

Trizol reagent (9108, Takara, Dalian, China). RNA was also

extracted from the spleen, lung, and brain tissues of three

randomly selected ducks from each of the four experimental

groups at 1, 3, and 5 dpi using the same method. Reverse

transcription of RNA sample to cDNA was performed using

HiScript II One-Step RT-PCR kit (R223-01, Vazyme, Nanjing,

China). The RNA concentration was determined by measuring
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absorbance at 260 nm, and RNA quality was confirmed by the A260/

A280 ratio by Nanodrop 2000 Spectrophotometer (Thermo Fisher

Scientific, Wilmington, DE, USA)
Cloning of duPTEN

To obtain the coding sequences (CDs) of duPTEN, a set of

specific polymerase chain reaction (PCR) primers was designed to

identify the duPTEN sequences based on the predicated genes of

chicken PTEN in the National Center for Biotechnology

Information (NCBI) database (Table 1) (29). Total RNA (1 mg)
was extracted from the spleen of healthy Cherry Valley ducks using

TRIzol reagent (9108, Takara, Dalian, China), and cDNA was

synthesized with the HiScript II One-Step RT-PCR kit (R223-01,

Vazyme, Nanjing, China). The PCR conditions were as follows: an

initial denaturation at 94°C for 5 minutes; followed by 35 cycles of

denaturation at 94°C for 30 seconds, annealing at 57°C for 30

seconds, and extension at 72°C for 4 minutes; with a final extension

at 72°C for 10 minutes. The full-length cDNA of duPTEN was

sequenced by the Shanghai Invitrogen Biotechnology Co., Ltd. PCR

products were visualized on 1% agarose gels and purified by using

the agarose gel DNA fragment recovery kit (DP214-02, TIANGEN,

Beijing, China). The resulting sequences were analyzed using

Editseq software (DNAStar Lasergene, Version 18.0) (30).
Phylogenetic analysis

The homology analysis of the duPTEN sequence was performed

using the BLAST program of NCBI. The amino acid sequence of

PTENs from various species were retrieved from NCBI, and the

corresponding protein accession numbers are listed in Table 2.

MegAlign software was used to analyze the similarity and

evolutionary relationships of the PTEN amino acid sequence. The

structure of the duPTEN amino acid sequences was predicted using

the SMART online tool (http://smart.embl-heidelberg.de/).

Multiple amino acid sequence alignments were performed using

ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2/index.html) and

further edited using the online tool Boxshade (http://
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analysis was generated using the MEGA 11.0 software, and the

phylogenetic tree was constructed using the maximum-

likelihood method.
Quantitative real time PCR

Total RNA from the above tissues was extracted and reverse-

transcribed using the previously described method. Quantitative

real-time PCR (qRT-PCR) primers of duPTEN were designed based
TABLE 1 Primers used in this study.

Primer name Sequence
(5`– 3`)

Purpose

duPTEN-F atgggttttcctgcagagag
Gene cloning

duPTEN-R tcagacttttgtaatctgcg

q-duPTEN-F caattcccagtcagagacgct
qRT-PCR

q-duPTEN-R tcttcacgtcttgagggtcc

q-dub-actin-F
qd b-actin R

ggtatcggcagcagtctta

qRT-PCR

q-dub-actin-R ttcacagaggcgagtaactt
F, forward primer; R, reverse primer; q, qRT-PCR.
TABLE 2 Reference species information of PTEN.

Species GenBank accession numbers

Sus scrofa NP 001137168.1

Vicugna pacos XP 015096736.1

Saimiri boliviensis XP 003922485.1

Papio anubis XP 003904004.1

Macaca nemestrina XP 011738414.1

Macaca mulatta NP 001247894.1

Homo sapiens NP 000305.3

Gorilla XP 004049787.1

Felis catus XP 003993913.1

Equus przewalskii XP 008534286.1

Equus caballus NP 001304189.1

Equus asinus XP 014719844.1

Canis lupus familiaris NP 001003192.1

Ailuropoda melanoleuca XP 002914431.1

Oryctolagus cuniculus XP 002718539.1

Loxodonta africana XP 003409298.1

Bos taurus XP 613125.4

Ovis aries XP 011957880.1

Pantholops hodgsonii XP 005982308.1

Mus musculus NP 032986.1

Rattus norvegicus NP 113794.1

Leptonychotes weddelli XP 006732678.1

Chelonia mydas XP 007071643.1

Pelodiscus sinensis XP 014428208.1

Anser cygnoides XP 013028245.1

Gallus gallus XP 015134187.1

Meleagris gallopavo XP 010712456.1

Geospiza fortis XP 005430338.1

Taeniopygia guttata XP 002186954.3

Oreochromis niloticus XP 003449455.1
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on the duPTEN sequences obtained in this study, using Primer 3

software (http://www.broad.mit.edu/cgi-bin/primer/primer3,

www.cgi), and were selected based on the dissociation curves. The

expression of duPTEN was normalized to the endogenous reference

gene of b-actin (Table 1). qRT-PCR was performed using the

ChamQ™ SYBR® qPCR Master Mix (Q711-02, Vazyme,

Nanjing, China) on the 7500 Fast Real-Time PCR System

(Applied Bio-systems, CA, USA). The PCR reaction volume was

20 mL, and the conditions were as follows: an initial denaturation at

95°C for 5 minutes, followed by 40 cycles of denaturation at 95°C

for 10 seconds and extension at 60°C for 34 seconds. A dissociation

curve analysis was performed at the end of the reaction. Each

sample was analyzed in triplicate.
Calculations and statistical analysis

The relative expression levels of the duPTEN were measured

using the duck b-actin gene as the endogenous reference gene and

calculated using the 2−DDCt method (31). All data were represented as

mean ± SD of triplicate samples and analyzed by using SPSS19.0

software. Graphs were generated with Graph Pad Prism 5.0 software

(Graph Pad Software Inc., San Diego, CA, USA). Statistical

differences were assessed using one-way ANOVA followed by

Dunnett’s multiple comparisons test. Significant and highly

significant differences were set at P < 0.05 and P < 0.01, respectively.
Results

Molecular characterization of duPTEN

The complete open reading frame of duPTEN was 1,110bp in

length, encoding a protein of 369 aa. The sequence has been

submitted to GenBank (GeneBank accession number: PV054948).

Our results indicated that the duPTEN contains the typical

phosphatase active site ‘HCKAGKGR’ (highlighted in the red box,

Figure 1A). Additionally, the C-terminal includes seven residues,

‘HTQITKV’ (highlighted in the blue box, Figure 1A), which maybe

critical for specific recognition of the PDZ domain. Secondary

structure prediction using the SMART program revealed that

duPTEN possess three characteristic domains: the PTPc-DSPc

domain (3-145aa, indicated by the green line), the C2 domains

(154-315aa, marked with ∗∗∗ above the sequence), and a low-

complexity domains (326-337aa, marked with +++ above the

sequence) (Figures 1A, B).
Phylogenetic analysis of duPTEN

To confirm the evolutionary relationship of duPTEN, a

phylogenetic tree was constructed using the amino acid (AA)

sequences of duPTEN and other PTENs, as shown in Figure 2A.

The phylogenetic tree revealed that these PTENs sequences

clustered into four majors’ branches: mammals, reptiles, birds and
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fish. DuPTEN was classified within the avian branch, showing a

particular relationship with the PTEN of Gallus and Meleagris

gallopavo, while being relatively distant from Fish PTEN. These

results indicated that duPTEN shares a closer evolutionary

relationship with avian PTENs. Further analysis of duPTEN

involved comparing its AA sequence with those from birds, fish,

mammals, and reptiles. The multiple sequence alignment showed

that duPTEN shared 100% identity with the PTENs of Gallus and

Meleagris gallopavo, over 90% identity with PTENs from mammals,

birds, and reptiles, and 81.6% identity with Oreochromis niloticus

(Figure 2B). These results highlight the strong conservation of

PTEN across most species (Figure 2B).
Tissue distribution of duPTEN in healthy
Cherry Valley duck

To analyze the expression levels of duPTEN mRNA in the

tissues of healthy Cherry Valley ducks, three healthy ducks were

randomly selected, and 20 tissue samples were collected. The

thymus was used as the reference tissue. As shown in Figure 3,

duPTEN mRNA expression was highest in the brain, followed by

the liver and heart. In contrast, lower expression levels were

observed in intestinal tissues, including the ileum, jejunum, and

duodenum. The widespread expression of duPTEN indicates that

the duPTEN might be extensively involved in the host immune

response of healthy Cherry Valley ducks.
Expression profiles of duPTEN in the viral
infected ducks

To determine the potential involvement of duPTEN in the host’s

antiviral immune response against various viral infections, the mRNA

expression levels of duPTEN were assessed in the spleen, lung, and

brain, which represent key target, immune, and nervous system organs,

respectively, during viral infection (26–28). Following infection with

the three viruses, duPTEN expression was significantly decreased in the

brain at 1, 3, and 5 dpi (Figures 4A–C), with the most pronounced

downregulation observed in the NDRV-infected group (Figure 4C). In

the spleen, duPTEN expression was upregulated during DTMUV and

DPV infection, peaking at 5 dpi with 5.3-fold increase in the DPV-

infected groups (P < 0.0005; Figure 4B). In the lung, duPTEN

expression was significantly upregulated at the indicated time points

in both DTMUV-and DPV-infected ducks (Figures 4A, B). Notably,

duPTEN expression was consistently downregulated at all the time

points and in all tissues during NDRV-infection group (Figure 4C).

These findings suggest that duPTEN plays a role in the host’s immune

response to multiple viral infections.
Discussion

Discovered over 20 years ago as a “candidate tumor suppressor

gene”, PTEN is an enzyme that is strictly regulated and capable of
frontiersin.org
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dephosphorylating both protein and lipid substrates (4). It plays a

crucial role in various cellular processes, including proliferation, cell

migration, apoptosis, cell survival, and metabolism. Additionally,

PTEN is involved in numerous immunological processes and

functions as a pro-inflammatory factor (5, 32).

In this study, PTEN was identified, cloned, and characterized

for the first time from Cherry Valley ducks. The duPTEN contains a

1,110bp ORF and encodes three characteristic structure domains:

the PTPc-DSPc domain (3-145aa), the C2 domains (154-315aa),

and the low complexity domains (326-337aa). The PTPc-DSPc

domain, which functions as the phosphatase domain, includes the

highly conserved phosphatase active site motif HCxxGxxR (6, 33).

Our finding shows that this structural motif in duPTEN is identical

to that of Homo sapiens, Gallus gallus and Mus musculus, all of

which feature the sequence ‘HCKAGKGR’. A key regulatory

interface of PTEN is the interaction between the C2 domain and

phosphatase domain (34). Unlike what Chen L et al. mentioned (8),
Frontiers in Immunology 05
our study found that the C-terminus of duPTEN only contains 7

residues, namely “HTQITKV”, and from our Figure 1A, it can also

be seen that there are also only 7 residues “HTQITKV” in PTEN of

species such as Gallus, Homo, and Mus musculus. Phylogenetic

analysis revealed that duPTEN shares 100% identity with PTEN

from Gallus gallus and Meleagris gallopavo, 95.1% identity with

Homo sapiens, and 81.6% identity with Oreochromis niloticus, a

finding consistent with the phylogenetic tree results. These data

underscore the high conservation of PTEN structure and the

homology of duPTEN across species.

Given the important role of PTEN in immune response,

studying its tissue distribution can provide valuable insights into

its functions and regulatory mechanisms. In our study, duPTEN

was expressed in all tested tissues. Considering that PTEN role as a

key regulatory factor in cellular growth and proliferation, its

widespread expression across tissues is not surprising. The

highest duPTEN expression was observed in the brain, followed
FIGURE 1

Characterization of duPTEN. (A) Alignment of the deduced AA sequence of duPTEN with other species. Black shading indicates AA identity; gray
shading indicates similarity (50% threshold). The green line represents the PTPc-DSPc domain; the∗∗∗above the sequence represents the C2
domains; the+++above the sequence represents the low complexity domains. The red box is the phosphatase active site: HCxxGxxR, and the blue
box is the C-terminal eight residues. (B) Prediction of duPTEN protein domains by the SMART program. DuPTEN contains the PTPc-DSPc domain
(3-145aa), and the C2 domains (154-315aa), and the low complexity domains (326-337aa). Du, Cherry Valley Duck, Ga, Gallus gallus; Ho, Homo
sapiens, Mu, Mus musculus.
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by the liver and heart, while the lower expressions were detected in

intestinal tissues such as ileum, jejunum and duodenum. Our

previous research has shown that the same gene can exhibit

different tissue distributions at various developmental stages and

in different organs of the same animal. Further research is needed to

elucidate the detailed biological function associated with the tissue

distribution of duPTEN. Nonetheless, its broad expression indicates

that the duPTEN might be extensively involved in the immune

response of healthy Cherry Valley ducks.

Increasing evidence indicates that, beyond its well-established

role in tumor suppression, PTEN plays a crucial role in IFN

responses and antiviral innate immunity (8, 20). For example,
Frontiers in Immunology 06
PTEN deficiency in mouse prostate cancer cells leads to

significant viral proliferation and cell lysis (35). Partially PTEN-

deficient mice are more susceptible to vesicular stomatitis virus

infection than wild-type (WT) mice (20). Similarly, PTEN

inhibition in a murine model of sepsis results in increased

inflammation, tissue damage, and mortality (36). Moreover,

PTEN-L has been shown to promote type I IFN response and

antiviral innate immunity in a phosphatase activity-dependent

manner during viral infection (4). In this study, the antiviral role

of duPTEN was further studied following infection with DTMUV,

DPV and NDRV. Immune-related organs and the virus target

tissues were selected for analysis. Significant changes in duPTEN
FIGURE 2

Phylogenetic analysis and sequence similarity of PTEN. (A) The phylogenetic tree of the AA sequence of duPTEN and other species. A Maximum
Likelihood tree was generated using MEGA 11.0, and a 1,000-bootstrap analysis was performed to assess the reliability of the tree. The scale bar is
0.050. GenBank accession numbers are shown in Table 2. (B) Sequence similarity analysis of PTEN among different species. The program was
performed using the MegAlign software.
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expression levels were observed after infection with all three viruses.

In the DTMUV- and DPV-infected groups, duPTEN displayed

similar expression patterns: it was upregulated in the spleen and

lung but downregulated in the brain. Considering that the brain is

an important site for neurological symptoms, its widespread

downregulation deserves further investigation. In contrast,

duPTEN expression was consistently downregulated across all

time points and tissues during NDRV infection. The spleen as the

largest secondary lymphatic organ of birds, the duPTEN expression

peaked at 5 dpi in the DTMUV- and DPV-infected groups. In DPV-

infected lungs, duPTEN was significantly upregulated at 1 dpi and

remained elevated through 5 dpi, indicating that lung-expressed

duPTEN actively participate in the antiviral immune response.

Similar upregulation of PTEN has been reported in B cells during
Frontiers in Immunology 07
acute and chronic human immunodeficiency virus infection (37,

38). However, in the brain, which exhibits the highest expression in

healthy adult Cherry Valley duck, duPTEN was downregulation at

all detection time points (1, 3, and 5 dpi) following infection with

all three viruses. Previous studies have shown that PTEN deletion

leads to a weakened inflammatory response (8). The observed

alterations in duPTEN expression across different tissues and

viruses suggest that viral infections disrupt the baseline expression

of duPTEN in vivo. The distinct expression patterns may be

attributed to variations in viral properties and activation

pathways. Many viruses, such as influenza, have been shown to

manipulate the PI3K/AKT pathway to promote viral replication

and evade immune surveillance. The potential of PTEN to regulate

immune responses through its interaction with the PI3K signaling
FIGURE 3

Tissue distributions of PTEN in the healthy Cherry Valley duck. The relative mRNA levels were normalized to the expression of the b-actin gene from
various tissues, with data being normalized to the thymus. The relative expression levels of duPTEN were calculated using b-actin as the reference
gene and analyzed using the 2−DDCt method. Means ± standard deviation from three independent repetitions are presented.
FIGURE 4

Analysis of duPTEN transcript at early stages of viral infection. (A) Expression Profiles of duPTEN in the DTMUV Infected Ducks, (B) Expression
Profiles of duPTEN in the DPV Infected Ducks, (C) Expression Profiles of duPTEN in the NDRV Infected Ducks. The relative expression levels were
calculated with the 2−DDCt method. Statistical significance was evaluated by one-way ANOVA followed by Dunnett’s multiple comparisons. Bar
represents the mean ± standard deviation (n=3). *** (0.0001 ≤ P < 0.001), ****(P < 0.0001).
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pathway is an interesting aspect, and we plan to further explore this

in future studies (39). The subcellular localization of PTEN is

crucial for its antiviral function, as its presence in specific cellular

compartments, such as the plasma membrane or mitochondria,

modulates the PI3K/AKT signaling pathway to regulate immune

responses. Further research will investigate the subcellular

localization of PTEN during viral infection using western blot

and immunofluorescence staining. Overall, these findings indicate

that duPTEN plays a critical role in the host immune response to

multiple viruses, likely through complex regulatory mechanisms

within signaling pathways.

While the role and mechanisms of PTEN in tumor suppression

have been widely studied, its involvement in adaptive and innate

immunity is only beginning to be uncovered (3, 8). In this study,

duPTEN was identified, and its function was analyzed. The

expression of duPTEN in healthy Cherry Valley ducks was

found to be widespread. Moreover, its relative expression levels

changed significantly during viral infections in vivo. Together, our

research enhances the understanding of duPTEN’s structure and

role in antiviral responses, providing a foundation for further

exploration of the function and regulatory mechanisms of PTEN

in waterfowl.
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