
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Manuela Antonioli,
University of Rome Tor Vergata, Italy

REVIEWED BY

Gu He,
Sichuan University, China
Vinod Kumar Yata,
Malla Reddy University, India
Hiroyuki Sugiura,
Fukuyama City Hospital, Japan

*CORRESPONDENCE

Xiaozhong Wang

wangxiaozhong@ncu.edu.cn

Bo Huang

764019522@qq.com

RECEIVED 04 February 2025

ACCEPTED 07 May 2025
PUBLISHED 28 May 2025

CITATION

Zhong F, Yao F, Liu J, Fang Q, Yu X, Huang B
and Wang X (2025) Autophagy crosstalk with
the immune microenvironment in chronic
myeloid leukemia and serves as a biomarker
for diagnosis and progression.
Front. Immunol. 16:1570903.
doi: 10.3389/fimmu.2025.1570903

COPYRIGHT

© 2025 Zhong, Yao, Liu, Fang, Yu, Huang and
Wang. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 28 May 2025

DOI 10.3389/fimmu.2025.1570903
Autophagy crosstalk with the
immune microenvironment in
chronic myeloid leukemia and
serves as a biomarker for
diagnosis and progression
Fangmin Zhong, Fangyi Yao, Jing Liu, Qun Fang, Xiajing Yu,
Bo Huang* and Xiaozhong Wang*

Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical
Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated
Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
Background: Previous studies have shown that autophagy is closely related to

the occurrence, development, and treatment resistance of chronic myeloid

leukemia (CML) and has dual roles in promoting cell survival and inducing

cell death.

Methods: We analyzed autophagy levels in CML samples via transcriptome data

and evaluated the relationships between autophagy and the immune

microenvironment, treatment response, and disease progression. A consensus

clustering algorithm was used to identify autophagy-related molecular subtypes.

The value of autophagy-related genes (ARGs) in diagnosis and treatment

evaluation was analyzed and verified by a variety of machine learning algorithms.

Results: Compared with normal samples, CML samples had significantly lower

autophagy scores and more downregulated ARGs. The autophagy score was

positively correlated with the activity of immune and signal transduction-related

pathways and negatively correlated with proliferation-related pathways. Patients

with high autophagy scores had a greater proportion of regulatory T-cell

infiltration and greater cytokine–cytokine receptor interaction signaling

pathway activity, while patients with low autophagy scores had greater gdT cell

infiltration and PD-1 expression. Low autophagy scores are also associated with

malignant progression and nonresponse to treatment. The immune landscape

and chemotherapy sensitivity significantly differed between the two autophagy-

related molecular subtypes. Three diagnostic ARGs (FOXO1, TUSC1, and ATG4A)

were identified by support vector machine recursive feature elimination, least

absolute shrinkage selection operator, and random forest algorithms, and the

combined diagnostic efficiency of the three was further improved. The

diagnostic value of the three ARGs was verified by an additional validation

cohort and our clinical real-world clinical cohort, and they can also be used

for the differential diagnosis of CML from other hematological malignancies.
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Conclusion: Our study revealed that CML samples exhibit decreased autophagy,

and autophagy may induce Tregs to undergo immunosuppression through

cytokines. Autophagy-related molecular subtypes are helpful for guiding the

clinical treatment of CML. The identification of ARGs by a variety of machine

learning algorithms has potential clinical application value.
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Introduction

Chronic myeloid leukemia (CML) is a myeloproliferative disease

arising from the malignant transformation of hematopoietic stem cells

(1). The Philadelphia chromosome is formed by reciprocal

translocation of chromosomes 9 and 22, resulting in a new fusion

gene, BCR-ABL, which encodes a protein with strong tyrosine kinase

activity, leading to the malignant proliferation of CML cells (2).

Tyrosine kinase inhibitors (TKIs), such as imatinib, dasatinib, and

nilotinib, have shown remarkable efficacy, and the survival time of

CML patients has significantly increased (3). However, due to the

existence of various primary and secondary resistance factors, some

patients have poor responses to TKI treatment (4). Therefore,

exploring new biological targets is helpful for promoting the

development of personalized treatments for CML.

Autophagy is an intracellular catabolic process in which damaged

organelles and cytoplasmic contents, such as protein aggregates, are

encapsulated in autophagosomes for lysosomal degradation to meet

the metabolic needs of cells and the renewal of organelles (5, 6).

Autophagy is widely involved in physiological and pathological

processes in the body and has been implicated in the pathogenesis

of a variety of human diseases, including cancer (7). However,

autophagy has a dual role in tumor cells (8, 9). On the one hand, it

can induce autophagic cell death (10), and on the other hand, it can

maintain cell homeostasis and protect cells from harmful factors,

which is conducive to cell survival (11, 12). At present, the use of

autophagy as a target for intervention has been controversial. Similar

to that in most tumors, autophagy plays two roles in CML. The

antitumor effects of pristimerin were observed to be mediated through

the induction of autophagy via excessive generation of ROS and

activation of the JNK signaling pathway. This mechanism leads to cell

cycle arrest, inhibition of cell proliferation, and induction of

autophagic cell death in the CML cell line K562 (13). Another study

showed that the NF-kB inhibitor bardoxolone methyl promoted

autophagy and induced apoptosis in K562 cells by regulating the

PI3K/AKT/mTOR and p38 MAPK/ERK1/2 signaling pathways (14).

In addition, curcumin can induce apoptosis in K562 cells by inducing

autophagy (15). Imatinib can also inhibit the PI3K/AKT/FOXO4/

ATF5/mTOR pathway to induce autophagy by inhibiting the

BCR-ABL protein (16). In terms of cancer promotion, knockdown
02
of the Beclin1 gene in a mouse CML model reduced leukemia burden

by inhibiting autophagy (17). Autophagy promotes leukemogenesis

and cell survival by inhibiting cellular stress (18). Autophagy is closely

related to the occurrence and development of CML. However, its exact

role in the immune microenvironment of CML and whether

autophagy-related genes (ARGs) can be used as biomarkers for the

diagnosis and prognosis evaluation of CML remain unknown.

With the advancement of biotechnology, the utilization of

machine learning algorithms can effectively contribute to disease

diagnosis and treatment decision-making (19). Consequently,

machine learning holds significant clinical value across various

healthcare systems. Currently, the implementation of machine

learning in CML remains limited. Although several studies have

developed machine learning models for CML diagnosis using

peripheral blood smear or bone marrow puncture images, the

absence of external validation diminishes model reliability (20,

21). Therefore, employing machine learning algorithms to

identify additional diagnostic markers for CML through

multicohort studies would greatly benefit early detection and

personalized treatment guidance.

In this study, we explored the association between the level of

autophagy and the immune microenvironment of CML patients by

bioinformatics analysis. The identification of molecular subtypes

based on ARG expression is helpful for the establishment of

personalized treatment regimens for CML. In addition, by using

multiple machine learning algorithms, we identified a set of ARGs

that accurately diagnose CML, which were validated in additional

public and clinical cohorts. These results provide new insights for

the study of autophagy in CML.
Methods

Data collection and preprocessing

The CML cohorts GSE13159 and GSE144119 were downloaded

from the GEO database. The GSE13159 cohort consisted of 76 CML

samples and 74 normal samples, which were standardized by

downloading the “cel” file and used as the analysis cohort for this

project. The GSE144119 cohort consisted of 48 samples from newly
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diagnosed CML patients and 32 samples from CML patients in

remission, as well as 17 normal samples, and the data were

converted to transcripts per kilobase million (TPM) values for

subsequent validation. In addition, we collected 10 CML samples

and 5 normal samples for transcriptome sequencing. Sample

collection was approved by the Second Affiliated Hospital of

Nanchang University, and patient consent was obtained. Ethical

approval was obtained in accordance with the guidelines of the

Declaration of Helsinki. The data from our clinical cohort were

similarly transformed into TPM values for subsequent validation.

Standardized RNA-seq data (TPM values) of 173 TCGA-LAML

(The Cancer Genome Atlas-Acute Myeloid Leukemia) samples

were downloaded from the UCSC Xena database (https://

xenabrowser.net/datapages/). In addition, GSE13159 contained

750 acute lymphoblastic leukemia samples, 542 acute myeloid

leukemia samples, 448 chronic lymphocytic leukemia samples,

and 206 myelodysplastic syndrome samples, which were further

used in the differential diagnosis of CML. The GSE44589 and

GSE14671 cohorts contained sequencing data of 198 and 59

imatinib-treated samples, respectively, for the evaluation of CML

treatment response. A total of 232 ARGs were extracted from the

human autophagy database (http://www.autophagy.lu/index.html).
Differential expression analysis of ARGs

ARGs with differential expression between CML and normal

samples were screened by the “limma” package. Genes with a

|logFC>0.5| and adjusted P value<0.05 were considered

differentially expressed ARGs (DEARGs). Subsequently, we

performed Gene Ontology (GO) annotation and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis of these genes using the “clusterProfiler”

package (22). We quantified the activity of a pathway or

biological pathway by calculating an enrichment score for a gene

set using the gene set variation analysis (GSVA) algorithm. The

GSVA algorithm initially ranks the expression levels of all genes

within a single sample in descending order, followed by an

analysis of the positioning of target gene sets within this ranking.

If these genes exhibit high expression levels, they will be ranked

higher, indicating elevated activity of the corresponding gene set or

pathway. In this study, we assessed the scores of the autophagy gene

set as a representation of autophagic activity within each sample.
Correlation analysis and protein–protein
interaction network construction

Spearman correlation analysis was used to analyze the correlations

between DEARGs. The STRING database (https://string-db.org/) was

used to analyze the protein–protein interactions of the DEARGs.

The cutoff criteria were set as follows: a minimum confidence level

of 0.7 was needed, while all other settings remained at their default

values. Then, Cytoscape software was used to visualize the

PPI network.
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Weighted correlation network analysis

The “WGCNA” software package was used to identify genes

related to autophagy scores in the GSE13159 cohort (23). Pearson

correlation analysis was used to construct the adjacency matrix of

all matched genes, and the scale-free topology of the adjacency

matrix was implemented based on the optimal soft threshold power.

Then, the adjacency matrix is transformed into a topological

overlap matrix (TOM) to reduce noise and false correlation,

thereby obtaining a refined distance matrix (24). Based on the

TOM dissimilarity measure, the minimum module size was set to

30, the cut height was set to 0.2, and genes with similar expression

patterns were divided into the same modules by average linkage

hierarchical clustering. Then, the correlation between module

eigengenes (MEs) and the autophagy score was evaluated.
Estimation of immune cell infiltration

To characterize immune cell infiltration in CML samples, we

used a deconvolution algorithm, CIBERSORT, to quantify the

proportions of 22 immune cell types based on individual sample

gene expression profiles (25).
Identification of molecular subtypes based
on ARG expression

To better evaluate the individual differences in CML patients, we

used the “consensusclusterplus” package to perform cluster analysis

of CML samples based on the expression profiles of DEARGs to

identify CML subtypes. The results of the cluster analysis were

reliable and stable after 1000 iterations. The PCA algorithm was

used to verify the classification. The first two principal components

were selected based on the magnitude of the eigenvalues to effectively

capture the majority of the data variation. A scatter plot was then

generated to visually depict the projection of samples onto these

principal components, facilitating an intuitive understanding of

sample positioning and cluster formation.
Prediction of the sensitivity of CML
samples to TKI treatment

The expression matrix and drug response data of blood cell lines

from the Cancer Genome Project (CGP) database (https://

cancer.sanger.ac.uk/cosmic) were used to predict the half-

maximal inhibitory concentrations (IC50) of TKIs in CML

samples via the “pRRophetic” package (26).
Identification of diagnostic biomarkers for
CML

Three machine learning algorithms, support vector machine

recursive feature elimination (SVM-RFE), least absolute shrinkage
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selection operator (LASSO), and random forest (RF) (19), were used

to screen the diagnostic ARGs in CML. We used the “glmnet”

package, the “e1071” package, and the “randomForest” package for

LASSO, SVM, and RF analyses, respectively, with fivefold cross-

validation in the analysis cohort. In addition, regression coefficients

for diagnostic ARGs were calculated by LASSO regression analysis,

and a CML risk score diagnostic model was constructed based on

the following formula:

Risk   score =  oi
1(Coefi*ExpGenei),

where i is the diagnostic ARG and “Coef” and “ExpGene” are

the regression coefficient and the expression value of the ARG,

respectively (Supplementary Table S1). Through the construction of

the risk score model, we can further analyze the combined

diagnostic value of ARGs.
Construction of the miRNA regulatory
network for CML diagnostic ARGs

We used the miRTarBase, miRDB, and TargetScan databases to

predict miRNAs with binding sites for CML diagnostic ARGs and

screened out miRNA–target pairs predicted by all three databases.

The GSE90773 cohort contained data on differentially expressed

miRNAs between CML cells and normal cells and was used for the

construction of a miRNA regulatory network.
Statistical analysis

All analyses were performed with R software and corresponding

software packages. Differences between two or more groups were

analyzed using the Wilcoxon rank sum test and the Kruskal–Wallis

test, respectively. The diagnostic value of biomarkers was

determined by receiver operating characteristic (ROC) curve

analysis. A bilateral adjusted P<0.05 (Bonferroni correction)

indicated a significant difference.
Results

Autophagy-related molecular
characteristics in CML

The activity and molecular characteristics of autophagy in CML

were systematically evaluated by calculating an autophagy score using

the GSVA algorithm. Correlation analysis revealed that the autophagy

score was significantly positively correlated with the expression of

classic autophagy marker genes, such as ATG5, BECN1, and

MAP1LC3B (P<0.05) (Figure 1A), indicating that the autophagy

score could reflect autophagy activity to a certain extent. The

significantly lower autophagy score in CML samples than in normal

samples may indicate that CML cells are resistant to autophagic death

(Figure 1B). Figures 1C, D show the expression characteristics of 31

DEARGs in CML samples and normal samples, among which CML

samples had more downregulated ARGs. The biological functions of
Frontiers in Immunology 04
the DEARGs included mainly the regulation of autophagy,

phagophore assembly site membrane, cysteine-type peptidase

activity and cytokine activity (Figure 1E). In addition to autophagy,

they are involved in biological pathways such as apoptosis, pathways

in cancer, protein processing in the endoplasmic reticulum, PD-L1

expression and the PD-1 checkpoint pathway in cancer, and the HIF-1

signaling pathway (Figure 1F). These results suggest that autophagy in

CML samples is perturbed and may have an impact on the occurrence

and development of CML.
Correlations between the expression of
DEARGs and the autophagy score and
immune characteristics

Expression correlation analysis among the DEARGs revealed a

positive correlation among the upregulated ARGs in CML, and

there was also a positive correlation among the downregulated

ARGs (Figure 2A), indicating that ARGs play a synergistic role in

CML to jointly regulate autophagy in CML cells. The PPI network

showed that IFNG, SIRT1, FOXO1, and MAP1LC3A were the core

genes in these DEARGs (Figure 2B). Among them, MAP1LC3A,

whose expression is upregulated, may be a key positive regulator of

autophagy in CML cells, while IFNG, SIRT1, and FOXO1 may play

important inhibitory roles. We further analyzed the relationships

between the autophagy score and cancer marker signaling pathway

activity and the immune microenvironment to reveal the

underlying biological mechanism of autophagy in CML. We

found that autophagy scores were significantly and positively

correlated with enrichment scores for multiple immune pathways,

such as complement, inflammatory response, allograft rejection,

and IL6/JAK/STAT3 signaling, and multiple signaling pathways,

such as PI3K/AKT/mTOR signaling, TGF beta signaling, and IL2/

STAT5 signaling (Figure 2C). In addition, the autophagy score was

also significantly positively correlated with the apoptosis score and

negatively correlated with proliferation-related pathways such as

the E2F target and MYC target V1/V2 scores, indicating that CML

cell-mediated autophagy may induce apoptosis and inhibit

proliferation, again indicating that a lower autophagy score in

CML cells may be related to apoptosis resistance and malignant

proliferation. Immune infiltration analysis revealed that the

autophagy score was significantly positively correlated with the

infiltration of regulatory T cells (Tregs) and neutrophils and

significantly negatively correlated with gdT cells and plasma cells

(Figures 2D, E), indicating that increased autophagy in CML cells

may be related to immunosuppression and that Tregs may play an

important role in this process. We also noted that higher autophagy

scores were accompanied by higher HAVCR2 and CD86 expression

and lower PD-1 expression (Figure 2F).
Correlation of the autophagy score with
therapeutic response and disease progression

Analysis of treatment data from the GSE14671 and GSE44589

cohorts revealed that autophagy scores were significantly greater in
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patients who responded to imatinib treatment than in those who

did not (P<0.05) (Figures 2G, H). It is worth noting that for

Figure 2G, despite the p value exceeding 0.05, there still exist

discernible disparities in the data distribution between the two

groups. In addition, in the GSE144119 cohort, we observed a

significant increase in autophagy scores in CML patients who

responded to TKIs such as imatinib (Figure 2I). In our clinical

cohort, we observed that the autophagy score gradually decreased

with the progression of CML from the normal group to the

chronic-phase CML group and then to the blast-phase CML

group (Figure 2J), where CML in the blast phase indicated no

response to TKI treatment. As shown in Figure 2J, although our

limited clinical sample size allowed for an outlier resulting in a P

value > 0.05, the overall trend remained unaltered, and these

findings may also reflect corresponding biological patterns and

provide supplementary evidence. Therefore, multiple sets of data

have confirmed that a low autophagy score is related to CML

occurrence, malignant progression, and nonresponse to

TKI treatment.
Frontiers in Immunology 05
Coexpression gene networks potentially
associated with CML autophagy were
identified by WGCNA

In addition, considering that approximately 70% of CML patients

in the blast phase progress to AML, we analyzed the prognostic

predictive value of the DEARGs in the TCGA-AML cohort.

Univariate Cox regression analysis revealed that ARGs significantly

related to the prognosis of AML patients were prognostic risk factors

(P<0.05, hazard ratio>1) (Figure 3A), indicating that they may be

involved in the malignant progression of AML. Moreover, to better

explore potential mechanisms associated with autophagy in CML, we

investigated the coexpressed gene networks significantly associated with

autophagy scores usingWGCNA in the GSE13159 analysis cohort. The

cluster tree diagram shows the clustering characteristics of the CML

samples (Figure 3B). Figures 3C, D show the scale-free fit exponentials

and average connectivity analyses for various soft threshold powers.We

set the cutoff height = 0.2 to merge the modules with a correlation

greater than 0.8 (Figure 3E). According to the optimal soft threshold
FIGURE 1

Characteristics of autophagy activity and ARG expression in CML samples. (A) Correlation analysis of the autophagy score and autophagy marker
gene expression. Red indicates a positive correlation, blue indicates a negative correlation, and the darker the color is, the stronger the correlation.
*P<0.05. (B) Autophagy score distribution in normal (n=74) and CML (n=76) samples. (C, D) Volcano map (C) and heatmap (D) showing the
expression characteristics of ARGs. (E, F) Functional annotation (E) and pathway enrichment analysis (F) of DEARGs. The functional enrichment
analysis in Figure F highlights the most significant signaling pathways and their corresponding genes, while excluding the visualization of less
enriched pathways and their associated genes. BP, biological process; CC, cellular component; MF, molecular function. (*P < 0.05).
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power b=12 (unscaled R2 = 0.9), the 5000 genes with the highest

standard deviation were divided into 23 independent coexpression

modules (Figure 3F). The correlogram of the module-trait relationship

showed that the gray module had the highest correlation with the

autophagy score (Cor=0.74, P=2e-14). In addition, the greater the

correlation between the genes and the gray module was, the greater

the correlation with the autophagy score, confirming that the gray

module genes are strongly correlated with CML autophagy (Figure 3G).

Through KEGG enrichment analysis, we found that gray module genes

were significantly enriched in the cytokine–cytokine receptor

interaction signaling pathway (Figures 3H, I). Given the significant

positive correlation between Treg infiltration and autophagy scores, we

hypothesized that CML autophagy-induced cytokine secretion may

exert immunosuppressive effects by promoting Treg infiltration.
Frontiers in Immunology 06
Identification of autophagy-related
molecular subtypes and analysis of
differences in biological characteristics
between subtypes

To better analyze the biological value of ARGs in CML, two

CML molecular subtypes, Cluster C1 and Cluster C2, were

identified by a consensus clustering algorithm in CML samples of

the GSE13159 cohort based on the expression of DEARGs

(Figure 4A). PCA confirmed that the two molecular subtypes had

significantly different distribution characteristics (Figure 4B). The

heatmap showed that ARGs such as VEGFA, MAP1LC3A, DDIT3,

and SESN2 were upregulated in the C1 subtype (Figure 4C) and

were similarly upregulated in CML samples compared to normal
FIGURE 2

Correlations of the autophagy score with the immune microenvironment, treatment response, and disease progression in CML patients.
(A) Expression correlation analysis among DEARGs; red indicates the upregulated expression of DEARGs in CML, and blue indicates the
downregulated expression. (B) PPI network analysis of the DEARGs. The solid lines usually represent direct physical interactions, such as the binding
between proteins. Different colors represent different interaction types or functional categories. The specific color meanings can be referred to the
STRING database. (C-F) Correlation analysis of the autophagy score with the tumor marker gene set enrichment score (C), immune cell infiltration
(D), Treg infiltration (E), and immune checkpoint expression (F). (G, H) Differences in autophagy scores between patients in the GSE14671 (G) and
GSE44589 (H) cohorts who responded to TKI treatment and those who did not. (I) Differences in autophagy scores among normal, CML, and
treatment-remission samples in the GSE144119 cohort. (J) Differences in autophagy scores among normal, chronic-phase (CP), and blast-phase (BP)
CML samples in our clinical cohort. MMR, major molecular response; NR, no response. P values refer to adjusted P values. (*P < 0.05; ***P < 0.001).
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samples. To further evaluate the differences in biological

characteristics between the two subtypes (Figure 4D), we first

performed GSVA and found that the C2 subtype had increased

activity of proliferation-related pathways such as the mitotic

spindle, E2F targets, G2M checkpoint, and MYC target V1.

Subtype C1 was enriched in myogenesis, KRAS signaling DN,

hypoxia, and other signaling pathways. In addition, immune

infiltration analysis revealed that the C1 subtype contained a

greater proportion of CD8+ T cells and eosinophils, while the C2

subtype contained more naive CD4+ T cells and gdT cells
Frontiers in Immunology 07
(Figure 4E). The expression of immune checkpoint molecules also

significantly differed between the two subtypes. The expression of

immune checkpoint molecules was also significantly different

between the two subtypes, among which the expression of PD-L1,

CTLA4, PD-1, PD-L2, and TNFRSF9 was significantly upregulated

in the C1 subtype (Figure 4F). These features suggest that the C1

subtype may be subject to some immunosuppression, resulting in

the inability of CD8+ T cells to effectively exert their killing effects.

Subsequently, we observed no significant difference in autophagy

scores between the two subtypes (Figure 4G). Drug prediction
FIGURE 3

WGCNA revealed potential mechanisms of autophagy regulation. (A) Univariate Cox regression analysis revealed the prognostic features of the
DEARGs in the TCGA-AML cohort. (B) Cluster plot of CML samples. (C) Analysis of various soft threshold powers using the scale-free fitting index
and average connectivity. The abscissa of both figures represents the value of the soft threshold (power). The ordinate of the left figure is the scale-
free fit index, that is, the signed R2. The greater the square of the correlation coefficient is, the closer the network is to the distribution of the scale-
free network. When the signed R2 is greater than 0.9, the network conforms to the distribution of the scale-free network. There is a red horizontal
line in the figure, which indicates the best power value when the first signed R2 reaches this red line, which is 12 in this figure. The ordinate of the
right graph represents the average connectivity number of all nodes, and a lower ordinate indicates better connectivity. (D) Clustering of different
modules. The red line is the cutting height (0.2) to merge the modules with a correlation greater than 0.8. (E) Cluster plots based on different
measures (1-TOM). (F) Heatmap of correlations between module genes and autophagy scores. (G) Scatter plot of module genes associated with
the autophagy score in gray modules. (H) KEGG enrichment analysis of gray module genes. (I) Genes enriched in the cytokine–cytokine receptor
interaction signaling pathway in the gray module. The size of the point represents the correlation of the specified gene with the corresponding
phenotype, and the larger the point is, the greater the correlation.
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analysis revealed that the C1 subtype was more sensitive to

imatinib, nilotinib, and bosutinib, and there was no significant

difference in the IC50 of dasatinib between the two subtypes

(Figure 4H). These results can guide personalized treatment

of CML.
Analysis of the diagnostic value of ARGs

We further analyzed the diagnostic value of ARGs in CML.

Three machine learning algorithms (LASSO, RF, and SVM-RFE)

were used for dimensionality reduction, and we identified 11, 11,

and 4 variables associated with CML from DEARGs, respectively

(Figures 5A–E), including three overlapping diagnostic ARGs

(TUSC1, FOXO1, and ATG4A) (Figure 5F). All three ARGs were
Frontiers in Immunology 08
significantly downregulated in CML samples compared with

normal samples (P<0.05) (Figure 6A). There was no significant

difference in TUSC1 expression between the two molecular

subtypes, while FOXO1 was expressed at a greater level in the C1

subtype, and ATG4A was expressed at a greater level in the C2

subtype (P<0.05) (Figure 6B). We constructed a risk score model

based on the three diagnostic ARGs by LASSO regression analysis

to analyze their combined diagnostic value. CML samples had

significantly greater risk scores than normal samples (Figure 6C).

ROC curve analysis revealed that the AUCs of TUSC1, FOXO1, and

ATG4A and the risk score model were 0.815, 0.819, 0.922, and

0.985, respectively (Figures 6D–G). The specificity of the risk score

was 0.949 and its sensitivity was 0.932, indicating that these three

ARGs had high diagnostic value and that their combined diagnostic

value was further improved.
FIGURE 4

Identification of autophagy-related molecular subtypes and analysis of their differences in biological characteristics and chemotherapy sensitivity.
(A) Based on the expression of DEARGs, CML patients were divided into two autophagy-related molecular subtypes by a consensus clustering
algorithm. (B) The PCA algorithm was used to analyze the differences in the distribution of patients between subtypes. (C-F) Differences in the
expression of DEARGs (C), activity of tumor hallmark gene sets (D), infiltration of 22 immune cells (E), expression of immune checkpoints (F),
autophagy scores (G), and therapeutic sensitivity to four TKIs (H) between the two MSs. (ns: P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001).
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Validation of the diagnostic value of ARGs
and analysis of their role in the evaluation
of therapeutic effects

The diagnostic value of the three ARGs was validated in two

additional cohorts. Downregulation of all three diagnostic ARGs

was observed in CML samples in the GSE144119 cohort

(Figure 7A), as well as in our clinically independent cohort

(Figure 7D), in which the difference in TUSC1 expression

between CML and normal samples did not show statistical

significance, possibly due to the small sample size. In addition,

CML samples had higher risk scores than normal samples in both

cohorts (Figures 7B, E). The results of the ROC curve analysis

showed that the AUC values of ATG4A, FOXO1, TUSC1, and the

risk score model were 0.971, 0.946, 0.767, and 0.976, respectively, in

the GSE144119 cohort (Figure 7C) and 1, 1, 0.567 and 1,

respectively, in our clinical cohort (Figure 7F). The specificity of

the risk score model in the GSE144119 cohort was 0.971 and the

sensitivity was 0.914. In our clinical cohort, the specificity and

sensitivity of the risk score model were both 1. These results validate

the high diagnostic value of the three ARGs in CML. In the
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GSE144119 cohort, which contained data from samples in

remission after TKI treatment, the expression of the three

diagnostic ARGs in the remission samples returned to an

expression level close to that of normal samples (Figure 7A), and

the risk scores were also lower than those of the newly diagnosed

CML patients (Figure 7B), indicating that these diagnostic ARGs

can be used to evaluate the treatment effect of CML.
Analysis of the differential diagnostic value
of ARGs

The GSE13159 cohort also included 750 ALL samples, 542 AML

samples, 448 CLL samples, and 206 MDS samples. We analyzed the

expression characteristics of the three diagnostic ARGs in these

samples. The t-SNE algorithm was used to cluster all samples based

on the expression of three diagnostic ARGs. In addition to

overlapping with the distribution of some AML patients, CML

patients exhibited distinct differences from patients with other

hematologic malignancies (P<0.05) (Figure 8A). Compared with

those in the other five types of samples, the expression levels of the
FIGURE 5

Identification of diagnostic ARGs. (A, B) Diagnostic ARGs were identified by the LASSO regression algorithm. The logarithm of the best tuning
parameter (log lambda) was selected by cross-validation in the LASSO regression analysis, corresponding to the point with the smallest binomial
deviance (A). The model genes with nonzero coefficients and their corresponding coefficients were screened based on the best log lambda value
(B). (C, D) Diagnostic ARGs were identified by the RF algorithm. The red line represents the error in the CML group, the green line represents the
error in the normal group, and the black line represents the total sample error. Analysis was performed based on minimum error points
corresponding to 410 optimal random forest trees (C). MeanDecreaseGini shows the rank of genes according to their relative importance, and genes
with MeanDecreaseGini scores greater than 2 were further screened (D). (E) The SVM-RFE algorithm was used to calculate the accuracy of fivefold
cross-validation for different gene combinations, where the highest accuracy was achieved when the number of genes was 4. (F) Venn diagram of
variables identified by the LASSO, RF, and SVM-RFE algorithms.
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FIGURE 6

Analysis of the diagnostic value of the diagnostic ARGs. (A) Differences in the expression of the three diagnostic ARGs between CML samples and
normal samples in the GSE13159 cohort. (B) Differences in the expression of the three diagnostic ARGs between autophagy-related molecular
subtypes. (C) Differences in the risk score between CML samples and normal samples in the GSE13159 cohort. (D-G) ROC curve analysis was used to
evaluate the diagnostic value of the three ARGs and the risk score in the GSE13159 cohort. (ns: P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001).
FIGURE 7

Validation of the diagnostic value of the diagnostic ARGs. (A, D) Differences in the expression of the three diagnostic ARGs between CML samples
and normal samples in the GSE144119 cohort (A) and our clinical cohort (D). (B, E) Differences in the risk score between CML samples and normal
samples in the GSE144119 cohort (B) and our clinical cohort (E). (C, F) ROC curve analysis was used to evaluate the diagnostic value of the three
ARGs and the risk score in the GSE144119 cohort (C) and our clinical cohort (F). (ns: P > 0.05; **P < 0.01; ***P < 0.001).
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three ARGs in the CML samples were low (P<0.05) (Figure 8B),

while the risk score was the highest (Figure 8C). ROC curve analysis

revealed that the risk score could accurately distinguish CML from

other hematological malignancies (area under the curve (AUC)

=0.768) (Figure 8D). Finally, we constructed a miRNA regulatory

network in which miRNAs upregulated in CML cells may suppress

ARG expression through their binding to ARGs. Red indicates

upregulated miRNA expression in CML samples, while green

signifies downregulated miRNA expression (Figure 8E). The

establishment of this network also offers potential insights into

the regulatory mechanism of ARGs.
Discussion

Autophagy is a catabolic process that plays a dual role in tumor

suppression and promotion (9), and its activation may help tumor

cells adapt to cellular stress and, in some cases, may also lead to cell

death. Induction of autophagy is considered to be an effective way to

prevent cancer (5). Through selective autophagy, cells can remove

damaged mitochondria that produce reactive oxygen species,

thereby preventing the occurrence of DNA mutations (27). In

addition, autophagy may also contribute to the survival of tumor

cells. Studies have shown that the combination of chemotherapy

drugs and autophagy inhibitors can kill tumor cells and inhibit

tumor occurrence more than chemotherapy drugs alone (28).
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At present, the use of autophagy as a target for intervention has

been controversial. Similar to that in other tumors, autophagy plays

two roles in CML.

In this study, we analyzed the autophagy level in CML samples

and the value of ARGs in CML diagnosis and treatment evaluation

through transcriptome data. The results of multiple sets of data

analysis showed that the autophagy score of CML samples was

significantly reduced, and the autophagy score further decreased

with the progression of CML. In addition, nonresponders had lower

autophagy scores than did those who responded to TKI treatment.

Therefore, CML cells may promote malignant proliferation and

chemotherapeutic resistance by inhibiting autophagy. To better

understand the regulatory mechanism of autophagy in CML, we

analyzed the relationship between the autophagy score and

signaling pathways and the immune microenvironment and

found that a lower autophagy score was associated with greater

proliferation pathway activity and lower apoptosis pathway activity,

which was consistent with the correlation trend we observed

previously. Similarly, CML patients with different autophagy

scores had different immune characteristics. A greater proportion

of patients with high autophagy scores exhibited Treg infiltration,

while patients with low autophagy scores exhibited increased gdT
cell and plasma cell infiltration and increased PD-1 expression. By

further WGCNA, we found that the coexpressed genes that were

significantly positively correlated with the autophagy score were

mainly enriched in the cytokine–cytokine receptor interaction
FIGURE 8

Differential diagnostic value of the three ARGs in CML and other hematological malignancies. (A) The t-SNE plot shows the clustering characteristics
of CML, AML, CLL, ALL, MDS and normal samples based on the expression of three diagnostic ARGs (FOXO1, TUSC1, ATG4A). The horizontal axis (t-
SNE 1) and the vertical axis (t-SNE 2) are the principal components after dimensionality reduction, with no unit dimension, used to visualize the local
structure of high-dimensional data. Different colored dots represent the corresponding samples. (B) Differences in the expression of three diagnostic
ARGs among CML, AML, CLL, ALL, MDS, and normal samples. (C) Differences in risk scores among CML, AML, CLL, ALL, MDS, and normal samples.
(D) ROC curve analysis of risk scores in patients with CML and other hematological malignancies. (E) Regulatory network of miRNAs and the three
diagnostic ARGs; red indicates that miRNA expression is upregulated in CML samples, and green indicates that miRNA expression is downregulated.
(***P < 0.001).
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signaling pathway. Based on these biological characteristics, it is

reasonable to speculate that the heightened autophagy activity of

CML cells may induce apoptosis. Consequently, CML samples

exhibit lower autophagy scores, which are indicative of a poor

prognosis. In an attempt to address this situation, the infiltration of

killer cells such as gdT cells is increased; however, their functional

exhaustion occurs due to the upregulation of immune checkpoints

such as PD-1 (29). However, in CML patients with high autophagy

scores, CML cells may regulate the infiltration and activity of Tregs

through the release of autophagy-induced cytokines, resulting in

immunosuppression (30, 31). Previous studies have shown that the

proportion of Tregs in newly diagnosed CML patients is

significantly increased, indicating that Tregs may be involved in

the occurrence and development of CML (32). Another study

confirmed that Tregs expressing Tnfrsf4 promoted immune

escape from CML stem cells (33). Therefore, the immune

characteristics of patients with different autophagy scores show

significant heterogeneity and may play a corresponding role in

tumor growth and immune escape at various stages.

The expression characteristics and biological functions of the

ARGs were further analyzed. More DEARGs were downregulated

in the CML samples. In addition to regulating autophagy,

DEARGs also participate in a variety of signaling pathways

closely related to the occurrence and development of cancer.

Moreover, the expression of ARGs with the same expression trend

showed a significant positive correlation, suggesting that there

may be coordination in their functions. The identification of

molecular subtypes is also conducive to a deeper understanding of

the individual characteristics of CML patients. The significantly

increased infiltration of CD8+ T cells and the upregulated

expression of multiple immune checkpoints in the C1 subtype

reconfirmed the existence of significant immunosuppression

in CML patients, and such patients may benefit from

immunotherapy. In addition, the C1 subtype is also more sensitive

to multiple TKIs. These findings are helpful for advancing our

understanding of CML disease states and pathological mechanisms

and for guiding personalized clinical treatment. Machine learning

models are beneficial for improving the diagnosis, risk assessment, and

treatment management of CML patients (34). In this study, we

identified three CML diagnostic ARGs, FOXO1, TUSC1, and

ATG4A, by three machine learning algorithms, all of which were

downregulated in CML samples. Previous studies have shown that the

tyrosine kinase BCR-ABL in CML cells activates multiple signal

transduction pathways, including the PI3K/AKT signaling pathway,

thereby inactivating FOXO transcription factors. TKI-induced G1

arrest in CML cells is mediated by inhibition of the PI3K/AKT

pathway and FOXO reactivation (35). Therefore, the

downregulation of FOXO1 expression is associated with TKI

insensitivity and BCR-ABL enhancement. Tumor suppressor

candidate 1 (TUSC1) is a tumor suppressor gene that reduces

tumor cell growth in vitro and tumor growth in vivo (36). ATG4A

is a classical autophagy-related gene (37, 38), and a reduction in its

expression indicates a reduction in autophagic activity. The

downregulation of the expression of these two genes favored tumor
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cell growth. The diagnostic value of the three diagnostic ARGs was

confirmed in the analysis cohort, validation cohort and our additional

clinical reality cohort, and the diagnostic value of the risk score model

constructed by combining the three ARGs was further improved. In

addition, the expression level of ARGs can also indicate the response

to treatment in CML patients. More importantly, these three ARGs

can also be used for the differential diagnosis of CML from other

hematological malignancies. Previous studies on CML biomarkers

primarily focused on BCR-ABL transcript levels or somatic mutations

(1), which lack specificity in distinguishing CML from other

hematologic malignancies (e.g., AML with monocytic differentiation

or MDS with fibrosis). In contrast, our machine learning-based ARGs

(FOXO1, TUSC1, ATG4A) exhibited remarkable specificity. For

instance: FOXO1 is downregulated in CML but shows no significant

change in AML or CLL, unlike previous pan-cancer autophagy

markers (e.g., BECN1) that lack disease specificity (7). The risk

score model demonstrated an AUC of 0.768 for differentiating CML

from AML/CLL/ALL/MDS, indicating a relatively good diagnostic

value. These results fully showed the value of ARGs in the diagnosis

and treatment evaluation of CML.

In summary, through this study, we revealed the characteristics of

autophagy in CML from the perspective of transcriptomics, and these

results are conducive to a better understanding of the biological role

of autophagy in CML. The significant differences in the immune

microenvironment among patients with different autophagy scores

also suggest that immunosuppression is an important factor in the

disease progression of CML. In addition, the identification of

autophagy-related molecular subtypes is conducive to the

establishment of personalized treatment regimens for CML

patients. The ARGs identified by the use of a variety of machine

learning algorithms and the validation of multiple cohorts have

reliable diagnostic value. However, our study has several

limitations, including the small sample size for clinical validation

and the lack of experimental validation. In addition, larger sample

sizes and multicenter data are required to assess the variations in

ARG expression across different stages of CML, as well as to

determine the optimal cutoff value for machine learning models to

enhance their translation and application in clinical diagnosis.

Furthermore, emphasis should be placed on genetic testing and

quantification methods for diverse datasets while optimizing testing

approaches to improve detection efficiency. In the future, we will

expand our sample collection and explore more in-depth autophagy

regulatory mechanisms through in vivo and in vitro experiments.
Conclusion

In conclusion, our study demonstrated a decrease in autophagy

in CML samples at the transcriptome level and revealed that

autophagy may promote immunosuppression by regulating

cytokines and Tregs. Autophagy-related molecular subtypes are

helpful for guiding the clinical treatment of CML. The identification

of ARGs by a variety of machine learning algorithms has potential

clinical application value.
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