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Background: The pathogenic mechanism underlying Mycobacterium

tuberculosis (MTB) remains elusive, posing challenges to its diagnosis and

treatment. Cuproptosis is a newly identified mechanism of cell death. This

study explores the role of cuproptosis-related genes (CRGs) in pulmonary

tuberculosis (PTB) to uncover potential diagnostic biomarkers and

therapeutic targets.

Methods: Differentially expressed gene (DEG) analysis and weighted gene co-

expression network analysis (WGCNA) were carried out using the GSE83456

dataset. PTB-associated DEGs were intersected with CRGs to identify PTB-

related CRGs. Subsequent analyses included functional enrichment, gene

interaction, and protein-protein interaction (PPI) network construction. Hub

CRGs were screened out via least absolute shrinkage and selection operator

(LASSO) regression and random forest (RF) algorithms. Diagnostic models were

subsequently constructed and validated. The associations of immune cell

infiltration and pathway with the identified hub genes were evaluated through

single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT. Hub gene

expressions were validated in the GSE42834 and GSE89403 datasets, as well as

by RT-qPCR and Western blot (WB) in PTB and extrapulmonary tuberculosis

(EPTB) patients. The GSE89403 dataset and gene expression profiling were

leveraged to analyze the differential expression of hub genes and their

dynamic changes during treatment.

Results: Seven PTB-related CRGs were significantly upregulated, were

significantly upregulated, among which ASPHD2, GK, and GCH1 were

identified as hub genes. These genes exhibited high expression levels in

patients with PTB and EPTB, with marked reductions observed following
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treatment. Notable alterations in immune cell infiltration and immune function in

PTB patients were closely related to these hub genes, suggesting activation of

innate immune responses and suppression of adaptive immune function.

Conclusion: The cuproptosis hub genes ASPHD2, GK, and GCH1 influence the

pathogenesis of PTB, and possibly serve as novel diagnostic biomarkers and

therapeutic targets.
KEYWORDS

pulmonary tuberculosis, cuproptosis, gene expression analysis, immune dysregulation,
experimental validation
1 Introduction

Tuberculosis (TB) is among the most severe infectious diseases

worldwide. According to the World Health Organization (WHO)

2024 report, approximately 10.8 million new TB cases were

reported globally in 2023, with nearly 1.25 million deaths. In

addition, 400,000 new cases of multidrug-resistant and

rifampicin-resistant TB were identified (1). With an estimated

741,000 newly diagnosed TB cases and approximately 29,000 new

cases of multidrug-resistant or rifampicin-resistant TB (MDR/RR-

TB) annually, China remains one of the countries bearing the

highest global burden of both TB and drug-resistant TB (1). The

overall TB control situation remains dire, as the Bacillus Calmette-

Guérin (BCG) vaccine, the only currently licensed and widely

administered TB vaccine, demonstrates limited efficacy in

preventing adult TB. Early detection and effective management of

drug-resistant TB remain formidable challenges due to the limited

availability of efficacious anti-TB agents and the prolonged duration

required for multidrug combination chemotherapy. Accordingly,

elucidation of the pathogenic mechanisms of Mycobacterium

tuberculosis (MTB) and the host’s protective immune responses

may yield novel insights for the identification of diagnostic and

therapeutic biomarkers, as well as the development of more effective

vaccines and treatment strategies.

Recent studies have underscored the critical role of cell death

pathways in modulating host resistance to MTB infection and

facilitating immune evasion by the pathogen. Apoptosis,

pyroptosis, and autophagy are recognized as protective

mechanisms that restrict intracellular bacterial proliferation and

enhance host immune defense against MTB. In contrast, necrosis

and ferroptosis are generally associated with detrimental outcomes,
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as they promote MTB survival and dissemination (2). In 2022,

Tsvetkov P et al. first proposed cellular cuproptosis, a novel form of

regulated cell death triggered by excessive copper ions, which

represents a distinct mechanism of cell death (3).

Copper, an essential trace element in the human body, is crucial

as a catalytic cofactor in various biological processes and involved in

many vital physiological functions. The body meticulously regulates

copper absorption, distribution, and elimination to maintain low

intracellular concentrations of free copper ions, thereby preserving

cellular copper homeostasis and minimizing copper-induced cellular

damage. In the event of intracellular copper dysregulation, excess

copper ions bind to acylated mitochondrial enzymes involved in the

copper-dependent tricarboxylic acid (TCA) cycle, leading to protein

aggregation, proteotoxic stress, and ultimately the induction of cell

death (3–7). The role of cuproptosis in TB remains an area of early

investigation. Li et al. utilized the Gene Expression Omnibus (GEO)

dataset GSE83456 to examine blood gene expression profiles from

healthy individuals and patients with TB, identifying 11 differentially

expressed cuproptosis-related genes (CRGs). Among TB patients,

NFE2L2, NLRP3, ATP7B, SLC31A1, MTF1, and DLD were

significantly upregulated, whereas LIAS, LIPT1, DLAT, GLS, and

DBT were downregulated (8). In a separate study based on the

GSE39939 dataset, Chen et al. investigated the expression patterns

and immunological characteristics of copper metabolism regulatory

genes in pediatric patients with active tuberculosis (ATB) and latent

tuberculosis infection (LTBI). They identified nine differentially

expressed CRGs associated with active immune responses.

Specifically, MTF1, NFE2L2, and NLRP3 were upregulated, while

FDX1, LIPT1, PDHB, GLS, DBT, and DLST were downregulated in

the ATB group relative to the LTBI group. Moreover, two distinct

molecular subtypes related to cuproptosis were delineated among

children with ATB. Subtype 1 was characterized by reduced

lymphocyte levels and heightened inflammatory activation

compared to Subtype 2. Correspondingly, Subtype 1 exhibited

increased expression of MTF1, NFE2L2, and NLRP3, whereas

Subtype 2 demonstrated higher expression of LIPT1, PDHB, GLS,

and DBT. Based on these findings, a predictive model incorporating

five CRGs (MAN1C1, DKFZP434N035, SIRT4, BPGM, and APBA2)
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was constructed to differentiate children with ATB from those with

LTBI. This model demonstrated robust predictive performance (9).

Current evidence has demonstrated the important role of cuproptosis

in the development of TB. These findings highlight the imperative for

further exploration into the immunopathological mechanisms

underpinning the cuproptosis pathway in pulmonary tuberculosis

(PTB). Continued research, including experimental validation of

novel biomarkers related to diagnosis, therapeutic response, and

prognosis, holds considerable promise for clinical application.

This study, based on the GEO data, explores the differential

expression, biological functions, and regulatory pathway alterations

of CRGs between healthy individuals and patients with PTB.

Machine learning (ML) algorithms were employed to identify

PTB-associated hub CRGs, whose diagnostic potential was

subsequently evaluated via receiver operating characteristic

(ROC) curve analysis. A diagnostic model was constructed and

validated accordingly. In addition, the immunological profiles of

these hub genes were systematically examined. Validation of hub

gene expression was conducted via the GEO datasets GSE42834 and

GSE89403, and dynamic changes in their expression during

treatment were further analyzed. For the first time, differential

expression of these hub genes was assessed among healthy

controls, PTB patients, and extrapulmonary tuberculosis (EPTB)

patients using quantitative real-time reverse transcription

polymerase chain reaction (RT-qPCR), Western blot (WB), and

transcriptomic profiling. Moreover, dynamic expression patterns of

these genes throughout clinical treatment were characterized,

providing a potential foundation for the development of

efficacy-monitoring strategies.
2 Materials and methods

The research process is illustrated in Figure 1.
2.1 Data downloading and pre-processing

The gene expression profiles for PTB were retrieved from the

GEO (http://www.ncbi.nlm.nih.gov/geo/). Transcriptomic datasets

were retrieved from GEO using the terms: “pulmonary

tuberculosis,” “active tuberculosis,” “Homo sapiens,” “whole

blood,” “PBMCs,” “RNA-Seq,” “gene expression,” and

“microarray.” Inclusion criteria were: (i) RNA expression data

(microarray or RNA-Seq); (ii) samples from whole blood or

PBMCs; (iii) datasets containing both PTB and healthy controls;

(iv) publication within the past 15 years. Exclusion criteria included:

(i) non-blood samples (e.g., lung tissue, sputum); (ii) non-

expression data (e.g., methylation, proteomics, miRNA only); (iii)

lack of group annotation or technical replicates with incomplete

metadata; and (iv) for duplicate probes, the one with the highest

mean expression was retained. Full dataset details are provided in

Table 1. The dataset GSE83456 was selected, which includes 106

blood samples, comprising 61 normal control (NC) samples and 45

PTB samples. The GSE42834 and GSE89403 datasets were treated
Frontiers in Immunology 03
as validation sets. GSE42834 contains 35 PTB blood samples and

113 NC blood samples, while GSE89403 includes 34 NC blood

samples and 83 PTB blood samples, with blood samples from PTB

patients at 7 days, 4 weeks, and 24 weeks of treatment. The raw

microarray data were primarily processed via R (v4.3.0). Platform-

specific annotation files were used to convert probe IDs to gene

symbols. For genes mapped by multiple probes, the one with the

highest expression value was retained. Probes with missing

values were removed. The expression matrices were transposed

and subsequently merged with sample metadata. The Perl

programming language was utilized solely for automating the

batch mapping of probes to genes.
2.2 Weighted gene co-expression network
analysis

WGCNA was conducted on the pre-processed GSE83456

dataset using the WGCNA software package. A soft-thresholding

power of 6 was selected to ensure the construction of a scale-free

network. Gene co-expression modules were identified through the

dynamicTreeCut algorithm, and module eigengenes (MEs) were

subsequently calculated. These MEs were correlated with clinical

phenotypes to determine differentially expressed genes (DEGs)

within the modules that showed significant associations. The R

packages used in this step were WGCNA (v1.72-1), limma

(v3.56.2), and dynamicTreeCut (v1.63-1).
2.3 DEG analysis and functional
enrichment analysis

The “limma” package (v3.56.2) was used to identify DEGs

between PTB patients and NC samples, with a selection criterion of

|log2 FC| > 1 and adjusted p-value (FDR) < 0.05, corrected through

the Benjamini-Hochberg method. 190 DEGs were extracted from

PTB samples and subsequently used to identify those related to PTB

via WGCNA. These DEGs were intersected with CRGs (3).

Subsequently, “DOSE”(v3.26.1), “org.Hs.eg.db”(v3.17.0), and

“clusterProfiler”(v4.8.1) packages were subsequently used for

Disease Ontology (DO), Gene Ontology (GO), and Kyoto

Encyclopedia of Genes and Genomes (KEGG) functional

enrichment analyses to elucidate potential functions and pathways

of cuproptosis-related DEGs in the pathogenesis of PTB.
2.4 Gene-gene and protein-protein
interaction networks

Gene-gene interaction (GGI) data were obtained from the

GeneMANIA database (http://genemania.org), and PPI data for

intersecting genes were obtained from the STRING database (http://

string-db.org). Interaction networks were constructed and

visualized to analyze gene-protein relationships, thereby

elucidating disease pathogenesis and potential therapeutic targets.
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FIGURE 1

Flowchart of identification and experimental validation of key CRGs in TB. NC (normal control), PTB (pulmonary tuberculosis), LTBI(latent
tuberculosis infection), EPTB (extrapulmonary tuberculosis), DEGs (differentially expressed genes), WGCNA (weighted gene co-expression network
analysis), CRGs (cuproptosis-related genes), DO (disease ontology), GO (gene ontology), KEGG (Kyoto encyclopedia of genes and genomes), GGI
(gene-gene interaction), PPI (protein-protein interaction), LASSO (least absolute shrinkage and selection operator), ROC (receiver operating
characteristic curve), CIBERSORT (cell-type identification by estimating relative subsets of RNA transcripts), ssGSEA (single-sample gene set
enrichment analysis), GEO (gene expression omnibus), PCR (polymerase chain reaction), 1m treatment (1-month treatment), 7d treatment (7-day
treatment), 4w treatment (4-week treatment), and 24w treatment (24-week treatment).
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2.5 ML algorithms

Significant predictive genes were selected through the least

absolute shrinkage and selection operator (LASSO) regression

model (glmnet package v4.1-8) and the random forest (RF)

algorithm (randomForest package v4.7-1.1). LASSO was

employed to perform feature selection by penalizing and

minimizing the absolute values of regression coefficients. In

parallel, the RF algorithm assessed the relative importance of each

gene through the construction of multiple decision trees. To ensure

the robustness and generalizability of the results, a 10-fold cross-

validation strategy was implemented for LASSO, while a train-test

split approach was adopted for RF. Cross-validation serves to

reduce the risk of overfitting and enhances model stability across

varying data partitions. The outputs from both algorithms were

subsequently integrated to identify the hub genes associated with

cuproptosis in PTB.
2.6 Construction and validation of
diagnostic predictive models

To assess the diagnostic value of cuproptosis hub genes in PTB,

models were constructed and validated via the “rms” (v6.7-0),

“stdca” (v1.0), “pROC” (v1.18.5), and “ggplot2” (v3.5.1) packages.

Based on the GSE83456 dataset, a nomogram model incorporating

ASPHD2, GK, and GCH1 genes was developed through the lrm()

function from the rms package. The model’s prediction

performance was rigorously rated through calibration curves and

decision curve analysis (DCA). Additionally, the ROC curve and the

corresponding area under the curve (AUC) were employed to

evaluate the model’s discriminative ability.
2.7 CIBERSORT analysis of immune
infiltration

The CIBERSORT algorithm was employed to analyze the

GSE83456 dataset and to infer the relative proportions of 22

distinct immune cell subsets, to elucidate the influence of
Frontiers in Immunology 05
cuproptosis-related hub genes on immune cell infiltration in PTB.

Only samples with a CIBERSORT-derived p-value less than 0.05

were retained for downstream analyses. Gene expression data were

normalized utilizing the limma package (v3.56.2). Subsequently,

expression matrices corresponding to the identified hub genes were

extracted for further analysis. Spearman correlation analysis was

performed to assess the relationships between hub gene expression

levels and the relative abundance of immune cell populations. Data

visualization was conducted employing the ggplot2 (v3.4.2),

reshape2 (v1.4.4), and tidyverse (v2.0.0) packages. Quantile

normalization and support vector regression required by the

CIBERSORT procedure were implemented using preprocessCore

(v1.62.1) and e1071 (v1.7-13).
2.8 Single-sample gene set enrichment
analysis

The GSE83456 dataset was analyzed through ssGSEA to

evaluate the expression levels of cuproptosis hub genes in single

samples. Gene set enrichment scores for each sample were

calculated using the “GSVA” package (v1.46.0) in R (v4.3.0), with

gene sets parsed by GSEABase (v1.62.0). Gene expression data were

normalized via the “limma” package (v3.56.2). Spearman

correlation analysis was conducted to evaluate the association

between gene expression levels and immune cell infiltration. The

results were visualized employing “ggplot2” (v3.4.2), “reshape2”

(v1.4.4), and “ggpubr” (v0.6.0).
2.9 Peripheral blood sample collection

Blood samples for RT-qPCR validation of cuproptosis hub

genes in PTB were collected between March 2024 to December

2024. These samples were obtained from 31 healthy controls, 35

PTB patients, and 34 EPTB patients attending the Physical

Examination Center and the Senior Department of Tuberculosis

of the Eighth Medical Center of PLA General Hospital (Table 2).

For gene chip validation, blood samples were also collected from

four healthy controls and three PTB patients before and after one
TABLE 1 Datasets used in the study.

Dataset ID Year Ethnicity
Study
design

Platform HC (n) PTB (n) Notes

GSE83456 2016 UK (Mixed) Case-Control
Illumina Human HT-12

V4 BeadChip
61 45 None

GSE42834 2013

White, Black, ISC,
Middle Eastern, SE

Asian, and
Central Asian

Case-Control
Illumina Human HT-12

V4 BeadChip
113 35 None

GSE89403 2017 South Africa (Mixed) Case-Control
Illumina (San Diego,
CA) HiSeq-2000

34/38 83/100

Excluded samples lacking
clear clinical group

annotation or containing
technical replicates with
incomplete metadata.
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month of anti-TB treatment with rifampicin, isoniazid,

pyrazinamide, and ethambutol (HRZE) regimen. For WB

validation, five individuals were selected from each of the

following groups: HC, LTBI, PTB, PTB patients after one month

of anti-TB treatment (AT), and EPTB. The inclusion criteria were

as follows:
Fron
1. NC group: (i) negative results of IFN-g release assay; (ii) no
abnormalities on chest CT examination.

2. PTB group: (i) clinical diagnosis of PTB according to the

standards ofDiagnosis of Pulmonary Tuberculosis (WS 288-

2017) (10) issued by the National Health and Family

Planning Commission of the People’s Republic of China;

(ii) no history of anti-TB treatment, or anti-TB treatment

with the HRZE regimen for less than one week.

3. EPTB group: (i) clinically diagnosed as EPTB according to

the standards of the Classification of Tuberculosis (WS 196-

2017) (11) published by the Infectious Disease Control

Institute of the Chinese Center for Disease Control

and Prevention.

4. LTBI group: Positive IFN-g release assay (IGRA) results,

indicating LTBI; No clinical signs of ATB, defined by

negative radiology, sputum smear, and sputum culture

for MTB.
Exclusion criteria were as follows: (i) severe liver or kidney

disease; (ii) HIV infection or other autoimmune diseases; (iii)

pregnancy; (iv) recent use of immunomodulators; (v) age < 18 or

> 70 years. The research protocol was reviewed and approved by the

Ethics Committee of the Eighth Medical Center of PLA General

Hospital (approval number: 30920230831122735), and informed

consent was obtained from all participants.
2.10 RT-qPCR

Peripheral blood mononuclear cells (PBMCs) were isolated

from peripheral whole blood specimens via density gradient
tiers in Immunology 06
centrifugation employing Ficoll-Paque (GE Healthcare Life

Sciences, USA). Subsequently, the isolated cells were stimulated

with recombinant TB-CFP-10-ESAT-6 protein (Gene Optimal,

Shanghai, China) at a concentration of 90 µg/mL for 24 hours.

Total RNA was subsequently extracted utilizing TRIzol® Reagent

(Invitrogen, USA) as per the manufacturer’s protocol. The extracted

RNA was subsequently reverse-transcribed into complementary

DNA (cDNA) using the PrimeScript™ RT Reagent Kit (TaKaRa

Biotechnology, Japan) (12, 13). Quantitative PCR (qPCR)

amplification was performed on a QuantStudio 384 Gene

Amplification System (Thermo Fisher Scientific, USA) with the

following conditions: 2 minutes of pre-denaturation at 95°C,

followed by 40 cycles (denaturation at 95°C for 1 second and

annealing/extension at 60°C for 30 seconds) using a rapid cycling

mode. GAPDH was used as an internal reference, and the relative

expression of each gene was calculated via the 2−△△Ct method.

The primer sequences for each gene are shown in Table 3.
2.11 Gene expression profiling analysis

Peripheral blood mononuclear cells (PBMCs) were isolated from

peripheral whole blood samples. Total RNA was subsequently

extracted utilizing TRIzol reagent and submitted to Shanghai

Aksomics Co., Ltd. (China) for gene expression profiling. RNA

purity and concentration were assessed with a NanoDrop ND-1000

spectrophotometer, exhibiting A260/A280 ratios ranging from 1.8 to

2.4 and A260/A230 ratios between 1.5 and 2.4, with an approximate

RNA concentration of 100 ng/mL. RNA integrity was confirmed via

denaturing gel electrophoresis. Gene expression analysis was

performed using human whole-genome oligonucleotide

microarrays encompassing annotated genes and transcripts.

Following the Agilent one-color microarray-based gene expression

protocol, total RNA was linearly amplified and labeled with Cy3-

UTP. The resultant labeled complementary RNA (cRNA) was

purified using the RNeasy Mini Kit. Hybridization was conducted

on Agilent microarrays, followed by washing, fixation, and scanning

of the arrays. Signal intensities were extracted using Agilent Feature
TABLE 2 The demographics and clinical characteristics of patients with tuberculosis and normal controls.

Characteristic PTB patients (n=35) EPTB patients (n=34) Normal controls (n=31)

Sex (female/male) 15/20 18/16 15/16

Age (years, mean ± SD) 43.92 ± 17.54 40.03± 16.09 39.39 ± 11.64

classification of diseases (yes/no)

Infiltrative Pulmonary Tuberculosis
(25/10)

Lymph Node Tuberculosis(8/26)

NA

Genitourinary Tuberculosis(14/20)

Cavitary Pulmonary Tuberculosis (9/26)
Gastrointestinal Tuberculosis(6/28)

Tuberculous Meningitis(10/24)

Tracheobronchial Tuberculosis (12/23)
Tuberculous Spinal Meningitis(3/31)

Tuberculosis of the Ear(1/33)

Tuberculous Pleurisy (10/25)
Osteoarticular Tuberculosis(7/27)

Abdominal Tuberculosis(3/31)
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Extraction software, and data normalization was performed

employing the Quantile normalization method.
2.12 WB analysis

Peripheral blood mononuclear cells (PBMCs) were isolated from

peripheral whole blood samples by density gradient centrifugation via

Ficoll-Paque (GE Healthcare Life Sciences, USA). Cellular lysis was

performed using radioimmunoprecipitation assay (RIPA) buffer

(Beyotime, China) to extract total protein. Protein concentrations

were quantified employing the bicinchoninic acid (BCA) Protein

Assay Kit (Thermo Fisher Scientific, USA), and all samples were

adjusted to a final concentration of 0.3 µg/µL.

Equal amounts of protein (6 µg) were separated by SDS-PAGE

(12% gel, LabPAGE, LABLEAD, Beijing, China) and subsequently

transferred to 0.45 µm nitrocellulose membranes (Merck Millipore,

IRL). Membranes were subsequently blocked for 15 minutes at

room temperature using Rapid Blocking Buffer (TBS-T)

(LABLEAD, Beijing, China) containing 0.1% Tween-20.

Target proteins ASPHD2, GCH1, and GK were detected using

specific primary antibodies: a mouse monoclonal antibody for

ASPHD2, and rabbit polyclonal antibodies for GCH1 and GK.

Internal loading controls comprised GAPDH, mouse-derived for

ASPHD2 detection rabbit-derived for GK, and b-actin for GCH1.

Primary antibodies were diluted as follows: ASPHD2 (1:1000),

GCH1 (1:2500), GK (1:2500), and both GAPDH and b-actin
(1:2500). Horseradish peroxidase (HRP)-conjugated secondary

antibodies (Proteintech, China) were applied at a 1:4000 dilution

and incubated with the membranes.

Protein signals were visualized using enhanced chemiluminescence

(ECL) substrate (Thermo Fisher Scientific, USA) and captured with the

AI600QC ultra-sensitive multifunctional imaging system (GE

Healthcare, USA). Densitometric analysis of protein bands was

performed using ImageJ software (National Institutes of Health,

Bethesda, MD, USA). Normalized expression levels were statistically

analyzed with GraphPad Prism.
2.13 Statistical methods

All analyses were enabled by R (v4.3.0). Statistical analyses were

performed using GraphPad Prism 9 and IBM SPSS Statistics 25.

Results for clinical general data were displayed as mean ± standard

deviation (Mean ± SD), and a p-value below 0.05 denoted statistical

significance. The normality of data distribution was evaluated using
Frontiers in Immunology 07
the Shapiro-Wilk test or the Kolmogorov-Smirnov test, as

appropriate. For comparisons involving more than two groups, a

one-way analysis of variance (ANOVA) was conducted to assess

intergroup differences. In instances where the data did not conform

to a normal distribution, the Kruskal-Wallis test was employed. For

comparisons between two groups, the unpaired two-tailed Student’s

t-test was applied to normally distributed data, whereas the Mann-

Whitney U test was used for non-normally distributed data. WB

data were analyzed by computing the effect size (Cohen’s d) using

the cohen.d() function from the effsize package. Effect sizes were

interpreted per conventional thresholds: small (d ≥ 0.2), medium (d

≥ 0.5), and large (d ≥ 0.8). p < 0.05 denoted statistical significance,

and the specific statistical methods applied are indicated in the

figure legends. Asterisks represent significance levels as follows:

* p < 0.05, ** p < 0.01, *** p < 0.001.
3 Results

3.1 Identification of DEGs in PTB

In the GSE83456 dataset, 190 DEGs were identified with |log2

FC| > 1 and adjusted p-value (FDR) < 0.05 as screening criteria.

Among them, 152 were significantly upregulated and 38 were

significantly downregulated in PTB samples (Figures 2A, B).

To further elucidate the functional roles of these DEGs, gene set

enrichment analysis (GSEA) was conducted on the entire gene set.

The analysis revealed that the upregulated genes were

predominantly enriched in pathways on immune responses and

pathogen infection, whereas the downregulated genes were chiefly

enriched in pathways involved in ribosome biogenesis and

metabolic processes. (Figures 2C, D).
3.2 WGCNA analysis and module
identification

Leveraging raw microarray data from the GSE83456 dataset, a

gene co-expression network was constructed via the WGCNA

package to identify modules associated with PTB and to elucidate

potential underlying biological mechanisms. The optimal soft-

thresholding power was determined to be 6, based on achieving a

scale-free topology fit index of 0.90 coupled with a marked

reduction in network connectivity (Figures 3A, B). This

parameter was subsequently applied to establish the weighted

gene co-expression network. Hierarchical clustering of samples
TABLE 3 Primers sequence of target gene amplification.

Gene Complete gene name Forward (5′-3′) Reverse (5′-3′)

GK Glycerol Kinase GAACCCAGTCTACCGTTGAGA TGGACACCTCCATTGACTCCT

GCH1 GTP Cyclohydrolase 1 GTGAGCATCACTTGGTTCCAT GTAAGGCGCTCCTGAACTTGT

ASPHD2 Aspartate Beta-Hydroxylase Domain Containing 2 CCGAGGACTGATTGTCTGACC CAGTACCACACGAAGAGGACC

GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase CTCTGGTAAAGTGGATATTGT GGTGGAATCATATTGGAACA
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with similar expression profiles revealed discrete segregation

between the normal control and PTB groups (Figure 3C). A

topological overlap matrix (TOM) was derived from the

adjacency matrix, and gene modules were delineated using the

dynamicTreeCut algorithm. Modules exhibiting high similarity

were merged according to a threshold of 0.25, resulting in the

identification of ten distinct gene modules (Figure 3D). Correlation

analysis between module eigengenes and clinical traits

demonstrated a significant association of the yellow module with

PTB, implicating its potentially pivotal role in PTB pathogenesis

(Figure 3E). Although the brown module exhibited a weak positive

relation to PTB and the blue module demonstrated a stronger

association with the healthy control group, only the yellow module

was ultimately selected for subsequent analysis.
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3.3 Enrichment analysis of CRGs in PTB

The intersection of the DEGs significantly linked to PTB

identified by WGCNA and 31 PTB DEGs were obtained

(Figure 4A). These 31 genes were subsequently intersected with

CRGs (3), resulting in the identification of seven key PTB CRGs that

exhibited significant associations: OASL, OAS2, ASPHD2, GK,

TCN2, OAS3, and GCH1. Notably, the expression trends of these

seven genes were all upregulated (Figure 4B).

Disease Ontology (DO), Gene Ontology (GO), and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analyses

were performed to further elucidate the functional characteristics

of the seven identified PTB-related CRGs. The DO analysis

demonstrated that these PTB CRGs were predominantly
FIGURE 2

DEGs and functional enrichment analysis between PTB and normal samples in the GSE83456 dataset. (A) A microarray heatmap and hierarchical
clustering of DEGs. Upregulated genes are displayed in red, while downregulated genes are shown in blue. (B) A volcano plot illustrating the DEGs
between PTB and normal samples. The red dots represent upregulated DEGs, the green dots represent downregulated DEGs, and the black dots
denote genes with no significant changes. (C) GSEA results show significant enrichment of upregulated genes in immune-related pathways,
including Staphylococcus aureus infection (NES = 0.83, FDR < 0.001), Leishmaniasis (NES = 0.74, FDR < 0.001), Complement and coagulation
cascades (NES = 0.74, FDR < 0.001), Systemic lupus erythematosus (NES = 0.74, FDR < 0.001), Pertussis (NES = 0.73, FDR < 0.001). (D) GSEA results
show significant enrichment of downregulated genes in pathways related to ribosome and metabolism, including Ribosome (NES = -0.66, FDR <
0.001), Ribosome biogenesis in eukaryotes (NES = -0.57, FDR < 0.001), Alanine, aspartate and glutamate metabolism (NES = -0.56, FDR = 0.041),
DNA replication (NES = -0.55, FDR = 0.047), Nucleotide excision repair (NES = -0.49, FDR = 0.039). *p < 0.05, **p < 0.01, ***p < 0.001.
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enriched in diseases and biological mechanisms associated with

encephalitis, Parkinson’s disease, and synucleinopathies

(Figure 4C). Within the GO framework, the biological process

(BP) category revealed significant enrichment of PTB CRGs in the

regulation of nuclease activity, negative regulation of viral genome

replication, and regulation of viral genome replication. In the

cellular component (CC) category, these genes were chiefly

localized to the lysosomal lumen, neuron projection terminus,

and vacuolar lumen. Regarding molecular function (MF), the

most significantly enriched terms included double-stranded

RNA binding and adenylyl transferase activity (Figure 4D).

KEGG pathway analysis further indicated that PTB CRGs were

primarily involved in pathways related to measles, hepatitis C,

influenza A, NOD-like receptor signaling, Epstein-Barr virus

infection, and COVID-19 (Figure 4E).
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3.4 Gene interaction network and PPI
network

Utilizing the GeneMANIA database, a gene-gene interaction

(GGI) network analysis of seven PTB-related CRGs identified the

OAS family members (OASL, OAS2, and OAS3) as highly

interconnected nodes occupying central positions within the

network, thereby highlighting their critical involvement in

interferon-mediated antiviral responses and the regulation of viral

genome replication. Additionally, GK, GCH1, and TCN2 were

implicated in key metabolic pathways, notably glycerol

metabolism and vitamin B12 transport. Although ASPHD2

exhibited relatively lower connectivity, its associations with

metabolism-related genes suggest a contributory role in specific

metabolic processes. Collectively, these findings reinforce the
FIGURE 3

Co-expression network construction and correlation analysis with PTB phenotypes. Coexpression network and correlation analysis with PTB
phenotypes. (A, B) Scale-free network construction with scale independence and mean connectivity analysis (b = 6). (C) Sample clustering tree, with
merging of modules with similar expression profiles. (D) Module identification: Network dendrogram based on differential measurements and
module colors. Each node represents a gene; the vertical axis shows topological differences between genes, and the horizontal axis represents
different modules. Each color indicates a module, and the bar width indicates the number of genes in the module. Dynamic Tree Cut was used for
the initial clustering, with similar modules merged for the final reconstruction. (E) Module-trait correlation: Heatmap showing correlations between
modules and TB traits. Cell color indicates correlation strength (deeper red for positive, deeper blue for negative), with the value in each cell
indicating the correlation coefficient and the value in brackets showing the p-value. (F) The scatter plot shows a correlation of 0.92 (p < 0.001)
between gene significance and module membership in the yellow module, highlighting its strongest association with the PTB phenotype.
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FIGURE 4

Screening, functional enrichment, and interaction network analysis of PTB CRGs. (A) Venn diagram of 137 DEGs significantly associated with PTB
identified by WGCNA and 190 DEGs in PTB, yielding 31 PTB intersecting genes. (B) Venn diagram of the 31 PTB intersecting genes and 2,977 CRGs,
yielding 7 upregulated PTB CRGs: OASL, OAS2, ASPHD2, GK, TCN2, OAS3, and GCH1. (C) DO analysis results for PTB CRGs. (D) GO analysis of PTB
CRGs in BP, CC, and MF. (E) KEGG pathway analysis results for PTB CRGs. (F) GGI network analysis of PTB CRGs based on the GeneMANIA database,
showing the connectivity and functional associations of the identified genes. (G) PPI network analysis of PTB CRGs, depicting direct protein
interactions and their roles in shared biological pathways.
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coordinated involvement of PTB CRGs in modulating antiviral

immunity and metabolic regulation (Figure 4F).

The PPI network consists of 12 nodes and 28 edges, representing

the protein products encoded by these genes and their interactions.

The nodes are interconnected by edges representing direct PPIs,

thereby forming a cohesive network that elucidates their potential

involvement in shared biological processes. According to degree

centrality, the PTB CRGs are ranked as follows: OASL (6), OAS2

(5), OAS3 (5), GCH1 (3), TCN2 (2), GK (1), and ASPHD2 (1).

Notably, OASL, OAS2, and OAS3 exhibit high connectivity,

underscoring their pivotal roles in antiviral immune responses.

Although GCH1, TCN2, and GK display lower degree values, they

are likely integral to metabolic regulation. Specifically, OASL, OAS2,

and OAS3 participate in modulating antiviral defenses via the

interferon signaling pathway, whereas GCH1, GK, and TCN2 are

implicated in metabolic pathways and may contribute to metabolic

regulation and related pathologies. Despite their comparatively lower

degree values, ASPHD2 and GKmay nonetheless play critical roles in

specific biological functions (Figure 4G).
3.5 Identification of key genes associated
with disease features using ML algorithms

LASSO regression and RandomForest feature selection

algorithms were applied to screen out hub genes related to PTB

CRGs. The results of LASSO regression showed that ASPHD2, GK,

OAS3, and GCH1 were identified as cuproptosis-related hub genes

in PTB. While GCH1, OAS2, GK, OASL, ASPHD2, and TCN2 were

identified as cuproptosis-related hub genes in PTB using the

RandomForest feature selection algorithm. The intersection of

these findings revealed three cuproptosis-related hub genes

associated with PTB: ASPHD2, GK, and GCH1 (Figures 5A–D).
3.6 Expression of hub genes in training and
validation sets

In the training dataset GSE83456, the expression levels of the three

hub genes, ASPHD2, GCH1, and GK, were significantly elevated in

PTB patients in contrast to healthy controls (all p < 0.001). The ROC

curve, a widely recognized tool for evaluating diagnostic performance,

employs the AUC as a key metric. An AUC greater than 0.9 indicates

excellent diagnostic accuracy; values between 0.8 and 0.9 denote good

accuracy; 0.7 to 0.8 is considered acceptable; whereas an AUC below

0.7 signifies poor diagnostic performance. In the GSE83456 cohort, the

AUC values for ASPHD2, GCH1, and GK were 0.981, 0.928, and

0.937, respectively, each demonstrating excellent diagnostic efficacy

(Figures 6A–F). In the validation dataset GSE42834, all three genes

exhibited significant upregulation in PTB patients (p < 0.001), with

ROC analysis revealing AUCs of 0.962 for ASPHD2, 0.879 for GCH1,

and 0.962 for GK (Figures 6G–L), indicative of good to excellent

diagnostic performance. Likewise, in the independent validation

dataset GSE89403, these genes remained markedly upregulated in

PTB patients (p < 0.001), with corresponding AUCs of 0.916, 0.805,
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and 0.816 for ASPHD2, GCH1, and GK, respectively (Figures 6M–R).

Collectively, these findings affirm the robustness and diagnostic utility

of these hub genes across diverse cohorts and heterogeneous

experimental platforms.
3.7 Construction and validation of
diagnostic prediction models

To evaluate the prognostic significance of cuproptosis-related

hub genes in the onset and progression of PTB, a nomogram model

was developed incorporating ASPHD2, GK, and GCH1. This model

quantifies disease risk by integrating the expression levels and

corresponding scores of these hub genes to yield a composite

predictive score (Figure 7A). The calibration curve demonstrated

excellent concordance between predicted and observed probabilities

along the ideal 45-degree line, underscoring the robust calibration

performance of the nomogram (Figure 7B). Moreover, decision

curve analysis (DCA) revealed that within a threshold probability

range of 0 to 0.6, the model exhibits substantial clinical utility in risk

stratification for PTB (Figure 7C).
3.8 Cell type identification and distribution
estimation tool (CIBERSORT)

To elucidate the immunological disparities between PTB patients

and healthy controls, our study employed CIBERSORT to quantify the

relative proportions of 22 immune cell subsets in both cohorts. The

analysis revealed significant differences in the abundance of these

infiltrating immune cell populations between the two groups

(Figure 8A). Within the PTB cohort, notable alterations in immune

cell infiltration were observed. Specifically, plasma cells, gamma delta

T cells, macrophage subsets (M0, M1, and M2), activated dendritic

cells, and neutrophils exhibited a marked increase, implicating their

potential pivotal role in the immunopathogenesis of PTB. Conversely,

naïve B cells, CD8+ T cells, resting memory CD4+ T cells, and resting

natural killer (NK) cells were significantly diminished, suggesting their

possible suppression in the immune regulatory milieu of PTB

(Figure 8B). Furthermore, correlation analysis between immune

infiltrates and cuproptosis-related hub genes demonstrated that GK

expression was significantly positively correlated with neutrophils and

M0 macrophages (p < 0.001 and p < 0.05, respectively) while showing

a significant negative correlation with activated memory CD4+ T cells,

resting dendritic cells, and CD8+ T cells (p < 0.001 and p < 0.05,

respectively). The ASPHD2 gene was significantly positively correlated

with plasma cells (p < 0.05), and significantly negatively related to

dendritic cells resting and NK cells resting (p < 0.05) (Figure 8C).
3.9 ssGSEA

The ssGSEA analysis showed significant differences in various

immune functions and immune cell types between the PTB group and

the normal control group. In the PTB group, there was a significant
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increase in type I interferon response (p < 0.001), regulatory T cells

(Treg, p < 0.001), T cell co-inhibition (p < 0.001), plasmacytoid

dendritic cells (pDCs, p < 0.001), parainflammation (p < 0.001),

macrophages (p < 0.01), human leukocyte antigen (HLA, p < 0.001),

chemokine receptors (CCR, p < 0.001), antigen-presenting cell co-

inhibition (APC co-inhibition, p < 0.05), and activated dendritic cells

(aDCs, p < 0.001). Meanwhile, T cell co-stimulation (p < 0.001) and

NK cells (p < 0.05) were significantly decreased in the PTB group.

These results indicate that PTB patients have significant immune

dysfunction, presenting a state of both innate immune activation and

immune suppression (Figure 9A).

The ssGSEA analysis demonstrated significant alterations in

diverse immune functions and immune cell populations between

the PTB cohort and the healthy control group. Specifically, the PTB

group exhibited marked elevations in type I interferon response (p <

0.001), regulatory T cells (Tregs, p < 0.001), T cell co-inhibition (p <
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0.001), plasmacytoid dendritic cells (pDCs, p < 0.001),

parainflammation (p < 0.001), macrophages (p < 0.01), human

leukocyte antigen (HLA) expression (p < 0.001), chemokine

receptor (CCR) activity (p < 0.001), antigen-presenting cell co-

inhibition (APC co-inhibition, p < 0.05), and activated dendritic

cells (aDCs, p < 0.001). Conversely, significant reductions were

observed in T-cell co-stimulation (p < 0.001) and natural killer

(NK) cells (p < 0.05) within the PTB group. These findings

collectively indicate profound immune dysregulation in PTB

patients, characterized by concurrent activation of innate immunity

alongside mechanisms of immune suppression (Figure 9A).

Further, ssGSEA revealed significant associations between the

expression of ASPHD2, GCH1, and GK genes and multiple

immune functions and cell types, with correlations spanning six,

four, and eight categories, respectively. The ASPHD2 gene showed

significant positive correlations with type I interferon response, T
FIGURE 5

Application analysis of LASSO regression and RF models in the feature selection and prediction of PTB (A)Variation of each feature coefficient with
the regularization parameter l in LASSO regression. As l increases, the feature coefficients gradually decrease and approach zero, indicating that
LASSO regression effectively performs feature selection by enhancing the regularization, ultimately resulting in a simplified model. (B) Variation of the
binomial deviance with the regularization parameter l in the LASSO regression. Initially, as l increases, the deviance decreases but subsequently
rises, indicating that the optimal l corresponds to the minimum deviance, balancing model complexity and fitting accuracy. (C) Change in the error
rate of the RF model with different numbers of trees. As the number of trees rises from 0 to 500, the error rate gradually declines. The error rate
tends to stabilize around 300 trees, and a further increase in the number of trees does not significantly improve the error rate. Therefore, 300 trees
were selected to optimize performance and save computational resources. (D) Gene importance scores in the RF model. The GCH1 gene received
the highest score, indicating its significant contribution to the model’s prediction. Other important genes include OAS2, GK, etc. These scores help
to identify hub genes in the predictive model and provide guidance for subsequent biological research.
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FIGURE 6

Expression analysis and diagnostic performance of hub genes ASPHD2, GCH1, and GK in PTB patients. (A–C) Expression levels of ASPHD2, GCH1,
and GK were significantly upregulated in PTB patients in the training set GSE83456 (p < 0.001). (D–F) ROC curve analysis based on GSE83456
demonstrated excellent diagnostic performance for all three genes: ASPHD2 (AUC = 0.981, 95% CI: 0.981-1.000), GCH1 (AUC = 0.928, 95% CI:
0.928-0.982), and GK (AUC = 0.937, 95% CI: 0.937-0.979). (G–I) In the validation set GSE42834, all three genes also showed significantly elevated
expression in PTB patients (p < 0.001). (J–L) ROC analysis in GSE42834 yielded the following results: ASPHD2 (AUC = 0.962, 95% CI: 0.924-1.000),
GCH1 (AUC = 0.879, 95% CI: 0.792-0.966), and GK (AUC = 0.962, 95% CI: 0.926-0.998). (M–O) In the validation set GSE89403, the expression
levels of all three genes remained significantly elevated in PTB patients (p < 0.001). (P–R) ROC analysis of GSE89403 confirmed robust diagnostic
performance: ASPHD2 (AUC = 0.916, 95% CI: 0.843-0.990), GCH1 (AUC = 0.805, 95% CI: 0.716-0.895), and GK (AUC = 0.816, 95% CI: 0.721-0.912).
An AUC > 0.9 indicates excellent diagnostic accuracy; 0.8-0.9 indicates good accuracy; 0.7-0.8 is considered acceptable; and an AUC < 0.7 reflects
poor diagnostic performance. ***p < 0.001.
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cell co-inhibition, APC co-inhibition, and parainflammation, and

significant negative correlations with T cell co-stimulation and pro-

inflammatory activities. Similarly, GCH1 expression was positively

correlated with type I interferon response, T cell co-inhibition, and

APC co-inhibition, but negatively correlated with T cell co-

stimulation. The GK gene exhibited a significant positive

correlation with neutrophil abundance while demonstrating

significant negative correlations with Th1 cells, T helper cells, T

cell co-stimulation, NK cells, pro-inflammatory functions, HLA

expression, and immune checkpoint molecules (Figure 9B).

Collectively, ASPHD2, GCH1, and GK are pivotal regulators of

immune activation and suppression, contributing to immune

homeostasis and the prevention of excessive immune responses.

Notably, GK appears to exert broad inhibitory effects on multiple

immune functions, potentially facilitating immune evasion or

modulation of inflammatory processes.

To further unravel the immune-related characteristics of the hub

genes, ssGSEA was conducted across two independent validation

datasets (GSE42834 and GSE89403). The findings closely mirrored

those observed in the training cohort. In both validation datasets, PTB

patients exhibited markedly heightened type I interferon (IFN)

responses, increased T cell co-inhibition, and enhanced macrophage

infiltration, accompanied by a notable attenuation of T cell co-

stimulation and natural killer (NK) cell activity. These results

collectively delineate a reproducible pattern of immune

dysregulation. Moreover, the associations between the hub genes

and immune-related functions remained robust and consistent

across the datasets. Specifically, GK demonstrated sustained negative

correlations with pro-inflammatory signaling pathways, T helper type

1 (Th1) cells, general helper T cells, and NK cells in both validation

sets, underscoring its potential involvement in immunosuppressive

processes and immune homeostasis. Likewise, ASHPD2 and GCH1

retained their characteristic immunological correlation profiles, both

exhibiting significant positive associations with type I IFN response,

parainflammatory activity, and antigen-presenting cell (APC) co-

inhibition. The foregoing findings underscore the consistent
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immunomodulatory roles of the three hub genes across both

training and validation cohorts, reflecting a distinctive

immunological landscape in PTB characterized by the simultaneous

presence of innate immune activation and immunosuppressive states.

This cross-cohort concordance reinforces the robustness and

biological significance of our conclusions (Figures 9C–F).
3.10 Validation of cuproptosis-related hub
genes in PTB

PBMCs isolated from blood samples of 31 NC, 35 PTB, and 34

EPTB patients were analyzed for differential expression of hub

genes by RT-qPCR. The basic clinical characteristics of the patients

are summarized in Table 2, with no statistically significant

differences in age and gender distribution between the two groups

of patients. The results showed that the expression levels of

ASPHD2, GCH1, and GK genes were significantly higher in both

the PTB and EPTB groups compared to the normal control group

(p < 0.05) (Figures 10A–C).

Gene chip expression profiling analysis was performed on samples

from 4 NC subjects and 3 PTB patients before and after 1 month of

anti-TB treatment. The results showed that the expression levels of

ASPHD2, GCH1, and GK genes were significantly higher in the PTB

group than in the NC group (p < 0.05). After 1 month of standard

chemotherapy, the expression levels of GCH1 and GK genes, although

not returning to normal levels, were significantly reduced (p < 0.05),

whereas no significant changes in ASPHD2 gene expression were

observed. The expression levels of GCH1 and GK genes were found to

correlate with disease improvement, which suggested that GCH1 and

GK possibly serve as potential biomarkers for early therapeutic

monitoring in PTB (Figures 10D–F). To further elucidate the

expression patterns in EPTB, a subgroup analysis was performed

based on the principal sites of infection. Patients with EPTB were

classified into the following subtypes: genitourinary TB (GUTB, n= 9),

tuberculous meningitis (TBM, n= 6), lymph node TB (LNTB, n= 6),
FIGURE 7

Construction and clinical evaluation of the PTB risk prediction model. (A) Nomogram for predicting PTB risk based on the expression levels of
ASPHD2, GK, and GCH1 genes. (B) Calibration curve comparing the predicted probability with the actual probability. The predicted probability is
close to the ideal line (diagonal line), indicating the excellent calibration performance of the model. (C) Decision curve analysis shows that the model
provides a high and stable net benefit within a threshold probability range of 0 to 0.6, demonstrating its significant clinical application value in
predicting PTB risk.
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osteoarticular TB (OATB, n= 4), tuberculous spinal meningitis (TSM,

n= 3), gastrointestinal TB (GITB, n= 3), and abdominal TB (ATB, n=

3). No statistically significant differences in the expression of ASPHD2,

GCH1, or GK were observed among the various EPTB subtypes

(Figures 10G–I).

To further validate the potential of the PTB cuproptosis-related

hub genes as therapeutic monitoring biomarkers, the GSE89403

dataset was selected for verification, including 34 NC samples, 83

PTB samples before treatment, and 85, 84, and 87 PTB samples after
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7 d, 4 w, and 24 w treatment, respectively. The analysis results

showed that the expression levels of ASPHD2, GCH1, and GK

genes in the pre-treatment PTB group were significantly higher

than those in the NC group (p < 0.001). Among these, GCH1 was

the most sensitive to treatment, with its expression level decreasing

significantly and approaching that of the NC group after 7 d of

treatment (p < 0.001). After 24 weeks of treatment, GCH1

expression showed no significant difference from the NC group

(p > 0.05). GK showed a similar trend, with a notable decrease in its
FIGURE 8

CIBERSORT analysis of PTB patients and its correlation with cuproptosis-related hub genes in PTB patients. (A) Analysis of immune cell infiltration in
PTB patients and the NC group. CIBERSORT analysis revealed significant differences in the relative abundance of 22 immune infiltrating cell types
between the two groups. (B) Scatter plot showing the differences in immune cell infiltration between the PTB group and the NC group. (C)
Correlation analysis between cuproptosis hub genes and infiltrating immune cells. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 9

Differences in immune functions and cell types between PTB patients and normal controls, and correlation analysis with hub genes and immune
features. (A, B) Analysis results from the training set GSE83456.(A) Significant differences in various immune functions and cell infiltration between
the PTB and NC groups. (B) Correlation analysis between hub genes and immune features. (C, D) Analysis results from the validation set
GSE42834.(C) Significant differences in various immune functions and cell infiltration between the PTB and NC groups. (D) Correlation analysis
between hub genes and immune features. (E, F) Analysis results from the validation set GSE89403.(E) Significant differences in various immune
functions and cell infiltration between the PTB and NC groups. (F) Correlation analysis between hub genes and immune features.*Note: The X-axis
represents ssGSEA scores (0-1) or hub genes, and the Y-axis represents immune features. Green represents NC and red represents PTB. *p < 0.05,
**p < 0.01, ***p < 0.001. #p ≥ 0.05; p < 0.2, near-significant results. ns, not significant.
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expression level after 7 d treatment (p < 0.001), but there was still a

significant difference compared to the NC group (p < 0.05). After 4

weeks of treatment, its expression level approached that of the NC

group (p > 0.05), and the difference with the NC group was further
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reduced after 24 weeks of treatment. The difference with the NC

group was further reduced after 24 weeks of treatment. ASPHD2

expression decreased significantly after treatment (p < 0.001).

Although it had not returned to normal levels after 24 weeks of
FIGURE 10

Validation and expression analysis of cuproptosis-related hub genes in PTB. (A–C) The relative expression levels of ASPHD2, GCH1, and GK genes in
normal individuals, PTB patients, and EPTB patients were analyzed by RT-qPCR. (D–F) Relative expression levels of ASPHD2, GCH1, and GK genes in NC,
PTB patients before treatment, and PTB patients after 1 month of anti-TB treatment, based on gene chip expression profiles. (G–I) Expression levels of
ASPHD2, GCH1, and GK genes in different subtypes of EPTB. Patients were categorized based on the main affected sites: genitourinary TB (GUTB, n = 9),
tuberculous meningitis (TBM, n = 6), lymph node TB (LNTB, n = 6), osteoarticular TB (OATB, n = 4), tuberculous spinal meningitis (TSM, n = 3),
gastrointestinal TB (GITB, n = 3), and abdominal TB (ATB, n = 3). No statistically significant differences in gene expression were observed among these
EPTB subtypes. X-axis: group classification. Y-axis: relative gene expression levels. *p < 0.05, **p < 0.01, ****p < 0.0001, ns, not significant.
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treatment (p < 0.05), its expression level continued to decrease as

treatment progressed. In summary, the cuproptosis-related hub

genes GCH1, GK, and ASPHD2 in PTB can serve as potential

biomarkers for monitoring therapeutic efficacy in the early,

intermediate, and late stages of PTB (Figures 11A–C).

To further substantiate the findings derived from RT-qPCR and

microarray analyses, WB assays were carried out using PBMC samples

obtained from five clinical cohorts, to validate the protein expression

levels of the candidate cuproptosis-related hub genes ASPHD2, GCH1,

and GK. The cohorts comprised HC, LTBI, PTB, AT, and EPTB

cohorts. Representative WB bands corresponding to ASPHD2, GCH1,

and GK are presented in Figures 12A, C, E, respectively, with the

associated molecular weights (kDa) duly annotated.

In comparison to the HC group, ASPHD2 protein expression was

markedly elevated in both PTB and EPTB groups. Although

conventional statistical tests did not achieve significance (P > 0.05),

effect size analysis employing Cohen’s d demonstrated pronounced

differences, with values of d = 1.95 for PTB versus HC and d = 1.77

for EPTB versus HC, indicative of a marked upregulation of ASPHD2

in ATB. Furthermore, ASPHD2 expression was markedly diminished

in the after-treatment (AT) group relative to PTB (d = −2.08),

suggesting its potential utility as a biomarker for therapeutic

response (Figure 12B). Expression of GCH1 was likewise

significantly elevated in the PTB cohort (d = 1.35) and declined

following treatment (AT vs. PTB, d = −1.71), approximating baseline

levels observed in HC (AT vs. HC, d = 0.21). The disparity between

the EPTB and HC groups was comparatively modest (d = 0.37),

implying limited biological relevance (Figure 12D).

GK protein levels were markedly elevated in both the PTB

group (effect size, d = 2.87) and the EPTB group (d = 2.41) relative

to the HC group (p < 0.05), indicating very large effect sizes.

Following treatment, expression levels in the AT group decreased

(d = −0.51), although they did not fully revert to baseline values

(Figure 12F). In the LTBI group, protein expression exhibited
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greater variability and did not differ significantly from that of the

HC group (P > 0.05). Notably, the expression of all three proteins in

both the PTB and EPTB groups consistently surpassed levels

observed in the LTBI group, reflecting a pattern congruent with

the overall comparisons against the HC cohort.
4 Discussion

TB, among the leading infectious diseases causing death

worldwide, is a major public health threat, particularly in

developing countries (14). Approximately 83% of new TB cases are

PTB (15). Currently, PTB diagnosis and treatment in clinical practice

face multiple challenges, as the pathogenic mechanisms of PTB

remain elusive. Recently, cuproptosis has been identified as a novel

form of cell death harmful to the host. This study used ML to identify

the hub genes of PTB-related CRGs, analyzed their immunological

characteristics, and, for the first time, investigated their potential

value in the diagnosis and therapeutic monitoring of PTB.

In 2022, Tsvetkov P et al. identified a set of genes associated

with cuproptosis by a genome-wide CRISPR screening (3). In 2023,

Li S et al. discovered that 11 (NFE2L2, NLRP3, ATP7B, SLC31A1,

MTF1, DLD, LIAS, LIPT1, DLAT, GLS, and DBT) of these genes

were associated with TB-related cuproptosis (8). Chen L et al. found

that 9 (MTF1, NFE2L2, NLRP3, FDX1, LIPT1, PDHB, GLS, DBT,

and DLST) of these genes were related with cuproptosis in pediatric

ATB (9). This study found for the first time that three hub genes

(ASPHD2, GK, and GCH1) were associated with cuproptosis in

PTB. These hub genes were upregulated in PTB patients and

significantly higher than those in the NC group. ROC curve

analysis showed that these hub genes had some diagnostic value

for PTB, and the nomogram model constructed based on ASPHD2,

GK, and GCH1 had a high clinical application value in predicting

the risk of PTB.
FIGURE 11

Dynamic analysis of the expression of PTB cuproptosis-related hub genes in PTB patients during treatment in the GSE89403 dataset. X-axis: Grouping
information, including normal control, pulmonary tuberculosis (PTB), after 7 days of treatment (7d treatment), after 4 weeks of treatment (4w treatment),
and after 24 weeks of treatment (24w treatment). Y axis: Relative expression level. *p < 0.05, ***p < 0.001, ns stands for not significant.
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Validation using a separate dataset, RT-qPCR, and gene

expression profiling sequencing showed that ASPHD2, GCH1,

and GK had the same expression trend in both the PTB and

EPTB groups. GSEA analysis of DEGs in PTB showed that

upregulated genes were mainly enriched in pathways related to

pathogen infection and immune response, and KEGG analysis of

PTB CRGs also showed significant enrichment in pathways related

to pathogen infection and antigen recognition. These results

confirm that 3 hub genes possibly play an important role in the

pathogenesis and progression of TB. Further validation at the

protein level via WB analysis substantiated these findings,

revealing consistently elevated expression of ASPHD2, GCH1,

and GK in PBMCs derived from PTB patients and EPTB.

Although conventional statistical testing did not yield significant

differences (P > 0.05), Cohen’s d effect size analysis demonstrated

large magnitude differences for ASPHD2 (PTB vs. healthy controls

[HC], d = 1.95; EPTB vs. HC, d = 1.77), indicative of considerable

biological relevance. Notably, ASPHD2 expression exhibited a

marked decline following one month of anti-tuberculosis

treatment (d = −2.08), underscoring its potential utility as a

dynamic biomarker for monitoring therapeutic response in

tuberculosis. Similarly, GCH1 expression was significantly

elevated in the PTB cohort (d = 1.35) and showed a pronounced

reduction post-treatment (d = −1.71), approaching baseline levels

comparable to those observed in healthy controls (d = 0.21).

Conversely, the differential expression of GCH1 between the

EPTB and HC groups was modest (d = 0.37), suggesting a

relatively limited involvement of this gene in extrapulmonary

disease. In contrast, GK expression was markedly upregulated in
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both PTB (d = 2.87) and EPTB (d = 2.41) with very large effect sizes.

Although expression levels did not fully normalize following

therapy, a discernible reduction was evident in the AT group (d =

−0.51). Collectively, these multi-tiered validation data robustly

support the involvement of ASPHD2, GCH1, and GK in

tuberculosis pathogenesis and immune activation, highlighting

their potential as protein-level biomarkers for the assessment of

treatment response. In particular, the favorable expression kinetics

of ASPHD2 and GCH1 during therapy suggest their clinical

applicability for monitoring therapeutic efficacy, especially in the

early to intermediate stages of PTB.

Further validation using GEO datasets and gene expression

profiling sequencing revealed that GCH1, GK, and ASPHD2 genes

were sensitive to therapeutic efficacy during PTB treatment. GCH1

approached normal levels after 7 days of treatment, GK approached

normal levels after 4 weeks of treatment, and ASPHD2 expression

gradually decreased with the extension of treatment. For the first

time, GCH1, GK, and ASPHD2 were identified as potential

biomarkers for monitoring the efficacy of PTB treatment in early,

middle, and late stages. Our future studies will further evaluate their

clinical value in monitoring treatment response.

GTP cyclohydrolase 1 (GCH1) is the rate-limiting enzyme in

the tetrahydrobiopterin (BH4) synthesis pathway, catalyzing the

conversion of GTP to 7,8-dihydrobiopterin triphosphate (D-PTP).

It is a key regulatory point in the synthesis of BH4 (16, 17). BH4 is

an essential cofactor for several enzymes, such as nitric oxide

synthase (NOS), and plays a variety of critical biological roles in

the body, particularly in the immune system. BH4 regulates the

production of the reactive oxygen species (ROS) and stabilizes the
FIGURE 12

WB analysis of ASPHD2, GCH1, and GK protein expression in PBMCs across five clinical groups. (A, C, E) Representative WB bands for ASPHD2,
GCH1, and GK in healthy controls (HC), latent TB infection (LTBI), active pulmonary TB (PTB), PTB after one month of anti-TB treatment (AT), and
extrapulmonary TB (EPTB), with molecular weights (kDa) indicated. (B, D, F) Quantification of relative protein expression levels. Data are presented as
mean ± SD with individual data points overlaid. Effect sizes were assessed using Cohen’s *d* to compare group differences.
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formation of the inducible nitric oxide synthase (iNOS) dimer.

INOS regulates many host innate immune cells and adaptive

immune responses via nitric oxide (NO) to control or eliminate

MTB and exert anti-inflammatory effects that enhance host defense

function (18). Furthermore, BH4 plays an antioxidant role,

maintaining redox balance, scavenging ROS, and protecting cells

from oxidative stress-induced damage (16). GCH1 affects NO

production by regulating BH4 synthesis, thereby modulating

immune cell function. It plays a role in a variety of immune-

related diseases, such as infectious diseases, autoimmune diseases,

and cancer, by influencing disease progression and immune evasion

mechanisms. GCH1 also contributes to the immune response and

inflammatory response in TB (19). Based on whole blood gene

expression profiling, Qian Z et al (20) found that GCH1 expression

levels were significantly higher in TB patients compared to healthy

controls, people with latent TB infection, pneumonia, and cancer

patients. Furthermore, anti-TB chemotherapy led to a reduction in

GCH1 expression levels, which is consistent with our findings.

McNeill E et al. (19) showed a significant positive correlation

between GCH1 gene expression in human PBMCs and increased

BCG colony-forming units (CFUs). However, the Gch1fl/flTie2cre

(Gch1 knockout/BH4-deficient) mice infected with BCG showed

weight gain, no significant pathological changes in the lung and

spleen, but a significant decrease in the lung and spleen CFUs. This

study further demonstrated a significant upregulation of GCH1

expression in PTB patients (Figure 10). Collectively, these

findings indicate that the host mounts a response to MTB

infection by enhancing BH4 synthesis, underscoring the pivotal

role of the GCH1 gene in the pathogenesis of tuberculosis.

Moreover, attenuation of GCH1 expression appears to augment

macrophage-mediated control of mycobacterial infection. Although

no studies have directly proved the relationship between GCH1

gene variants and susceptibility or resistance to TB, GCH1

knockout (Gch1-/-) macrophages are deficient in BH4, resulting in

impaired nitric oxide production. NO plays a critical role in the

ability of macrophages to control MTB infection (19, 21). Gene

expression analysis indicates that GCH1-deficient macrophages

control MTB infection by altering inflammatory responses,

lysosomal function, cell survival, and cellular metabolism (19).

Therefore, GCH1 possibly serves as a biomarker for the diagnosis

and efficacy evaluation of active PTB, as well as a potential

therapeutic target.

Glycerol kinase (GK) encodes glycerol kinase, which catalyzes

the phosphorylation of glycerol to glycerol-3-phosphate (G3P) with

ATP, representing a key step in glycerol metabolism (22). GK is

mainly expressed in the liver and kidney, where it provides glycerol-

3-phosphate as an intermediate for glycolysis, glycogen synthesis,

gluconeogenesis, and triglyceride synthesis, thus closely influencing

cellular energy metabolism, fatty acid metabolism, glucose

metabolism, and other physiological processes (23). GK regulates

glycerol metabolism and affects the energy metabolic pathways of

immune cells such as macrophages, thereby influencing immune

cell survival, activation, function, and inflammatory responses (24).

GK acts as a co-regulator of nuclear receptor subfamily 4 group A1

(NR4A1) and is involved in the regulation of hepatic glucose
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metabolism by interacting with NR4A1 proteins. Overexpression

of GK inhibits NR4A1’s regulation of hepatic gluconeogenesis

target genes and glucose homeostasis both in vitro and in vivo

(22, 23), thereby leading to excessive cellular carbon consumption

and glucose lipotoxicity, disrupting intracellular energy balance,

and ultimately inducing apoptosis. In addition, GK1b has been

shown to activate key apoptotic proteins (25–27). No studies have

been reported on GK gene variation or expression and susceptibility

or resistance to TB. This study found for the first time that the

expression of the CRG-related gene GK was significantly

upregulated in PTB patients and showed a significant decrease

during treatment. The increase in GK expression possibly induces

cell apoptosis, cuproptosis, and other forms of cell death in PTB

patients, promotes glycolysis and lipid synthesis, and provides a

carbon source for MTB, which are associated with MTB infection-

induced metabolic reprogramming of host cells, and play a role in

the pathogenesis of TB. The decrease in GK expression after

treatment suggests restoration of energy metabolism and disease

remission in patients. Future studies will further elucidate the key

role of GK in cuproptosis pathways and host immune regulation, as

well as explore the reliability of GK as a therapeutic efficacy

assessment and therapeutic target.

Aspartate b-hydroxylase domain-containing 2 (ASPHD2) is a

gene encoding a protein containing an aspartate b-hydroxylase
domain. It is mainly located at the cell membrane and has a-
ketoglutarate (a-KG)-dependent dioxygenase activity and metal ion

binding activity. ASPHD2 is involved in redox reactions and

peptide chain modifications, regulates aspartate metabolism, and

influences the balance of amino acid metabolism (28, 29). a-KG is a

key intermediate in the TCA cycle, which not only plays an essential

role in cellular metabolism but is also involved in the regulation of

various biological processes such as epigenetic changes and immune

responses (30–32). Aspartate metabolism possibly be related to

cellular antioxidant capacity and inflammatory responses. Recent

studies have shown that the ASPHD2 gene is involved in the

regulation of monkeypox virus infection and septicaemic

melioidosis (33, 34). However, no study has been reported on the

association of ASPHD2 gene variation or expression with

susceptibility or resistance to TB. This study showed for the first

time that ASPHD2 expression increased in PTB patients and

decreased after treatment, suggesting that ASPHD2 may be

involved in the pathogenesis of TB by regulating aspartate

metabolism and redox state to activate cuproptosis-related

pathways. Further investigations are necessitated to elucidate its

precise mechanism of action in PTB, including its potential

interactions with the TCA cycle and immune response-related

signaling pathways, as well as its impact on the functional

dynamics of immune cells in PTB patients, to further assess its

viability as a therapeutic target. Recent research has shown that the

abundance of infiltrating immune cells in TB patients has

undergone significant changes. Li S et al. reported a significant

increase in monocytes, M0, M1, and M2 macrophages, activated

dendritic cells, eosinophils, and neutrophils in TB patients (8).

Chen L et al. found a significant increase in neutrophils, dendritic

cells, and monocytes in children with ATB (9). This study showed
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that plasma cells, T-cell gamma delta, M0 macrophages, M1

macrophages, M2 macrophages, activated dendritic cells, and

neutrophils were significantly increased in PTB patients. These

findings suggest that the activation of innate immune cells (such

as M1 macrophages, monocytes, and dendritic cells) plays a critical

role in host defense against TB while enhancing antigen

presentation to induce adaptive immune responses. On the other

hand, the immunosuppressive effect of M2 macrophages possibly

helps to prevent tissue damage, but possibly also leads to persistent

chronic inflammation (35, 36). The increased number of plasma

cells reflects the activation of the humoral immune response,

potentially leading to a shift from Th1-type to Th2-type

immunity (35). In addition, the extensive infiltration of

neutrophils possibly contributes to inflammatory tissue damage

and exacerbates disease (37). Studies have also shown a significant

reduction in CD8+ T cells, resting memory CD4+ T cells, and

follicular helper T cells in TB patients (4). In children with ATB, a

decrease in infiltration of CD8+ memory T cells, activated CD8+ T

cells, CD4+ memory T cells, activated CD4+ T cells, and B cells has

been observed (5) However, this study showed a significant decrease

in naive B cells, CD8 T cells, resting memory CD4 T cells, and

resting NK cells in PTB patients. These results highlight the impact

of MTB infection on the host immune environment and the

immunopathological features of PTB, confirming that the

occurrence and development of PTB are associated with

lymphocyte suppression, in particular with significant reductions

in effector T cells (CD8+ T cells and CD4+ T cells) involved in anti-

TB cellular immunity, and B cells participating in accessory anti-TB

humoral immunity. Furthermore, NK cells, which play a anti-TB

cytotoxic role in both innate and adaptive immunity, were also

significantly reduced, suggesting that PTB is primarily characterized

by impaired adaptive immunity, immune suppression, or

exhaustion of effector T cells (35). Association analysis between

the CRGs ASPHD2, GK, and GCH1 and immune cell infiltration

showed that the GK gene was significantly positively correlated with

neutrophils and M0 macrophages, while negatively correlated with

activated CD4 T cells, dendritic cells, and CD8 T cells, indicating

that GK is mainly closely related to the immunopathology and

adaptive immune deficiency in PTB (35, 37). ASPHD2 gene was

positively correlated with plasma cells and negatively correlated

with dendritic cells and NK cells, suggesting that ASPHD2 mainly

promotes the antibody-mediated function of plasma cells and is

closely related to the inhibition of antigen presentation and NK cell

activity (35). The GCH1 gene showed no significant correlation

with changes in immune cell infiltration. The association between

the CRGs GK and ASPHD2 and changes in immune cell infiltration

further suggests that cuproptosis induced by their high expression

possibly plays a significant role in the pathogenesis of PTB.

Further analysis using ssGSEA revealed significant changes in

immune function and immune cell composition in PTB patients,

with significant increases in chemokine receptors (CCR), human

leukocyte antigens (HLA), macrophages, and activated dendritic

cells (aDCs), indicating enhanced immune cell recruitment and

innate immunity. Conversely, a significant increase in antigen-

presenting cell co-inhibition (APC co-inhibition) and T-cell
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co-inhibition, together with a significant reduction in T-cell co-

stimulation and NK cells, suggested suppression of adaptive

immunity. In addition, the significant increase in type I interferon

response, regulatory T cells (Treg), plasmacytoid dendritic cells

(pDCs), and parainflammation suggested the formation of an

immunosuppressive microenvironment that possibly contributes

to immune evasion and chronic inflammation in PTB (35, 38). The

findings from the ssGSEA analysis were consistent with the results

from the CIBERSORT analysis, reflecting an immune dysregulation

in PTB patients, characterized by the coexistence of enhanced

i nn a t e immun i t y a nd immune supp r e s s i o n . Th i s

immunopathological feature possibly be related to host-pathogen

interactions and disease progression. ASPHD2, GCH1, and GK

genes play pivotal roles in modulating immune activation and

suppression. Among them, the ASPHD2 and GCH1 genes were

significantly positively correlated with immune function

suppression and immune evasion, such as type I IFN response, T

cell co-inhibition, and APC co-inhibition, while the GK gene

showed a significant positive correlation with neutrophils and a

negative correlation with adaptive immune function. This suggests

that GK, together with ASPHD2 and GCH1, possibly be involved in

the decline of anti-TB immunity and immune-inflammatory

damage (35, 37).

This study has limitations, which warrant further refinement

in subsequent investigations: (1) Expansion of sample size:

While the present cohort offers a degree of representativeness, it

remains insufficient to capture the full spectrum of clinical

manifestations. Future studies will aim to enlarge the sample pool

to encompass tuberculosis (TB) patients and healthy controls from

a broader array of geographic regions and ethnic backgrounds,

thereby enabling a more comprehensive validation of the

involvement of ASPHD2, GK, and GCH1 in the pathogenesis of

TB. (2) Functional validation: Flow cytometry and single-cell

transcriptomic sequencing will be employed to characterize T cell

subsets in the peripheral blood or tissue samples of PTB patients, to

identify subtle alterations in the expression of key genes within

MTB-specific T cells. The functional relevance of these genes in

PTB pathogenesis will be elucidated by modulating T-cell

subpopulations and assessing the effects of gene knockdown or

overexpression on MTB proliferation in both in vitro and in vivo

models. (3) Investigation of genetic variation: Given the complexity

of TB pathophysiology, particularly concerning drug resistance and

host genetic variability, targeted sequencing will be conducted to

explore the association between gene mutations and TB

susceptibility or resistance. Further research is essential to

elucidate the mechanistic implications of these genetic variants

for TB pathogenesis and diagnostic biomarker development,

ultimately contributing to the advancement of personalized

diagnostic and therapeutic strategies.
5 Conclusion

In conclusion, this study is the first to identify three hub genes,

ASPHD2, GCH1, and GK, implicated in the pathogenesis of PTB
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through integrated screening using LASSO and RF models. These

genes exhibited significantly elevated expression levels in PTB

patients relative to healthy controls, with expression markedly

diminished following anti-tuberculosis therapy. This dynamic

trend was further validated at the protein level by WB analysis,

reinforcing the consistency between transcriptomic and proteomic

data. WB. The marked alterations in immune cell infiltration and

immune function observed in the PTB population may be closely

associated with cuproptosis mediated by GK, ASPHD2, and GCH1.

This process appears to promote the activation of innate immune

cells, including macrophages, monocytes, dendritic cells, and

neutrophils, while concurrently suppressing the function of

adaptive immune cells. These findings suggest that the ASPHD2,

GK, and GCH1 genes may be indirectly implicated in the

pathogenesis of PTB through their influence on pathways

including amino acid metabolism, glucose metabolism, and nitric

oxide synthesis. Therefore, the CRG hub genes ASPHD2, GCH1,

and GK possibly serve as potential biomarkers for the diagnosis

and therapeutic monitoring of active PTB, as well as potential

therapeutic targets.
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