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Single cell atlas of canine
natural killer cells identifies
distinct circulating and tissue
resident gene profiles
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University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
Introduction:Natural killer (NK) cells in mice and humans are key effectors of the

innate immune system with complex immunoregulatory functions, and diverse

subsets have been identified with distinct characteristics and roles. Companion

dogs with spontaneous cancer have been validated as models of human disease,

including cancer immunology and immunotherapy, and greater understanding

of NK cell heterogeneity in dogs can inform NK biology across species and

optimize NK immunotherapy for both dogs and people.

Methods: Here, we assessed canine NK cell populations by single-cell RNA

sequencing (scRNAseq) across blood, lung, liver, spleen, and placenta with

comparison to human NK cells from blood and the same tissues to better

characterize the differential gene expression of canine and human NK cells

regarding ontogeny, heterogeneity, patterns of activation, inhibition, and

tissue residence.

Results: Overall, we observed tissue-specific NK cell signatures consistent with

immature NK cells in the placenta, mature and activated NK cells in the lung, and

NK cells with a mixed activated and inhibited signature in the liver with significant

cross-species homology.

Discussion: Together, our results point to heterogeneous canine NK populations

highly comparable to human NK cells, and we provide a comprehensive atlas of
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canine NK cells across organs which will inform future cross-species NK studies

and further substantiate the spontaneous canine model to optimize NK

immunotherapy across species.
KEYWORDS

canine (dog), comparative, NK cell, single cell RNA sequencing (scRNAseq),
transcriptomics, tissue resident
Introduction

Natural Killer (NK) cells are enigmatic innate lymphoid cells

that uniquely blur the boundaries of innate and adaptive immunity

due to their ability to recognize targets without prior sensitization

while still possessing memory-like and tissue resident features (1–

3). Equipped with an extensive array of activating and inhibitory

receptors, NK cells use the dynamic engagements of these receptors

to mediate effective antiviral and anticancer responses along with

necessary tolerance to healthy cells and tissues.

Comparative oncology takes advantage of the similarities

shared across species to identify and optimize treatments that are

projected to have success in clinical trials (4–6). Although extensive

studies have been completed in mice to advance NK

immunotherapy, murine and human NK cells have significant

differences in phenotype and function (intriguingly more than T

cells) which have impaired successful clinical translation (7, 8). Of

note, recent transcriptomic analyses have revealed greater

homology between human and dog NK cells than human and

mouse NK cells (9).

Numerous studies have also highlighted the heterogeneity of

NK cells, including diverse subsets of NK cells across tissue

compartments in both humans and mice. In humans, classical

NK subsets include putative immature, CD56brightCD16dim

cytokine-secreting NK cells that predominate in lymph nodes

versus mature cytotoxic CD56dimCD16bright NK cell subsets that

predominate in the blood (10, 11). Additional subsets include

terminally differentiated NK cells found frequently in the lung

(12) and mixed maturation state NK subpopulations in the liver

(13). Importantly, identification of equivalent NK subsets in dogs

has not been delineated. While spontaneous cancer in dogs presents

a high incidence, high-fidelity model for translation to human

cancers, studies are limited due to gaps in knowledge, especially

for cancer immunology and immunotherapy, and these gaps extend

to detailed understanding of NK subsets present in dogs.

Additionally, it is paramount to address the differences between

circulating and tissue resident NK cells to interpret tissue-specific

responses in cancer, which can vary from those seen in the blood.

Previously, circulating canine NK cells have been characterized

using both flow-sorted CD3-NKp46+ and CD3-CD5dim subsets to

characterize NK cell gene expression under multiple conditions,

thereby identifying novel NK cell gene markers (9). Fortunately,
02
high-quality canine reference genomes are available allowing for the

use of single-cell RNA sequencing (scRNAseq) to investigate canine

NK cells at the individual level with extensive markers for accurate

identification and characterization (14).

To uncover the heterogeneity of canine NK cells throughout

body compartments and identify potential targets for

immunotherapy to optimize NK immunotherapy, we created a

transcriptomic atlas of canine NK cells across blood and key

tissues in dogs with a comparative analysis of human tissues for

cross-species validation. We observed unique signatures across

organs consistent with activated, differentiation-related, and

conventional/regulatory NK cells in the lung, placenta, and liver,

respectively. Importantly, we observed considerable overlap of

canine tissue resident NK subsets with known subsets in humans.

Together, our data inform the developmental trajectory and

compartmentalization of NK cells in dogs and highlight potential

strategies for improved translation of NK immunotherapy.
Methods

Sample acquisition and processing

Lung, liver, spleen, and placenta samples were obtained with

owner consent from residual tissues of canine patients undergoing

surgical procedures at the UC Davis Veterinary Medical Teaching

Hospital. Donor characteristics for these dogs are listed in

Supplementary Table 1. When applicable, only visually

unaffected, non-tumor-bearing tissue was used. Processing of

spleen and placenta consisted of mechanical digestion followed by

incubation with RBC lysis buffer for five minutes at 4°C. Liver

processing included mechanical digestion followed by a cell

separation step using Percoll and PBS+3% FBS before RBC lysis

(15). Lung processing included mechanical digestion followed by

enzymatic digestion using DNAse and collagenase (16). PBMCs

were isolated from whole blood from healthy beagle donors

(Ridglan Farms). Processing was performed as described

previously (9, 17, 18).

For human samples, the collection of blood and residual tissue

specimens was obtained after informed patient consent per the IRB

at the University of California, Davis (Protocol #218204 UC Davis

Pathology Biorepository - Tissue, Blood, Urine and Other Biological
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https://doi.org/10.3389/fimmu.2025.1571085
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Razmara et al. 10.3389/fimmu.2025.1571085
Material). Human samples were processed as described previously

(9, 17, 18). Donor characteristics for these patients are listed in

Supplementary Table 2.
Fluorescence-activated cell sorting

After processing, normal dog lung, liver, and placenta cells were

washed with PBS and staining buffer. Canine cells were incubated

with Fc receptor blocking solution (Canine Fc Receptor Binding

Inhibitor, Invitrogen #14-9162-42), and stained with rat anti-dog

monoclonal antibody CD45-EF450 (clone YKIX716.13, Invitrogen

#48-5450-42). Human cells were incubated with Human TruStain

Fc receptor blocking solution (BioLegend, #422302) and stained

with mouse anti-human monoclonal antibody CD45-BV510 (clone

HI30, BioLegend). Live/dead discrimination was performed using

Fixable Viability Dye 780. Cell sorting for live CD45+ cells was

performed using the Becton Dickinson “Aria II” Cell Sorter (Becton

Dickinson, San Jose, California, USA).
Single-cell RNA sequencing and analysis

Single-cell suspensions of 700–1200 cells/µL with a minimum of

40 mL of PBS/0.5% bovine serum albumin suspension buffer were

submitted for library preparation and sequencing using the 10X

Chromium Next GEM Single-Cell 3’ V.3.1 Gene Expression

protocol performed by the UC Davis Genome Center as

previously described (17). Human (GRCh38) and canine

(CanFam3.1) indexes were created using the cellranger mkgtf and

cellranger mkref pipelines. Raw fastq files were aligned to the

relevant reference genome and feature-barcode matrices were

created using CellRanger v.7.1.0 (10x Genomics). The feature-

barcode matrices were uploaded in Rstudio and analyzed using

Seurat. Seurat objects were created with a minimum cell threshold

of 3 and minimum features of 200. Only cells with ≤15% of

mitochondrial counts and unique feature counts ≥200 and

≤5,000-6,000 were filtered for analysis. Data then underwent

standard Seurat processing workflow which included

normalization, identification of highly variable features (2,000),

and scaling. Cells were then clustered through a standard

workflow that included linear dimensional reduction,

determination of the k-nearest neighbor (KNN) using the top

PCs based on the generation and interpretation of an elbow plot,

and then implementation using a resolution of 0.5 after testing of

multiple PCs and resolutions. Doublets were then identified and

removed using DoubletFinder before the cell clustering workflow

was repeated with doublets and unwanted cells removed.

For merged analyses, samples were integrated using Harmony

(19). Layers were joined and cells clustered using 50 PCs and

resolution of 2. For subset datasets, cells identified as NK cells

were subset followed by normalization, identification of variable

features, scaling, PCA, clustering and generation of UMAP.

Differential gene expression testing was performed using the

FindAllMarkers function in the Seruat R package to identify
Frontiers in Immunology 03
differences between two identified groups using the Wilcoxon

Rank Sum test. Genes were only considered significant if the

adjusted p-value, using Bonferroni correction, was p<0.05.

Tissue signatures were developed by determining significantly

different genes between NK cells within one tissue compared to NK

cells in all remaining tissues. The list of DEGs was then filtered to

include only genes that had an adjusted p-value <0.05, average log

fold change >1.0, and had expression in at least 20% of NK cells.

Representative genes were selected and categorized by associations

obtained from public databases (EnrichR, Uniprot, and NCBI).

To infer cell-cell interactions across all tissues as well as within

individual tissues, CellChat was used (20). The strengths and

weights of interactions were based on the CellChat ligand-

receptor interaction database. Pseudotime analysis was completed

using Monocle3 with clustering using a resolution parameter set to

1x10–3 and the root set based on visualizations of cluster IDs,

partition assignments, and tissue of origin.
Results

Canine NK cells vary in abundance and
immune interactions across tissues

To understand canine NK cell heterogeneity, activation, and

maturation states, we created a transcriptomic atlas of canine NK

cells across tissues and peripheral blood. We used two samples each

of canine placenta, spleen, liver, and lung from different donors in

addition to a single blood sample from a healthy beagle donor.CD45

+ cells were flow sorted to enrich for immune cells prior to

performing scRNAseq (Figure 1A; Supplementary Figure S1A).

After quality control and processing, samples were integrated for

a dataset of approximately 50,000 high-quality cells available for

analysis. We used Harmony integration to remove batch effects and

allow for cell grouping based on cell type rather than donor or tissue

(19), as demonstrated in uniform manifold approximant and

projection (UMAP) plots color coded by tissue or cell type

(Figures 1B, C). Cells were annotated manually as well as by

using the AddModuleScore function based on markers and gene

lists from relevant literature. Immune populations, including NK

cells, varied across tissues (Figures 1C, D) with the largest

proportion of NK cells found in the liver, making up nearly 45%

of CD45+ cells present. Proportions of other cell types also matched

known cell distributions in tissues including large populations of

myeloid cells in the lung and B cells in the spleen (Figures 1D, E).

Immune cell identities were determined by interrogation of cluster-

specific gene markers against canonical immune cell type markers.

Canine NK cells were confirmed as expressing NCR3 and KLRK1

but lacking the CD3 expression seen in CD4 and CD8 T cells

(Figure 1F), previously identified as a transcriptomic signature of

canine NK cells in the blood (21). Since cell-to-cell communications

and cues vary based on maturation and activation states, we used

CellChat to further predict cell interactions within tissues (20). NK

cells in the lung had the strongest interactions with myeloid cells,

which is particularly relevant due to the immunoregulatory
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FIGURE 1

Canine NK cells vary in abundance and immune interactions across tissues. (A) Schema depicting the canine samples obtained and study workflow.
(B, C) Uniform manifold approximation and projection (UMAP) visualizations of integrated samples encompassing nine total samples color coded by
(B) tissue or (C) cell type. (D, E) Bar plots depicting the percent of cells analyzed by (D) tissue compartment or (E) cell type. (F) Left: dotplot of
representative canonical gene markers used to confirm cell types. Dot color represents average gene expression and dot size represents the percent
of cells expressing the gene. Right: violin plot of key genes distinguishing NK cells from T lymphocytes. (G) Circle plots constructed using CellChat
visualizing predicted NK cell outgoing interactions separated by tissue. Lines represent the scaled weights or strength of the interaction. Total
weights and strengths of ingoing and outgoing interactions between all cell types across tissues visualized in the bottom right panel. (H) Bubbleplot
of significant predicted ligand receptor interactions between NK cells and other cell types, separated by tissue. Color of dot represents the
probability of the interaction, and size of dot corresponds to p-value. Only interactions expressed in a minimum of 10 cells were retained in
the analysis.
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interactions between NK and myeloid cells in the tumor

microenvironments (Figure 1G). Meanwhile, NK cells in the

spleen had minimal interaction with myeloid cells and stronger

interactions with neutrophils. The combined tissue circle plot

depicts a complex network of cell interactions across all cell types

(Figure 1G). These interactions were further elucidated by

determination of all significant ligand receptor interactions

between NK cells and other cell types (Figure 1H). The SELL-

SELPLG interaction between NK cells and other NK cells, B cells,

neutrophils and myeloid cells was previously appreciated in

treatment naive canine osteosarcoma between NK cells and

mature regulatory dendritic cells (22). The two interactions with

the highest probability were PTPRC-MRC1 in myeloid cells in the

lung and CLEC2D-KLRB1 with other NK cells in the liver

(Figure 1H). The CLEC2D-KLRB1 interaction has been noted

between myeloid and NK cells in human neuroblastoma and

between tumor and CD8 T cells in human rhabdomyosarcoma

(23, 24), pointing to the presence of immunosuppressive networks

in the liver.
Canine NK cells demonstrate tissue-
specific gene signatures

To better understand the characteristics of canine NK cells and

their diversity across tissues, we then analyzed the NK cell clusters

from the integrated dataset and performed unsupervised clustering

for higher resolution analysis of these cells. The majority of these

cells were from liver (n=6,643) (Figures 2A, B). NK cells across

tissues expressed genes associated with a conventional NK cell

signature, including NCR3, KLRK1, and GZMA (Figure 2C). The

topmost significant genes of tissue-specific NK cells when compared

to all remaining NK cells were interrogated to elucidate the

heterogeneity of NK gene expression (Figure 2D). Liver NK cells

had increased expression of conventional NK genes including

IL12RB2 and GZMA, the latter being identified as one of seven

genes that drive human NK cell subpopulations (25). Additionally,

NK cells in the lung expressed CXCL8, which is induced in activated

NK cells leading to the migration and activation of other cell types

such as dendritic cells, as well as CCL4 and CCL5 which have been

used to characterize the functional capacity of NK cells in human

lung (26, 27). We then analyzed these significant gene sets to

determine signatures that were representative of individual

tissues. In the placenta, we identified differential gene expression

for genes associated with differentiation and signaling (Figure 2E).

The involvement of RUNX1 and TCF7 in NK cell maturation has

been well-documented (13, 28, 29), and TCF7 expression has been

inversely correlated with lymphocyte exhaustion in human breast

cancer (30). Genes associated with activation and migration were

significantly enriched in lung NK cells (Figure 2F). Of note, we

observed upregulation of multiple immune recruitment associated

genes, such as CXCR4, CCL4, and CCL5, implicating lung NK cells

in the orchestration of coordinated multi-cellular immune

responses. Notably, the expression of these genes, particularly

CCL4, has been associated with the activated and mature, effector
Frontiers in Immunology 05
CD56dim classification in human NK cells (10, 25, 28, 31–33).

Interestingly, NK cells in the liver expressed mixed gene

signatures with genes associated with immunoregulation

differential expression in combination with genes associated with

activation and differentiation (Figure 2G). In the liver, one of the

most recognized inhibitory receptors in NK cells, CD96, was

upregulated simultaneously with cytotoxicity receptors GZMA

and FASLG, indicative of the sensitive balance of opposing

receptors that regulate NK responses. We also observed

expression of the activation marker, CD160, known to be

enriched in NK cells identified in hepatocellular carcinoma (32),

but also potentially a marker of early, tissue-resident ILC1 cells (13).

It is possible that our NK cell populations include ILC

contamination and additional work is needed differentiate this

critical population since ILCs have not been thoroughly

characterized in the dog. Like the placenta, the liver also had

increased expression of RUNX3 and IL12RB2, both associated

with NK precursors and differentiation (34, 35). Due to the

overlapping characterization of liver NK cells with both placenta

and lung NK cells, we then determined the key differences between

these tissue-resident NK cells with direct comparisons of liver and

lung NK cells and liver and placenta NK cells (Figures 2H, I). In

both lung and placenta NK comparisons, genes in liver NK cells had

relatively reduced significance and log2FC. We also observed

upregulation of AUTS2 and TXK in liver NK cells, both of which

been associated with poor prognosis and malignant progression in

multiple human cancers (36, 37). Additional differentiation-related

genes were confirmed in placenta NK cells, such as IL1R1, which

has been shown to play a role in precursor commitment to the NK

cell lineage (38). These data are consistent with tissue-specific gene

signatures for canine NK cells despite moderate functional overlap.

In addition, these data underscore the plasticity of canine NK cells

across t issues and organs related to maturation and

activation states.
Canine tissue and peripheral NK cells can
be categorized into distinct subsets

Given the known diversity of human NK cells across peripheral

blood and tissue, we then evaluated the heterogeneity of canine NK

cell subsets to determine if similar heterogeneity to human NK cells

was present. Canine NK clusters with overlapping genes were

combined into 6 dog NK clusters labeled d1-6 (Figure 3A). Using

pseudotime analysis, we determined that clusters d1 and d6 were

furthest along the inferred trajectory (Figure 3B). The pseudotime

trajectory could then be contextualized by classification of

subclusters by genes that were best able to distinguish one cluster

from another. These classifications included cytotoxicity, signaling,

regulation, differentiation, proliferation and trafficking, and

inflammation and migration (Figures 3C, D). The determination

of a mature, cytotoxic subset, d1, showed high alignment with the

CD56dimCD16bright subset of human NK cells based on their

effector functions and predominance in human peripheral blood

(Figure 3E). Generally, genes defining canine clusters d1, d2, and d3
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FIGURE 2

Canine NK cells demonstrate tissue-specific gene signatures. (A) UMAP representation of NK cells subset from the integrated dataset with 11 clusters
identified by unsupervised clustering. (B) UMAP visualization of NK cells color coded by tissue. (C) Heatmap of conventional NK cell markers in NK
cells analyzed by tissues. Columns represent cells and rows represent genes. Gene expression data for all features/genes were scaled and a random
downsample of 100 NK cells from each tissue were plotted for proportional visualization. (D) Heatmap showing the average expression of the top
five differentially expressed genes in NK cells from each tissue that distinguish them from NK cells in all other tissues. (E–G) Dotplots showing
expression of representative genes significantly upregulated in (E) placenta, (F) lung, and (G) liver NK cells compared to NK cells in all other tissues.
Genes included were present in >20% of cells, with average log2FC>1 and adjusted p-value<0.05. Gene category labels were determined by gene-
set library and gene ontology annotations associated with each gene. (H, I) Volcano plots with labels for the top seven significant genes that
differentiate (H) liver vs lung NK cells and (I) liver vs placenta NK cells based on direct DEG comparison.
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were expressed in multiple clusters with high expression of

conventional NK genes, while genes in d4, d5, and d6 had unique

gene expression with higher fold change in gene expression

compared to the other clusters (Figures 3D, F, G). In particular,

certain NK cell clusters had lower relative expression of classic NK

cell markers compared to other NK cells, such as cluster d6, but still

expressed NK markers significantly higher than the non-NK

populations. The cells that made up NK cluster d6 were highly

enriched for genes known to be involved in inflammatory processes
Frontiers in Immunology 07
compared to the remaining NK cell clusters. All subclusters were

present across tissues except for d6, which clustered farthest along

the pseudotime trajectory, was absent in PBMCs, and showed only

minimal presence in liver NK cells. Notably, the d6 cluster was most

abundant in lung NK cells, consistent with genes associated with

inflammatory response and infiltration, including CXCL8 which

was one of the top five significant genes in lung NK cells, suggesting

a highly specialized function for this NK cluster in lung mucosal

immunology. Genes involved in proliferation and trafficking were
FIGURE 3

Canine tissue and peripheral NK cells can be categorized into distinct subsets. (A) Clusters resulting from unsupervised clustering were combined
based on overlapping genes markers. The result was six canine NK cell clusters labeled d1-d6. (B) Cell trajectories projected onto the UMAP and
colored by pseudotime. (C, D) Significant genes that distinguish each canine NK subcluster from the remaining subclusters visualized by (C) average
expression heatmap and (D) average log2fold change bar plot. (E) Bar plots depicting the percent of cells grouped by canine NK subcluster and split
by tissue compartment. (F) Dotplot of conventional NK cell markers and their expression within cells of each canine NK cell subcluster. (G) Feature
plots depicting expression and distribution of selected significant genes that differentiate clusters d4 (left), d5 (center), and d6 (right).
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representative of cluster d5, and these clusters were most abundant

in lung and placenta NK cells. Notable differential gene expression

in this cluster included CD52 and IL7R, markers of CD56bright NK

cells in humans (10, 31, 39). As expected, the cluster associated with

differentiation, d4, was largely found in the placenta as well as in

liver NK cells. Genes in cluster d4 have also been associated with

CD56bright features in humans, such as LEF1, but also included

genes specific to stem cells, such as NOTCH2 found in human

decidual NK cells (40). Overall, the dog NK clusters demonstrated

significant heterogeneity consistent with human NK heterogeneity

(28, 41–43), consistent with gene signatures that aligned with our

distinct canine tissue-specific NK signatures and also overlapped

with established NK subtypes in humans.
Human NK cells similar to dog NK cells in
abundance and immune interactions
across tissues

The insights gained from the characterization of canine NK cells

can improve the comparative model and help advance NK

immunotherapy across species. To validate the results of our canine

NK data, we created an equivalent transcriptomic atlas of human NK

cells across tissues and peripheral blood. We acquired samples of

placenta, spleen, liver, lung, and blood from healthy/non-cancer

bearing human patients (Supplementary Table 2). The tissues were

dissociated into single cell suspension and sorted for CD45+ immune

cells before submitting for scRNAseq. After stringent quality control,

processing, and integration to remove batch effects, approximately

34,000 cells were available for analysis and visualization by UMAP

(Figures 4A, B). Expected cell types were found across the tissues,

including a NKT cell cluster that was not apparent in our canine

analysis. This NKT cluster was particularly evident in human placenta

where it is thought to play a crucial role in immune surveillance during

pregnancy (44) (Figures 4B, C). We identified 5,491 human NK cells

across our tissue samples, the majority again being from liver (n=1,985)

but with significant contributions from the lung (n=1,514), followed by

PBMC, placenta, and spleen with an average of 664 cells each. Similar

to our canine samples, the largest human NK proportion was found in

the liver, making up 36% of CD45+ cells, compared to the 44% found

in canine liver. Although the absolute proportions of NK cells in other

tissues were generally low across the analyzed human tissues similar to

dogs, there were differences in NK proportions. (Figures 4C, D). Most

notably, the lung had the second highest percent of NK cells in humans

but the lowest percent of NK cells in the dog. This is particularly

important given the unique role of lung-resident NK cells and the

unique expression signatures identified in human lung NK cells that

enable their functional role across pathologies and impact outcomes

(27). The identity of human cell types was confirmed by known

canonical markers, with the advantage of human NK cells having

unique expression of CD56 (NCAM1) not expressed in canine NK cells

(Figure 4E). We additionally found that NCR1 was a more reliable

marker of human NK cells than canine NK cells, which had distinctly

higher expression of NCR3. Once cell identities were annotated, we

again used CellChat to interrogate the inferred interactions between cell
Frontiers in Immunology 08
types across tissues, highlighting distinct interactions with NK cells

(Figure 4F). Intriguingly, unlike canine NK cells, human NK cells

appeared to have particularly strong interactions with CD8 T cells

across organs, likely representative of their coordinated roles in

immune surveillance and anti-tumor/anti-viral responses (45, 46),

with additional notable interactions between NK cells and both

myeloid and NKT cells in the lung. Canine NK cells did not show a

strong relationship with canine CD8 T cells, but we did notice stronger

interactions with myeloid cells in the lung compared to human. The

total interactions depict a similarly complex network of cell interactions

in both species with important differences in certain cell-type

communications, most notably with myeloid and CD8 T cells. We

then queried the ligand-receptor interactions that were significant

within the cell communication network to discern the states of the

NK cells based on their outgoing signals. There were greater numbers

of significant NK receptor-ligand interactions in human than in canine

tissues with 65 and 29, respectively (Figure 4G). However, certain

conserved patterns emerged across species, including the interaction of

PTPRC-MRC1 between myeloid and NK cells in the lung, which was

highly frequent in both human and dog. We also observed high

probability of interaction of CLEC2D-KLRB1 between NK cells and

CD8 T cells across all tissues in both human and dog. The multiple

HLA-dependent interactions between NK cells and CD8 T cells were

particularly striking in our human data, with the greatest probability

occurring between classical HLA class I molecules on NK cells and

CD8A/B on CD8 T cells in the peripheral blood. While there was

considerable overlap in receptor interactions between NK cells in dogs

and humans, we also observed key differences. For example, TIGIT-

NECTIN2 was a significant interaction between NK and myeloid cells

in humans which we did not observe in canine NK cells. TIGIT is a

critical immune checkpoint receptor in humans which we and others

have identified, with potential for immunotherapy targeting (18, 47).

The significance of this receptor in canine NK cells requires further

investigation and may have implications for comparative work.

Overall, our results suggest notable cross-species similarities in NK

proportions and cell interactions and further underline the homology

of NK immunogenomics between dogs and humans, especially when

compared to murine counterparts (9).
Discussion

In this study, we demonstrate varying abundance and genomic

profiles of canine NK cells across diverse tissues including blood,

spleen, liver, lung, placenta. We identified distinct canine NK

subpopulations throughout tissue compartments with variations

in gene expression associated with cytotoxicity, signaling,

regulation, and maturation, consistent with gene programs

adapted to their tissue of residence. NK cells in the placenta

upregulated markers associated with differentiation, NK cells in

the lung upregulated activation and migration markers, and NK

cells in the liver had a mixed signature with specific regulatory

genes. Importantly, we also observed large populations of NK cells

in the liver and strong interactions between NK cells and myeloid

cells in the lung, especially for dogs. NK cell abundances and cell
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FIGURE 4

Human NK cells similar to dog NK cells in abundance and immune interactions across tissues. (A, B) Schema depicting the human samples obtained and
the sorting and sequencing of CD45+ immune cells. Integration of five total samples were visualized by UMAP and color coded by (A) tissue or (B) cell
type. (C, D) Bar plots depicting the percent of cells split by (C) tissue compartment or (D) cell type. (E) Left: dotplot of representative canonical gene
markers used to confirm cell types. Dot color represents average gene expression and dot size represents the percent of cells expressing the gene.
Right: violin plot of additional genes distinguishing NK cells from T lymphocytes. (F) Circle plots constructed using CellChat visualizing predicted NK cell
outgoing interactions separated by tissue. Lines represent the scaled weights or strength of the interaction. Total weights and strengths of ingoing and
outgoing interactions between all cell types across all tissues visualized in the bottom right panel. (G) Bubbleplot of significant predicted ligand receptor
interactions between NK cells and other cell types, separated by tissue. Color of dot represents the probability of the interaction; size of the dot
represents p-value. Only interactions expressed in a minimum of 10 cells were retained in the analysis.
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interactions were compared to analogous human samples, and we

observed notable similarities and illuminating differences. Notably,

there were reproducibly strong interactions between NK cells and

CD8+ cells across human tissues which less distinct in dogs, but

interactions such as PTPRC-MRC1 were conserved across species.

Together, we present the first in-depth transcriptomic analysis of

tissue-resident canine NK cells, elucidating their diversity and

malleability, role as key immune constituents of canine tissues,

and validity as a model of human NK cells. The heterogeneity of

human NK cells has been well-documented in both peripheral

blood and tissue (13, 25, 28, 32), and we observed similar variability

in canine NK cells across blood and tissues, although within

individual organs there were reproducible findings among

individual NK cells consistent with tissue resident phenotypes.

We found distinct signatures that represent NK cells across

tissues, especially in the lung, placenta, and liver. Additionally, we

identified six canine NK cell subsets that were present across tissues,

implying the tunability of NK cells based on the tissue environment

and cell signals present (46, 48). NK cells in the lung and placenta

demonstrated activated/cytotoxic and undifferentiated gene

signatures, respectively, whereas in the canine liver, NK cells

demonstrated features of both activation and immunoregulation.

This detailed immunogenomic evaluation of canine NK subsets

is not only impactful in better characterizing the comparative scope

of canine models in immuno-oncology but also has direct

translational relevance for advancing adoptive NK therapy in

both dogs and people. Donor sources and genetic modifications

of human NK cells for adoptive cell therapy have continued to

advance in recent years (49–54), and numerous methods are being

employed to enhance antitumor efficacy through mechanisms

including blocking inhibitory receptors with monoclonal

antibodies, amplifying activation with bi- and tri-specific killer

engagers (BiKEs and TriKEs), and increasing persistence with

cytokine support. NK cell sources for cellular therapy include

umbilical cord blood (CB), induced pluripotent stem cells

(iPSCs), as well as peripheral blood and cell lines such as NK-92

(53, 55, 56). Cord blood-derived human NK cells are thought to

have higher proliferative capabilities than those in the peripheral

blood and, along with immature iPSC-derived NK cells, are more

readily engineered to create scalable NK cell products, including

chimeric antigen receptor (CAR) NK cells. Following this line of

reasoning, we characterize canine NK cells derived from the

placenta as expressing markers corresponding with early

development while maintaining indicators of signaling and

activation. Therefore, canine placental NK cells with

undifferentiated properties could be promising candidates for

novel immunotherapy approaches, particularly given recent

studies showing successful adoptive transfer of allogeneic PBMC-

derived canine NK cells with acceptable side effects (17). A clearer

understanding of canine NK cell biology will lay the foundation for

improved design and implementation of canine NK cell therapy.

Accurate models of human NK cel ls and related

immunotherapies are crucial for the forward momentum of the

field, especially given the limitations of murine models (57, 58).

While companion dogs are increasingly viewed as innovative models
Frontiers in Immunology 10
of human cancers, only recently have canine NK cells been

thoroughly studied though limited to NK cells in the blood (9).

Canine NK cells are notoriously difficult to identify, mostly due to

their lack of reproducible cell surface marker expression such as

CD56 in humans or NK1.1 in C57/BL6 mice. There has been

moderate success identifying canine NK cells by NKp46, the pan-

mammalian NK cell marker, using flow cytometry. NKp46 is a

transmembrane receptor encoded by the gene NCR1, part of a

family of natural cytotoxicity receptors (NCRs) that include NKp44

and NKp30, encoded by NCR2 and NCR3, respectively. Interestingly,

we and others have found that in transcriptomic analysis, NCR3 is

more highly expressed in canine NK cells than NCR1. Our results are

similar to those of Ammons et al. who observed from circulating

leukocytes in healthy and cancer bearing dogs that NCR3, rather than

NCR1, was more indicative of the transcriptional signature of canine

NK cells (21). In contrast to NCR1, NCR3 is not constitutively

expressed by NK cells in all mammals and has been identified as a

pseudogene in most mouse strains (59). Additionally, while NCR1 is

always activating, NCR3 can be activating or inhibitory based on the

splice variants NKp30A, NKp30B or NKp30C (60, 61), although

several studies associate NCR3 primarily with increased activation.

Human NK cells express both NCR1 and NCR3 at high levels (28),

and low expression of NCR3 specifically has been associated with

poor prognosis in lung cancer (61). The expression of NCR3 as a

canonical marker of canine NK cells represents an important example

of the value of comparative studies between human and canine NK

cells, highlighting the need to understand both the similarities and

differences between human and canine NK biology. In this

comparative analysis it is crucial to acknowledge the nuances of

bioinformatic comparisons between human and canine NK cells,

especially given the different markers used to identify NK cells in each

species. Ultimately, additional work is needed to understand the

immunological and clinical significance of these similarities and

differences, particularly in regard to scRNAseq analyses. These data

represent a basis through which further analyses of canine models of

human diseases can be explored, especially in relation to treatment

and clinical trials.

Overall, our single cell atlas of circulation and tissue-resident

canine NK cells reveals the variety of canine NK cell states and how

they are tailored to their specific tissue resident environment. Our

comprehensive transcriptomic analysis provides novel insights into

canine NK profiles across tissues with important comparison to

their human counterparts. This investigation increases our

understanding of both human and canine NK cells, advances

comparative NK cell biology and the canine model, and lays the

groundwork for future exploration of NK cell sources and

biomarkers of response for improved immunotherapy.
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