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Comprehensive pan-cancer
analysis indicates key gene of
p53-independent apoptosis is
a novel biomarker for clinical
application and chemotherapy
in colorectal cancer
Jianing Yan1†, Jingzhi Wang2†, Min Miao1* and Yongfu Shao1*

1Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China,
2Department of Radiotherapy Oncology, The First People’s Hospital of Yancheng, Jiangsu,
Yancheng, China
Background: Schlafen11 (SLFN11) is a key gene in p53-independent apoptosis

through ribosome stalling; however, systematic research has been conducted on

its role in the tumor immune microenvironment, clinical application, and

immunotherapy response across pan-cancer.

Method: Public data were downloaded and multi-omics approaches were used

to investigate the relationship between the expression level of SLFN11 and spatial

position, biological function, immune landscape, and clinical application values.

Cell Counting Kit-8 assay and quantitative real-time PCR were used to validate

the expression level of SLFN11 and drug sensitivity in colorectal cancer samples.

Result: Our study revealed that SLFN11 was downregulated in most cancers and

correlated with DNA repair, the P53 pathway and immune response in tumor

development progress by multi-omics analysis. Dysregulated SLFN11 is

accompanied by several immune cell infiltrations and immune-related

regulators, which can be a promising screening and prognostic biomarker and

chemotherapy predictive target for clinical application. In vitro experiments

proved that downregulated SLFN11 is a useful diagnostic biomarker and is

linked to imatinib resistance in colorectal cancer.

Conclusion: The expression level of SLFN11 has a substantial promise as a

valuable biomarker for diagnosis and a predictive indicator for assessing the

effectiveness of chemotherapy and immunotherapy in human cancers, which

deserves further additional basic experiments and clinical trials to prove.
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1 Introduction

Worldwide, cancer remains a major global health problem, with

persistently increasing numbers of new cases and deaths in recent

years (1). Although surgery, immune, and gene combination

therapy have had some effect, many patients still suffer from poor

or even ineffective therapy due to the emergence and spread of drug

resistance (2). The biological mechanisms underlying tumor

initiation and development have not been completely

characterized (3).

Apoptosis is a critical mechanism in the balance between cell

proliferation and cell death. As higher immunosuppression and

inhibition of apoptosis occur in the tumor microenvironment,

induction of tumor cell death by apoptosis is an important method

for drug design. Emerging study reveals chemotherapy causing DNA

damage can induce p53-independent apoptosis through ribosome

stalling and downregulated Schlafen11 (SLFN11) is key gene in this

progress, which is a novel cell apoptosis way with a promising

applicable future (4). However, few systematic comprehensive pan-

cancer studies have explored the predictive value of SLFN11 for

prognosis and immunotherapy response.

In this study, we downloaded and utilized various public

databases to detect differential expression levels of SLFN11 in

pan-cancer and normal tissues. Meanwhile, the potential function

and its influence on immune cell infiltration and chemotherapeutic

effects in pan-cancer are also characterized by single-cell lines and

multi-omics. In vitro experiments, such as quantitative real-time

PCR and drug sensitivity analysis, were performed to validate the

bioinformatics results.
2 Materials and methods

2.1 Public database retrieval and clinical
samples acquisition

The genomic expression profiles and clinical information of

pan-cancer patients were downloaded from The Cancer Genome

Atlas (TCGA) database (https://genome-cancer.ucsc.edu/), and

normalized RNA-seq data from the Genotype-Tissue Expression

(GTEx) data portal (https://www.gtexportal.org/home/index.html).

The protein levels of SLFN11 in cancers were acquired from The

University of ALabama at Birmingham CANcer data analysis Portal

(https://ualcan.path.uab.edu/index.html) (5). Pan-cancers

contained Adrenocortical carcinoma (ACC), Bladder Urothelial

Carcinoma (BLCA), Breast Cancer (BC), Cervical Squamous Cell

Carcinoma and Endocervical Adenocarcinoma (CESC),

Cholangiocarcinoma (CHOL), Colorectal Adenocarcinoma

(COAD), Diffuse Large B-cell Lymphoma (DLBC), Esophageal

Carcinoma (ESCA), Glioblastoma Multiforme (GBM), Head and

Neck Squamous Cell Carcinoma (HNSC), Kidney Chromophobe

(KICH), Kidney Renal Clear Cell Carcinoma (LIRC), Kidney Renal

Papillary Cell Carcinoma (KIRP), Low Grade Glioma (LGG), Liver

Hepatocellular Carcinoma (LIHC), Lung Adenocarcinoma
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(LUAD), Lung Squamous Cell Carcinoma (LUSC), Ovarian

Cancer (OV) , Pancrea t i c Adenocarc inoma (PAAD) ,

Pheochromocytoma and Paraganglioma (PCPG), Prostate

Adenocarcinoma (PRAD), Rectal Adenocarcinoma (READ),

Cutaneous Melanoma (SKCM), Stomach Adenocarcinoma

(STAD), Testicular Germ Cell Tumor (TGCT), Thyroid Cancer

(THCA), Thymoma (THYM), Uterine Corpus Endometrial

Carcinoma (UCEC), Uterine Carcinosarcoma (UCS). The Human

Protein Atlas (HPA, https://www.proteinatlas.org/) online database

was used to obtain protein immunohistochemistry data). The

relationship between SLFN11 expression and Copy number

variation (CNV), microsatellite instability (MSI) were calculated

us ing UCSCXenaTools (v1 .4 .7) onl ine tool (ht tps : / /

shiny.hiplot.com.cn/ucsc-xena-shiny) (6). Mutation data were

acquired from cBioPortal (https://www.cbioportal.org/), an online

pan-cancer genomics tool. In the methylation analysis, TSS1500

(from -200 to -1500 bp upstream of TSS), TSS200 (from -200 bp

upstream of TSS), 1stExone, (the first exon), 5’UTR (5’ untranslated

region [UTR]), the median value is calculated to characterize the

methylation level of each sample. Spearman correlation analysis

investigates the relationship between methylation level and

gene expression. Clinical colorectal cancer (CRC) tissues with

complete clinical data and paired adjacent non-tumorous tissues

(5 cm away from the edge of CRC tissue) were collected from

30 newly diagnosed adult patients with advanced CRC who

underwent gastrectomy at The First Affiliated Hospital of Ningbo

University, China, between 2021 and 2023. All patients voluntarily

participated in the study and underwent curative resection. All

procedures were performed in accordance with the principles of the

Declaration of Helsinki, and our study was approved by the Ethics

Committee of the First Affiliated Hospital of Ningbo University

(No. KY20210762).
2.2 Single-cell transcription data

Single-cell analysis was performed using the Tumor Immune

Single-cell Hub 2 (TISCH2) database (http://tisch.comp-

genomics.org/home/), an online tool with detailed cancer

transcription data (7). CRC spatial transcriptomic data were

downloaded from CRC_WholeTranscriptomeAnalysis_10x, and

the R package seurat was used for computing dimension

reduction and clustering analyses. All codes for transcriptomic,

spatial, and statistical analyses can be found in github.com/polyak-

lab/LeukocyteDCISIDC. In order to visually display the distribution

of genes in different cell types in each microregion, the Sparkle

database (https://www.grswsci.top) was used to perform spatial

transcriptome analysis, which integrated 10xVisium sequencing to

construct a pan-cancer spatial transcriptome map and adopted the

SpatialPlot function in the Seurat package for visual analysis. This

function can display the largest proportion of cell type information

in the spatial transcriptome data in the form of an intuitive image,

and generate a color-coded dot plot by combining the cell

distribution and spatial location. and spearman analysis were

used for data analysis (8).
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2.3 Biological function annotation via
multi-omics

TCGA patients in each cancer type were preliminarily divided

into high and low groups based on the expression level of SLFN11.

KEGG pathway enrichment analysis, gene ontology (GO)

classification and Gene Set Enrichment Analysis (GSEA) were

used to dig out biological functions which was visualized by R

packages “clusterProfiler [V 4.4.4]” and “ggplot2”. P value < 0.05

and False discovery rate (FDR) < 0.25 represent statistically

significant differences.
2.4 Immune cell infiltration
landscape analysis

The TIMER 2.0, database (http://timer.cistrome.org/) was used

to estimate the correlation between the expression of SLFN11 and

immune cell infiltration (9, 10). 6 immune subtypes were applied to

divide the TCGA samples including C1 (Wound Healing), C2

(IFN-g Dominant), C3 (Inflammatory), C4 (Lymphocyte

Depleted), C5 (Immunologically Quiet), C6 (TGF-b Dominant)

(11). The relationships between the expression level of SLFN11 and

immune cell infiltrations were analyzed by R packages “GSVA

(1.46.0)” and “estimate (1.0.13)” with the default parameters (12).

The determination of DNA genomic status as Q1-Q4 typically

involves a classification system based on the quantification of

certain genomic features or alterations. Based on predefined

criteria, the genomic status is classified into quartiles (Q1-Q4).

Spearman’s correlation analysis and ANOVA calculation were used

to calculate relevance flexibly.
2.5 Clinical application potential analysis

TCGA and GTEx samples were used to calculate the area under

the curve (AUC) value to explore tumor screening potential.

Univariate Cox proportional hazard regression was employed to

assess the prognostic effect of SLFN11 using SPSS software (V26.0,

USA), which was visualized by forest plot using the R package

ggplot2[3.3.6]. Tumor Immunotherapy Gene Expression Resource

(TIGER, http://tiger.canceromics.org/) is a web-accessible portal for

integrative analysis of the gene expression data related to tumor

immunology, which was used to predict the relationship between

the expression of SLFN11 and immunotherapy response. The

Cancer Therapeutics Response Portal database (https://

portals.broadinstitute.org/ctrp.v2.1/), Genomics of Drug

Sensitivity in Cancer (GDSC, https://www.cancerrxgene.org/), and

PRISM Repurposing dataset (https://depmap.org/portal/prism/)

were employed to estimate drug sensitivity (13–15). Lower AUC

values suggest higher sensitivity to treatment.

Differentially expressed genes between higher and lower

SLFN11 samples in each cancer type were acquired from previous

GSEA analysis, as mentioned before. The 500 most highly
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overexpressed or downregulated genes were identified as SLFN11-

related signatures. Subsequently, 1288 compound-related

signatures, which were downloaded from the database website

(https ://www.pmgenomics.ca/bhklab/sites/default/fi les/

downloads), were used to calculate the matching score (16, 17). This

result was summarized and visualized using the pHeatmap package

(v1.0.12) in R.
2.6 Expression validation by quantitative
real-time PCR

The separated colorectal tissues were preserved by immediate

immersion in RNA save solution (Biological Industries, Israel) in an

Eppendorf tube and immediately frozen by immersion in liquid

nitrogen for RNA isolation. All RNAs was extracted from cells and

tissues using TRIzol reagent (Ambion, Carlsbad, CA, USA)

according to the manufacturer’s instructions. Two micrograms of

RNA were used as a template and reverse transcribed to

complementary DNA (cDNA) using a GoScript Reverse

Transcription (RT) System (Promega, Madison, WI, USA)

according to the manufacturer’s instructions. Subsequently, qRT-

PCR was performed using GoTaq qPCR Master Mix (Promega)

under the following conditions: 95°C for 5 min, followed by 40

cycles of 94°C for 15 s, 52°C for 30 s, and 72°C for 30 s. GAPDH

mRNA was chosen for normalization and the primer sequences

were as follows: SLFN11, forward: 5’-CCTGGTTGTGGA

ACCATCTT-3,’ and reverse: 5’-CTCTCCTTCTCTTGGTC

TCTCT-3’; GAPDH: forward, 5’-ACCCACTCCTCCACCTTTG

AC-3,’ reverse, 5’-TGTTGCTGTAGCCAAATTCGTT-3’ (18).

The DCt or 2-DDCt method was used for quantification (DCt=
CtSLFN11- CtGAPDH, DDCt=DCttumor-DCtnormal). A higher

DCt value indicates a lower expression level (19).
2.7 Cell culture and Cell Counting Kit-8
assay

The human colon epithelial cell line (NCM460) and three CRC

cell lines (HCT116, HT29, and SW620) were purchased from the

Chinese Academy of Sciences Cell Bank (Shanghai, China). All cells

were maintained by supplementation with 10% fetal bovine serum

(FBS) and grown in humidified air containing 5% CO2 at 37°C in

RPMI 1640 or McCoy’s 5A medium (Invitrogen, USA). Imatinib

was purchased from Chemie Tek (Indianapolis, IN, USA) and

prepared as a 20mM stock solution in dimethyl sulfoxide.

Imatinib was serially diluted to nine different concentrations and

then co-cultured with CRC cells for 12 h (20).

Cell proliferation was assessed using the Cell Counting Kit-8 kit

(Beyotime Biotechnology) according to the manufacturer’s

instructions. The cells were plated in 96-well plates in triplicate at

approximately 4×103 cells per well and cultured in the medium.

The cells were then treated with CCK-8 reagent, and the absorbance

(450 nm) was measured at the indicated time points.
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2.8 Nomogram model for CRC

In order to better predicting distal survival outcome, we

included common clinicopathological factors to construct a

nomogram prognostic model. R package survival [V3.3.1], and

rms [V 6.3-0] were utilized to establish the 1-, 3- and 5-year

overall survival time prediction nomogram model and calibration

curves. Concordance index (C-index) was calculated to access the

discrimination of nomogram (21). The calibration curves lie on the

diagonal 45-degree line suggesting an ideal nomogram model.
2.9 Statistical analysis

The analyses in this study were performed using R software

(version 4.2.1), SPSS software (V26.0, USA), or GraphPad (version

9.5.0). The support packages were used as previously described. P <

0.05 was considered statistically significant difference.
3 Results

3.1 Abnormal expression level of SLFN11 in
pan-cancer

To systematically detect the expression patterns in pan-cancer,

we downloaded and compared the RNA expression levels of

SLFN11 in TCGA database, as shown in Figure 1A. Our results

implied that SLFN11 was significantly downregulated in the

majority of cancers, such as BRCA, COAD, KICH, LIHC, LUAD,

LUSC, PRAD, READ, THCA, and UCEC, which is in accordance

with the dilemma of chemotherapy resistance in clinical settings.

We then employed the GTEx database to increase the normal

sample volume to enhance contrast, which clearly showed that

SLFN11 was lower in more types of cancer (Figure 1B).

Copy number variation is a common variation in DNA sequences

that can influence the expression and function of nearby and distal

genes, causing phenotypic differences. We computed the expression of

SLFN11 DNA in the five CNV types shown in Figure 1C. The

expression of SLFN11 was the lowest in the C1_Deep Deletion group

and the highest in the C5_Amplification group. Alteration frequency

and phosphorylated mutation sites are shown in Supplementary

Figure 1 (Supplementary Figure S1). Microsatellite instability (MSI) is

a symbol of mismatch repair (MMR) deficiency and is related to distal

tumor prognosis. We found abnormal expression levels of SLFN11 in

several MSI subtypes in COAD, STAD, and UCEC (Figure 1D).

Furthermore, we examined the relationship between SLFN11

expression and methylation (Figure 1E) and the differences in

methylation between tumor and normal tissues (Figure 1F).

To investigate the expression level of SLFN11 protein, we used

the UALCAN tool and compared the differential expression of

SLFN11 protein in nine types of cancers (Figure 2A), which showed

that SLFN11 was remarkably decreased in BRAC, OV, LUAD, and

LIHC. Different proportions of SLFN11 staining levels in the HPA

database were calculated and are shown in Figure 2B. In summary,
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we detected and compared the expression of SLFN11 in multi-

omics, and we hypothesize that SLFN11 play a key role in

tumor development.
3.2 Single cell mapping of
SLFN11 expression

Single-cell RNA sequencing is an important method that allows

mapping of gene expression to observe heterogeneity in the tumor

microenvironment. We used various datasets from TISCH to

comprehensively analyze the expression level of SLFN11 in a

single-cell line (Figure 3A). SLFN11 is extensively downregulated in

fibroblasts and monocytes. For example, the expression pattern of

SLFN11 was clearly visualized in COAD by UMAP plots using the

GSE166555 dataset (Figures 3B, C). Finally, the spatial transcriptomic

landscape of COAD tissues was characterized using spatial

transcriptomic technology (Figures 4A–C). It is apparent to find

that SLFN11 was prominently downregulated in the malignant,

mixed area (Figure 4D) and the relationship between SLFN11

expression and single cell was displayed in Figure 4E according to

the spearman analysis. All of these results showed that the expression

of SLFN11 focused on normal zone than mixed and tumor zone in a

single sample, which implied that decreasing SLFN11 and the tumor

microenvironment are inextricably linked with a high probability.
3.3 Biological function exploration of
SLFN11 in pan-cancer

Given the abnormal expression levels in cancers, we further

focused on exploring the biological functions of SLFN11 in cancers.

We first compared and evaluated the biological functions of higher

and lower SLFN11 levels based on the median value in a single cell

line (Figure 5A). Interestingly, overexpression of SLFN11 was

related to the interferon response, inflammatory response,

allograft rejection, IL6/JAK/STAT3, and IL2/STAT5 signaling

pathways using GESA analysis (Figure 5B). At the same time,

downregulated SLFN11 was correlated with DNA repair, the p53

pathway, and oxidative phosphorylation. The subsequent KEGG

analysis also supported this result (Supplementary Figure S2). All

evidence suggests that SLFN11 participates in the immune response

and immune infiltration during oncogenesis.
3.4 Immune infiltration landscape of
SLFN11 in pan-cancer

Considering the relationship between SLFN11 expression and an

altered immune profile, we systemically investigated the immune cell

infiltration microenvironment in pan-cancer. We first used TCGA

database to evaluate the expression level of SLFN11 mRNA in six

immune subtypes (Figure 6A), which indicated that lower SLFN11

always focused on the C4 group (lymphocyte depleted) and higher

SLFN11 concentration in the C2 group (IFN-gdominant). Likewise,
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1571137
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yan et al. 10.3389/fimmu.2025.1571137
different DNA genomic status analyses revealed diverse immune

responses (Figure 6B) in which the genomic status is classified into

quartiles (Q1-Q4). Then, the TIMER 2.0 database was utilized to

reveal which immune cell types could be influenced by SLFN11

expression in pan-cancer (Figure 6C). Our results suggest high
Frontiers in Immunology 05
immune cell infiltration levels of COAD and low levels of THYM,

which revealed entirely different immune microenvironments in the

two cancers. Meanwhile, the association between the expression of

SLFN11 and immune-related regulators, such as chemokines,

chemokine receptors, immunoinhibitors, and immunostimulators,
FIGURE 1

The dysregulation expression pattern of SLFN11 in pan-cancers. (A) The expression level of SLFN11 in TCGA cohorts. (B) The expression level of
SLFN11 in TCGA and GTEx cohorts. (C) The expression level of SLFN11 in CNV groups. (D) The expression level of SLFN11 in MSI subtypes. (E) The
relationship between SLFN11 expression and methylation in pan-cancers. (F) The relationship between SLFN11 expression and the difference of
methylation in tumor and normal tissue (*P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001).
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was detected (Supplementary Figure S3), which provided bright

prospects of biomarkers and immunotherapy for clinical use.
3.5 Estimation of clinical values of SLFN11

Considering the differential expression pattern of SLFN11 and its

abundant biological functions, we further evaluated the clinical

application potential of SLFN11. We used TCGA and GTEx data to

calculate the diagnostic AUC values, as shown in Figure 7A. A higher

value of AUC suggested more convinced results, which implied that

SLFN11 can be a novel screening biomarker in CHOL, COAD, KICH,

KIRC, LUAD, LUSC, PAAD, PRAD, READ, THCA, and UCEC

(AUC>0.8). Furthermore, the overall survival time of SLFN11 was

also assessed and visualized in a forest plot, which implied that

SLFN11 had predictive and prognostic value in BLCA, GBM, KIRC,

KIRP, LGG, SKCM, THYM, and UVM (Figure 7B).

Chemotherapy and immunotherapy, along with surgery and

radiation, are the main cancer treatments. Understanding the effects

of drug resistance on both the tumor microenvironment and tumor

heterogeneity is important for combining chemotherapy with

immunotherapy. We investigated the relationship between the

expression of SLFN11 and chemotherapy drugs using the CTRP,

GDSC1, GDSC2, and PRISM databases. We found that the
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expression level of SLFN11 was associated with drug sensitivity to

clofarabine, cytarabine, gemcitabine, olaparib, pevonedistat, and

SB216763 (Figure 7C). Moreover, our results indicated that

SLFN11 might serve as a novel target for immunotherapy, as it

correlated with a higher AUC to NSCLC, Melanoma, KIRC

(Figure 7D). Finally, several compounds with |XSum| ≥ 0.5 were

identified targeted SLFN11 using CMAP analysis such as W.13 in

ACC, COAD, LUAD, PAAD, READ, STAD and imatinib in HNSC,

OV (Figure 7E). Our results comprehensively evaluated the clinical

applications of SLFN11, which deserves further validation in recent

clinical trial cohorts.
3.6 Expression level and susceptibility
test validation

CRC cells and clinical CRC samples were used to validate the

expression and clinical significance of SLFN11. SLFN11 was

overexpressed in HCT116 cells (P <0.05) and downregulated in

HT29 (P >0.05) and SW620 (P <0.05) cells (Figure 8A). Moreover,

the expression level of SLFN11 was downregulated in CRC tissues

compared to paracarcinoma tissues (Figure 8B, P < 0.001), which was

consistent with TCGA data. The ROC curve of SLFN11 is shown in

Figure 8C, whose diagnostic sensitivity and specificity were 66.67%
FIGURE 2

The expression of SLFN11 protein in pan-cancers. (A) The expression level of SLFN11 protein in CPTAC cohorts. (Red: tumor, Blue: normal). (B) The
expression level of SLFN11 in HPA database.
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and 73.33%, respectively. Furthermore, a nomogram model with

several clinical characteristics and calibration curves were built for

prognosis prediction in Supplementary Figures S4A, B. The C-index

of the model was 0.764 (95% CI 0.735-0.792), which suggested this

model can well guide clinical practice.

As mentioned before, imatinib could be a potential therapeutic

drug based on CMAP analysis. We co-cultured CRC cells at
Frontiers in Immunology 07
different concentrations and detected cell viability using the CCK-

8 assay. The results are shown in Figure 8D, and the half maximal

effective concentration (EC50) was calculated. Obviously, SW620

was significantly resistant to imatinib with a higher EC50 (11.18 ±

0.48mM) compared (3.714 ± 0.102mM) to HT29 and HCT116

(2.783 ± 0.009mM), which was consistently to the expression level

of SLFN11.
FIGURE 3

Single cell mapping of SLFN11. (A) The expression level of SLFN11 in single cell line in TISCH cohorts. (B, C) The COAD tumor microenvironment and
the expression of SLFN11 in GSE166555.
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4 Discussion

The majority of tumors harbor a large number of genomic

aberrations, and tumors always evolve rapidly when they get new

mutations, which contributes to the development of drug resistance
Frontiers in Immunology 08
as intratumor genomic heterogeneity increases (22). Genome

lesions trigger a series of biological responses helping cells to

repair damaged DNA or induce apoptosis in which p53 tumor-

suppressor protein is a vital transcription factor that modulates

many DNA damage responses called the ‘Guardian of the Genome’
FIGURE 4

The spatial distribution of SLFN11 in CRC. (A) Localization of all cells after deconvolution of the spatial transcriptome in CRC sample. (B) Maximum
value of each spot cell component after deconvolution of the spatial transcriptome. (C) The expression level of SLFN11 in each spot in CRC sample.
(D) The expression level of SLFN11 in different zone of CRC tissue. (E) The relationship between SLFN11 expression and single cell via
spatial transcriptome.
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(23). However, the reasons why tumor cells lacking p53 can

undergo apoptosis upon DNA damage remain unknown.

Recently, Boon et al. showed that DNA damage can induce p53-

independent apoptosis through ribosome stalling, in which transfer

RNAse SLFN11 is required for UUA stalling and global translation

inhibition (4). This finding provides an important explanation for
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the frequent inactivation of SLFN11 in chemotherapy-unresponsive

tumors. Hence, we aimed to systematically analyze the role of

SLFN11 in pan-cancer to offer a new theoretical complement for

future research.

In this study, the expression level of SLFN11 was determined in

pan-cancers using several public databases. All genomic, RNA, and
FIGURE 5

The biological function of SLFN11 in pan-cancers. (A) The relationship between different signal pathway and the expression level of SLFN11 in single
cell. (B) Biological function of SLFN11 was annotated by GSEA analysis.
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protein omics data suggest that SLFN11 is downregulated in most

solid tumors. Historically, MSI has been a reliable predictive

indicator of tumor prognosis and chemotherapy. MSI is present

in 15% of CRC, 3% Lynch syndrome, and 12% sporadic, and is

traditionally classified into three distinct groups according to

Bethesda guidelines: MSI-high (MSI-H), MSI-low (MSI-L), or
Frontiers in Immunology 10
MSI stable (MSS) (24). Our results showed that dysregulated

expression of SLFN11 was associated with MSI-H and MSI-L

compared to the MSS group, which lays the foundation for

further survival and drug research in COAD.

ScRNA-seq and combinations of spatial transcriptomic

techniques enable the study of single-cell gene expression in
FIGURE 6

The immune landscape of SLFN11 in tumor immune environment. (A) The expression level of SLFN11 mRNA in 6 immune subtypes. (B) Diverse
immune response in different DNA genomic status. (C) The correlation between the expression level of SLFN11 and the immune infiltration level of
each immune cell using TIMER 2.0.
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complex, highly spatially organized tissues (25). As we all known,

fibroblasts may regulate transmigration of monocytes and

monocytes are attracted in tumor tissue by different chemokines

produced by cancer cells, fibroblasts or immune cells. Fibroblasts

also induce an immune response by alerting the surrounding

immune cells, such as monocytes and DCs (26). Our scRNA-seq

data suggest that SLFN11 is extensively downregulated in
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fibroblasts and monocytes, which may be associated with

extensive fibrosis and poor immunotherapy response. In addition,

spatial transcriptomic data provide a better understanding of

transcriptome dynamics in a spatial context in CRC tissues.

Given the breakthrough in p53-independent apoptosis, the

biological functions of SLFN11 require further investigation.

KEGG, GSEA analyses showed that SLFN11 was tightly
FIGURE 7

The clinical application potential of SLFN11. (A) The diagnostic AUC of SLFN11 in pan-cancers using TCGA and GTEx cohorts. (B) The relationship
between the expression level of SLFN11 and overall survival time. (C) The correlation between the expression level of SLFN11 and several
chemotherapy drugs using CTRP, GDSC1, GDSC2, PRISM databases. (D) The immunotherapy AUC of SLFN11 in pan-cancers. (E) The association
between several compounds and pan-cancers.
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correlated with DNA repair, p53 pathway, and immune response.

Interestingly, further analysis also revealed a close relationship

between dysregulated expression levels of SLFN11 and immune

cell infiltration and immune-related regulators, such as higher

immune cell infiltration levels in COAD and lower levels in

THYM. It has been found that upregulated SLFN11 correlates

with higher immune activation in breast cancer, suggesting an

important role of its immune and molecular variability in breast

cancer (27). The role of SLFN11 in immune infiltration remains

obscure, and we constructed a comprehensive landscape of SLFN11

in pan-cancer, investigating a critical immune context to consider

when targeting immune behavior therapeutically in the future.

To date, combination chemotherapy and surgery are

indispensable strategies for CRC therapy (28). Due to complicated

tumor heterogeneity and the immune microenvironment, there is

still a lack of predictive markers to directly use chemotherapy for

CRC patients, and overuse of chemotherapy increases the economic

burden on society (29, 30). Hence, the potential clinical applications
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of SLFN11 were evaluated. Overall, SLFN11 is a promising

prognostic and screening biomarker, as well as a novel

chemotherapy target. Subsequently, qRT-PCR was performed to

validate the difference in expression and diagnostic value of CRC,

which was in accordance with previous results. Inspired by immune

response and chemotherapy analysis, we chose imatinib, an

important tyrosine kinase inhibitor, to explore the relationship

between the expression of SLFN11 and chemotherapeutic drug

sensitivity. Recent evidence pointed out that mismatch repair,

microsatellite instability and tumor mutational burden are

independent biomarkers that complement each other for

predicting immune checkpoint inhibitors efficacy (31). Immune

checkpoint inhibitors have led to impressive, deep, and long-lasting

responses in CRC in both the first-line and the refractory setting

(32). Imatinib and sunitinib are the most common clinically used

small molecule inhibitors against mutant PDGFRA (33). However,

the relationships between imatinib sensitivity and SLFN11 level as

well as CRC are still unknown. As a hot drug in clinical
FIGURE 8

The validation of clinical application of SLFN11. (A) The expression level of SLFN11 in normal human colon epithelial and CRC cell line. (B) SLFN11 is
significantly downregulated in CRC tissues. (C) SLFN11 has a great AUC for CRC diagnosis. (D) Lower expression level of SLFN11 associated with
imatinib resistance by CCK-8 assay. (*P<0.05, ***P<0.001).
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chemotherapy, imatinib has a promising future in clinical

application so we are interested about the curative effect about

imatinib in CRC. Meanwhile, the safety about W.13 is vague and it

is difficult to buy and set its titer. Thus, we choose imatinib for

further validation. SLFN11 was prominently downregulated in

SW620 cells compared with that in NCM460 cells. Although the

difference did not reach statistical significance, we still observed a

trend of lower expression levels in HT29 cells. Interestingly, the

EC50 showed an obvious upward trend as SLFN11 gradually

decreased, which demonstrated that lower SLFN11 levels were

associated with higher resistance to chemotherapy drugs and

higher tumor cell viability in CRC. SLFN11 may be a novel

diagnostic biomarker and chemotherapy predictive target for CRC.

Our study still exists some limitations and imperfection. For

example, the difference did not reach statistical significance in HT29

cells in drug sensitivity experiment. As limited by funds and

conditions, more basic experiments in molecular biology such as

SLFN11 knocking-down and reserve needs to be performed in the

future. Meanwhile, conducting a longitudinal study to track the

long-term outcomes of the interventions or phenomena observed in

our research would provide deeper insights into the durability and

potential late effects of the findings.

In conclusion, our study revealed that SLFN11 is downregulated

in most cancers compared to normal tissues, which correlates with

DNA repair, the P53 pathway and immune response in tumor

development progress by multi-omics analysis. Notably, the

expression level of SLFN11 shows substantial promise as a

valuable biomarker for the diagnosis and assessment of the

effectiveness of chemotherapy and immunotherapy in human

cancers, which deserves further basic experiments and clinical trials.
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