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The ‘shock and kill’ approach to an HIV cure involves the use of latency reversing

agents (LRAs) to reactivate latent HIV, with the aim to induce death of infected cells

through virus induced cytolysis or immune mediated clearance. Most LRAs tested

to date have been unable to overcome the blocks to transcription elongation and

splicing that persist in resting CD4+ T cells. Furthermore, most LRAs target host

factors and therefore have associated toxicities. Therefore, there remains a high

need for HIV-specific LRAs that can also potently upregulate expression of

multiply-spliced HIV RNA and viral protein. The HIV Transactivator of

Transcription (Tat) protein plays an important role in viral replication - amplifying

transcription from the viral promoter - but it is present at low to negligible levels in

latently infected cells. As such, it has been hypothesized that providing Tat in trans

could result in efficient HIV reactivation from latency. Recent studies exploring

different types of Tat-based LRAs have used different nanoparticles for Tat delivery

and describe potent, HIV-specific induction of multiply-spliced HIV RNA and

protein ex vivo. However, there are several potential challenges to using Tat as a

therapeutic, including the ability of Tat to cause systemic toxicities in vivo, limited

delivery of Tat to the HIV reservoir due to poor uptake of nucleic acid by resting

cells, and challenges in activating truly transcriptionally silent viruses. Identifying

ways to mitigate these challenges will be critical to developing effective Tat-based

LRA approaches towards an HIV cure.
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Introduction

Following cessation of antiretroviral therapy (ART) in people with HIV (PWH), HIV

rapidly rebounds from a pool of latently infected cells (1, 2). Latently infected cells contain an

integrated intact provirus but express minimal HIV RNA and proteins, resulting in a long-

lived persistent reservoir (3). Strategies towards an HIV cure have focused on reducing the
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number of latently infected cells such that PWH can maintain

undetectable viral loads in the absence of ART [reviewed in (4)].

The ‘shock and kill’ approach involves the use of latency reversing

agents (LRAs) to upregulate HIV RNA transcription and protein

expression, resulting in the death of an infected cell by immune-

mediated clearance or virus-mediated cytotoxicity [reviewed in (5)].

Several classes of LRAs with distinct mechanisms of action have

been described, and many have demonstrated strong induction of

HIV RNA in vitro and ex vivo (6–10). Clinical trials have since been

conducted to assess the performance of these in vivo, of which a

common primary endpoint for efficacy has been cell-associated,

unspliced HIV RNA as a measure of HIV reactivation (see (11) for a

systematic review). Although some LRAs both alone and in

combination were able to increase unspliced HIV RNA in PWH

on ART, few demonstrate a decrease in HIV DNA and/or the

replication competent inducible HIV reservoir, indicating a need

for more potent LRAs with novel mechanisms of action (11–14).

This lack of potency of current LRAs is thought to be due to two

reasons. Firstly, whilst most current LRAs can upregulate

transcription initiation, few if any, are able to overcome the

subsequent blocks to transcription elongation, completion and

splicing (15–17). As splicing is a pre-requisite for HIV protein

production, it is considered the best predictor of efficient latency

reversal (18), meaning any LRA must be able to potently upregulate

multiply-spliced HIV RNA. Secondly, multiple LRAs have been

shown to cause various adverse effects as they target host pathways

and therefore have effects on cellular transcription and often

undesirable effects on immune responses (14, 19, 20). Since PWH

can live long, healthy lives on ART, any potential HIV cure

approach must minimize toxicities while maximizing efficacy

(21, 22). In this review, we focus on the rationale, feasibility and

findings of utilizing the HIV Transactivator of Transcription (Tat)

protein as a next-generation LRA and discuss strategies for

maximizing potency and minimizing toxicities.
Tat structure and function

Tat is a small, basic protein of about 14-16 kDa, which is encoded

by two exons that are alternatively spliced to become a full-length

protein (23). Tat most commonly spans 101 amino acid residues

(Tat101) (24), but a premature stop codon at residue 87 frequently

occurs, encoding a truncated Tat86 variant (25). The functional

domains of Tat largely reside in the first coding exon (amino acids

1-72; Tat72) such that it can function independently of the second

coding exon (26, 27). The proline-rich domain, or N-terminus,

mediates Long Terminal Repeat (LTR) transactivation through

interactions with positive transcription elongation factor b and is

mostly hypervariable except for a highly conserved tryptophan at

position 11 (Trp11). In contrast, the cysteine-rich domain contains a

highly conserved string of cysteines at positions 22, 25, 27, 30, 31, 34

and 37 and mutations at these sites can significantly affect Tat

function (28). The third domain spans residues 38-48 and contains

a hydrophobic core sequence. Together, the first three domains
Frontiers in Immunology 02
compromise the minimal transactivation region which itself is

sufficient for transactivation capability (29). The remainder of the

first coding exon, referred to as the basic region, is comprised of the

Transactivation Response Element (TAR)-binding motif

(49RKKRRQRRR57) (30) and a glutamine rich region which is

implicated in Tat-mediated apoptosis of T cells (31). Amino acids

31-61 within the first coding exon have also been shown to be related

to Tat-related morbidities (32). Although the transactivation domain

is localized to Tat72, the second coding exon plays a role in the control

of HIV transcription in CD4+ T cells by kappa-light-chain enhancer

of activated B cells (NF-kB) (33). The second coding exon largely

contributes to viral infectivity and is essential for efficient replication

of macrophage-tropic HIV strains (34). This region also contains a

73RGD75 motif which allows for interactions with cell surface

molecules, triggering intracellular signaling cascades (35).

HIV transcription is driven by the Tat protein, which amplifies

expression from the viral promoter within the HIV LTR (36). By

binding to the TAR hairpin in the nascent RNA strand, Tat recruits p-

TEFb (37), resulting in the hyperphosphorylation of RNA polymerase

II and increased transcriptional processivity from the LTR (Figure 1)

(38). This is essential for the production of full-length unspliced HIV

RNA, which can be spliced into singly spliced and multiply-spliced

HIV RNA which are translated into the various HIV proteins for

virion formation. In latently infected cells, Tat levels are reduced,

rendering viral transcription low or silent, whilst in productively

infected cells, Tat levels are elevated and therefore enhance HIV

transcription (39, 40). Even when a cell is in a resting state, stochastic

fluctuations in Tat expression can drive a cell to alternate between

productive infection or latency (40, 41), which is sufficient to

overcome cell-driven silencing of HIV transcription (42).
Mechanisms of Tat secretion and uptake

Tat secretion occurs via an unconventional secretion pathway (43),

which is initiated by binding of the protein to phosphatidylinositol-4,5-

bisphosphate (PtdIns(4,5)P2), a phospholipid component of the

inner leaflet of the plasma membrane (Figure 2) (44). These

interactions are mediated by the basic domain of Tat and the

conserved Trp11 within the first coding exon. Trp11 inserts into the

plasma membrane as a pre-requisite for secretion (45).

Tat also contains a protein transduction domain which allows it

to penetrate cells from the extracellular environment (46). This

mechanism of entry is so efficient that multiple groups have used

this cell penetrating peptide sequence to deliver a large variety of

cargo to a cell, unrelated to HIV (47–49). Indeed, purified Tat

protein is able to transactivate the HIV LTR when added to the

extracellular environment, highlighting its ability to cross both the

plasma and nuclear membranes (50, 51). This internalisation is

dependent on Tat binding to heparan sulfate proteoglycans

(HSPGs) on the cell surface, resulting in uptake into endosomes

that gradually acidify, leading to protein release (52). The conserved

Trp11 residue also plays an essential role in Tat release from the

endosome during the engulfment of extracellular Tat (53).
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Tat secretion and systemic distribution
in vivo

Tat can be secreted from cells, potentially resulting in its

dissemination throughout the circulation to multiple cell types

and tissues (43, 44, 54). Indeed, secreted Tat has been detected in

the cerebrospinal fluid (55, 56) and sera (57–61) of PWH, even in

individuals on effective ART with undetectable viral loads.
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Tat expression in the central nervous system (CNS) could be

from HIV DNA+ cells in the brain, or via the trafficking of Tat

protein from the periphery across the blood brain barrier (62). In

mice where modifications resulted in Tat being secreted from b cells
of the pancreas, Tat was able to distribute widely to the brain,

thymus, spleen, heart, lung, kidney, liver and pancreas as well as

resting CD4+ T cells (63). Therefore, systemic effects of Tat need to

be considered and minimised when using Tat as an LRA.
FIGURE 2

Impact of mutations on Tat secretion and uptake. Tat secretion occurs through interactions between phosphatidylinositol-4,5-bisphosphate (PtdIns
(4,5)P2) the Tat basic domain (residues 49-57), and a conserved tryptophan at position 11 (Trp11). Uptake occurs through the binding of Tat to
heparan sulfate proteoglycans, followed by uptake into endosomes. Point and combinatorial substitution mutations in both the basic domain and
Trp11 reduce secretion and uptake efficiency of Tat, albeit to different degrees.
FIGURE 1

Tat-mediated enhancement of RNA polymerase II processivity. Following its translation, the HIV transactivator of transcription (Tat) protein forms a
complex with positive transcription elongation factor b (p-TEFb) and binds to the transactivating-response (TAR) element within the early HIV
transcript. This causes the hyperphosphorylation (P) of RNA polymerase II (RNAP II), enhancing the transcription processivity of the enzyme. This
process is essential for the production of full-length unspliced HIV RNA; and multiply-spliced HIV RNA and virion production thereafter.
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Tat-related toxicities

Many studies have shown differential expression of genes and

proteins in cells after Tat treatment [reviewed in (64)]. Tat is known

to modulate the expression of multiple cellular genes including

interleukin (IL)-6, tumour necrosis factor (TNF) b, interferon
regulatory factor (TRF) 7, IL-2 and cluster of differentiation (CD)

69 by binding to TAR-like sequences and promoter regions or

interacting with host transcription factors (65–69). Other studies

have shown that expression of HIV Tat can upregulate the

expression of human endogenous retroviruses (70–72).

Tat concentrations as low as 10-15 ng/mL in the sera produce

significant biological effects such as DNA damage in B cells,

contributing to an increased risk of Burkitt’s lymphoma in PWH

(57). The presence of Tat can induce dysfunction in microglia, CD4+

T cells, astrocytes, neurons and cardiomyocytes following cellular

uptake (73–76). Tat can also act as a chemokine, attracting

monocytes and macrophages into areas of productive HIV

infection, resulting in localized inflammation (77). The chronic

persistence of Tat in the CNS is important as Tat can contribute to

the development of HIV-associated neurocognitive disorder

[reviewed in (78, 79)].
Tat as a potent, HIV-specific latency
reversing agent

Initial studies using transfection of a Tat expression plasmid

resulted in weak viral reactivation in a latently infected cell line (80).

It was later shown that cells cultured in the presence of purified

recombinant Tat protein were unable to establish latency,

suggesting that exogenous Tat can enter the nucleus from the

extracellular environment to help drive productive infection (50).

Since Tat’s activity relies on the expression of the HIV TAR element

(37), this approach would likely have a higher degree of HIV-

specificity compared to other LRAs which typically target host

transcriptional pathways. Given Tat’s important role in overcoming

blocks to transcription elongation, it has been hypothesized that

providing Tat in trans could result in efficient HIV reactivation, and

thus Tat may represent a highly potent and specific latency

reversing agent (42).
Recombinant Tat protein

Recent work demonstrated that a truncated Tat variant

comprising 66 amino acids (T66) was found to have comparable

transactivation activity to both Tat72 and Tat86 in HEK293T cells

expressing LTR-driven reporter plasmids (51). T66 also induced

HIV RNA expression in an in vitro model of HIV infection and in

CD4+ T cells from PWH on ART, similar to positive controls that

activated the T-cell, including Phorbol myristate acetate (PMA),

phytohemagglutinin (PHA) and anti-CD3/anti-CD28 stimulation

(51). Furthermore, T66 protein in CD4+ T cells from PWH on ART

did not significantly induce global cellular activation as seen with
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PHA (51). Only eight genes were identified as being differentially

expressed following T66 treatment compared to non-stimulated

controls, indicating minimal perturbation to the host cell

transcriptome (51).

The ability of T66 protein to work equal to - or better than - the

current gold-standards for latency reversal in vitro with few off-

target effects highlights its promise as an LRA candidate. However,

administering exogenous purified Tat protein in humans is likely

problematic due to limited in vivo stability and the concerns of

toxicities relating to systemic Tat protein (81). The successful

application of Tat as a next-generation LRA will require an

efficient delivery mechanism.
Exosomes containing Tat protein

The field of nanotechnology may play an important role in

addressing challenges related to efficient Tat delivery ex vivo and in

vivo. The first approach describing nanoparticles for the delivery of

Tat as an LRA utilized Tat101 protein encapsulated into exosomes

(EXO-Tat) (82). Measuring 30 to 150 nm in diameter, exosomes are

the smallest type of extracellular vesicle and can be used for various

therapeutic purposes due to their ability to encapsulate complex

protein, lipid and nucleic acid cargoes (83). EXO-Tat increased

unspliced HIV RNA ex vivo in CD4+ T cells from PWH on ART,

but at a lower level than T-cell activation using PMA/ionomycin

(82). EXO-Tat also upregulated multiply-spliced HIV RNA in 80%

of donors, with potency exceeding that of current-generation LRAs

panabinostat (30 nM) and disulfiram (500 nM) (82). Treatment

with EXO-Tat in combination with either one of these LRAs further

increased HIV RNA by 30-fold compared to EXO-Tat alone (82).

HIV protein production was also observed in 50% of donors tested,

even though all donors expressed p24 following PMA/ionomycin

stimulation (82). However, treatment with EXO-Tat resulted in

significant perturbations in the host cell proteome, upregulating

over 30% of identified cellular proteins associated with translational

machinery and metabolic pathways (84). EXO-Tat was also linked

to upregulation of proteins associated with oxidative stress and

apoptosis (84). These findings agree with multiple other studies

showing differential expression of genes and proteins in various cell

lines after Tat treatment (85–88). This calls into question the

suitability of utilizing EXO-Tat as an LRA.
Lipid nanoparticles encapsulating mRNA
encoding Tat

More recently, lipid nanoparticles (LNPs) encapsulating

messenger mRNA (mRNA) encoding Tat have been developed.

LNPs encapsulating mRNA encoding the T66 protein (T66-LNPs)

could upregulate multiply-spliced HIV RNA and protein

production in latently infected CD4+ T cells ex vivo (median 188-

and 185-fold increase compared to untreated, respectively), with

potency similar to that of PMA stimulation (51). T66-LNPs also

induced p24 expression, similar to PMA treatment (51). T66-LNPs
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synergized with classical LRAs including the second mitochondrial-

derived activator of caspases (SMAC) mimetic AZD5582 and the

histone deacetylase inhibitors panabinostat and vorinostat, leading

to a significant increased median fold change in TAR, elongated

LTR, polyadenylated and tat-rev transcripts compared to each drug

alone (89, 90). Synergistic effects on p24 production were also

observed (90). Such findings are important given that it is probable

that not all proviruses will be responsive to Tat alone in vivo due to

the various cellular factors that maintain latency. However, the

continued use of classical LRAs negates the benefits of using an

HIV-specific LRA.
Considerations and mitigations
strategies pertaining to Tat as an LRA

These studies demonstrate promise for the use of Tat as an LRA,

given Tat’s ability to potently increase HIV transcription,
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upregulate expression of multiply-spliced HIV RNA, and act

through an HIV-specific mechanism. However, there remain

significant challenges to the use of Tat as an LRA (summarized in

Figure 3) relating to the toxicity of Tat, effective delivery of Tat to

the latent reservoir, and reservoir diversity impacting Tat-mediated

latency reversal and cell death.
Systemic toxicities may occur after Tat
administration

Targeting Tat to CD4+ T cells could potentially minimize Tat-

related toxicities, by reducing Tat expression in cells not infected

with HIV and reducing circulating systemic levels of Tat. However,

direct delivery to T cells may not mitigate the secretion of Tat. For

example, using exosomes to deliver Tat protein may inadvertently

enhance Tat secretion. Using a cell culture method of producing

EXO-Tat, Tat-expressing HEK293T cells released exosomes
FIGURE 3

Considerations for the development of Tat-based LRAs. There are multiple potential challenges to the development of Tat-based therapeutics,
including systemic toxicities in vivo, suboptimal delivery of Tat to latently infected cells, and reservoir diversity, rendering a proportion of proviruses
unresponsive to Tat treatment (inner circle). These could be mitigated in several ways (outer circle) including preventing Tat secretion and uptake,
utilizing a non-toxic Tat variant, targeting Tat delivery vehicles to CD4+ T cells and anatomical sites of the HIV reservoir; and combining Tat with
other HIV-specific latency reversing agents (LRAs) or pro-apoptotic drugs to drive selective killing of HIV DNA+ cells.
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containing Tat which were then captured for downstream

experiments (82). To effectively produce EXO-Tat via this

method, the protein needed to be modified to ensure that once

expressed, it was targeted towards the intracellular membrane

compartment (82). The result was a Tat mutant that favored its

own secretion into exosomes, which could then disseminate in vivo.

Secretion of unmodified Tat protein could also occur after Tat-LNP

treatment, and therefore strategies will be needed to minimize

secretion through site directed mutation.

Various mutational studies have identified specific residues of

the protein that can prevent Tat secretion and mitigate off-target

effects (Figure 2). For example, replacing RKK at positions 49-51

with alanine reduced secretion of Tat to 1% of wildtype (44), but in

turn impacted transactivation due to the essential role of these basic

residues in TAR-binding (45). Similar mutations on the C-terminal

end of the basic domain (55-57A) reduced secretion to 30% of wild

type (45). Altering Trp11 also impacted the stability of interactions

between Tat and PtdIns(4,5)P2 (91). For example, replacing Trp11

with phenylalanine or tyrosine prevented Tat secretion from Jurkat

cells by 80% compared to wildtype (44).

Point mutations within the Tat basic region and Trp11 have

also been employed to prevent Tat uptake by bystander cells. Tat

mutations at W11A, W11F, W11L and W11Y decreased

transactivation capacity when added to the extracellular

environment of Jurkat cells, indicating a reduced ability to reach

the cytoplasm (53). Furthermore, changing even a single lysine or

arginine to alanine within the basic domain reduced Tat uptake as a

cell penetrating peptide (92). Tat sequence and function can also

vary among HIV subtypes, including effects on uptake. For

example, Tat subtype C has a naturally occurring polymorphism,

R57S, in its basic domain, which led to a 70% reduction in uptake

compared to Tat subtype B (45).

The length of Tat also has varying effects on toxicity. Tat72 lacks

the 73RGD75 motif that permits transmigration across the blood

brain barrier (93), potentially limiting its dissemination to the CNS

in vivo. To reduce Tat-related cytotoxicity and immunogenicity, it is

also possible to alter the protein domains associated with such

toxicities. Firstly, the R57S substitution reduced the induction of

proinflammatory cytokine genes TNFa, IL-6, IL-8, IL-1b and

chemokine (C-X-C) motif ligand 1 (CXCL1) in response to

reduced efficiency of uptake (45). Secondly, an engineered form

of Tat86, R5M4, with point mutations V36A, Q66A, V67A, S68A

and S77A reduced both total cell toxicity and the ability to induce

inflammatory cytokine production while having no effect on

transactivation potency (94). When injected intravenously into

wildtype BALB/c mice at 40 mg/kg, Tat-R5M4 caused no change

in liver and kidney function (94). It may therefore be advantageous

to incorporate these mutations when using Tat as an LRA.

In summary, there are many residues that have been identified

that could be mutated to prevent the secretion and uptake of

Tat and its ensuing toxicities. However, it will be key to ensure

that any mutations made will not impact the transactivation

capacity of the protein, ensuring potency is maintained whilst

minimizing toxicities.
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Suboptimal delivery of Tat to the latent
reservoir

A common limitation in exosome and LNP delivery systems is

that they are unable to efficiently deliver cargo to resting CD4+ T

cells. For example, EXO-Tat could only successfully transfect 13%

of resting CD4+ T cells in an in vitro model of infection (82).

Therefore, additional modifications will likely be required to deliver

nanoparticles to latently infected CD4+ T cells in circulation

and tissue.

The major tissue distribution of systemically administered

exosomes in mice include the liver, spleen, kidney, lung and

gastrointestinal tract, all of which can be altered by various

factors such as the cellular origin of the exosomes, the exosomal

membrane composition (eg. protein, lipids and glycan), and the

pathophysiological conditions of the host (95–101). Furthermore,

once exosomes are administered, they are rapidly engulfed by

circulating phagocytic cells, which could further impede efficient

delivery of Tat to the HIV reservoir in vivo (102).

LNPs can also rapidly accumulate in the liver after

administration, thereby reducing their potency in vivo (103).

Studies of T66-LNPs have not reported details of the lipid

components of the proprietary LNP nor the resulting transfection

efficiency in CD4+ T cells (51, 89, 90). However, others have

demonstrated poor transfection efficiencies of CD4+ T cell with

non-targeted LNP formulations (104–106). Indeed, to ensure

successful transfection, activation of the T cells appears to be a

pre-requisite (107). As T cell activation should be avoided as an

LRA strategy, some form of targeting is likely to be required to

ensure effective protein delivery to resting CD4+ T cells.

Targeting Tat to latently infected CD4+ T cells
The targeting of nanomaterials towards particular cells can be

achieved via two routes: passive targeting or active targeting. The first

approach relies on the physicochemical properties of the LNP,

including lipid composition as well as the preparation method, size

and surface charge which can alter in vivo biodistribution (108–110).

Active targeting instead involves the addition of specific ligands or

antibodies to the nanoparticle surface, which can bind to receptors

expressed by target tissues or cells, ensuring precise delivery (111–113).

The ability of CD4+ T cells to undergo receptor-mediated

endocytosis, even in a resting state, highlights a potential role for

active targeting to ensure efficient Tat uptake. To improve protein

delivery of EXO-Tat to resting CD4+ T cells, the C terminus of IL-

16, the natural ligand for the CD4 receptor, was conjugated to the

extracellular domain of the exosomal protein Lamp2b (82). This

approach improved Tat protein expression within resting CD4+ T

cells ex vivo by 20-fold compared to unmodified EXO-Tat, and

induced p24 production in all donors compared to only 50% of

donors when using unmodified EXO-Tat, suggesting a previous

block to efficient reactivation was due to inefficient Tat protein

delivery (82).

Similar targeting approaches have also been utilized by groups

employing LNPs for delivery of mRNA to CD4+ T cells. CD4-
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targeted LNPs, using CD4 antibodies, resulted in a 30-fold higher

signal of the reporter mRNA in CD4+ T cells isolated from the

spleen in mice, compared to non-targeted LNPs (106). Intravenous

injection of the CD4-targeted LNPs into mice resulted in mRNA

delivery to 60% and 40% of CD4+ T cells in the spleen and lymph

nodes, respectively (106). However, as CD4 is a surface receptor that

is not internalised, it is possible that other receptors expressed on

the cell surface, such as CD7, transferrin receptor, CD90 and IL-2R

may make better candidates for LNP internalisation in T cells (114).

CD3 has also been targeted previously to efficiently deliver reporter

mRNA to T cells in vitro and in mice, however, this was associated

with complex immunological consequences and therefore not

suitable for therapeutic application in humans (104).

Targeting Tat to anatomical sites of the latent
reservoir

The other approach to optimize Tat as an LRA is to enhance

delivery to key tissues, where the majority of latently infected cells

reside in PWH on ART, such as lymph nodes or the gastrointestinal

tract (115). LNP targeting to peripheral lymph nodes has been

extensively explored in different contexts related to vaccination and

therapeutic delivery. For example, to optimize uptake of a vaccine in

lymph nodes, the chemical structure of the lipids, charge and size

have been altered (116), to allow for the most efficient trafficking

after subcutaneous injection (117). This route of administration is

less relevant for HIV cure, which relies on widespread

dissemination of treatment to all lymph nodes. Instead,

conjugation of an antibody that binds to a high endothelial

venule marker (MECA-79) which recognizes peripheral lymph

nodes addressin on the high endothelial venules of lymph nodes,

led to active targeting of microparticles to the lymph node after

intravenous administration (118). This strategy could potentially be

adapted for the delivery of LNPs to the HIV reservoir.

Targeting the gut-associated lymphoid tissue (GALT) with

nanoparticles has also been achieved in a variety of ways,

including through the use of lipid-polymer nanoparticle hybrids

to enhance the association to the Peyer’s patches (119). Unlike in

lymph node targeting strategies, most approaches for enhancing

GALT delivery rely on oral administration, which is complicated by

physiological barriers of the digestive system resulting in

nanoparticle degradation or excretion (120).

LNP transport to the CNS has been shown to be even more

difficult due to the high-resistance tight junctions within the brain

capillaries that restrict brain uptake of small molecules from the

periphery (121). Although exosomes have been shown to cross the

blood brain barrier from the circulation (122), additional

modifications were needed to deliver LNPs to the CNS. These have

included intracerebroventricular or intracerebral injection of the

LNPs (123, 124) or the use of antibody-conjugated LNPs to ensure

that LNPs traverse the endothelial cells lining blood vessels in the

brain, rather than simply transfecting the endothelial cells themselves

(125). Alternatively, the lack of CNS penetration by LNPs may be

beneficial to a Tat-based LRA, avoiding Tat expression and viral

reactivation in the brain whilst achieving both in the periphery.
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Although Tat is known to be a highly specific and potent

reactivator, further targeting it to only the cells or tissues in which

it needs to be expressed will further improve HIV-specificity and

potency. However, given the large number of requirements for both T

cell and organ targeting, it is unlikely that one LNP formulation alone

will be able to simultaneously target mRNA encoding Tat to all of the

required sites in vivo. Rather, a single formulation which combines

various passive and active targeting approaches, or multiple doses of

various Tat-LNP formulations, may be advantageous in ensuring

widespread HIV reactivation.
Reservoir diversity and its impact on Tat
efficacy

The HIV reservoir is highly heterogeneous with the vast majority

of proviruses defective, harboring large internal deletions,

hypermutations or inversions (126, 127). Furthermore, not all

intact proviruses appear to be capable of reactivating (127). HIV

cure efforts must therefore be focused on eliminating intact and

inducible proviruses as these are the source of viral rebound. Indeed,

only 0.1-10 CD4+ T cells per million are estimated to harbor intact

and inducible proviruses (128, 129). A further challenge is that

infected cells can undergo clonal expansion through homeostatic

proliferation or antigen stimulated proliferation, and different clones

display diverse responsiveness to T-cell activation (130). Whether

there is a need to target all intact proviruses to effectively reduce the

rebound-competent reservoir remains unclear, however, recent data

suggests that after many years of suppressive ART, there are fewer

proviruses capable of reactivation (131).

At a minimum, an LRAmust be able to sufficiently reactivate an

infected cell that harbors intact proviruses and can be induced to

reactivate, and therefore capable of recrudescence following

cessation of ART. The ability of the T66-LNP to increase

multiply-spliced HIV RNA to higher levels than PMA/ionomycin

in CD4+ T cells from PWH on ART is highly encouraging (51).

However, it will be important to also understand if activation of

virus expression occurred in all infected cells or from a subset of

infected cells. This could be addressed using the tat-rev induced

limiting dilution assay (TILDA) or quantitative viral outgrowth

assay (qVOA), to measure the frequency of cells that can be induced

to express multiply-spliced HIV RNA or virions, respectively.

Although the HIV reservoir was typically thought as being

transcriptionally silent, cell associated HIV RNA is almost always

able to be detected in PWH on ART (17, 18, 132–135), and HIV

protein can be occasionally detected (136, 137). As Tat primarily

functions by binding to TAR, we hypothesize that this new LRA will

be effective in cells that are already transcriptionally active, thereby

expressing the TAR stem loop. Consistent with this hypothesis,

T66-LNP ex vivo led to no increase in TAR expression, yet potent

increase in multiply-spliced HIV RNA (51, 90). More recent studies

have shown that only a minority of HIV DNA+ cells express cell

associated HIV RNA and this reduces over time on ART with an

increased number of proviruses detected in non-genic regions
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(131,138, 139). This suggests that Tat as an LRA might be best

combined with another LRA that can efficiently initiate HIV

transcription, as demonstrated recently using a combination of

conventional LRAs and T66-LNP (90).

A further challenge in using latency reversal to reduce the

reservoir is that latently infected cells express pro-survival proteins

and are resistant to cytotoxic T-cell killing (140–142). Indeed, no

studies exploring the efficacy of Tat as an LRA to date have yet

investigated whether potent latency reversal by Tat can reduce the

size of the HIV reservoir. Studies exploring the use of proapoptotic

drugs have shown promise in their ability to selectively kill HIV

DNA+ cells (143, 144). Therefore, combining a Tat LRA with a pro-

apoptotic drug may also be needed.
Summary and conclusion

The HIV Tat protein is a promising novel agent for the reversal

of HIV latency ex vivo. Despite clear advantages over classical LRAs,

including a demonstrated ability to potently upregulate multiply-

spliced HIV RNA and protein production, and an HIV-specific

mechanism of action, several challenges remain in the translation of

HIV Tat into a clinically applicable LRA. The use of Tat variants

that alter the domains mediating cellular secretion and uptake show

potential to avoid inflammation and widespread toxicities in

various tissues. Whilst the use of nanoparticles has greatly

reduced the concentration of extracellular Tat, methods of

efficiently targeting these nanocarriers to CD4+ T cells and

diverse tissues which harbour infected cells will need to be

developed. Finally, future studies will need to determine whether

Tat can reactivate the transcriptionally silent reservoir and whether

this is necessary to induce viral remission off-ART.
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85. Coiras M, Camafeita E, Ureña T, López JA, Caballero F, Fernández B, et al.
Modifications in the human T cell proteome induced by intracellular HIV-1 Tat
protein expression. Proteomics. (2006) 6 Suppl 1:S63–73. doi: 10.1002/pmic.200500437

86. Ganief T, Gqamana P, Garnett S, Hoare J, Stein DJ, Joska J, et al. Quantitative
proteomic analysis of HIV-1 Tat-induced dysregulation in SH-SY5Y neuroblastoma
cells. Proteomics. (2017) 17. doi: 10.1002/pmic.201600236

87. Jarboui MA, Bidoia C, Woods E, Roe B, Wynne K, Elia G, et al. Nucleolar protein
trafficking in response to HIV-1 tat: rewiring the nucleolus. PloS One. (2012) 7:e48702.
doi: 10.1371/journal.pone.0048702

88. Liao W, Tan G, Zhu Z, Chen Q, Lou Z, Dong X, et al. Combined metabonomic and
quantitative real-time PCR analyses reveal systems metabolic changes in Jurkat T-cells
treated with HIV-1 tat protein. J Proteome Res. (2012) 11:5109–23. doi: 10.1021/pr300173c

89. Pardons M, Cole B, Lambrechts L, van Snippenberg W, Rutsaert S, Noppe Y, et al.
Potent latency reversal by Tat RNA-containing nanoparticle enables multi-omic analysis
of the HIV-1 reservoir. Nat Commun. (2023) 14:8397. doi: 10.1038/s41467-023-44020-5

90. Raines SLM, Falcinelli SD, Peterson JJ, Van Gulck E, Allard B, Kirchherr J, et al.
Nanoparticle delivery of Tat synergizes with classical latency reversal agents to express
HIV antigen targets. Antimicrobial Agents Chemotherapy. (2024) 68:e0020124.
doi: 10.1128/aac.00201-24

91. Ghanam RH, Eastep GN, Saad JS. Structural insights into the mechanism of
HIV-1 tat secretion from the plasma membrane. J Mol Biol. (2023) 435:167880.
doi: 10.1016/j.jmb.2022.167880

92. Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB.
The design, synthesis, and evaluation of molecules that enable or enhance cellular
uptake: Peptoid molecular transporters. Proc Natl Acad Sci United States America.
(2000) 97:13003–8. doi: 10.1073/pnas.97.24.13003

93. Mediouni S, Jablonski J, Paris J, Clementz M, Thenin-Houssier S, McLaughlin J,
et al. Didehydro-cortistatin A inhibits HIV-1 tat mediated neuroinflammation and
prevents potentiation of cocaine reward in tat transgenic mice. Curr HIV Res. (2015)
13:64–79. doi: 10.2174/1570162x13666150121111548

94. Geng G, Liu B, Chen C, Wu K, Liu J, Zhang Y, et al. Development of an
attenuated tat protein as a highly-effective agent to specifically activate HIV-1 latency.
Mol Ther. (2016) 24:1528–37. doi: 10.1038/mt.2016.117

95. Faruqu FN, Wang JTW, Xu L, McNickle L, Chong EMY, Walters A, et al.
Membrane radiolabelling of exosomes for comparative biodistribution analysis in
immunocompetent and immunodeficient mice - A novel and universal approach.
Theranostics. (2019) 9:1666–82. doi: 10.7150/thno.27891

96. Matsumoto A, Takahashi Y, Nishikawa M, Sano K, Morishita M,
Charoenviriyakul C, et al. Role of phosphatidylserine-derived negative surface
charges in the recognition and uptake of intravenously injected B16BL6-derived
exosomes by macrophages. J Pharm Sci. (2017) 106:168–75. doi: 10.1016/
j.xphs.2016.07.022

97. Mirzaaghasi A, Han Y, Ahn SH, Choi C, Park JH. Biodistribution and
pharmacokinectics of liposomes and exosomes in a mouse model of sepsis.
Pharmaceutics. (2021) 13:427. doi: 10.3390/pharmaceutics13030427

98. Qiao L, Hu S, Huang K, Su T, Li Z, Vandergriff A, et al. Tumor cell-derived
exosomes home to their cells of origin and can be used as Trojan horses to deliver
cancer drugs. Theranostics. (2020) 10:3474–87. doi: 10.7150/thno.39434

99. Rashid MH, Borin TF, Ara R, Angara K, Cai J, Achyut BR, et al. Differential in
vivo biodistribution of 131I-labeled exosomes from diverse cellular origins and its
implication for theranostic application. Nanomedicine: Nanotechnology Biology Med.
(2019) 21:102072. doi: 10.1016/j.nano.2019.102072
100. Smyth T, Kullberg M, Malik N, Smith-Jones P, Graner MW, Anchordoquy TJ.

Biodistribution and delivery efficiency of unmodified tumor-derived exosomes.
J Controlled Release. (2015) 199:145–55. doi: 10.1016/j.jconrel.2014.12.013

101. Wiklander OPB, Nordin JZ, O'Loughlin A, Gustafsson Y, Corso G, Mäger I,
et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of
frontiersin.org

https://doi.org/10.1097/QAD.0000000000002268
https://doi.org/10.1073/pnas.1308673110
https://doi.org/10.1038/leu.2017.106
https://doi.org/10.1182/blood-2003-08-2928
https://doi.org/10.1016/j.ijid.2024.106994
https://doi.org/10.1038/375497a0
https://doi.org/10.1073/pnas.97.21.11466
https://doi.org/10.1016/j.expneurol.2004.11.019
https://doi.org/10.1128/jvi.77.15.8227-8236.2003
https://doi.org/10.18632/oncotarget.15174
https://doi.org/10.18632/oncotarget.15174
https://doi.org/10.1074/jbc.272.23.14883
https://doi.org/10.1128/jvi.68.4.2677-2682.1994
https://doi.org/10.1128/jvi.68.4.2677-2682.1994
https://doi.org/10.1182/blood-2012-10-461566
https://doi.org/10.1182/blood-2012-10-461566
https://doi.org/10.1128/mcb.25.5.1620-1633.2005
https://doi.org/10.7554/eLife.08955
https://doi.org/10.1128/JVI.07215-11
https://doi.org/10.3389/fmicb.2021.662573
https://doi.org/10.1097/QAD.0000000000000477
https://doi.org/10.1097/QAD.0000000000001734
https://doi.org/10.1097/QAD.0000000000001734
https://doi.org/10.3390/v14102191
https://doi.org/10.3390/v14102191
https://doi.org/10.1080/15548627.2018.1476810
https://doi.org/10.1016/j.mcn.2004.07.003
https://doi.org/10.1073/pnas.95.22.13153
https://doi.org/10.1007/s00018-020-03561-4
https://doi.org/10.3389/fnagi.2020.00168
https://doi.org/10.1093/emboj/cdg188
https://doi.org/10.1016/j.ijbiomac.2020.07.141
https://doi.org/10.1172/jci.insight.95676
https://doi.org/10.1007/s13346-022-01225-3
https://doi.org/10.18632/oncotarget.27207
https://doi.org/10.1002/pmic.200500437
https://doi.org/10.1002/pmic.201600236
https://doi.org/10.1371/journal.pone.0048702
https://doi.org/10.1021/pr300173c
https://doi.org/10.1038/s41467-023-44020-5
https://doi.org/10.1128/aac.00201-24
https://doi.org/10.1016/j.jmb.2022.167880
https://doi.org/10.1073/pnas.97.24.13003
https://doi.org/10.2174/1570162x13666150121111548
https://doi.org/10.1038/mt.2016.117
https://doi.org/10.7150/thno.27891
https://doi.org/10.1016/j.xphs.2016.07.022
https://doi.org/10.1016/j.xphs.2016.07.022
https://doi.org/10.3390/pharmaceutics13030427
https://doi.org/10.7150/thno.39434
https://doi.org/10.1016/j.nano.2019.102072
https://doi.org/10.1016/j.jconrel.2014.12.013
https://doi.org/10.3389/fimmu.2025.1571151
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fisher et al. 10.3389/fimmu.2025.1571151
administration and targeting. J Extracellular Vesicles. (2015) 4:26316. doi: 10.3402/
jev.v4.26316

102. Imai T, Takahashi Y, Nishikawa M, Kato K, Morishita M, Yamashita T, et al.
Macrophage-dependent clearance of systemically administered B16BL6-derived
exosomes from the blood circulation in mice. J Extracellular Vesicles. (2015) 4:26238.
doi: 10.3402/jev.v4.26238

103. Shi B, Keough E, Matter A, Leander K, Young S, Carlini E, et al. Biodistribution
of small interfering RNA at the organ and cellular levels after lipid nanoparticle-
mediated delivery. J Histochem Cytochem. (2011) 59:727–40. doi: 10.1369/
0022155411410885

104. Kheirolomoom A, Kare AJ, Ingham ES, Paulmurugan R, Robinson ER,
Baikoghli M, et al. In situ T-cell transfection by anti-CD3-conjugated lipid
nanoparticles leads to T-cell activation, migration, and phenotypic shift.
Biomaterials. (2022) 281:121339. doi: 10.1016/j.biomaterials.2021.121339

105. Ramishetti S, Kedmi R, Goldsmith M, Leonard F, Sprague AG, Godin B, et al.
Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles.
ACS Nano. (2015) 9:6706–16. doi: 10.1021/acsnano.5b02796
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