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Machine learning applications in protein sciences have ushered in a new era for

designing molecules in silico. Antibodies, which currently form the largest group

of biologics in clinical use, stand to benefit greatly from this shift. Despite the

proliferation of these protein design tools, their direct application to antibodies is

often limited by the unique structural biology of these molecules. We note that

multiple methods attempting antibody design focus on the discovery of an

antigen-specific antibody. Here, we review the current computational methods

for antibody design, focusing on binder discovery, contextualizing their role in

the drug discovery process.
KEYWORDS

antibody discovery, AlphaFold 2, machine learning, drug discovery, therapeutic
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Introduction

Antibodies represent the largest class of biotherapeutics (1), demonstrating significant

versatility and efficacy in treating a wide array of diseases, including cancer, autoimmune

disorders, and infectious diseases. These Y-shaped proteins, also known as

immunoglobulins, possess the unique ability to specifically bind to antigens, thereby

marking them for destruction or neutralization by the immune system. The specificity

and affinity of antibodies make them invaluable tools in both therapeutic and

diagnostic applications.

Traditionally, the discovery and development of therapeutic antibodies have relied on

two experimental paradigms: immunization and display technologies (2). The

immunization approach involves the administration of an antigen into a host animal,

such as mice or rabbits, to elicit an immune response. This process leads to the generation
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of polyclonal antibodies, from which monoclonal antibodies can be

derived through hybridoma technology. Köhler and Milstein’s

pioneering work in the 1970s on hybridoma technology

revolutionized antibody production by enabling the creation of

monoclonal antibodies with defined specificity and uniform

characteristics (3).

In contrast, display technologies, such as phage display, yeast

display, ribosome display and mammalian display (4), have

emerged as powerful tools for antibody discovery without the

need for immunization. These methods involve the presentation

of vast libraries of antibody variants on the surface of

bacteriophages, yeast cells, ribosomes or mammalian cells,

respectively. Through iterative rounds of selection and

amplification, antibodies with high affinity and specificity for a

target antigen can be isolated. Phage display, in particular, has been

instrumental in the discovery of several clinically approved

antibodies, with Smith’s 1985 innovation marking a significant

milestone in this field (5). However, this technology has inherent

limitations. Because bacterial folding machinery does not readily

support the production of full-length antibodies, phage display is

often limited to smaller constructs such as single-chain variable

fragments (scFvs). Moreover, controlling post-translational

modifications in microbial expression systems is challenging, an

issue resolved by using mammalian display systems (6). While

display technologies help circumvent the need for direct

immunization (and in many cases can be used in tandem for

affinity or specificity improvement), it is worth noting that in vivo

approaches—such as immunization—also allow receptor editing

processes that can reduce the likelihood of autoreactivity.

Together, these traditional methods have laid a robust

foundation for antibody discovery. However, they also present

limitations, such as time-consuming processes and dependence

on the host immune response or large library sizes. To address

these challenges, computational antibody design has emerged as a

promising complementary approach. It leverages advances in

computational biology, structural bioinformatics, and artificial

intelligence to expedite and enhance antibody development (7).

At its core, Computational Antibody Design is a sub-problem of

the more generalistic Computational Protein Design (CPD), that

aims to engineer novel proteins with desired functions and

properties. CPD involves the prediction and optimization of

protein structures and sequences to achieve specific functional

outcomes. Key early methods in CPD include de novo design,

homology modeling, and molecular dynamics simulations. De

novo design involves creating novel protein structures from

scratch, guided by principles of protein folding and stability (8).

Homology modeling, on the other hand, predicts structures based

on the alignment with known homologs, facilitating the design of

proteins with altered functions while maintaining structural

integrity (9). Molecular dynamics simulations provide insights

into the dynamic behavior of proteins, allowing for the

refinement of models and prediction of their stability and

interactions under physiological conditions (10). Because of

reliance on structural information, such early design methods
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mostly used structural fragments, energy functions and statistical

potentials to design new structures and sequences (11–14).

Recent advancements in machine learning-based structure (15,

16) and sequence prediction (16) have given a major boost to CPD.

Thanks to advancements in structure prediction spearheaded by

AlphaFold2 (15), three-dimensional structures have become much

more accessible (17). Merging learnings from machine learning on

natural language with protein sequences resulted in large language

models such as ESM that can accurately model the distribution of

natural sequences, to generate new ones. Specifically, the shift

towards a ‘generative’ paradigm in protein and thus antibody

design is the most prominent. As much as earlier methods relied

on assembling fragments of known proteins, novel tools such as

RFDiffusion (18, 19), ProteinMPNN (20) or ESM-IF (21) can

generate novel structures/sequences that incorporate specific

features found in natural antibodies, yet represent entirely new

designs not observed in nature. Such methods are increasingly being

applied to antibodies (22–24), and their focus is development of

novel binders. Here, we provide a review of such novel binder

design methods and a perspective, contextualized to other tasks

associated with antibody discovery such as developability.
Computational protein design primer

Computational protein design is crucial for developing novel

biotechnological applications such as new therapeutics or industrial

enzymes (19, 25). Computational protein design predominantly

uses methods that leverage physicochemical calculations or

machine learning to perform tasks ranging from single point

mutations with increased activity to de novo design of highly

thermostable proteins. Computational protein design strategies

can be loosely categorized into three overlapping groups, template

based protein design given structure, sequence optimization given

sequence or structure and finally de novo design.

Template-based protein design relies on using existing protein

structures as starting points to guide the design process - for both

sequence and backbone redesign. Since protein structure

determines function, this approach is particularly effective for

designing proteins with new functions or enhancing existing ones.

An instrumental piece of software in this sphere is Rosetta (26).

Rosetta is a software suite for molecular modeling and design with a

wide range of applications that are centered around the use of

protein structure and a scoring function, made up of empirical and

physicochemical terms. The simplest form of computational design

with Rosetta (27) is optimizing a protein’s function by identifying

mutations that improve its energy score.

Historically, template-based design has been limited to proteins

with solved structures of closely related homologs. Recent

developments in methods using ML have significantly expanded

the number of use cases for computational protein design that

leverage protein structures as input. Previously, starting points for

designs were limited to proteins with experimentally solved

structures in the PDB (28), or close homologs that could be
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modeled from those structures. The ability to make high-quality,

computationally generated protein structures increases the number

of starting structures from ~200,000 available proteins in the PDB

to 200 million known protein structures in the AlphaFold database

(17). Moreover, the predicted structures of designed sequences can

be used to filter out poor designs using the predicted structure’s

confidence metrics or by aligning the predicted structure to the

designed structure. It should be noted that co-folding the

interaction between two proteins to use as starting templates

using tools such as Alphafold-Multimer (29) is still a very difficult

challenge and even more difficult for antibody-antigen interactions.

Such large numbers of predicted structures improve the power

of sequence optimization algorithms. Here, given a structural

template, one is tasked with developing a sequence that would ‘fit’

into it (i.e. maximize the probability of sequence given structure).

Current sequence optimization strategies typically take the form of

inverse folding, where algorithms such as ESM-IF (21) or

ProteinMPNN (20) trained on millions of predicted structures are

tasked with returning the original sequences. Both ESM-IF and

ProteinMPNN use a graph architecture to turn information about

residues in the local neighborhood of a specific position into

features for that position (20), (21). Using a message-passing

neural network (MPNN) in an iterative fashion allows features at

each residue position to encode information about the

microenvironment of the neighboring residues. A decoder uses

the structure-based embedding to generate a protein sequence that

is likely to successfully fold into the input protein structure. A

common evaluation for protein design tools is to calculate the

sequence recovery rate, which is the percent of generated residues

that match the native amino acid at that position. ESM-IF achieves

51% sequence recovery (21), while ProteinMPNN achieved 53%

sequence recovery rate (20). That is a significant improvement

over Rosetta’s 33% sequence recovery rate for the same proteins.

Moreover, experimental validation was used to show ProteinMPNN

can successfully rescue previous failed designs, increase stability,

increase solubility, and even redesign membrane proteins to be

available in solution (30).

In contrast to template-based and sequence-optimization

methods that require the existence of a basis structure or starting

sequence, de novo protein design involves creating entirely new

folds from scratch. Traditional approaches, grounded in physics-

based modeling, use atomistic representations and energy functions

to optimize sequences for a defined protein backbone (31). These

methods rely on iterative cycles of structure generation and

sequence optimization, as exemplified in early successes like the

first de novo protein design of Top7 (32). Advancements in methods

using diffusion models have further expanded the potential for

computational protein design by generating protein backbones that

are different (but inspired by) those found in nature. For instance,

RFDiffusion (18) learned to sample the large conformational

landscape of protein structure by training to recover solved

protein structures corrupted with noise. During inference,

unconstrained predictions transform random noise into proteins

that can have little overall structural similarity to any known protein
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structure. Additionally, RFDiffusion can be constrained with a given

active site, motif, or binding partner, which enabled successful

computational designs of de novo protein binders with higher

rates of success than previous methods. These tools emphasize

modularity, tunability, and precision; facilitating the design of

proteins with programmable behaviors for applications in

catalysis, molecular recognition, and synthetic biology (33, 34).

Computational protein design is currently undergoing an

exciting transition from predominantly energy-based methods to

those using machine learning. The recent developments and success

of the field have been emphasized by the Nobel Prize in Chemistry

2024 awarded for computational protein design and structure

prediction to David Baker, John Jumper, and Demis Hassabis

(The Nobel Prize in Chemistry 2024, 35). A large area of interest

for protein design is the development and optimization of protein

therapeutics. While many protein families can act as drugs, such as

enzymes and cytokines, antibodies are the most widely used class of

biologics owing to their quasi-programmable nature (36). The

convergence of generic protein design methods with therapeutic

antibody discovery presents a promising avenue for translating

advancements in protein design into therapeutic applications.
Specifics of antibody structure and
function for protein design

Antibodies are proteins of the immune system that have evolved

in jawed vertebrates to recognize foreign pathogens and facilitate

their expulsion from the organism. They are the actuators of the

adaptive immunity, as opposed to innate immunity mediated

mostly by T-cell receptors. Though they are versatile binders, they

are much more structurally constrained than general proteins

(Figures 1A, B), which introduces nuances in the way that protein

design methods addressing them need to be adjusted.

Each organism has millions of distinct antibodies that

collectively represent molecular diversity that should be capable

of weakly binding a non-self antigen to start an immune response

(37). The ability of antibodies to recognize virtually limitless

amounts of antigens is the key to their success and of interest for

protein design. Nature evolved antibodies to have their binding site

composed of six complementarity determining regions, housed in a

largely invariant framework (Figure 1C). Minute changes between

CDRs can radically alter the binding affinity and specificity (38, 39).

For this reason, whilst general de novo protein design might focus

on building the entire scaffold that could interact with a binding

partner, in case of antibodies, roughly 80% of the sequence should

be known a priori because of the relative invariability of

the framework.

Much of the focus for antibody redesign is devoted to the CDR-

H3, since it is the most variable and in many cases, confers most of

the binding affinity and specificity (40–42). The structural

uniqueness of this loop eludes even the best models, such as the

AlphaFold series (43). Accurate modeling of CDR-H3 is known to

be a blocker to effective antibody design (44).Though most antibody
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design is focused on the CDR regions, it is known that the

framework also has some influence on the binding ability (23, 24,

45). For humanization, one needs to replace the murine framework

with a human one (Figure 2A), whilst maintaining high-affinity

binding (46). This becomes a reverse design problem to focusing on

CDRs alone, as one seeks to find a human framework that would be

most structurally suitable to house the novel CDRs. Typically,

‘universal frameworks’ originating from certain germlines were

preferred, because of empirical evidence, however, computational

methods now allow us to select others that might be more suitable

rather than going with such a safe choice (47).

Because of the relative invariability of the framework, one can

often start from an existing binder and re-design the CDRs in one-

shot fashion (Figure 2B). Arguably, the more difficult task is de novo

design, when given a target antigen and epitope, one needs to create
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a whole new antibody that binds specifical ly to this

epitope (Figure 2C).

Though a large unsolved part of antibody design is developing a

binder, much of the preclinical work in antibody discovery is spent

not on finding the right binder but on tuning the overall properties of

the antibody to be more favorable as a therapeutic. These properties

are commonly referred to as developability properties (48; 49; 50).

This is an umbrella term encompassing multiple biophysical

properties that ensure that an antibody can be economically

produced in necessary quantities, can be stored for a defined period

of time, and has a non-risky profile from pk/pd, specificity, and

toxicity point of view, before eventually moving to clinical trials.

Here, optimization takes multiple forms, with both CDRs and

frameworks are becoming the targets for re-design. Nevertheless, in

the most widely used meaning of the term antibody design we mean
FIGURE 1

Specifics of antibody structure relating to its designability as opposed to other proteins. (A) Structural heterogeneity of proteins. Proteins in general
adopt a variety of conformations. Relations between folds can be drawn on an evolutionary level from sequences alone. (B) Structural homogeneity
of antibodies. Antibodies have a very conserved fold with a framework housing a diverse binding site. The differences between any two antibodies
cannot be explained evolutionarily as it is the case with most proteins. (C) Regions of antibodies responsible for antigen-recognition. Antibodies are
divided into a heavy chain, light chain. Each chain is composed of three Complementarity Determining Regions (CDRs) and four Framework
Regions (FR).
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developing or redeveloping a binder towards a specific antigen first,

modulating developability properties second.

To introduce a level of ontology into the antibody design field,

we divided the methods into a number of categories, depicted in

Figure 3 with details in Tables 1–8. Methods are broadly categorized

based on their inputs, antibody/antigen specific focus, and the role

they play in the design pipeline (end-to-end or just providing

sequence for backbone). In terms of benchmarking, we indicate

the extent of experimental validation. Otherwise, there appears to

be no single metric of success amongst the methods. The list is not

comprehensive as it is intended to demonstrate the methods

associated with their respective categories.

Central to any of such efforts would be to have a leveling metric,

as is possible with structure prediction in the form of RMSD (89) or

docking in the form of the DockQ score (90). Central to antibody

design would be to quantify how many of the novel sequences bind

the antigen and with what affinity. In most cases the methods report

that for different antigens, making comparisons difficult.
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Furthermore, there is hardly any reliable control for such isolated

experiments, as the randomly generated sequences or libraries are

not produced. For this reason, most of the performance and

experimental validation portions are given. The methods vary in

the way they accept input (structure or sequence) and what output

they produce (ready-to-use antibody or just a scaffold). This is not

to say that some methods are incomplete; rather they have different

applications within antibody design, as laid out in the

following sections.

Maintaining binding function of the
parent antibody - efficient exploration
of the binder space without knowledge
of the antigen in zero-shot fashion

If we already have an antibody that binds to a target, we can

employ it to generate more binders of antibodies (Table 1).
FIGURE 2

Common tasks in antibody design. (A) Re-designing frameworks aim to maintain the binding of the CDRs, whilst optimizing for properties such as
stability or smaller immunogenicity. (B) Re-designing CDRs is chiefly aimed at modulating the binding abilities - specificity and affinity, usually
starting from a known binder (C). De-novo design aims to create a novel antibody molecule from the ground up, given an antigen and/or an epitope
site to be targeted.
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Different methods exist depending on the availability of associated

experimental data - i.e. structure-enabled or not. For purely

sequence-based tasks, we can use the starting antibody sequence

to explore evolutionarily plausible mutations. This approach is

cognate to general protein language models, where one learns to

explore the fitness landscape of sequence-function relationships

(91). For instance, models such as ProGEN or ESM3, can be used

for generating novel sequences that maintain certain functions (92,

93) (e.g. fluorescence). Maintaining binding in antibodies is not a

trivial task as introducing single mutations or combining favorable

mutations is not guaranteed to maintain binding (12). Therefore,
Frontiers in Immunology 06
exploring the space of ‘favorable’ mutations is desirable for

binder development.

The approach was pioneered by Hie et al. (92) where the

authors used the ESM-1b language model and the ESM-1v

ensemble of five models (six models in total) to guide the

evolution of seven antibodies targeting viral antigens of SARS-

CoV-2, Ebola, and Influenza A. Mutations were introduced based

on the evolutionary likelihood of single-residue substitutions in the

antibody variable regions (VH and VL), with substitutions that had

higher evolutionary likelihood than the wild-type selected. A

consensus of the six models was used to identify the most
FIGURE 3

Current approaches to designing antibody binders computationally. (A). Binders and non-binders against a target are generated experimentally.
Subsequent prediction of the binder/non-binder class allows for much more comprehensive sampling of the entire design space. (B) Affinity maturation
approaches predict the free energy changes of mutations, chiefly to the CDRs to obtain a larger set of binding antibodies. (C) Current co-folding
structure predictors provide confidence scores for the model of the entire complex which can be used as a proxy to gauge whether the two molecules
would interact. (D) Sequence & structure can be co-designed from pre-existing elements, such as CDR fragments or entire canonical CDRs. (E).
Backbone structure of an antibody binding a target epitope can be obtained, typically by diffusion approaches. Such predictions require a follow-up in
the form of inverse folding. (F) Given a structure of an antibody, predict a sequence that could fold into it. Applicable as a follow up to scaffolding
approaches or to obtain larger sets of potential binders that have the same structure.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1571371
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 1 Methods in antibody design.

Method Model Structure Antibody Antigen Performance verification Experiment verified Availability Citation

This model outperformed sequence-based
baselines models e.g. AbLang, abYsis, UniRef90
or Sapiens. It has a higher fraction with
improved binding, median fold improvement
and maximum fold improvement for
selected antibodies.

Yes (Model was evaluated
through experimental assays
measuring the binding affinities
of antibodies with model-
predicted mutations. Model-
guided mutations resulted in
significant improvements in
binding affinity)

https://github.com/
facebookresearch/esm

(24)

proseLM-XL achieved higher recovery rate for
native sequences reaching 3.59% higher median
recovery rate than the causal encoder. The
ProseLM models trained with coordinate noise
achieved higher rates of single-sequence
prediction structure prediction success with
AlphaFold2 and yielded more confident
structures in comparison with ProteinMPNN

Yes https://github.com/
P326rofluent-AI/
proseLM-public

(51)

The generative AI model achieved top 1,000
binding rates of 10.6% (HCDR3) and 1.8%
(HCDR123), outperforming baselines by 4- to
11-fold, while off-target designs showed a 3-fold
drop, highlighting its antigen-specific accuracy.

Yes (The model was validated
experimentally. Out of 440,000
generated HCDR3 variants,
approximately 4,000 were
estimated to bind to HER2 based
on screening, with 421 confirmed
binders validated through SPR
(Surface Plasmon Resonance)

Not mentioned, only
HER2 binders and
measured binding
affinities are open-
sourced at available at
https://github.com/
AbsciBio/unlocking-
de-novo-
antibody-design

(52)
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architecture aware specific condition

ESM-1B Transformer architecture No No No

ProseLM Based on ProGen2
(autoregressive
transformer), a pre-trained
protein language model.
Model uses Message
Passing Neural Networks
(MPNN) and invariant-
point message-passing
(IPMP) layers

Yes No, but with
additional fine-
tuning for
specific
antibodies using
data from the
Structural
Antibody
Database
(SAbDab)

No, but it was
tested on antibody-
antigen complexes

Shanehsazzadeh
et al.

Zero-shot generative
design approach. It
includes two-step process:
MaskedDesign (3D
backbone structure of a
bound antibody-antigen
complex prediction) and
IgMPNN (HCDR
sequences prediction)

No Yes Yes (generating
binders specific to
HER2, VEGF-A,
and the SARS-CoV
2 spike protein, and
the designs were
validated for
binding to
these antigens.)

Methods presented in this table focus on zero-shot, few-shot sequence design.
-

https://github.com/facebookresearch/esm
https://github.com/facebookresearch/esm
https://github.com/P326rofluent-AI/proseLM-public
https://github.com/P326rofluent-AI/proseLM-public
https://github.com/P326rofluent-AI/proseLM-public
https://github.com/AbsciBio/unlocking-de-novo-antibody-design
https://github.com/AbsciBio/unlocking-de-novo-antibody-design
https://github.com/AbsciBio/unlocking-de-novo-antibody-design
https://github.com/AbsciBio/unlocking-de-novo-antibody-design
https://doi.org/10.3389/fimmu.2025.1571371
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bielska et al. 10.3389/fimmu.2025.1571371
plausible substitutions. In the first round of evolution, variants with

single-residue substitutions were experimentally tested for

improved binding, and in the second round, combinations of

beneficial substitutions were introduced to further enhance

antibody affinity. Interestingly, most of the mutations

recommended by the models occurred in the framework regions

rather than the complementarity-determining regions (CDRs), with

around half of the affinity-enhancing mutations located in these

typically less mutated regions.

The aforementioned model had no notion of three dimensional

structure - this was addressed in ProseLM (51), where structural

adapter layers were introduced to include three dimensional

information. ProseLM, builds upon the Progen family of models,

incorporating structural information to improve the design of

therapeutic antibodies. This structural information is integrated

through structural adapter layers added after the language model

layers, encoding backbone details and associated functional

annotations. Models with more parameters show significant

improvements in perplexity, with further gains observed when

incorporating additional context information such as ligands. An

antibody-specific version of ProseLM was trained exclusively on the

SAbDab (94) dataset, achieving superior sequence recovery

performance compared to larger models. The model was used to

propose mutations for therapeutic antibodies Nivolumab and

Secukinumab, targeting both the CDRs and framework regions,

with designs based on structures from the PDB. Experimental

results revealed that redesigning frameworks led to a much higher

success rate in maintaining binding (92%), while redesigning CDRs

resulted in a lower success rate (25% for Nivolumab).

A notable study that performed large-scale validation is by

Shanehsazzadeh et al. (52). The authors employed their AI model to

generate CDR-h3s and all-CDR variants of trastuzumab. Care was

taken to remove all close-homologs of trastuzumab. The model

focused on generating heavy chain complementarity-determining

regions (HCDRs) in a zero-shot fashion - without prior exposure of

the model to the target antigen. The study generated a library of

about 400,000 HCDR variants and validated binders using high-

throughput surface plasmon resonance (SPR) experiments. The

results identified 421 diverse binders, with 71 showing low

nanomolar affinity to HER2, and some antibodies performing on

par or better than the therapeutic antibody trastuzumab. The top-

performing generative models significantly outperformed biological

baselines such as OAS and SAbDab databases, achieving a 10.6%

binding rate for HCDR3 designs and a 1.8% rate for full

HCDR123 designs.

The tool of choice for the few shot design is a language model

that was trained using autoregressive or masking procedure.

Although there is already a fair number of language models and

their antibody-specific varieties (95–97), there were not multiple

zero-shot/few-shot exercises like the ones above. Though such

approaches appear to be well suited to explore the space around a

specific binder, they do not offer a way to radically deviate from it.

Therefore it is also desirable to have a more precise set of binders

against a given target, which can be achieved by a combination of

data-generation and supervised learning.
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Oracles - large-scale binder
generation and subsequent machine
learning model training

One of the main tasks of an antibody design exercise is to

develop a binder towards an antigen. Machine learning methods are

notoriously data-intensive so an approach that has been explored by

some groups was to generate prediction-first machine learning

datasets of binders and non-binders and train the ‘oracle’ models

on these (Table 2, Figure 3A).

Recent advancements in computational antibody design have

leveraged high-throughput experimental data to train machine

learning (ML) models, achieving remarkable success in predicting

antigen specificity and binding affinity. Mason et al. (38) pioneered

this approach by deep-sequencing libraries of trastuzumab variants

and training a convolutional neural network (CNN) to predict

HER2 specificity, achieving an area under the ROC curve (AUC) of

0.91. Similarly, Lim et al. (53) (Lim, Adler, and Johnson 2022)

generated datasets for antibodies targeting CTLA-4 and PD-1 by

sorting yeast-displayed libraries, with their CNN achieving AUC

values of 0.90 and 0.94, respectively. Building on this foundation,

Chinery et al. (39) expanded the scope, creating a dataset of over

524,000 trastuzumab variants classified by binding affinity to HER2

and benchmarking multiple ML models, including CNNs, Fast

Library for Automated Machine Learning (FLAML), and

Equivariant Graph Neural Networks (EGNN). Notably, the CNN

excelled in low-data scenarios, while FLAML performed better on

larger datasets. This work also integrated computational methods

like AbLang and ProteinMPNN to enrich high-affinity variants,

underscoring the potential of ML in optimizing antibody libraries

with efficiencies comparable to traditional experimental methods.

The above-mentioned models were trained on datasets

generated for this purpose. However, it is believed that fine-

tuning models offers much improvement (98). Here, fine-tuning

is understood as taking a feature-representation model, such as a

language model, trained on many unrelated antibody/protein

sequences, and focusing it on a library of antibody-specific ones.

For instance, Engelhart et al. (99) generated the AlphASeq

SARS-CoV-2 dataset of 104,972 antibody sequences with

quantitative binding data, enabling Deutschmann et al. (100) to

fine-tune and benchmark domain-agnostic and domain-specific

models. The ESM2 model outperformed AbLang in predicting

binding affinities, demonstrating the power of generalist models

when trained on large datasets. Similarly, (74) (101) fine-tuned

ProGen with 60 CD40-targeting antibodies to bias sequence

generation toward improved affinity. Barton et al. (102)

introduced FAbCon, a generative antibody-specific language

model fine-tuned on datasets like AlphASeq and others, achieving

state-of-the-art predictive performance (e.g., AUROC of 0.815 for

SARS-CoV-2 binding) and generating low-immunogenicity

antibodies validated through computational developability

assessments. Finally, AlphaBind (55) utilized pre-training on 7.5

million affinity measurements and fine-tuning on experimental

data, incorporating sequence embeddings from ESM-2nv to
frontiersin.org
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TABLE 2 Methods presented in this table focus on Oracle models.

Method Model Structure Antibody Antigen Performance verification Experiment verified Availability Citation

model was experimentally validated
ing selected antibody variants in
n cells. Results showed that the
f predicted binders demonstrated
nding to HER2)

https://github.com/
dahjan/DMS_opt

(38)

model was experimentally verified
generated antibody sequences
e antigens PD-1 and CTLA-4)

https://github.com/
ywlim/
Antibody_deep_learning

(53)

ing predictions were tested through
nterferometry, with further
ongoing to assess the binding
of top designs)

https://github.com/
oxpig/
Tz_her2_affinity_and_beyond

(39)

l was not directly validated in a wet
er, its experimental validation relied
om 24,790 CDRH3 sequences
the HER2 antigen, derived from
ghput sequencing and affinity
methods. This provided an indirect
t evaluation of its performance
al-world binding data

https://github.com/csi-
greifflab/negative-
class-optimization.

(54)

model’s performance was verified
erimental methods. In vitro
showed that AlphaBind-derived
s consistently outperformed parental
in binding affinity. For example,
ndidate for AAB-PP489 achieved a
vement in affinity, and VHH72
s showed up to a 14x improvement)

https://github.com/A-Alpha-
Bio/alphabind

(55)
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architecture aware specific condition

Mason
et al.

Convolutional Neural
Network (CNN)

No Yes Yes, trained on
known binders
and non-binders.

The model achieved an area under the
ROC curve (AUC) of 0.91 and an average
precision of 0.83. 30/30 experimentally
validated variants retaining antigen
specificity and 85% exhibiting
nanomolar affinity

Yes (The
by expres
mammal
majority
specific b

Lim et al. Convolutional Neural
Networks (CNN) to
classify antibody
binders and non-
binders, and
Generative
Adversarial Networks
(GANs) to generate
synthetic antibodies

No Yes Yes (trained on
known binders
and non-binders
to the specific
antigens PD-1 and
CTLA-4)

The CTLA-4 and PD-1 models achieved
respectively:prediction accuracy of 91.2%
and 92.6%, Matthews correlation coeffi-
cient (MCC) of 0.68 and 0.78, areas under
the curve (AUC) of the receiver operating
characteristic (ROC) 0.9 and 0.94.

Yes (The
by testing
against th

Chinery
et al.

Convolutional Neural
Network (CNN),
Equivariant Graph
Neural Networks
(EGNN) and FLAML

No Yes Trained on
binders and non-
binders to HER2

The model achieved a PR AUC of 0.71
with 170 training sequences, increasing to
0.94 with 28,900 sequences.
Computational library design predicted
binder enrichments of 19–30% and the
experimental verification is ongoing.

Yes (Bind
Biolayer
validation
propertie

Ursu et al. Neural network
called SN10

No Yes (trained
on CDRH3)

The model is
trained on specific
antigens but does
not condition the
model on antigen
properties for
each task

The model achieved ID accuracy of 85-
99% and OOD accuracy of 90-96% in
challenging antigen-specific tasks,
outperforming baseline methods.
Compared to logistic regression, it
demonstrated a 12% improvement in
challenging scenarios, showcasing superior
generalization and binding rule discover

The mod
lab; howe
on data f
binding t
high-thro
screening
but robus
against re

AlphaBind Transformer encoder
with 4 heads and 7
layers. Antibody and
target are encoded
using ESM-2nv

No Yes Yes (tested on
multiple antibody-
antigen systems
such as
Pembrolizumab-
scFv (targeting
PD-1) and
VHH72 (targeting
SARS-CoV-
2 RBD))

The AlphaBind model demonstrated
strong computational verification across
multiple benchmarks. It achieved up to
74x affinity improvement in silico (for the
best AAB-PP489 variant), with predicted
affinities validated experimentally for 15/
15 (100%) of the top candidates, all
outperforming their parental antibodies.

Yes (The
using exp
validation
candidate
antibodie
the top c
74x impr
candidate

Methods in antibody design.
s
ia
o
i

I

s

e
v
r
o
u

s
a
o

https://github.com/dahjan/DMS_opt
https://github.com/dahjan/DMS_opt
https://github.com/ywlim/Antibody_deep_learning
https://github.com/ywlim/Antibody_deep_learning
https://github.com/ywlim/Antibody_deep_learning
https://github.com/csi-greifflab/negative-class-optimization
https://github.com/csi-greifflab/negative-class-optimization
https://github.com/csi-greifflab/negative-class-optimization
https://github.com/A-Alpha-Bio/alphabind
https://github.com/A-Alpha-Bio/alphabind
https://doi.org/10.3389/fimmu.2025.1571371
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bielska et al. 10.3389/fimmu.2025.1571371
optimize antibodies for binding affinity and developability. These

studies highlight how fine-tuning enhances ML models’ ability to

predict and generate optimized antibodies for diverse

therapeutic targets.

Altogether the DMS-based methods demonstrate that it is

possible to train machine learning models if enough data is

available (according to Lim et al. in the order of hundreds of

binders/non binders is enough). Such approaches require

generating a large experimental dataset to then train a neural

network. The overhead is justified by the subsequent ability to

computationally scan a much larger space of binders, in search of

antibodies with better developability or binding properties. Such

approaches are paradoxically antigen-specific but do not require

antigen at prediction time. The methods chiefly learn the

distribution of the antibody-side, or just the CDR-H3 that

recognizes the antigen. Therefore each is very constrained to the

DMS antigen, lacking generalizability. The overarching task of

antibody design remains to be able to generalize to any kind of

antigen at the start. Such design is typically approached by

structure-based and de novo methods.
Affinity maturation/structure
optimization

Given the importance of enhancing antibody-antigen binding

affinity, computational methods for affinity maturation have evolved

significantly over the years. Early approaches, such as those by

Lippow et al., utilized physics-based energy functions like CHARMM

to systematically evaluate single-point mutations and their

combinations (12). Such energy-based efforts were then combined

with docking & early statistical methods (103–105). While these

pioneering efforts laid the groundwork, novel strategies increasingly

leverage machine learning and data-driven approaches to predict

affinity or interaction energy and identify beneficial mutations (62).

The input here is typically a co-crystal or co-folding structure of

antibody-antigen with the model tasked in either predicting the energy

of a set of mutations, or proposing a set of favorable ones (Table 3,

Figure 3B). In broad terms, one can perform affinity maturation either

in a supervised or unsupervised fashion.

Supervised methods for antibody affinity maturation rely on

training models on structural affinity datasets such as SKEMPI and

AB-BIND, often supplemented with synthetic data to address limited

experimental availability. Notably the Antibody Random Forest

Classifier (AbRFC) integrates structural and mutational data to

predict affinity-enhancing mutations, successfully designing SARS-

CoV-2 antibodies with up to 1000-fold binding improvements

against Omicron variants. Graphinity (106), an equivariant graph

neural network, learns atomic-resolution interaction patterns and

achieves Pearson correlations nearing 0.9 on affinity datasets,

demonstrating strong generalization through the use of both

experimental and synthetic DDG data. However, the study also

highlighted the need for tens to hundreds of thousands of high-

quality experimental data points for fully generalizable predictions,

reflecting current limitations in dataset size and diversity.
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By contrast, unsupervised methods for antibody affinity

maturation focus on learning from structural data without

requiring labeled binding affinities, offering data-efficient

alternatives to supervised approaches. Models like FvHallucinator

(56) use generative hallucination to design sequences by

minimizing geometric loss between predicted and target

structures, successfully recovering native-like CDR sequences and

generating functional binders validated via Rosetta. GearBind (58),

a geometric graph neural network, combines large-scale pretraining

on protein structures with fine-tuning on datasets like SKEMPI to

predict mutations that significantly enhance affinity, achieving up to

17-fold improvements experimentally. DSMBind (59) employs

energy-based modeling with SE(3) denoising score matching,

learning to reconstruct perturbed structures and generating

nanobody designs validated by ELISA assays, showcasing its

versatility across binding tasks. Similarly, RDE-PPI (61) leverages

a flow-based generative model to estimate rotamer probability

distributions, using entropy to predict binding free energy

changes (DDG). Trained on structural data, it outperformed

traditional methods on the SKEMPI2 dataset and successfully

ranked affinity-enhancing mutations in a SARS-CoV-2 antibody

design. Together, these methods highlight the potential of

unsupervised learning to generate and optimize antibodies with

minimal reliance on labeled data.

While these computational strategies excel at affinity

maturation, they generally rely on the availability of high-

resolution antibody-antigen complex structures, such as those

derived from X-ray crystallography. This dependency poses a

challenge, as generating accurate models of antibody-antigen

complexes remains non-trivial. Advances in structure prediction

methods for co-folding are increasingly addressing this bottleneck,

aiming to expand the applicability of affinity maturation techniques

even in cases where experimental structures are unavailable.
Co-folding - structure-prediction-
based design of binders for implicit
flexible docking

Recent advances in structure prediction of monomers (15) have

spurred an array of antibody variable region specific models (89).

Such models now make it possible to provide predictions that are of

higher quality than previous homology models, typically in high-

throughput and with low memory requirements (107). For

applications such as protein design, one would expect to model

large numbers of variants, so the models have evolved to produce

answers much faster than the pioneering AlphaFold-2 software, for

which modeling even 1,000 antibodies would be cost and time

prohibitive (108, 109; 110). High throughput modeling of single

structures is desirable for scaffold design and inverse folding that are

covered in later sections.

Modeling of individual structures has naturally evolved into

tackling multimeric complex prediction or ‘co-folding’ - akin to

classic global protein docking. In many ways, co-folding is an

evolution of traditional docking methods exemplified by
frontiersin.org
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TABLE 3 Methods presented in this table focus on affinity maturation. Methods in antibody design.

Method Model architecture Structure Antibody Antigen Performance verification Experiment
verified

Availability Citation

recovery
d
et
≤ 2.0

Yes (The model has been
experimentally validated
by comparing generated
libraries with known
experimental libraries and
performing binding
affinity tests, particularly
in applications such as
HER2-specific binding)

https://github.com/
RosettaCommons/
FvHallucinator

(56)

nity
ith <100
ernatives
verage

atasets

Yes (The model predicted
mutations were tested in a
wet lab, confirming
enhanced binding affinities
in two rounds of
screening, which yielded
optimized antibody
variants with significantly
improved binding)

https://github.com/
tbc01/AbRFC

(57)

and
rforming
G
riants,
ns

.

Yes https://github.com/
DeepGraphLearning/
GearBind

(58)

al
ibody-
ein-
dels. For
Rs =

Yes https://github.com/
wengong-
jin/DSMBind

(59)
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aware specific condition

Fv
Hallucinator

Structure-conditioned design framework
that utilizes pretrained deep learning
models, specifically the DeepAb model (1D
ResNet (1D
convolution followed
by three 1D ResNet
blocks) and the
bi-LSTM encode
)

Yes Yes Yes The model achieved over 50% sequence
for CDRs with wildtype seeding, design
human-like interfaces, and retained targ
conformation in 70% of designs (RMSD
Å). Additionally, 27% of designs showe
improved binding energies compared to
the wildtype

AbRFC Random Forest classifier with features
engineered from structural and biophysical
data, including metrics from Rosetta
software and previously validated metrics
like AIF and SIN scores

Yes Yes Yes (it has been
trained and
validated on
antibody-
antigen
complexes to
predict
mutations that
retain or
improve
binding affinity)

The model achieved up to 1000-fold affi
improvement in two rounds of testing w
designs per round and outperformed al
like GNN and LLM models, achieving a
PR AUC of 0.87 and identifying 22–31%
affinity-enhancing mutations in tested d

GearBind Geometric graph neural network (GNN)
that uses multi-level geometric message
passing with pretraining with contrastive
learning on large structural datasets to
enhance its effectiveness

Yes No (but it
was tested
specifically on
antibodies for
affinity
maturation)

Yes (applied
and verified on
specific
antigens. It was
tested with
antibodies
against SARS-
CoV-2 and the
oncofetal
antigen 5T4)

The model achieved Pearson R = 0.676
Spearman R = 0.525 on SKEMPI, outpe
FoldX (Pearson R = 0.491) and Bind-dd
(Spearman R = 0.443). On 419 HER2 v
GearBind achieved the highest correlati
among models with Pearson R = 0.707,
compared to FoldX (Pearson R = 0.411

DSMBind Energy-based model (EBM) that uses SE(3)-
invariant neural networks. It also includes
frame-averaging neural network and SE(3)
denoising score matching (DSM)

Yes No Yes (For
antibody-
antigen
complexes, the
input includes
CDR regions
and antigen
epitopes to
evaluate
binding
energies.)

The model achieved strong computatio
performance, with an Rs = 0.374 for an
antigen binding and Rs = 0.388 for pro
ligand binding, outperforming other mo
protein-protein interactions, it achieved
0.403 in mutation effect predictions.
e

d

t

a
o

)

n
t
t
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TABLE 3 Continued

Method Model architecture Structure Antibody Antigen
ion

Performance verification Experiment
verified

Availability Citation

t is
on

g

airs)

The model was verified on multiple datasets,
achieving Root Mean Square Error (RMSE) and
Pearson Correlation metrics on datasets such as
SAbDab, AB-Bind, and SKEMPI 2.0. For
example, on SKEMPI 2.0, it achieved an RMSE
of 1.513 and a Pearson correlation of 0.671,
indicating robust predictive capability compared
to other methods.

No https://github.com/
TAI-Medical-Lab/
MVSF-AB

(60)

the
ensity

e
inder
on to
extent

Computationally, RDE-Network achieved
superior performance in the change of binding
free energy prediction compared to baselines like
Rosetta and FoldX, with a Pearson correlation of
0.6447 and Spearman correlation of 0.5584 on
the SKEMPI2 dataset. It ranked favorable
mutations for SARS-CoV-2 antibodies
effectively, placing three beneficial mutations in
the top 10% of predictions.

No https://github.com/
luost26/RDE-PPI

(61)

The model achieved a Pearson’s correlation
coefficient of up to 0.40 and RMSE = 1.71 kcal/
mol. The model outperformed other 18 existing
methods in antibody–antigen binding affinity
and single-point and multiple-point mutants
achieving P-value < 0.001. The model ranked
Top 1 in Kendall’s tau score (0.43) among 19
docking methods.

No http://
biosig.unimelb.edu.au/
csm_ab/datasets

(62)
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aware specific condit

MVSF-Ab Multi-view sequence feature learning
framework combining semantic and residue
features. It employs a pre-trained
ProteinBERT model for embedding
antibody and antigen sequences, followed
by a Convolutional Neural Network (CNN)
for semantic feature extraction and a
multilayer perceptron (MLP) for residue-
based features derived from AAindex

No Yes No (but i
evaluated
datasets
containin
various
antibody-
antigen p

RDE-PPI Flow-based generative model. The method
integrates a Rotamer Density Estimator
(RDE) for modeling sidechain
conformations, an entropy-based algorithm
for estimating conformational flexibility,
and neural networks to predict changes in
binding free energy (DDG) with
high accuracy.

Yes No (but it
has
applications
for antibodies
e.g.,
optimizing
CDRs in
antibody-
antigen
interactions)

Estimates
rotamer d
so it does
include th
partner b
informati
a certain

CSM-Ab Graph-based signatures that utilizes close-
contact features and structural features
containing free solvent accessible surface
area, residue depth or secondary
structure information

Yes Yes Yes

Methods in antibody design.
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RosettaAntibody/SnugDock (13), ClusPro (111) or HADDOCK

(112). Given two structures, these methods used a combination of

pose sampling and re-scoring to obtain the final complex. One of

the chief issues of such approaches was a limited way to deal with

flexibility, which is crucial as models are not perfect, and rigid-only

poses might prevent one from recreating the native pose because of

atomic clashes. Co-folding addresses such issues by performing the

folding and thus induced fit in one pass, which is also more

computationally efficient.

The pioneer in co-folding was AlphaFold2-multimer that

started a trend of using the scores (113) from the models to

additionally assess the quality of binding between an antibody

and the antigen (Table 4, Figure 3C). This is somewhat different

from antibody-antigen docking, where one is interested in re-

establishing the complex, but rather using the intermediary

scores, such as iPTM+PTM to assess whether an arbitrary

antibody (or protein) could bind to a given antigen as an

oracle (114).

Recent studies have highlighted the application of advanced

structural prediction methods in improving antibody-antigen

docking and design. Yin and Pierce (64) evaluated AlphaFold2

(AF2) for refining docked antibody-antigen complexes by using

stripped side-chain templates as input. AF2 improved docking

performance, particularly in bound complexes, by retaining 50%

of decoy contacts and refining interface structures with an average

shift of 1.24Å, although its rescoring efficacy diminished with lower

model quality. Wu et al. (63) introduced tfold-AB, a multi-task

model leveraging AlphaFold2 and large language models for flexible

docking and virtual screening, achieving DockQ scores of 0.217 in

global and 0.416 in local docking scenarios. It showed potential for

enriching antibody hits against targets like PD1 and SARS-CoV-2

antigens. Bang et al. (44) developed GaluxDesign, which achieved

near-atomic accuracy (1.4Å RMSD) in challenging CDR-H3 loop

predictions using inter-chain features and a novel G-pass scoring

metric. The model outperformed AlphaFold and other tools in

predicting HER2 binding, generating novel antibodies with high

experimental success rates, including 13.2% for HER2-

targeting designs.

Recently, diffusion-based improvements in AlphaFold3 were

focused specifically on antibodies, improving the model

performance on this modality upon AlphaFold2 (65).

Nevertheless, antibodies appear to be a particularly problematic

format that still eludes such state-of the art modeling attempts.

Currently there are community efforts to reproduce the successful

architecture of AlphaFold3. Such reproductions, however, appear to

be running into the same issues, indicating that global antibody-

antigen docking/co-folding is still out of reach, and to get at

reasonable models one needs to provide some constraining

epitope information to the model (66).

Collectively, these advances demonstrate significant progress in

antibody docking, rescoring, and de novo design, but one that still

needs to reach a level that can be translated into clinical

applications. Antibody CDRs are consistently eluding attempts to

predict them accurately (43). One confounding factor here might be
Frontiers in Immunology 13
CDR flexibility, as most of the methods treat 3D coordinates as

static snapshots rather than means to an ensemble (115).

Given such shortcomings, predicting structures of an antibody-

antigen complex can be seen as a proxy of assessing the viability of a

given antibody sequence against an antigen. Exhaustive

enumeration of such sequences is possible, but most of the

structural methods above would make it computationally

prohibitive to score. For this reason designing an antibody given

an antigen, the so-called ‘de novo’ design has always been of

great interest.
Sequence-structure co-design

The ultimate goal of structure-based antibody design is to

develop a novel binder against a given epitope. Some of the early

methods approached this without resorting to machine learning to

assemble novel binding structures using fragments (Table 5;

Figure 3D). Examples here include OptCDR, AbDesign,

RosettaAntibodyDesign and the method by Rangel et al.

Early computational methods for antibody design leveraged

structural data to generate and optimize complementarity-

determining regions (CDRs) for antigen binding. OptCDR (68)

focused on canonical CDR structures, utilizing energy minimization

and mutational libraries to design diverse CDRs, although its

designs were not experimentally validated. AbDesign (70) used

structural and sequence data from the Protein Data Bank (PDB)

combined with Rosetta-based docking to optimize binding affinity

and stability, successfully recapitulating natural backbone

conformations in several benchmarks. RosettaAntibodyDesign

(RAbD) (11) improved upon this by incorporating Monte Carlo

minimization to graft and optimize CDRs, with experimental

validation showing up to 12-fold improvements in binding

affinity. More recently, fragment-based approaches like that of

Rangel et al. (71) used structural fragments from PDB datasets to

design single-domain antibodies with optimized stability and

nanomolar affinities, validated against targets such as SARS-CoV-

2. Together, these methods showcase the evolution of

computational tools in antibody design, with increasing emphasis

on experimental validation and real-world applicability.

Recent advances in antibody design have integrated machine

learning with structural data, moving beyond traditional structure-

based methods. RefineGNN (72) pioneered this approach by

representing antibody sequences and structures as graphs, using

message-passing networks to co-design complementarity-

determining regions (CDRs) for improved binding affinity and

neutralization. Trained on data from SAbDab and CoVAbDab, it

showed strong performance in computational tasks like antigen-

binding and SARS-CoV-2 neutralization but lacked experimental

validation. Similarly, MEAN (Multi-channel Equivariant Attention

Network) framed antibody design as a conditional graph translation

problem, leveraging E(3)-equivariant message passing and attention

mechanisms to predict CDR sequences and structures (73). It

outperformed baseline methods in computational benchmarks,
frontiersin.org
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TABLE 4 Methods presented in this table focus on co-folding. Methods in antibody design.

Method Model architecture Structure Antibody Antigen Performance verification Experiment verified Availability Citation

Yes (The model’s predictions
were experimentally
validated through in vitro
binding assays. Success rates
for binding antibodies
exceeded those of previous
designs, with a success rate
of up to 13% for HER2 loop
designs and sub-nanomolar
affinities confirmed for
several targets)

Not mentioned (44)

No https://
drug.ai.tencent.com/en

(63)

No https://github.com/
piercelab/
alphafold_v2.2_customize
and AlphaFold2.2,
AlphaFold2.3, and Colab-
Fold antibody–antigen
models generated in this
study are available at
https://
piercelab.ibbr.umd.edu/
af_abag_benchmarking.html

(64)

No Not mentioned (65)

(Continued)
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aware specific condition

Galux
Design

Structure-conditioned
model focusing on antibody
loop (especially H3 loop)
structure prediction and
generation. It integrates
components like
AlphaFold-Multimer for
structural templates and a
proprietary scoring
mechanism based on
structural
confidence metrics

Yes Yes Yes The model achieved top H3 loop prediction
accuracy (1.4 Å RMSD on GAbD), outperforming
AlphaFold (2.4 Å) and ABlooper (3.4 Å). It excelled
in antibody loop design with a 26% G-pass rate and
55% structure recovery. In vitro, it showed high
success rates for PD-L1 (15%), PD-1 (5–9%), and
EGFR mutants (8%), with sub-nanomolar affinities
and strong specificity

Tfold-ab Based on AlphaFold2,
using language models in
the place of Evoformer

Yes Yes Yes Performance was validated on the IgFold-Ab and
SAbDab-22H1-Ab benchmarks, where it achieved
the lowest RMSD values in CDR regions compared
to other methods, with a 2.74Å RMSD on the CDR-
H3 region. It also performed well on orientational
metrics, demonstrating strong accuracy in antibody
structure prediction.

AlphaFold2,
AlphaFold
multimer

Based on attention
mechanisms. AlphaFold
utilizes end-to-end neural
networks, using
AlphaFold-Multimer.

Yes No (but has
been applied
and
benchmarked
extensively on
antibody-
antigen
complexes)

AlphaFold (v.2.0)-
no
AlphaFold-
Multimer (released
in AlphaFold
v.2.1) - yes

AlphaFold v2.2 achieved acceptable or higher
accuracy in 26% of antibody-antigen complexes
(n=427), with medium or higher accuracy in 18%
and high accuracy in 5%; these rates increased to
37%, 22%, and 6%, respectively, when considering
all 25 predictions per complex. The updated v2.3
model improved medium or higher accuracy to 36%
of top-ranked predictions, and the AFsample
protocol further enhanced it to 51%, demonstrating
notable advancements in predictive performance.

AlphaFold3 Diffusion-based generative
architecture with simplified
Pairformer module, a
diffusion module,
confidence modules and
trunk network.

Yes No (but it
significantly
improves
accuracy for
antibody-
antigen
complexes and
is validated for
protein-protein
interactions,
including
antibodies)

Yes (can be
antigen-
conditioned. It
predicts antibody-
antigen
interactions by
incorporating
epitope structures
and optimizing
CDR regions for
binding specificity)

Yes, it demonstrated increased accuracy in
comparison with AlphaFold-multimer v2.3 e.g.
Protein-antibody DockQ scores (a measure of
interaction quality) increased significantly with top-
ranked predictions exceeding 80% accuracy in
certain benchmarks., improved success rates for
antibody-antigen predictions using 1,000 model
seeds.

https://drug.ai.tencent.com/en
https://drug.ai.tencent.com/en
https://piercelab.ibbr.umd.edu/af_abag_benchmarking.html
https://piercelab.ibbr.umd.edu/af_abag_benchmarking.html
https://piercelab.ibbr.umd.edu/af_abag_benchmarking.html
https://doi.org/10.3389/fimmu.2025.1571371
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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including CDR-H3 design and binding affinity optimization, yet

also lacked direct experimental testing. Building on this, dyMEAN

(73) introduced full-atom modeling and the shadow paratope

concept to better capture antigen-antibody interactions, further

enhancing computational performance in structure prediction

and affinity optimization. While these methods demonstrate

promising results in silico, their lack of in vitro validation

remains a limitation.

Recent advancements in computational antibody design have

utilized diffusion-based generative models, which iteratively refine

antibody sequences and structures by reversing noise corruption

processes. DiffAb (Luo, 75) was one of the first to apply this

approach, using antibody-antigen complexes from SAbDab to co-

generate CDR sequences and 3D structures. It demonstrated strong

computational performance on targets such as SARS-CoV-2 and

influenza but lacked experimental validation. Similarly, AbDiffuser

(19, 76) combined sequence-structure relationships with physics-

informed constraints, achieving successful in vitro validation, with

37.5% of HER2-specific antibodies showing tight binding affinities

comparable to Trastuzumab. AbX (77) extended diffusion modeling

by integrating evolutionary, physical, and geometric constraints,

leveraging pre-trained protein language models and structural data

to optimize antibody-antigen binding. Though computationally

robust, it also lacked experimental validation. Antibody-SGM (78)

focused on heavy-chain design, using a score-based diffusion

process to generate full-atom structures, further refined by

Rosetta, and confirmed stability via molecular dynamics

simulations. Despite promising computational results, it too

remains unvalidated in wet-lab settings. Together, these diffusion-

based methods showcase significant potential for antibody design

but highlight a recurring gap in experimental confirmation.

All the methods described were solving a problem of combining

the structure and sequence optimization. As the last graph and

diffusion-based methods exemplify, the focus is shifting more

towards machine learning generative methods. Though the

methods covered here approaches simultaneous sequence-

structure optimization there is a set of modern methods that split

the problem in firstly generating the backbone, followed by

predicting a sequence that could fit it.

Scaffold design

Much of the previous work covered supervised learning, where

we already have some sequence or structure template to work from.

In such scenarios, as shown with Oracles even CNN networks can

prove useful, especially in the low-n learning scenario (116, 117). It

is known that multiple protein sequences can adopt similar

structures. This paradigm is exploited in ‘scaffolding’ which aims

to generate novel protein backbones able to interact with another

protein of choice (Table 6, Figure 3E). Backbone generating

methods are exemplified by methods such as IgDiff (79), Ig-VAE

(81), and Sculptor (80).

IgDiff utilizes SE(3) diffusion to model antibody backbones and

employs AbMPNN for sequence generation, trained on synthetic

antibody structures from the Observed Antibody Space (OAS) and
T
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TABLE 5 Methods in antibody design.

Method Model architecture Structure Antibody Antigen Performance verification Experiment
fied

Availability Citation

https://
www.maranasgroup.com/software.htm

(68)

https://
www.maranasgroup.com/software.htm

(69)

The methods have been implemented
within the Rosetta macromolecular
modeling software suite54 and are
available through the Rosetta Commons
agreement, For additional information
regarding RosettaScripts and
implementation please see the
RosettaScripts documentation page on the
RosettaCommons website. (https://
www.rosettacommons.org/manuals/
archive/
rosetta3.3_user_guide/
RosettaScripts_Documentation.html)

(70)

RAbD is publicly available as part of the
Rosetta software suite. The necessary
databases and tools can be accessed via
https://

(11)

(Continued)
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aware specific condition ver

OptCDR Computational workflow based on
canonical structures for antibody
complementarity-determining
regions (CDRs). Model is
implementing 4 step structure:
selection of CDR canonical
structures (backbone only), amino
acid sequence initialization using
mixed-integer linear programming
(MILP), modified version of the
previously developed iterative
protein redesign and optimization
(IPRO) and library generation

Yes Yes Yes (evaluates
designs against
specific antigens,
such as hepatitis
C capsid peptide,
fluorescein, and
vascular
endothelial growth
factor (VEGF))

The model excelled in de novo antibody
design, significantly improving binding
metrics, such as interaction energy for a
hepatitis C peptide (-62.6 to -175.8 kcal/
mol) and increasing polar contacts (8 to
31). It also generated novel CDRs for VEGF
and fluorescein with binding performance
comparable to experimentally
optimized antibodies.

No

OptMAVEN The model implements a
computational framework that
uses a modular approach for
designing antibody variable
regions. It employs a
combinatorial optimization
strategy to select and assemble
CDRs from a pre-built database
based on their compatibility and
binding energy with the
target antigen.

Yes Yes Yes (It evaluates
the designed
antibodies for
binding affinity
and specificity
against specific
target antigens
using
computational
metrics.)

The OptMAVEn model achieved a 96%
success rate in antigen positioning across
120 complexes and rediscovered 57.5% of
native antibody parts during modular part
selection. In the designed sequences 35%
and 20% of mutations in the native AM
influenza and HIV-1 antibody models,
respectively, were recaptured.

No

AbDesign Combinatorial backbone and
sequence optimization algorithm.
It leverages the Rosetta
macromolecular modeling suite to
design antibodies.It uses fuzzy-
logic design for optimizing both
ligand binding and
antibody stability

Yes Yes Yes (the model
has been used to
design antibodies
targeting specific
antigens,
including
lysozyme, sonic
hedgehog protein,
and tissue factor.
Designs are
computationally
docked and scored
for binding to
specific epitopes)

The model’s computational verification
demonstrates robust performance. It
achieved >30% sequence identity with
natural antibodies in 5/9 cases and
backbone conformations within 1 Å RMSD
for 4 designs, verifying structural similarity
to natural antibodies.

No

RAbD Built on the Rosetta software suite.
It employs a Monte Carlo +
minimization framework for
optimizing antibody sequences
and structures.

Yes Yes Yes (It uses
antigen-antibody
complex data to
evaluate binding
interfaces and

The RAbD model was computationally
verified using 60 antigen-antibody
complexes with 6,000 design cycles per
CDR. It achieved Design Risk Ratios
(DRRs) of 2.4–4.0x for CDR recovery and

Yes
i

https://www.maranasgroup.com/software.htm
https://www.maranasgroup.com/software.htm
https://www.maranasgroup.com/software.htm
https://www.maranasgroup.com/software.htm
https://www.rosettacommons.org/manuals/archive/rosetta3.3_user_guide/RosettaScripts_Documentation.html
https://www.rosettacommons.org/manuals/archive/rosetta3.3_user_guide/RosettaScripts_Documentation.html
https://www.rosettacommons.org/manuals/archive/rosetta3.3_user_guide/RosettaScripts_Documentation.html
https://www.rosettacommons.org/manuals/archive/rosetta3.3_user_guide/RosettaScripts_Documentation.html
https://www.rosettacommons.org/manuals/archive/rosetta3.3_user_guide/RosettaScripts_Documentation.html
https://rosettacommons.org/andupdatedstructuraldatafromPyIgClassify
https://doi.org/10.3389/fimmu.2025.1571371
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 5 Continued

Method Model architecture Structure Antibody Antigen Performance verification Experiment
fied

Availability Citation

rosettacommons.org/
andupdatedstructuraldatafromPyIgClassify.

Not mentioned (71)

https://github.com/
wengong-jin/
Re
fi

neGNN

(72)

https://github.com/THUNLP-MT/MEAN (73)

(Continued)
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aware specific condition ver

optimize designs
for specific
antigen-
binding
interaction)

an Antigen Risk Ratio (ARR) of 1.5 for
antigen-contacting residues.

Rangel et al. The model employs a fragment-
based computational approach for
designing antibody
complementarity-determining
region (CDR) loops. The strategy
combines structural fragments
(CDR-like fragments) and
sequence information from
databases like the Protein Data
Bank (PDB) to create CDR loops
optimized for binding
specific epitopes.

Yes Yes Yes (validated for
specific antigens,
such as human
serum albumin
(HSA) and the
SARS-CoV-2
spike protein
receptor-binding
domain (RBD))

Computationally, the method targeted 78%
of antigen surfaces with a density of 19.2
CDR designs per nm². When tested with
both experimental and AlphaFold-predicted
structures, 77% of designed CDRs were
identical between models and crystal
structures, confirming reliability across
structure quality.

Yes

RefineGNN Graph neural network (GNN)
with generative
capabilities

Yes Yes The model
optimizes
antibodies for
antigen binding
through
benchmarks like
amino acid
recovery (AAR)
for antigen-
binding tasks.
However, direct
antigen structural
conditioning is
not included in its
generation steps

The performance was verified
computationally. The model results include
for instance 30% improvement in root
mean square deviation (RMSD) for CDR-
H3 structure prediction compared to AR-
GNN or higher AAR (35.37%) on antigen-
binding tasks, outperforming baselines
like RAbD

No

MEAN E(3)-equivariant graph neural
networks with alternating internal
and external encoders and a novel
attention mechanism to model 3D
geometry and interactions within
antibody-antigen complexes

Yes Yes Yes It significantly outperforms baselines in 1D
sequence and 3D structure modeling,
achieving up to 36% improvement in amino
acid recovery and lower RMSD values. In
antigen-binding CDR-H3 design, MEAN
achieves nearly perfect structural alignment
with TM-scores exceeding 0.98 and RMSD
as low as 1.81. Additionally, in affinity
optimization, it outperforms previous
methods by achieving the most substantial
binding affinity improvements (DDG of

No
i

https://rosettacommons.org/andupdatedstructuraldatafromPyIgClassify
https://rosettacommons.org/andupdatedstructuraldatafromPyIgClassify
https://github.com/THUNLP-MT/MEAN
https://doi.org/10.3389/fimmu.2025.1571371
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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Method Model architecture Structure Antibody Antigen Performance verification Experiment
ified

Availability Citation

https://github.com/THUNLP-
MT/dyMEAN

(74)

https://github.com/luost26/diffab (75

Not mentioned (76)

https://github.com/
zhanghaicang/carbonmatrix_public

(77)

(Continued)
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aware specific condition ver

-5.33 kcal/mol), showcasing its ability to
generate antibodies with high specificity
and affinity.

dyMEAN Similar to MEAN Yes Yes Yes It achieves superior results in CDR-H3
generation with a 43.65% amino acid
recovery (AAR), TM-score of 0.9726, and
RMSD of 8.11, while excelling in docking
quality (DockQ: 0.409) and affinity
optimization with the most significant
binding affinity improvement (DDG: -7.31
kcal/mol)

No

Diffab Diffusion-based generative model
that combines probabilistic
modeling and equivariant
neural networks.

Yes Yes Yes (It explicitly
incorporates
antigen structures
into its
predictions,
allowing the
generated CDRs
to adapt to
specific antigen
binding sites.)

The model achieved up to 87.83% amino
acid recovery (AAR) for CDR-H1,
outperforming RAbD (65.75%) and FixBB
(37.14%), with RMSD ≤ 1.5 Å for most
CDRs except CDR-H3, which had RMSD
up to 3.597 Å due to its structural diversity.
For CDR-H3 optimization, it improved
binding energy (IMP up to 23.63%)

No

AbDiffuser Denoising diffusion-based
generative model specifically
designed for antibody sequence
and structure generation. The core
of its architecture includes the
Aligned Protein Mixer (APMixer),
which is an SE(3) equivariant
neural network.

Yes Yes Yes (incorporates
antigen
verification in its
experimental
setups. It was
validated for
specific antigens,
such as HER2,
showing successful
generation of
high-
affinity binders)

The AbDiffuser model achieved 22.2%
binding (raw) and 57.1% (filtered), with an
average pKD of 8.70 and a best binder pKD
of 9.50, surpassing Trastuzumab (pKD
~9.21). It required only 16 samples,
demonstrating 26x greater efficiency, and
generated structures with an RMSD of
0.4962, closely matching test sets.

Yes

AbX Model employs a score-based
diffusion framework with an ESM-
2-guided encoder, Invariant Point
Attention layers, and a recycling
mechanism to co-generate
antibody sequences and SE
(3) structures

Yes Yes Yes Outperformed baseline models (DiffAb,
dyMEAN) across metrics like Amino Acid
Recovery (AAR) and RMSD. For instance, it
achieved 30.8% Loop AAR and 3.24 Å Loop
RMSD on the RAbD test set, which are
significant improvements. Demonstrated
18.64% Improvement Percentage (IMP) in
binding energy for designed antibodies
compared to natural counterparts

No

https://github.com/THUNLP-MT/dyMEAN
https://github.com/THUNLP-MT/dyMEAN
https://github.com/luost26/diffab
https://github.com/zhanghaicang/carbonmatrix_public
https://github.com/zhanghaicang/carbonmatrix_public
https://doi.org/10.3389/fimmu.2025.1571371
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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ABodyBuilder2 predictions (109). Experimentally, 28 IgDiff designs

showed high expression yields, validating its practical applicability.

Ig-VAE, designed specifically for antibodies, generates 3D atomic

coordinates for immunoglobulin domains using a rotationally

and translationally invariant VAE, trained on AbDb/abYbank

datasets. It demonstrated strong computational performance,

such as epitope-specific SARS-CoV-2 RBD design, but lacked

experimental validation. Sculptor, an evolution of Ig-VAE,

integrates molecular dynamics simulations and interaction-guided

modeling to design binders for user-specified epitopes. Combining

VAE-generated backbones, sequence optimization, and Rosetta

refinement, Sculptor successfully designed a broadly neutralizing

binder for snake venom toxins, experimentally validated for cross-

reactivity with multiple toxins. These methods highlight the

growing potential of generative models in antibody and binder

design, however as in many other cases, experimental validation

was limited.

To the best of our knowledge, the current state of the art in

backbone generation, which includes full experimental validation,

was the fine-tuning of RFDiffusion (18). It was trained on backbones

with introduced noise, with a network tasked to recreate the original

coordinates. In order to operate within the sphere of antibodies/

nanobodies, RFDiffusion had to be fine-tuned on antibodies from the

Protein Data Bank (PDB) (22). This approach was developed using a

combination of nanobody and general protein structures from the

Protein Data Bank to train the model. The algorithm works by using

a noising and de-noising process to iteratively refine protein

backbones, specifically focusing on generating diverse CDR loop

conformations and nanobody-antigen binding orientations. After

designing the structures, ProteinMPNN is used to optimize the

sequences of the CDR loops. The method was benchmarked both

computationally and experimentally: it was applied to design

nanobodies targeting a range of disease-relevant antigens (including

influenza hemagglutinin, RSV, and SARS-CoV-2), and the resulting

designs were experimentally validated through surface plasmon

resonance (SPR) and cryo-electron microscopy (cryo-EM). The

cryo-EM results confirmed that one of the designed nanobodies

closely matched its predicted structure, validating the method’s

accuracy at atomic resolution. It should be noted that at the time

of publication of this review, this promising method has not yet

released any public tool associated with it.

For full protein/antibody design, the structural scaffolds

generated need to be designed with sequences. This is the domain

of inverse folding that models a sequence given a rigid structure.

The scaffold generation and inverse folding algorithms are used

currently in conjunction for a full protein/antibody design pipeline.
Sequence design in structural context
- inverse folding

It is often desirable to improve upon a known protein sequence,

and the task is made easier if its coordinates are known. Altogether

the problem is known as ‘inverse folding’ (Table 7, Figure 3F) for its

clear shift in the prediction objective to the protein folding problem.
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TABLE 6 Methods presented in this table focus on scaffold generation.

Method Model architecture Structure Antibody Antigen condition Performance verification Experiment verified Availability Citation

essfully designed VHHs
tally validated affinities
nM to 5.5 mM, achieving

acy with backbone RMSD
DR3 RMSD of 0.84 Å.

Yes (Designed VHHs were
tested against specific disease-
relevant targets (e.g., influenza
HA, RSV, COVID-19 RBD)
using biochemical assays,
including surface plasmon
resonance (SPR) and cryo-
electron microscopy (cryo-EM))

Not mentioned (22)

rates antibodies with high
ieving a self-consistency
Å for all designs, with 88%
eshold independently
loops. Compared to
iff excels in tasks like CDR

ges, with 74% passing
versus 6%

Yes (Generated antibodies were
made in the lab to verify that
they can be produced)

https://
zenodo.org/
record/11184374

(79)

eved 1.2 Å RMSD in
e complex backbones,
97 Å after refinement, with
tperforming native binders

Yes (The model was
experimentally verified.
Designed proteins were
expressed and tested for binding
using yeast surface display and
fluorescence-activated cell
sorting (FACS))

Not mentioned (80)

cted torsion angles within
lengths within ~0.1 Å of
ta, generated stable Ig
low Rosetta energy scores,
nding energies of DDG e.g.
Rosetta units for SARS-
ders

No https://
github.com/
ProteinDesignLab/
IgVAE

(81)
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aware specific

RFDiffusion Based on RFdiffusion, uses an
AlphaFold2/RoseTTAFold
(RF2) inspired framework that
applies Gaussian noise and
iterative de-noising to predict
protein backbones and
antibody structure

Yes Yes (fine-
tuned
specifically
for
antibodies,
particularly
single-
domain
VHHs
and scFvs)

Yes The model suc
with experimen
ranging from 7
structural accu
of 1.45 Å and C

IgDiff SE(3) diffusion-based
generative model with
Riemannian score-based
generative modeling used for
the diffusion of protein
backbones. Sequences are
predicted using the antibody-
specific inverse folding
model AbMPNN.

Yes Yes Yes (IgDiff can be antigen-
conditioned for certain tasks. It
enables design tasks where
specific CDR loops or regions are
generated while preserving the
binding interface to target
specific antigens)

The model gen
consistency, ac
RMSD below 2
meeting this th
across all CDR
RFDiffusion, Ig
H3 length chan
quality metrics

Sculptor Variational autoencoder
(VAE) for generating protein
backbones tailored to
specific epitopes

Yes No It generates binders specific to
target epitopes, such as venom
toxins and SARS-CoV-2 RBD,
and verifies designs using
docking simulations and
interaction energy evaluations.

The model ach
recovering nati
improving to 0
68 interfaces ou
in DDG.

Ig-VAE Variational autoencoder
(VAE). It predicts 3D
coordinates using a torsion-
and distance-
aware architecture

Yes Yes The model can be guided
towards desired structural
features through techniques like
latent space sampling and
constrained optimization to
generate structures, such as
SARS-CoV-2 RBD binders with
high ACE2
epitope complementarity.

Model reconstr
~10° and bond
experimental d
backbones with
and achieved b
-37.6 and -53.1
CoV-2 RBD bi
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TABLE 7 Methods presented in this table focus on sequence design with structure, inverse folding.

Method Model Structure Antibody Antigen Performance verification Experiment verified Availability Citation

ecovery, an
odels,
tasks like
ro-shot

No https://
github.com/
facebookresearch/
esm

(21)

f 52.4% when

of 32.9%

Yes https://
github.com/
dauparas/
ProteinMPNN.

(20)

HCDR3-only
ms IgMPNN
DR3 (1-shot
very). For 5/8

Yes (Designed antibodies
were tested in vitro against 8
therapeutic antigens
confirming binding rates up
to 96.3% for HCDR3
designs. Binding affinities
were experimentally
determined, with 5 of 8
antigens showing affinities
comparable to or better than
reference antibodies.)

https://
github.com/
AbSciBio/igdesign

(82)

, improved
loop by 20%
loops from
erated
terface
ody
PNN

No https://
zenodo.org/
records/8164693
can be run using
code published on
https://
github.com/
dauparas/
ProteinMPNN

(83)
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ESM-IF The model includes
three main
architectures: GVP-
GNN, GVP-GNN-
large, and
GVP-Transforme

Yes No No The GVP-Transformer achieved 51.6% sequence r
8.9% improvement over experimental-data-only m
maintained low perplexity (~4.01), and excelled in
binding affinity prediction (Spearman 0.69) and ze
mutation effects

ProteinMPNN Message-passing neural
network with three
encoder and three
decoder layers and 128
hidden dimensions that
predicts protein
sequences in an
autoregressive manner
from the N to C
terminus using protein
backbone features

Yes No Yes ProteinMPNN achieved a sequence recovery rate o
designing sequences for native protein backbones,
outperforming Rosetta, which had a recovery rate

IgDesign Model similar
to AbMPN

Yes (The model was
fine-tuned on specific
antibody-antigen
complexes, utilizing
IgMPNN (both
pretrained and fine-
tuned) as its
structural encoder to
enhance the
encoding of these
complex
interactions.)

Yes Yes (antigen
sequence and
antibody
framework
(FWR)
sequences are
provided as
context
during
training)

For HCDR123 design, the model outperforms this
baseline on 7 out of 8 antigens. IgDesign outperfo
on LCDR1 (100-shot amino acid recovery) and LC
amino acid recovery and 100-shot amino acid reco
antigens, binders matched or exceeded reference
antibody affinities.

AbMPNN Based on
ProteinMPNN
framework, a
structured transformer
that utilizes a message-
passing neural network
(MPNN) for encoding
structural features of
proteins, optimized
here specifically
for antibodies.

Yes (trained on
SAbDab dataset and
Immunobuilder
dataset)

Yes (fine-
tuned on
SAbDab and
the OAS)

Yes (trained
on full
database for
antibodies in
complex with
a
protein
antigens)

The model, compared to the ProteinMPNN mode
designability by reducing RMSD for the CDR-H3
and increased sequence recovery rates across CDR
~40% to ~60%. It also doubled the stability of gen
antibodies, with 40% within 5 kcal/mol of native i
energy, and ensured all sequences were valid antib
structures, whereas 16.8% were invalid in ProteinM
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Though the problem has been known and tackled for a very long

time (118), recent advancements in protein structure prediction and

antibody sequence generation have resulted in a revival of such

methods. Millions of predicted structures by AlphaFold2 can be

used to train inverse folding algorithms. Large-scale generation of

antibody sequences allows us to model these and develop antibody-

specific antibody inverse folding methods.

Protein-generic inverse folding methods generally form the

foundation for antibody-specific design approaches, with

ProteinMPNN and ESM-IF being two prominent examples.

ProteinMPNN (20) uses a message-passing neural network

(MPNN) to predict sequences that fold into given protein

structures by encoding features like atomic distances and frame

orientations. It achieves high sequence recovery rates and structural

fidelity, outperforming traditional methods such as Rosetta.

ProteinMPNN has been validated both computationally and

experimentally, with techniques like X-ray crystallography and

cryoEM confirming its ability to accurately fold into target

structures. ESM-IF (21, 23) leverages a GVP-Transformer model

trained on a dataset of 16,000 experimental and 12 million

AlphaFold2-predicted structures, achieving notable improvements

in sequence recovery, particularly for buried residues. It

demonstrated its utility in practical applications by introducing

point mutations to anti-SARS-CoV-2 antibodies (23), which

enhanced binding affinity in experimental validations.

ESM-IF and ProteinMPNN were trained on a large corpus of

proteins, but arguably a very small sample of all allowed antibody

structures. To the best of our knowledge, two antibody-specific

inverse folding methods were developed, AbMPNN and AntiFold,

fine-tuning ProteinMPNN and ESM-IF respectively on a modeled

antibody corpus.

AbMPNN (83), trained on 3,500 antigen-binding fragments from

SAbDab and 147,919 paired variable regions from OAS using

ABodyBuilder2-derived structures, achieved 60% sequence recovery

for CDR loops—outperforming ProteinMPNN’s 40%—and showed a

20% improvement in median RMSD for CDR-H3 loops, enhancing

designability and stability. AntiFold (106), trained on 2,074

experimentally solved and 147,458 predicted antibody structures,

excelled in amino acid recovery (60% for CDR-H3) and achieved a

Spearman’s rank correlation of 0.418 for antibody-antigen binding

affinity, surpassing AbMPNN and ESM-2. IgDesign (119) focused on

designing complementarity-determining regions (CDRs) for eight

therapeutic antigens, generating 1 million sequences per antigen and

filtering them for in vitro testing. It achieved superior binding rates

across antigens, with statistically significant improvements for 7 out

of 8 HCDR3 targets, making it a standout for experimental validation.

While IgDesign demonstrated experimental success, it is not freely

available, unlike AbMPNN and AntiFold that are free, but did not

demonstrate experimental validation.

Inverse folding methods represent a powerful alternative to

simultaneous sequence-backbone design by assuming that the fold

will not change. This is oftentimes desirable as structure is crucial to

antibody-antigen recognition and only minute changes need to be

introduced, maintaining the fold, but modulating the overall

function of the antibody.
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TABLE 8 Methods presented in this table focus on developability.

Method Model architecture Structure aware Antibody Antigen Performance verification Experiment verified Availability Citation
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GAN-generated antibodies was
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phage display. Select antibodies
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biophysical assays)
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specific condition

Ammeur
et al.

Modified Wasserstein GAN
(WGAN) architecture with
gradient penalty

Yes (Sequences were structurally
aligned using the AHo
numbering system, simplifying
the capture of structural
relationships. Additionally,
surface properties such as
negative patch sizes are modeled
to control aspects that impact
antibody behavior and stability)

Yes (trained on
over 400,000
human
antibody
sequences)

No
(generation
based on
desirable
biophysical
properties
of antibodies

The GAN model gen
diverse antibody sequ
KL divergence of 0.5
matching human rep
reduced immunogen

p-IGgen Auto- regressive decoder-only
language model using a GPT -2-
like architecture

Yes (all 1.8M paired sequences
were structurally modeled using
ABB2 and then ran
through TAP

Yes (trained on
1.8M paired VH/
VL sequences
taken from OAS)
by finetuning)

No Model achieved a Pe
correlation of 0.53 fo
immunogenicity pred
VL mutation correlat
(natural: 0.51), and g
sequences with high
mean Hamming dist
demonstrating its ab
realistic, biologically
plausible antibodies

Hutchins
et al.
DeepAb

Model based on DeepAb.This
prediction framework integrates
Rosetta minimization, enhancing
the spatial configuration of
antibodies through
computational design

Yes Yes (it employs
metrics tailored to
antibody
characteristics,
including a
specialized
DeepAb score

No (it
predicts
mutation
impacts on
binding
affinity based
on an
internal
scoring
(DeepAb)

91% of variants show
thermal and colloida
exhibited improved a
model showed 6%–3
for different mutation
that were projected b
computational scorin
~7% for random sele

One-shot
developable
antibody
design

The inverse folding model
AbMPNN was utilized to
generate sequences that maintain
the structural integrity of
antibodies, ensuring compatibility
with target structures.
Additionally, ESM guided specific
mutations to enhance both
binding affinity
and developability.

Yes Yes (Model focuses
on enhancing key
antibody properties
like binding
affinity and
stability, tailoring
its approach to
meet antibody
design
requirements.)

Yes (Model
began with
established
binders)

The pipeline achieve
(57/72 designs) for b
developability impro
(31/65) for escape m
and generated binder
sequence edits, show
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Generating antibodies with improved
functions - developability optimization

The chief focus of this review, as much of antibody design, is

focused on binder development. However developing a binder is

arguably an experimentally solved problem with the bigger wet-lab

hurdle being the optimization of subsequent developability

properties (Table 8). The iterative process of fine-tuning the

myriad biophysical properties is not linear and can account for

much of the time and effort in the preclinical stage (48, 50, 120).

Antibody design methods that address developability issues are

much more heterogeneous both in their approaches and goals.

Arguably, binder development has one objective, which is generally

a high affinity interaction. A single developability property on the

other hand, such as self-association, can have several assays

associated with it that might not be directly comparable to one

another. There is also a great scarcity of data on developability points.

To date, the Jain characterization of ca. 100 therapeutic antibodies,

remains one of the most comprehensive characterizations of

developable antibodies - however without negative data points (121).

Because of data scarcity, many methods, such as the Oracles

(Table 2, Figure 3A), focus on close-to-exhaustive enumeration of

binders, followed by computational filtering for developable

antibodies using general tools such as the Therapeutic Antibody

Profiler (122) or Camsol (123).

There also exists a plethora of work dedicated to the computational

prediction of individual assay data and properties that can lead to more

developable models and be incorporated in generative protein design

models (48, 124). A full review of these models is beyond the scope of

this review, but generally these include Hydrophobic Interaction

Chromatography (HIC), expression (concentration, purity), stability,

chemical modifications (D isomerization, N deamidation), enzymatic

PTMs including phosphorylation and glycosylation, immunogenicity

(T-cell epitope), Pk properties such as clearance, and viscosity. Many of

the published methods for these properties are not commercially or

academically available as they are developed using scarce proprietary

data, however, with the advent and broad participation of consortia

such as the FAITE consortium (https://faiteconsortium.org/), this

could be shifting.

An alternative to enumeration followed by binder validation is

biased generation of sequences through multi-property optimization

(MPO). Amimeur et al. (85) pioneered this approach using a

Generative Adversarial Network (GAN) trained on over 400,000

sequences from the Observed Antibody Space (OAS) to produce

humanoid antibodies with human-like structural and functional

diversity. The GAN, fine-tuned for therapeutic traits such as stability

and low immunogenicity, was experimentally validated through assays

like DSF, SEC, and SINS, achieving a high success rate in generating

antibodies with desirable developability profiles. Building on this,

Turnbull et al. (86) introduced p-IgGen, a GPT-2-based model fine-

tuned on paired and developable antibody sequences, which excelled in

immunogenicity prediction while maintaining computational

efficiency. Complementing these generative approaches, Hutchins

et al. (87) used the DeepAb model to design 200 anti-HEL antibody

variants, optimizing thermostability and affinity through mutations
Frontiers in Immunology 24
informed by deep mutational scanning and achieving significant

experimental success, with most variants showing increased stability

and up to a 21-fold affinity improvement. Dreyer et al. (88) extended

this pipeline for one-shot antibody discovery, using computational

tools like AbMPNN and ESM to design SARS-CoV-2 RBD-binding

antibodies with enhanced developability, validated experimentally

through stability and aggregation assays, achieving a 54% success

rate against escape mutations.

Altogether, though there appears to be progress in generating and

designing antibodies with improved developability properties, most

efforts are one off proofs of concept. To close the gap between

experimentation and these methods being employed to develop

novel drugs, data generation, method integration and benchmarking

is necessary.
Outstanding challenges - data &
experimental validation

The biggest issue within the protein design field remains not

model development but data availability, both for training and

benchmarking. Unlike in text or image generation fields, where it is

fairly cheap to gather datasets of millions of data points, in biology it

is not. Data generation is prohibitively expensive with large

discrepancies between cheaper but less informative (sequences)

and more expensive but more informative datasets (e.g. structures).

There are only ca. 15,000 non-redundant single chain protein

structures in the protein data bank (28) - compared to several

billion sequenced chains (125). On the antibody front, there are

several billion sequences available (126–128), but only several

thousand non-redundant structures (94). The number of non-

redundant antibody-antigen complexes is smaller still, being in

the order of around 1000 structures.

The structure datasets are crucial to the development of

backbone generation protocols, such as RFDiffusion. Paucity of

such data, especially on the antibody-antigen complex front is a

blocker for development of better algorithms, as even the latest

iteration of AlphaFold, falls short of providing an actionable

solution to the antibody-antigen interaction problem. The

structural antibody datasets such as SAbDab (94) and ABDB

(129) have become proxies for benchmarks as they compile

antibody-antigen information specific to antibodies. For the

design tasks, the complexes are employed to train backbone

generation algorithms. Much more specialized datasets that also

gather affinity information are SKEMPI (130) and AB-BIND (131).

Here, the structure of an antibody-antigen is accompanied by

mutation and affinity measurement. Nevertheless, these datasets

contain a small number of structures and measurements relative to

the scale of the problem (several hundred data points each).

The copious sequence datasets are employed to learn

meaningful representations of molecules, given the unavailability

of the corresponding large-scale structure data. For structure-

informed sequence design using inverse folding, the paucity of

structural data is side-stepped by model generation. For instance

ESM-IF was trained using 12m AlphaFold models. In the antibody
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space, the widely used resource is the Observed Antibody Space (96,

127), which curates repertoire data used chiefly for language model

training. Similar to ESM-IF training, OAS data were modeled and

used for training the ABMPNN and AntiFold, to extend the datasets

beyond the several thousand available structures. Overall usage of

such synthetic data is not only a way to train better models but also

to estimate how much data would be needed to solve the problem

altogether (106, 132). Though it is plausible to re-use such

experimentally generated data, care needs to be exercised as it has

been raised that such data might in fact be biasing the models in the

undesirable direction (133). The fact remains that though there is a

lot of sequence data, hardly any of it is associated with binding or

developability data points.

The paucity of data highlights another large problem, which is

experimental validation. Many design methods are proposed purely

in silico, without follow-on experimental work. The ways in which

in silico performance is measured typically focuses on ‘re-discovery’

of existing binders (e.g. amino acid recovery, DockQ score or

RMSD to reference binder). In such a scenario truly novel

binders cannot be discovered. Sometimes a handful of sequences

are produced to test binding, however oftentimes without any

control, so it is quite difficult to gauge what benefits the methods

actually bring over purely experimental discovery.

A facet where computational antibody design/protein design

can bring value is not only speed but explainability and safety. By

producing antibodies in silico one would expect to shift the

paradigm from discovery to informed design. However, for that,

the performance of the novel binders would have to be measured

not only via the prism of binding efficacy but also the myriad

biophysical features a biologic should have.

Such benchmarking however is done on publicly available

datasets - which have few data points for structures (~1000),

affinity (100s) and even less for developability (10s, depending on

which assay one focuses on (FLAb: Benchmarking Deep Learning

Methods for Antibody Fitness Prediction, 134). Because of the

paucity of the data, generative methods are often compared on

pre-existing datasets (135). In an ideal scenario, the generated

sequences would in each case be made in the lab and the

structures solved, as is done in few cases.

Experimental validation, however, is very expensive and

benchmarks on par with CASP or CACHE are only very recently

coming into existence in the protein design world (136–138). In the

antibody-world, such benchmarking needs to take into account not

only whether one can develop a binder but also how developable

such sequences are (FLAb: Benchmarking Deep Learning Methods

for Antibody Fitness Prediction, 134). Arguably, developing a

binder is an experimentally solved problem, with the biggest

remaining issues being hitting the right epitope, specificity, and

developability. A binding model achieving starling results on RMSD

of the predicted complex, but that would not hit the right

biophysical properties (e.g. off-target effects, CDR-H3 stability,

glycosylation etc.) would not be as useful as a library-based

method that does. Any kind of benchmarking needs to weigh the

speed and cost of computation versus purely experimental

discovery. For this reason, the antibody-specific benchmarking
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that comes into existence takes this into account through both

developability challenges as well as carefully weighing the benefits of

experimental versus purely computational approaches (139, 140).

Altogether, protein and antibody design fields are still in their

infancy. Most methods correctly focus on binder development, as this

problem needs to be solved to start tackling a wider multifactorial

puzzle of developability (120), Fc-engineering (141) of pH-dependent

effects (142). It will take time, both in development and adoption

before computational methods become the driver of discovery and

design. It is difficult to envisage how much of the non-linear biologics

discovery workflow can be replaced. On the pre-clinical front there

are many opportunities as many of the binding/developability

experiments should be susceptible to modeling, with enough data

generated. Effect on target discovery/validation and clinical trials that

require much deeper understanding of biology are much more

difficult to define.

Given the state of the field, we think that the change will be

fueled chiefly by creating large complex datasets adorned with

developability data together with conscientious benchmarking

and collaboration across industry and academia.
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