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Integrative single-cell RNA
sequencing and bulk RNA
sequencing reveals the
characteristics of glutathione
metabolism and protective
role of GSTA4 gene in
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Anran Song3*, Chao Lan1* and Yuepeng Hu1*
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Background: Recent studies have increasingly reported abnormal glutathione

(GSH) metabolism within the tumor microenvironment across various solid

tumors. However, the specific mechanisms underlying aberrant GSH

metabolism in pancreatic cancer (PC) remain unclear. This study aims to

investigate the prognostic significance of GSH metabolism-related genes in PC

and to identify key molecular targets, thereby providing novel perspectives for

targeted PC therapy.

Methods: The GSH metabolism gene set was retrieved from the KEGG database.

Utilizing single-cell transcriptomic data from the GSE205049 dataset, this study

analyzed the variation in GSH metabolic signaling intensity across distinct cell

types within the tumor microenvironment of PC. Additionally, transcriptomic

data from multiple repositories, including TCGA, ICGC, and GEO, comprising a

total of 930 patients with PC, were integrated to construct a prognostic

molecular classifier related to GSH metabolism. Furthermore, the role of the

key gene GSTA4 in PC was experimentally validated through a series of in

vitro assays.

Results: Significant differences in GSH metabolic signaling intensity were

observed across various cell types in both normal pancreatic and PC tissues. A

prognostic signature comprising six GSH metabolism-related genes (GSTA5,

PGD, IDH2, GSTA4, GPX2, and GPX3) was established, wherein a high-risk

score was associated with a poorer patient prognosis. Notably, GSTA4

expression was significantly reduced in PC tissues, and higher GSTA4 levels

were linked to a favorable prognosis. In vitro functional analyses demonstrated

that GSTA4 overexpression markedly inhibited PC cell proliferation

and migration.
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Conclusion: The GSHmetabolism-associated prognostic signature developed in

this study effectively identifies high-risk patients with PC. As a prognostic

protective factor, GSTA4 exhibits downregulated expression in PC tissues and

suppresses tumor proliferation and migration, highlighting its potential as a

therapeutic target.
KEYWORDS

single-cell RNA sequencing, bulk RNA sequencing, GSH metabolism, GSTA4 gene,
pancreatic cancer
Introduction

Pancreatic cancer (PC), one of the most lethal gastrointestinal

malignancies, has witnessed a more than twofold increase in

incidence over the past two decades, imposing a substantial

burden on global public health systems (1, 2). Despite significant

advancements in PC treatment, including the introduction of

innovative modalities such as immune checkpoint inhibitors and

CAR T cell therapy, most cases are diagnosed at advanced stages,

resulting in a poor overall prognosis with a 5-year survival rate of

approximately 13% (3, 4). Consequently, identifying valuable

molecular markers remains a critical objective in PC research, as

their discovery could significantly enhance early diagnostic

accuracy and facilitate precision medicine through individualized

targeted therapy (5).

Emerging evidence indicates that metabolic reprogramming is a

pivotal factor in the progression of PC. The persistent proliferation of

tumor cells necessitates increased nutrient uptake and anabolic

activity (6). This metabolic reprogramming primarily stems from

intrinsic factors, including a range of metabolite-related genetic

alterations. The PC tumor microenvironment is typically

characterized by abnormal conditions, such as hypoxia and elevated

lactic acid levels, which not only facilitate metabolic reprogramming

but also induce adaptive metabolic shifts in tumor cells to ensure

survival under hypoxic and acidic conditions (7). Furthermore,

inflammatory mediators within the PC microenvironment play a

pivotal role in tumor progression by interacting with various

metabolic pathways, modulating the tumor microenvironment, and

promoting the formation of a dense fibrotic matrix (8).

Disruptions in glutathione (GSH) metabolism are significantly

associated with the development of various cancers. GSH is essential

for maintaining protein homeostasis and mitigating oxidative stress

within cells (9). The regulation of the cellular redox state is

fundamental to both cancer initiation and progression. As the most

critical intracellular antioxidant, GSH modulates tumor cell survival

within the tumor microenvironment by scavenging excessive reactive

oxygen species (ROS) generated from the endoplasmic reticulum

(10). Moreover, GSH metabolism is intricately linked to cancer

therapy and the emergence of drug resistance. Recent studies have

established that resistance to multiple chemotherapeutic agents is
02
closely associated with altered GSH metabolism. For instance,

anticancer drugs such as cisplatin and paclitaxel exert their

therapeutic effects by generating ROS, while elevated GSH levels

neutralize these ROS, thereby diminishing drug cytotoxicity and

fostering chemoresistance (11). Additionally, GSH has been

implicated in mediating chemoresistance in PC through the

ferroptosis pathway, characterized by the accumulation of lipid

ROS (12, 13). Ferroptosis, driven by disrupted iron homeostasis,

further underscores the importance of redox regulation in tumor

progression (14). Notably, recent findings indicate that multiple GSH

metabolism-related genes are upregulated in PC stem cells and that

decreasing GSH levels can sensitize PC cells to gemcitabine (15). This

study focuses on the expression patterns of GSH metabolism-related

genes within the PC tumor microenvironment and investigates their

mechanistic roles in PC progression, aiming to identify novel

therapeutic targets.

Although single-cell sequencing has advanced our understanding

of tumor metabolism, its application to GSH metabolism in PC

remains limited. Despite the ability of single-cell sequencing

technology to capture the gene expression landscape of tumor cells

at a single-cell resolution, the regulation of GSH metabolism genes

extends beyond tumor cells to encompass non-tumor cells within the

complex PC microenvironment, which includes a diverse array of

immune cells, fibroblasts, and endothelial cells. This study elucidates

the impact of GSH metabolism-related genes on the PC tumor

microenvironment at the single-cell level and identifies GSTA4 as a

critical prognostic molecular marker. Additionally, the expression of

GSTA4 in PC was validated through comprehensive molecular biology

experiments, revealing its pivotal role in regulating apoptosis and

migration of PC cells. These findings provide a theoretical foundation

for the development of novel targeted therapeutic strategies.
Materials and methods

Single-cell sequencing and analysis

The GSE205049 dataset (16), comprising single-cell sequencing

data from nine PC samples and nine normal pancreatic tissues, was
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obtained from the GEO database. Single-cell data were imported

using the CreateSeuratObject function, applying the following

quality control criteria: nCount_RNA ≥ 1000, nFeature_RNA ≥

200, nFeature_RNA ≤ 6000, and percent.mt ≤ 20. Data

normalization was performed using the SCTransform function.

To evaluate GSH metabolism activity for each cell type, five

single-cell gene set computational methods were employed:

AUCell, UCell, Add, singscore, and ssgsea (17, 18). The summed

scores from these methods, termed “Scoring,” provided a more

comprehensive and stable representation of GSH metabolic activity

compared to individual algorithms. The GSH gene set was sourced

from the KEGG_GSH_METABOLISM pathway (http://www.gsea-

msigdb.org/gsea/msigdb/cards/KEGG_GSH_METABOLISM).
Bulk RNA sequencing analysis

Publicly available gene expression data and associated clinical

information were collected from TCGA, GEO, ICGC, and

ArrayExpress. To ensure data consistency, samples without

survival information were excluded, and batch effects were

mitigated using the ComBat method from the R package “SVA”

(19). The integrated dataset included multiple cohorts: GSE57495

(20), GSE28735 (21), GSE62452 (22), MTAB-6134, TCGA, ICGC-

CA, and ICGC-AU, comprising a total of 930 PC samples with

complete clinical annotations.

Non-negative matrix factorization (NMF) (23) was applied to

classify the PC samples based on GSH gene expression profiles. NMF

efficiently simplifies high-dimensional data, enhancing the

interpretation of gene set expression patterns. Using the NMF

package, 930 patients with PC were stratified into two molecular

subtypes, C1 and C2. Survival analysis was performed to determine

prognostic differences between these subtypes. To quantify GSH

metabolic activity and hallmark pathway activity, the GSVA

package was utilized. Additionally, the Estimate package predicted

immune and stromal scores for each subtype. The immune

microenvironment was characterized using multiple prediction

algorithms, including TIMER, CIBERSORT, and QUANTISEQ

(24). To develop GSH metabolism-related prognostic markers, the

LASSO-Cox regression model was constructed. Model performance

was assessed via survival analysis and ROC curve evaluation. The

sample grouping strategy was as follows: First, PC samples from

TCGA, GEO, and ArrayExpress were merged. Subsequently, 50% of

these samples were randomly selected as the training set, while the

remaining 50% formed validation set 1. All PC samples from the

TCGA, GEO, and ArrayExpress databases were designated as

validation set 2, while samples from the ICGC platform constituted

validation set 3. Gene weight prediction was performed using the

random forest algorithm. The BEST platform was employed to

explore the clinical significance of GSTA4. Comparative analysis

between cancerous and adjacent normal tissues assessed GSTA4

expression, alongside evaluations of its correlation with tumor stage

and grade. Based on GSTA4 expression levels, patients were

categorized into high and low expression groups, and survival

outcomes were compared to elucidate the clinical relevance of GSTA4.
Frontiers in Immunology 03
Cell culture

The normal human pancreatic ductal cell line (H6C7) was

obtained from BeNa Culture Collection (BNCC), while the

human PC cell lines (BxPc-3, PANC-1, CFPAC-1) were provided

by Procell Life Science & Technology Co., Ltd. The culture medium

for H6C7 and PANC-1 cells consisted of 45 mL DMEM and 5 mL

FBS. BxPc-3 cells were maintained in a medium comprising 45 mL

RPMI 1640 and 5 mL FBS. CFPAC-1 cells were cultured in a

medium containing 45 mL IMDM and 5 mL FBS. All cell lines were

incubated at 37°C with 5% CO2.
RNA reverse-transcription and PCR
experiment

Upon reaching full confluence, cells were digested with trypsin,

followed by centrifugation at 1000 rpm for 5 minutes to collect the cell

pellet. The supernatant was discarded, and the pellet was resuspended

in 1 mL Trizol, mixed thoroughly, and allowed to stand for 5–10

minutes. Subsequently, 200 mL chloroformwas added, and the mixture

was centrifuged at 12,000 g for 15 minutes. The upper aqueous phase

was carefully collected, mixed with 500 mL isopropanol, and

centrifuged again at 12,000 g for 10 minutes. The supernatant was

discarded, and the pellet was washed with 80% ethanol, followed by

centrifugation at 7500 g for 5minutes. After removing the supernatant,

the pellet was air-dried and dissolved in an appropriate volume of

RNase-free water for RNA concentration measurement.

RNA was reverse transcribed into cDNA using an All-in-One

reverse transcription kit, following the manufacturer’s protocol.

Quantitative real-time PCR (qRT-PCR) was performed using the

SYBR Green method, adhering strictly to reagent preparation and

machine operation guidelines.
Transfection of the overexpression plasmid

The human GSTA4 overexpression plasmid and corresponding

control plasmid were obtained from the gene supplier. Transfection

was conducted using the Lipo3000 kit as follows: System 1 consisted

of Opti-MEM™ medium (serum-free) mixed with Lipo3000;

System 2 consisted of Opti-MEM™ medium (serum-free)

combined with plasmid DNA and P3000™ reagent. After

allowing the mixed System 2 solution to interact with System 1

for 10–15 minutes, the resulting complex was added to the cells.
CCK8 experiment

Following transfection in 6-well plates, cells were digested with

trypsin, and a defined number of PC cells were seeded into each well

of a 96-well plate. After incubation at 37°C with 5% CO2 for 48-

hour, a medium containing 10% CCK-8 was added to each well.

After 1 hour of incubation, absorbance at 450 nm was measured

using a microplate reader.
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Wound-healing experiment

For the wound-healing assay, transfected PC cells in the logarithmic

growth phase were seeded in six-well plates at appropriate density and

streaked using a 200 mL pipette tip. Images were captured at 0 and 48

hours post-scratch. During the migration period, cells were maintained

in a low-serum medium to minimize proliferation interference.
Results

Enrichment score of GSH metabolism-
related genes in scRNA-seq

Initially, nine paired tissue samples from PC and adjacent

normal tissues were collected to assess the heterogeneity of GSH
Frontiers in Immunology 04
metabolism-related genes using single-cell sequencing data.

Following the methodological criteria, the top 2000 hypervariable

genes were identified and dimensionally reduced using principal

component analysis (PCA). This process yielded 35 distinct cell

clusters, whose distribution was visualized via Uniform Manifold

Approximation and Projection (UMAP) (Figure 1A). The UMAP

panel distinctly separates tumor tissue cells from normal pancreatic

tissue cells (Figure 1B). Cell subsets were annotated based on known

marker genes, and the annotation process was systematically

documented. The bubble diagram (Figure 1C) illustrates the

differential expression levels of marker genes across the 35 cell

clusters, highlighting the heterogeneity among cell types.

To further investigate the heterogeneity within the PC tumor

microenvironment, the cellular composition of primary tumor and

normal pancreatic samples was analyzed. Cell populations were

represented with distinct colors and markers, including B cells
FIGURE 1

Classification of cell subpopulations based on scRNA data from pancreatic cancer. (A) UMAP plots visualizing distinct cell cluster classifications using
varied color schemes and coding systems. (B) Differential cell distribution between normal pancreatic tissue and pancreatic cancer tissue of origin,
represented by distinct colors within a single-cell UMAP landscape. (C) Marker gene expression profiles across multiple cell clusters.
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(CD79A), ductal epithelial cells (EPCAM), fibroblasts (LCM), mast

cells (TPSAB1), MKI67+ proliferative cells (MKI67), myeloid cells

(CD74), NK/T cells (CD3D, CD3E, GZMA), and plasma cells (IGJ)

(Figure 2A). Figure 2B displays the relative expression levels of key

marker genes within each cell subset.

Hypervariable genes were identified for each cell type, followed

by correlation analysis of cell annotations. The analysis identified

eight cell types: B cells (MS4A1, CD79A, VPREB3, CD19); ductal

epithelial cells (KRT7, KRT19, MMP7, TSPAN8, SOX9, LCN2,

CEACAM1, CEACAM5, CEACAM6, MUC1, FXYD3, EPCAM);

fibroblasts (LUM, DCN, COL1A1, COL1A2); mast cells (TPSB2,

MS4A2, CLU, TPSAB1); MKI67+ cells (STMN1, TOP2A, MKI67,

CDK1, CENPF, ASPM); myeloid cells (CD64, CD68, AIF1,

FCER1G, CD74, S100A8, S100A9, APOE, C1QA, CD163, CD14,

FCN1); NK/T cells (CD3D, CD3E, CD3G, CD2, IL7R, NKG7,

GZMA, GZMB, GZMH, KLRD1, CCL5); and plasma cells (IGJ,

IGHA1, SSR4, MZB1, FKBP11) To quantify the expression of 50

GSH metabolism-related genes (Table 1) across different cell types,

gene set scoring was performed using six algorithms: AUCell, UCell,

singscore, ssgsea, Add, and Scoring. All six methods consistently

indicated that GSH metabolism was most active in myeloid cells and

ductal epithelial cells, followed by MKI67+ cells and fibroblasts

(Figure 3A). Subsequently, GSH metabolic signal intensity was

compared between PC tumor tissues and normal pancreatic tissues

using the six algorithms, presented as violin plots (Figures 3B–G).
Frontiers in Immunology 05
The analyses revealed that GSH metabolism-related genes exhibited

significantly higher expression in tumor tissues, particularly within

myeloid cells, NK/T cells, B cells, and MKI67+ cells, compared to

normal pancreatic samples. In contrast, ductal epithelial cells

demonstrated relatively low GSH metabolic gene expression. To

further validate the spatial distribution of GSH metabolic activity,

GSH signal scores were mapped onto UMAP representations for

both normal pancreatic and PC tumor tissues, confirming the

differential activity levels of GSH metabolism across various cell

types (Supplementary Figures 1, 2).
NMF cluster analysis of GSH metabolism-
related genes

To evaluate the prognostic significance of GSH metabolic

signaling in PC, comprehensive transcriptomic analyses integrating

bulk RNA-seq data and prognostic information from patients with

PC were were performed across multiple datasets. Initially, the NMF

algorithm was applied to cluster 930 patients with PC into molecular

subtypes. Various performance metrics, including contour coefficient,

dispersion, silhouette score, and sparsity, were calculated to

determine the optimal rank value, ensuring clustering validity and

stability (Supplementary Figure 3). Based on the integration of

multiple evaluation criteria, two clusters (C1 and C2) were selected
FIGURE 2

Annotation results for scRNA data from 9 pancreatic cancer tissues and 9 normal pancreatic tissues. (A) UMAP landscape illustrating the distribution
of various cell types within normal pancreatic tissue and pancreatic cancer tissue. (B) Marker gene expression profiles corresponding to cell type
identification during annotation.
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as the optimal solution. The expression profiles of GSH metabolism-

related genes between the two clusters revealed significantly higher

expression in the C1 cluster compared to the C2 cluster (Figure 4A).

Prognostic analysis indicated that patients in the C2 cluster exhibited
Frontiers in Immunology 06
worse overall survival compared to those in the C1 cluster, suggesting

that elevated GSH metabolism gene expression is associated with

poor prognosis in PC (Figures 4B, C). The heightened GSH

metabolism signal activity was further validated within the C1 cluster.

To investigate the interaction between GSH metabolic

signaling and immune system dynamics within the tumor

microenvironment, an immune checkpoint analysis targeting

differentially expressed genes in relation to GSH metabolic

signaling was performed. Results indicated significant variations

in the expression of most GSH metabolism-related genes between

the two clusters (Figure 4D). Differential pathway analysis between

C1 and C2 clusters, visualized via heatmap, identified several

distinct metabolism-related signaling pathways, including

xenobiotic metabolism, fatty acid metabolism, and bile acid

metabolism (Figure 4E).

To assess the immune landscape within the PC tumor

microenvironment, immunity, stromal, and tumor scores were

calculated using the ESTIMATE algorithm. The C2 cluster

demonstrated higher ESTIMATE and stromal scores compared to

the C1 cluster, although no significant difference in immune scores
FIGURE 3

Gene expression scores associated with GSH metabolism in pancreatic cancer. (A) Comparison of gene expression scores related to GSH
metabolism across different cell types, evaluated using six classical algorithms. (B-G) Comparative analysis of GSH metabolic signal scores across cell
types between pancreatic and pancreatic cancer tissues. * indicates p <0.05; ** indicates p <0.01; *** indicates p <0.001; **** indicates p <0.0001.
TABLE 1 50 genes obtained from KEGG_GLUTATHIONE_METABOLISM
pathway.

SRM PGD GSTM1 GSTM5 GSTK1 IDH1

GGT1 GSTO1 GPX7 GSTA1 GPX5 OPLAH

GSTP1 GSTA5 GSTA4 GSTA2 TXNDC12 GCLM

GSTT2 MGST2 GPX6 GSR GPX1 GGT6

GSTT1 LAP3 GSTM4 GSS GPX2 ANPEP

GSTZ1 MGST1 GGCT RRM1 GPX3

RRM2B MGST3 GSTM3 RRM2 IDH2

SMS GSTA3 GSTM2 GCLC GPX4

G6PD ODC1 GGT5 GSTO2 GGT7
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was observed between the groups (Figure 5A). To further dissect the

immune cell composition within the PC tumor microenvironment,

seven computational algorithms were employed: TIMER,

CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPcounter,

xCell, and EPIC (Figure 5B). Cross-validation using these

algorithms revealed distinct immune cell infiltration patterns

between groups with high and low GSH metabolic signaling.

Notably, increased infiltration of immune cells such as CD4+

T cells, CD8+ T cells, B cells, and neutrophils was observed in

the high GSH metabolism expression group, indicating an

immunosuppressive microenvironment in PC characterized by
Frontiers in Immunology 07
elevated GSH metabolism gene expression. Subsequently, immune

checkpoint gene analysis between the C1 and C2 clusters identified

significant differential expression of several checkpoint-related

genes, suggesting that variations in GSH metabolic signaling may

influence immune escape mechanisms (Supplementary Figure 4).

To evaluate the relationship between GSH metabolic signaling

activity and therapeutic response, a drug sensitivity analysis was

conducted. Patients with lower expression of GSH metabolism-

related genes exhibited higher sensitivity to specific targeted

therapies, including KRAS (G12C) inhibitors, Lapatinib,

Sorafenib, and Gefitinib (Supplementary Figure 5).
FIGURE 4

NMF clustering of bulk-RNA data from 930 pancreatic cancer patients, delineating two distinct subgroups. (A) Consensus map illustrating NMF
cluster distribution. (B) Kaplan-Meier curve depicting cluster-specific survival differences based on GSH metabolism-related genes. (C) Violin plots
illustrating expression differences of GSH metabolism-related genes between the two clusters, derived using the GSVA algorithm. (D) Differential
gene expression related to GSH metabolism between clusters. (E) Heatmap depicting pathway enrichment for differentially expressed genes in the
two clusters. * indicates p <0.05; ** indicates p <0.01; *** indicates p <0.001; **** indicates p <0.0001.
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Construction and validation of a
prognostic model related to GSH
metabolism

To identify key genes associated with GSH metabolism in PC, the

classical LASSO regression model was employed to construct a

prognostic correlation model. The process of model construction,

including the introduction of regularization to constrain parameters

and enable variable selection, is detailed in Supplementary Figure 6.

Following this approach, six key GSH metabolism-related genes were

selected: GSTA5, PGD, IDH2, GSTA4, GPX2, and GPX3. The

expression levels of the six model genes across different cohorts,

stratified by high and low-risk groups, are presented in

Supplementary Figure 7. For model validation, 930 patients with

clinical prognostic data were partitioned into training and three

independent validation sets. Survival curves were generated for the

prognostic risk model across these cohorts, consistently

demonstrating that patients classified in the high-risk group
Frontiers in Immunology 08
exhibited poorer outcomes across both training and validation sets,

thereby confirming the model’s robust prognostic accuracy and

stability (Figure 6). To further assess the predictive performance of

the model, 3-year Receiver Operating Characteristic (ROC) curves

were generated for each cohort, with Area Under the Curve (AUC)

values calculated accordingly (Figure 7). The 3-year AUC for the

training cohort was 0.714, while the AUC values in the three

validation cohorts consistently exceeded 0.6. These results

underscore the model’s efficacy in differentiating between high-risk

and low-risk patients with PC.
Molecular biological validation of GSTA4 in
pancreatic cancer

A random forest analysis was performed to investigate the

significance of GSH metabolism in PC, and the results were

visualized (Figure 8A). Among the identified genes, GPX2,
FIGURE 5

Differential analysis of immune composition in the tumor microenvironment of pancreatic cancer, based on NMF clustering. (A) Violin plot
comparing ESTIMATE score, immune component score, and stromal component score between clusters. (B) Comparative analysis of immune cell
infiltration between clusters using seven computational algorithms. ** indicates p <0.01; *** indicates p <0.001.
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GSTO1, GPX3, SMS, and GSTA4 demonstrated high weights in the

PC context. Upon intersecting these results with the LASSO screen

and conducting a literature review, it was noted that the mechanistic

understanding of GSTA4 in PC remains limited. Therefore, a more

detailed analysis was conducted to explore the correlation between

GSTA4 and clinical characteristics in patients with PC. Analysis of

the GSE28735, GSE62452, and GSE71729 datasets revealed

significantly lower GSTA4 expression in PC tumor tissues

compared to normal pancreatic tissues (Figure 8B). Additionally,

metastatic PC tissues exhibited reduced GSTA4 expression relative

to primary PC tissues (Figure 8C). Further investigations

demonstrated an association between GSTA4 expression levels

and tumor stage, tumor grade, and TP53 gene mutation status

(Figures 8D–F). To further elucidate the prognostic relevance of

GSTA4 in PC, survival analyses were performed across multiple

cohorts of patients with PC, including disease-free survival, disease-

specific survival, overall survival, progression-free survival, and
Frontiers in Immunology 09
relapse-free survival. These analyses encompassed the following

cohorts: TCGA-PAAD, E-MTAB-6134, GSE28735, GSE62452,

GSE71729, GSE78229, GSE85916, and ICGC-PAAD. Patients

were stratified into high and low GSTA4 expression groups, and

prognosis differences were assessed within each cohort. The results

consistently indicated that patients with high GSTA4 expression

had significantly better prognoses compared to those with low

expression, identifying GSTA4 as a potential prognostic protective

factor in PC (Figure 9).

To experimentally validate the bioinformatics predictions,

GSTA4 expression was examined in PC cell lines. PCR analysis

demonstrated that GSTA4 expression was markedly lower in PC

cell lines (BXPC-3, CFPAC-1, Panc1) compared to the normal

pancreatic cell line H6C7 (Figure 8G). To investigate the functional

role of GSTA4, overexpression models were established in BXPC-3

and Panc1 cell lines. Successful GSTA4 overexpression was

confirmed in the transfected cell lines (Figures 10A, B).
FIGURE 6

Kaplan-Meier curves comparing high and low risk scores between training and three validation cohorts.
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Functional assays revealed that GSTA4 overexpression significantly

inhibited cell proliferation, as evidenced by CCK8 assays conducted

at 48-hour, which showed reduced proliferation rates in GSTA4-

overexpressing BXPC-3 and Panc1 cell lines (Figures 10C, D).

Moreover, the wound-healing assay demonstrated a pronounced

reduction in cell migration at the 48-hour mark in the GSTA4-

overexpressing group compared to controls (Figures 10E, F). The

immunohistochemistry experiment once again confirmed that

GSTA4 exhibits an abnormally low expression characteristic in

pancreatic cancer (Figure 10G).
Discussion

Recent studies have increasingly highlighted the abnormal

metabolic characteristics of the tumor microenvironment (25, 26),

positioning metabolic targeting as a promising avenue in anticancer

immunotherapy (27). As the understanding of GSH deepens, it has

become evident that GSH not only maintains cellular redox

homeostasis but also plays a pivotal regulatory role within the

tumor microenvironment (28). Key features of the tumor
Frontiers in Immunology 10
microenvironment, such as hypoxia and acidosis, significantly

influence the redox state of cells, and accumulating evidence

indicates that such conditions are frequently associated with

elevated GSH concentrations (29, 30). Emerging data suggest that

tumor cells adapt to hypoxic and acidic environments by

upregulating GSH-dependent antioxidant enzymes, including

GSH peroxidase and GSH reductase, alongside increasing

intracellular GSH levels (31). In response to excessive ROS

production, the cellular antioxidant system is activated, with GSH

functioning as a key antioxidant. This understanding has led to the

hypothesis that inhibiting GSH synthesis or utilization could serve

as a novel therapeutic strategy for cancer. Furthermore, GSH

depletion within the tumor microenvironment has been linked to

ferroptosis, a form of iron-dependent cell death (32). However, the

mechanistic insights into abnormal GSH metabolism within the PC

tumor microenvironment remain limited. Notably, Cai et al.

demonstrated that inhibiting GSH metabolism could decelerate

PC progression, though the molecular mechanisms underlying

this effect remain unexplored (33). The present study

systematically investigated the genes involved in GSH metabolism

in PC, utilizing single-cell and transcriptomic data to identify key
FIGURE 7

ROC curves comparing high and low risk scores between training and three validation cohorts.
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molecular markers associated with GSH metabolic dysregulation.

The biological functions of these markers were experimentally

validated using a series of molecular biology techniques.

The tumor microenvironment of solid tumors encompasses not

only tumor cells but also a diverse array of non-tumor cell types,

including myeloid cells, natural killer (NK) cells, and B cells,

alongside numerous stromal components, chemokines, cytokines,

and metabolites. These elements collectively form the complex

network characteristic of the tumor microenvironment (34).

Analysis of GSH metabolic signaling activity using single-cell data

from normal pancreatic tissues and PC tissues revealed significant

differences in signal intensity across various cell types, particularly

ductal epithelial cells, myeloid cells, NK/T cells, and B cells.

The carcinogenesis of pancreatic ductal epithelial cells is

intrinsically linked to the development of PC. During epithelial-

stromal transformation (EMT), pancreatic ductal epithelial cells lose

epithelial characteristics, including tight junctions and polarity, and

acquire stromal traits, a process pivotal for cancer cell infiltration and

metastasis (35, 36). Studies by Kim et al. have demonstrated that most

EMT-associated proteins are involved in gemcitabine-resistant and
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sensitive GSH and cysteine/methionine metabolism within

gemcitabine-resistant human pancreatic adenocarcinoma cell lines

(37). GSH peroxidase-1 (GPX1), a key antioxidant enzyme,

participates in GSH metabolism (38). GPX1 silencing induces ROS-

mediated activation of the Akt/GSK3b/Snail signaling pathway,

thereby promoting both EMT and the development of

chemoresistance in PC (39). Additionally, oncogenic RAS

activation in PC augments NADPH-oxidase activity, resulting in

increased ROS production, which indirectly modulates GSH

synthesis (40). In myeloid cells, GSH metabolism regulation

modulates BH3 analog sensitivity, influencing treatment efficacy in

acute myeloid leukemia (41). However, the role of GSH metabolism

within myeloid cells in PC remains unclarified. In PK cells,

membrane-bound gemcitabine generated through NK cell-based

adoptive cell transfer (ACT) exerts anti-tumor effects in PANC 1

cells by modulating GSH levels released during cancer cell lysis (42).

Furthermore, a novel GSH isoform, S-geranylgeranyl-L-GSH, has

been identified as a potent P2RY8 ligand with direct action on human

B cells (43). In conclusion, aberrant GSH metabolism drives

tumorigenesis by impacting multiple cellular components within
FIGURE 8

Random forest analysis of GSH metabolism-associated genes and correlation analysis between GSTA4 expression and clinical features in pancreatic
cancer. (A) Random forest analysis identifying key GSH metabolism-related genes. (B) Differential GSTA4 expression between normal pancreatic
tissue and pancreatic cancer tissue across three cohorts. (C) Comparison of GSTA4 expression between primary and metastatic pancreatic cancer.
(D) Correlation between GSTA4 expression and tumor staging within the pancreatic cancer cohort. (E) Correlation between GSTA4 expression and
tumor grading within the pancreatic cancer cohort. (F) Correlation between GSTA4 expression and TP53 mutation within the pancreatic cancer
cohort. (G) PCR-based assessment of GSTA4 expression in the normal pancreatic cell line H6C7 and three pancreatic cancer cell lines (BXPC-3, CFP,
Panc-1). *** indicates p <0.001; **** indicates p <0.0001.
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the tumor microenvironment of PC, significantly influencing its

chemotherapeutic drug sensitivity.

A prognostic correlation model based on GSH metabolism in PC

was established, identifying six key model genes. Key genes were

selected using random forest survival analysis, and the intersection of

both analytical outcomes revealed four core genes: GSTA4, GSTA5,

GPX2, and GPX3. The GSH S-transferase family (GSTs) encompasses
Frontiers in Immunology 12
multiple classes, each comprising various isozymes (44). As a pivotal

member of this family, GSH S-transferase-a (GSTA) primarily

facilitates GSH binding and detoxification within cells, while also

playing essential roles in cell signaling, post-translational

modification, and resistance to anticancer drugs (45, 46).

Evidence indicates that variations in GSTA gene expression can

modulate the activity of GSTA isozymes, disrupting cellular redox
FIGURE 9

Survival analysis stratified by GSTA4 expression across various pancreatic cancer cohorts.
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homeostasis, promoting tumor cell proliferation, and linking GSTA

gene mutations to an elevated tumor risk, particularly in cancers

such as bladder and colorectal cancer (47, 48). Additionally, GST

has been implicated in cancer drug resistance (49, 50). For instance,

GST inhibitors demonstrate anti-proliferative effects on tumor cells,

and accumulating studies suggest that GSTs are emerging as novel

therapeutic targets (50, 51). Nonetheless, the precise role of GSTA

in PC remains to be clarified. Validation through multiple PC cell

lines indicated that GSTA4 expression was markedly upregulated in

PC compared to normal pancreatic cells. Notably, this study is the

first to identify GSTA4 as a prognostic protective factor capable of

inhibiting the proliferation and migration of PC cells.

Despite the comprehensive analysis of the intricate roles of GSH

metabolism-related genes in the tumor microenvironment using

single-cell and transcriptome data from PC, and the successful in
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vitro validation of the key target GSTA4, the study has inherent

limitations. The accuracy and stability of the GSH metabolism-

related prognostic model necessitate further validation using external

datasets. Additionally, the investigation of GSTA4’s functional

phenotype in PC is at an early stage, and the mechanisms

underlying GSTA4 downregulation remain unresolved.
Conclusion

In conclusion, this study integrates bioinformatics analysis to

elucidate the regulatory functions of GSH metabolism-related

genes, utilizing single-cell and transcriptomic data from PC to

construct a prognostic model incorporating six genes. As the first

in vitro validation of GSTA4’s biological function in PC, the
FIGURE 10

Functional characterization of GSTA4 in pancreatic cancer cells and immunohistochemical validation in clinical specimens. (A, B) PCR analysis demonstrated
a significant upregulation of GSTA4 expression in overexpressing cell lines Panc-1 and BxPC-3. (C, D) CCK-8 assays revealed that GSTA4 overexpression
markedly inhibited the proliferative capacity of Panc-1 and BxPC-3 pancreatic cancer cells in vitro at 48 hours. (E, F) Wound-healing assays indicated a
significantly reduced migration rate in GSTA4-overexpressing cells after 48 hours. (G) Immunohistochemical analysis using tissue microarrays revealed
differential GSTA4 expression patterns between pancreatic cancer tissues and adjacent normal tissues. ** indicates p <0.01; *** indicates p <0.001; ****
indicates p <0.0001.
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findings provide a potential foundation for developing novel

therapeutic strategies against PC.
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Development of a prognostic signature based on GSH metabolism-related

genes. (A, B) LASSO Cox regression analysis was employed to select optimal
parameters. (C) Multivariate Cox regression analysis identified six GSH

metabolism-related genes as key components of the prognostic model.
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