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Background: Succinylation, a key post-translational modification, plays a crucial

role in metabolic regulation and tumor progression. However, its influence on

the tumor immune microenvironment and its prognostic implications remain

unclear. A systematic pan-cancer analysis of succinylation-related molecular

activities is needed.

Methods: Bulk transcriptomic, single-cell RNA sequencing, and spatial

transcriptomic data across pan-cancer from TCGA, GEO, TISCH, and multiple

other databases were analyzed. Succinylation scores were calculated using Gene

Set Variation Analysis (GSVA). The interactions between succinylation scores,

immune infiltration, tumor microenvironment, tumor mutational burden, and

immunotherapy response were assessed. A succinylation-based prognostic

model was constructed and validated in colorectal cancer (CRC) cohorts.

PCED1A protein expression was evaluated by immunohistochemistry and

Western blotting. The function of PCED1A in CRC was investigated through in

vitro experiments.

Results: Succinylation scores were significantly altered in multiple tumor types.

Higher succinylation scores correlated with mitochondrial oxidative

phosphorylation, while lower succinylation scores were linked to immune cell

differentiation. Spatial transcriptomic analysis showed a negative correlation

between succinylation scores and immune cell activity in tumor-adjacent

regions. A prognostic model consisting of 11 succinylation-related genes

(ATP6V1C2, CAPS, DAPK1, P4HA1, PCED1A, RASL10B, AGT, EREG, HYAL1,

SARAF, and SLC4A4) was developed. High-risk patients exhibited significantly

shorter overall survival. PCED1A was upregulated in CRC and positively

associated with SIRT5. Overexpression of PCED1A promoted intracellular

protein desuccinylation, along with enhanced CRC cell proliferation, migration,

and invasion.

Conclusion: Our analysis demonstrates that succinylation-related molecular

activities display distinct expression patterns across cancers, which are
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associated with metabolic regulation, immune modulation, and disease

prognosis. The succinylation-based prognostic model provides a novel risk

stratification tool for CRC, while PCED1A-dependent succinylation regulation

may serve as a potential therapeutic target.
KEYWORDS

succinylation, tumor immune microenvironment, prognostic model, colorectal
cancer, PCED1A
1 Introduction

Cancer is a multifaceted and complex cellular disease that

progresses through intricate histological and molecular biological

stages, which makes it one of the most pressing public health

challenges worldwide. Advances in high-throughput sequencing

(HTS) and bioinformatics technologies have revolutionized cancer

research, and offered unprecedented insights into the genomic

landscape of tumors (1). Advancements in technology have

allowed scientists to identify millions of genomic alterations, which

play potential roles in tumorigenesis and progression. However, the

interaction between these genomic changes and the tumor

microenvironment remains insufficiently understood, particularly

regarding their immunological relevance and influence on

immunotherapy responses. Additionally, the pronounced genetic

and molecular heterogeneity observed across cancer types and within

individual tumors underscores the importance of conducting pan-

cancer studies. Such comprehensive analyses are essential for

identifying novel biomarkers and therapeutic targets, which can

lay the foundation for personalized therapeutic strategies and

improve patient outcomes. Colorectal cancer (CRC), which ranks

among the most common and aggressive malignancies globally,

continues to pose significant challenges despite substantial

advancements in treatment, including surgery, chemotherapy, and

targeted therapies. The prognosis of CRC strongly depends on the

stage at diagnosis, with patients diagnosed at a localized stage

achieving a five-year survival rate exceeding 90%, whereas those

presenting with distant metastases face a survival rate of less than

10% (2). Therefore, identifying novel molecular markers for CRC is

crucial to improving the poor prognosis and treatment outcomes of

CRC patients. Additionally, as a “cold tumor” with limited

responsiveness to immunotherapy, it is highly desirable to discover

valuable target genes that can improve the tumor immune

microenvironment of CRC. Such discoveries could enhance the

recognition of tumor antigens and increase the activity of tumor-

infiltrating immune cells, thereby enabling a greater number of CRC

patients to benefit from immunotherapy.

Under normal physiological conditions, cells primarily rely on

mitochondrial oxidative phosphorylation (OXPHOS), which

provides energy for cellular processes. However, most cancer cells

undergo metabolic reprogramming, which shifts their energy
02
production to aerobic glycolysis and results in the accumulation of

succinate—a hallmark metabolic alteration critical for tumor

adaptation (3). Succinate is not only a critical intermediate in the

tricarboxylic acid cycle but also regulates cellular functions through

succinylation, an epigenetic modification. Succinylation is a reversible

acylation modification occurring on lysine residues, which is

dynamically regulated by intracellular levels of succinate and

succinyl-CoA (4). High levels of succinylation have been shown to

reprogram the pentose phosphate pathway in gastric cancer, which

provides energy and metabolic intermediates to support cell

proliferation (5). Studies indicate that succinylation is widely

distributed across various metabolic enzymes and transcriptional

regulators, and it plays critical roles in metabolic pathways such as

the tricarboxylic acid cycle, fatty acid metabolism, and oxidative

phosphorylation (6). Furthermore, succinylation modifies

chromatin-associated proteins, which alters the transcriptional state

of genes and regulates the expression of tumor-related genes (7). For

instance, lysine acetyltransferase 2A (KAT2A)-mediated histone H3

lysine 79 (H3K79) succinylation upregulates the expression of

tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation

protein zeta (YWHAZ), which encodes 14-3-3z, thereby enhancing

the migratory and invasive capabilities of tumor cells (8). Sirtuin 5

(SIRT5), one of the most extensively studied desuccinylases, regulates

protein activity by removing succinyl groups, thereby affecting

cellular metabolic balance (6). SIRT5 modulates the succinylation

status of various target proteins and exhibits complex roles across

different tumor types. In hepatocellular carcinoma (HCC), SIRT5

deficiency leads to increased succinylation and activity of Acyl-CoA

Oxidase 1 (ACOX1), which is directly associated with oxidative stress

and DNA damage responses in HCC. These findings suggest that

SIRT5 plays a protective role in liver function and inhibits the

progression of HCC (9). In CRC, SIRT5 activates mitochondrial

malic enzyme 2 (ME2) by desuccinylating lysine 346, which enables

cancer cells to sustain mitochondrial respiration under glutamine-

deficient conditions. This metabolic adaptation supports energy

production and promotes CRC cell proliferation and tumorigenesis

(10). Within the tumor microenvironment, succinylation not only

regulates metabolic and signaling pathways but also closely influences

immune cell functionality. SIRT5 deficiency leads to excessive

succinylation of PKM2, which increases IL-1b production, thereby

altering the polarization of tumor-associated macrophages (TAMs)
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and fostering an immunosuppressive environment (11). As a

dynamically regulated epigenetic modification, succinylation plays a

crucial role in cancer metabolic reprogramming and tumor

microenvironment modulation. Elucidating the molecular

mechanisms of succinylation and its functions in cancer will help

uncover novel targets for tumor metabolic regulation and provide

a theoretical foundation for the development of innovative

anticancer therapies.

In this study, we systematically analyzed the expression profiles of

succinylation-related genes across pan-cancer datasets and established

molecular subtypes based on succinylation scores using unsupervised

clustering. GSVA was used to compute succinylation scores in single-

cell and spatial transcriptomic data, we further investigated the

heterogeneity of succinylation scores in the TME and their

relationship with intercellular communication. The results

demonstrated that cells with high succinylation scores in CRC were

significantly associated with mitochondrial oxidative phosphorylation

and the electron transport chain, whereas cells with low succinylation

scores were closely linked to immune cell differentiation. Spatial

transcriptomic analysis revealed a negative correlation between

succinylation scores and immune cell activity in tumor-adjacent

regions. Additionally, through survival analysis of TCGA and

independent validation cohorts, we developed a succinylation-

related prognostic model comprising 11 core genes for risk

stratification in CRC patients. Then, we validated the expression

levels of the key gene PCED1A via immunohistochemistry.

Functional experiments using CRC cell lines demonstrated that high

PCED1A expression significantly promoted CRC cell proliferation,

migration, and invasion, and enhanced intracellular protein

desuccinylation. This study integrated bioinformatics analyses

and experimental validations to elucidate the potential prognostic

and therapeutic value of succinylation-related genes in CRC,

which provides novel targets and directions for personalized

therapeutic strategies.
2 Materials and methods

2.1 Data collection

Among the top 30 succinylation-related genes ranked by relevance

score in the GeneCards database, 29 protein-coding genes were

selected for further analysis. Somatic mutation data (mutation

annotation format), RNA-seq data (STAR-Counts), and clinical

information for 33 cancer types (9938 samples) were obtained from

the Cancer Genome Atlas (TCGA) via the R package “TCGAbiolink”

(v2.28.4). The gene expression matrix for 30 tissue types (7788

samples) and corresponding metadata from the Genotype-Tissue

Expression (GTEx) project were sourced from UCSC Xena (http://

xena.ucsc.edu/public/). Immunotherapy-related expression profiles

were accessed using the following dataset identifiers:

KIRC_GSE67501, NSCLC_GSE135222, STAD_PRJEB25780,

SKCM_PRJEB23709, SKCM_Nathanson2017, SKCM_GSE91061,

SKCM_GSE115821, and GBM_PRJNA482620. Additionally, gene
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expression and survival data for two independent CRC cohorts were

retrieved from GSE39582 and GSE17536.

Single-cell transcriptome data were obtained from the Gene

Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/)

and the Tumor Immune Single-cell Hub (TISCH) (http://

tisch.comp-genomics.org/home/). The single-cell RNA-seq

datasets covered multiple cancer types, including CRC

(GSE166555, 66,050 cells), BRCA (GSE161529, 332,168 cells),

KIRC (GSE159115, 27,669 cells), STAD (GSE134520, 41,554

cells), OV (EMTAB8107, 32,386 cells), PAAD (CRA001160,

57,443 cells), PRAD (GSE176031, 18,807 cells), ESCA

(GSE160269, 208,658 cells), CHOL (GSE138709, 33,990 cells),

and NSCLC (GSE117570, 11,453 cel ls) . Additionally ,

immunotherapy-related single-cell RNA-seq datasets included

SKCM (GSE120575, 16,291 cells), SCC (GSE123813, 25,891 cells),

BLCA (GSE145281, 14,474 cells), and BCC (GSE123813,

52,884 cells).

Spatial transcriptome data for CRC were retrieved from Human

Colorectal Cancer: Whole Transcriptome Analysis (https://

www.10xgenomics.com/).
2.2 Succinylation score development

The “gsva” function from the “GSVA” package was used with

the following parameters: (1) method = “ssgsea”, (2) kcdf =

“Poisson”, and (3) min.sz = 10, to compute normalized

enrichment scores (succinylation scores) for succinylation-related

genes in individual samples. Tumor samples were stratified into

high- and low-Succinylation groups based on the median

succinylation score. The same Gene Set Variation Analysis

(GSVA) approach was applied to single-cell RNA-seq and spatial

transcriptomic datasets to determine succinylation scores at the

single-cell or spatial resolution.

To assess the robustness of the succinylation score, GSVA

scores were computed for C6 oncogenic signature gene sets from

the Molecular Signatures Database (MSigDB) across all TCGA

samples, followed by Spearman correlation analysis between

succinylation scores and these GSVA scores.
2.3 Single-cell transcriptome analysis

The selection criteria for scRNA-seq datasets were defined as

follows: (1) solid tumors, (2) inclusion of both tumor and

corresponding normal samples, (3) sample size ≥5 with a total

cell count exceeding 10,000, and (4) comprehensive representation

of conventional tumor microenvironment components, including

malignant/epithelial cells, stromal cells, and immune cells.

For each dataset, the MAESTRO pipeline was applied to

perform quality control, batch effect correction, clustering, and

cell-type annotation. Cell quality control criteria included (1)

nFeatures >200 and (2) a mitochondrial gene ratio <20%. Data

integration was achieved by mitigating confounding factors using
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the R package “harmony”, followed by data normalization, cell

clustering, and visualization. Cell types were annotated based on

established marker genes.

Differentially expressed genes (DEGs) between high- and low-

Succinylation groups in cancer and immune cells were identified

separately using the “FindMarkers” function with default

parameters. Significant DEGs (adjusted p-value <0.05 and average

fold-change >1) were then selected for Gene Set Enrichment

Analysis (GSEA). Cell–cell paracrine communication analysis was

conducted using the R package “CellChat” with the count matrix as

input, and significant interaction pairs were identified using the

Wilcoxon rank-sum test (P-value <0.05).
2.4 Analysis of spatial transcriptome data

Spatial transcriptome data were processed using the R package

“Seurat” (12). The workflow included normalizing unique

molecular identifier (UMI) counts, scaling the data, and

identifying highly variable features via “SCTransform” (13).

Principal component analysis (PCA) was then applied for

dimensionality reduction and unsupervised clustering using the

“RunPCA” function. Default parameters were used, with clustering

based on the top 30 principal components. Additionally, the

“SpatialFeaturePlot” function was utilized for subgroup

identification and gene expression visualization.
2.5 Investigation of succinylation-related
immune characteristics at the pan-cancer
level

Firstly, the absolute abundances of 22 immune cell types in

TCGA samples were inferred using the “CIBERSORT” algorithm,

with the gene expression matrix (FPKM matrix) and “LM22”

signature as references. Furthermore, differences in immune

checkpoint and immunomodulation-related gene expression were

compared to evaluate the potential clinical efficacy of

immunotherapy across different succinylation groups.
2.6 Genomic variation analysis

The “maftools” R package was used to generate a waterfall plot

illustrating the distribution of genes with high somatic mutation

frequencies in patients at the pan-cancer level. Copy number

variation (CNV) data were obtained from TCGA, and patients in

different subtypes were analyzed using the “gistic2” module of the

GenePattern website (14).
2.7 Survival analysis

To evaluate succinylation-related survival across 33 TCGA

cancer types, Kaplan–Meier survival curves were generated to
Frontiers in Immunology 04
estimate survival differences between the two groups. Statistical

significance was determined using the log-rank test. Survival

analyses were performed using the R packages “survival”

and “survminer”.
2.8 Analysis of succinylation signature-
based classifications in CRC

Two patient clusters were identified in TCGA-COAD using the

unsupervised consensus clustering algorithm implemented in the R

package “ConsensusClusterPlus” (15), with 1000 iterations to

ensure classification stability. The optimal number of clusters was

determined based on the relative change in the area under the

cumulative distribution function (CDF) curve.
2.9 Construction of CRC-succinylation
predictor

To identify optimal prognostic genes, least absolute shrinkage

and selection operator (Lasso) regression was performed using the

“glmnet” package, CoxBoost analysis using the “CoxBoost”

package, and stepwise Akaike information criterion (stepAIC)

selection using the “MASS” package. These methods were applied

to determine the most contributory succinylation-related genes

associated with colon cancer prognosis from DEGs specific to

CRC subtypes. The identified prognostic genes with the highest

predictive value were then incorporated into a multivariate Cox

proportional hazards regression model:

A succinylation-based scoring system was developed as a linear

combination of the regression coefficients derived from the

multivariate Cox model, weighted by the normalized expression

levels of prognostic genes. Patients were stratified into high- and

low-risk groups based on the median risk score calculated by this

system. Differences in overall survival (OS) between these groups

were assessed using Kaplan–Meier survival analysis and log-rank

statistical tests. Finally, external validation was conducted in

independent cohorts to confirm the robustness of the model.
2.10 Immunohistochemistry

Twenty pairs of paraffin-embedded sections, including tumor

tissues and their matched adjacent normal tissues, were collected

from patients who underwent radical CRC surgery at the

Department of Pathology, The First Affiliated Hospital of

Chongqing Medical University, between September 2021 and

March 2022. This study was approved by the Ethics Committee

of The First Affiliated Hospital of Chongqing Medical University

(No. 2023–222).

The sections were baked and fully dewaxed in xylene, followed

by rehydration through a graded ethanol series. Antigen retrieval

was performed by heating the sections in sodium citrate buffer at

95–98°C for 15 minutes. After blocking, the sections were incubated
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overnight at 4°C with the primary antibody (“Anti-PCED1A,”

1:100, CUSABIO, CSB-PA867128LA01HU). The next day, they

were incubated with a secondary antibody and developed using

DAB (3,3’-diaminobenzidine) chromogen.
2.11 Western blotting

Total protein was extracted from CRC cells using RIPA buffer

and quantified with a BCA Protein Assay Kit (Beyotime, China).

Protein samples were separated by SDS-PAGE and transferred onto

PVDF membranes. The membranes were blocked with 5% non-fat

milk, washed with TBST, and incubated overnight at 4°C with

primary antibodies. The next day, they were incubated with

secondary antibodies (1:10,000, EarthOx, e030120 and e030110)

for 2 hours. Protein signals were detected using ECL reagents

(Beyotime, China).

The primary antibodies used were as follows: anti-PCED1A

(1:800, CUSABIO, CSB-PA867128LA01HU), anti-SIRT5 (1:1000,

Immunoway, YN5806), anti-b-actin (1:10,000, Affinity, T0022),

and anti-succinyllysine (1:1000, PTM Biolabs, PTM-401).
2.12 Cell culture and transfection

The CRC cell lines SW480 and HCT116 were obtained from the

American Type Culture Collection (ATCC) and cultured in

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with

10% fetal bovine serum (FBS) and 1% penicillin-streptomycin. Cells

were maintained at 37°C in a humidified incubator with 5% CO2.

PCED1A overexpression was induced by transfecting the cells with

a PCED1A expression plasmid using HighGene Plus Transfection

Reagent (ABclonal, China) following the manufacturer’s protocol.

PCED1A knockdown was achieved by transfecting cells with two

short hairpin RNA (shRNA) constructs using the same transfection

reagent. The shRNA sequences were as follows: sh-PCED1A-1 (5′–
3 ′ : CAGAAAGACTCACTGCTCACATTCAAGAGAT

GTGAGCAGTGAGTCTTTCTG) and sh-PCED1A-2 (5′–3′:
C T A C T T C C T C A C T C G T G T T T A T T C A A G A G A

TAAACACGAGTGAGGAAGTAG).
2.13 Cell proliferation assay and transwell
assay

For the cell proliferation assay, 10 mL of Cell Counting Kit-8

reagent was added to each well at 24-hour intervals, and absorbance

at 450nm was measured using a microplate reader to assess cell

viability. Cell migration and invasion abilities were evaluated using

Transwell chambers (8.0mm pore size, Corning, US). For the invasion

assay, the upper surface of the membrane was pre-coated with 50 mL
of diluted Matrigel (1:8 dilution in serum-free medium) and

incubated at 37°C for 1 hour. Cells were serum-starved overnight,

then resuspended in 200 mL of serum-free medium and seeded into

the upper chamber at a density of 1 × 105 cells per well. The lower
Frontiers in Immunology 05
chamber was filled with 600 mL of medium containing 20% FBS.

After 24 hours of incubation at 37°C, non-invading cells on the upper

surface were removed with a cotton swab. The invading cells on the

lower surface were fixed with 4% paraformaldehyde for 15 minutes,

stained with 0.1% crystal violet for 20 minutes, and photographed

under a microscope (5 random fields per well). Migration assays were

conducted using the same procedure, except that the upper chamber

was not coated with Matrigel.
2.14 Statistical analysis

All statistical analyses were conducted using R software (v4.3.1).

The Wilcoxon test was applied for pairwise comparisons between

two groups (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).

Survival analysis was performed using the Kaplan–Meier method

and the log-rank test. The p-value < 0.05 was considered statistically

significant. Correlation coefficients were evaluated using Spearman

correlation analysis.
3 Results

3.1 Characterization of succinylation-
related molecular activities across cancer
types

To investigate the genomic characteristics of the 29

succinylation-related genes across pan-cancer types, a

comprehensive heatmap was generated to illustrate their

expression patterns using TCGA datasets (Figure 1A). Among

thes e genes, GAPDH exhibited upregulated expression across

multiple cancer types, whereas ALB was consistently

downregulated. Additionally, we further explored the genomic

alterations of these genes, including copy number variations

(CNVs) and somatic mutations, to assess their potential impact

on succinylation-related molecular activities. As shown in

Supplementary Figure S1, succinylation-related genes exhibited

significant cancer-type specificity in genomic variations at the

pan-cancer level. Among them, RYR1, CACNA1S, and OGDHL

were the most frequently mutated genes, while SUCLA2 and DLST

appeared to be regulated by CNV alterations. These genetic

variation patterns may influence succinylation metabolism and

play distinct roles in different cancer types.

To systematically quantify succinylation-related molecular

activities and investigate their functional implications across

different cancer types, we developed succinylation scores using

GSVA. To assess the reliability of the succinylation score as a

representative measure of succinylation-related molecular activities,

we analyzed its correlation with oncogenic signatures in TCGA. The

succinylation score showed negative correlations with oncogenic

pathways regulated by JAK2, EGFR, and PKCA, while it was

positively associated with mTOR signaling (Figure 1B).

We then calculated succinylation scores in 9,938 samples

spanning 33 cancer types in TCGA. The distribution of
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1571446
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2025.1571446
succinylation-related molecular activities across different

malignancies was shown in Figure 1C, where COAD, DLBC,

GBM, MESO, and UVM exhibited the highest succinylation-

related activities. To compare these cancer-specific patterns with

normal tissues, we analyzed succinylation scores in 7,788 samples

from 30 tissue types in the GTEx database (Figure 1D). Notably,

muscle and liver tissues exhibited the highest succinylation scores in

normal physiological conditions.

Importantly, in almost all TCGA cancer types, succinylation

scores were significantly lower in tumor tissues compared to their

matched normal tissues, which suggested that higher succinylation-

related molecular activities in the tumor microenvironment may

suppress tumor progression (Figure 1E). The consistent trend

observed in TCGA and GTEx datasets further suggested that

tissue type plays a critical role in determining succinylation-

related molecular activities.
3.2 Heterogeneity of succinylation score
and its association with the tumor immune
microenvironment

To evaluate the heterogeneity of succinylation scores and their

association with the tumor microenvironment, we utilized 10

scRNA-seq datasets, comprising 830,178 cells from 173 cancer
Frontiers in Immunology 06
patients across 10 solid tumor types, along with cells from 65

normal donors. CRC, ESCA, and BRCA exhibited significantly

higher succinylation scores compared to their corresponding

normal cells, whereas NSCLC showed lower succinylation scores

in tumor cells relative to normal tissues (Figure 2A).

Building on the observed differences in succinylation scores

among various cancer types, we focused on CRC to further explore

the heterogeneity of succinylation scores by comparing distinct cell

types within normal tissues and tumors (Figures 2B, C). As

expected, most cell types in the tumor microenvironment

exhibited higher succinylation scores than their counterparts in

normal tissues, which suggested an enrichment of succinylation-

related molecular activities in the tumor microenvironment

(Figure 2D). This may indicate that tumor cells deplete nutrients

from surrounding normal cells and consequently increase

succinylation-related activity in these cells.

To investigate the impact of intratumoral heterogeneity in

succinylation-related molecular activities, we analyzed

succinylation scores in 66,050 single cells from 12 CRC patients

(GSE166555). Tumor cells and immune cells were stratified into

high-succinylation, medium-succinylation, and low-succinylation

groups based on quartile distributions (high: >75%, medium: 25%–

75%, low: <25%). In tumor cells, mitochondrial oxidative

phosphorylation and electron transport chain activity were

significantly correlated with high succinylation scores (Figure 2E).
FIGURE 1

Characterization of succinylation-related molecular activities at pan-cancer level. (A) The expression patterns of 29 succinylation-related genes in
the TCGA dataset. (B) Correlation analysis between succinylation scores and oncogenic signaling pathways. (C) Distribution of succinylation-related
molecular activities. (D) Comparison of succinylation scores between tumor tissues in TCGA and normal tissues in GTEx. (E) Differences in
succinylation scores between tumor and normal tissues across various TCGA cancer types. ***p < 0.001.
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FIGURE 2

Heterogeneity of succinylation scores and their association with the tumor immune microenvironment. (A) Comparison of succinylation scores
between tumor and normal cells across 10 solid tumor types in single-cell RNA sequencing datasets. (B, C) Distribution of succinylation scores
among different cell types in colorectal cancer. (D) Succinylation scores in tumor microenvironment cell types compared to their normal
counterparts. (E) Functional enrichment analysis of succinylation scores in tumor cells. (F) Cell-cell interaction analysis of tumor cells. (G) Functional
enrichment analysis of succinylation scores in immune cells. (H) Cell-cell interaction analysis of immune cells. ns, not significant, p ≥ 0.05; *p < 0.05;
**p < 0.01; ***p < 0.001.
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In contrast, lower succinylation scores were associated with

immune cell differentiation, which indicated a potential role of

succinylation in modulating tumor immunity (Figure 2E). Cell-cell

interaction analysis further revealed that higher succinylation scores

were positively correlated with an increased number of cell-cell

interactions among tumor cells (Figure 2F). Tumor cells in the

high-succinylation group displayed the highest number of

interactions, which indicated their heightened activity within the

tumor microenvironment. Immune cells in the high-succinylation

group were primarily involved in tumor-associated chemical

metabolism, whereas immune cells in the low-succinylation group

exhibited significant upregulation of immune response and

chemical reaction pathways (Figure 2G). Additionally, we

observed an increased number of interactions between immune

cells in the high-succinylation group and tumor cells, which

suggested that immune cells with high succinylation scores were

more strongly influenced by tumor cells (Figure 2H).

To further examine the spatial distribution of succinylation

scores within the tumor immune microenvironment, we analyzed

spatial transcriptomics data from CRC patients. Immune cells were

categorized based on their proximity to tumor cells, into three

groups: inside malignant regions, at mixed regions, and within

normal tissues (Figure 3A). Immune cells within the tumor region
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exhibited the highest average succinylation score, while those in

normal tissues showed the lowest scores (Figures 3B, C). Notably,

succinylation scores significantly increased as immune cells moved

closer to tumor cells (P < 0.05, Wilcoxon rank sum test).

Furthermore, Spearman correlation analysis demonstrated a

negative correlation between succinylation scores and immune cell

abundance, whereas succinylation scores were positively correlated

with tumor cell presence (Figure 3D). These findings underscored

the potential role of succinylation-related molecular activities in

shaping the tumor immune microenvironment, and highlighted the

distinct metabolic status of immune cells in tumors compared to

normal tissues.
3.3 Association between succinylation and
immune checkpoints and
immunomodulation in pan-cancer

To further explore the potential relationship between

succinylation-related molecular activities and immune

checkpoints as well as immunomodulation across various cancer

types, we analyzed the correlation between succinylation scores and

immune cell infiltration. As expected, immune cell abundance was
FIGURE 3

Spatial transcriptomics analysis of succinylation scores in colorectal cancer. (A) Classification of immune cells in spatial transcriptomics data. (B, C)
The distribution of succinylation scores in immune cells located in tumor, mixed, and normal regions. (D) Spearman correlation analysis between
succinylation scores and immune cell abundance.
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significantly associated with succinylation scores in most cancer

types (Figure 4A). However, the infiltration patterns of specific

immune cell populations varied across cancer types, which lead to

divergent correlations between succinylation levels and immune

infiltration. For instance, in cancers such as STAD, COAD, and

BRCA, higher succinylation scores were positively correlated with

the infiltration of immunosuppressive M2 macrophages, which are

known to promote tumor progression. However, this trend was not

observed uniformly across all malignancies, which suggested that

succinylation-related molecular activities may contribute to an

immunosuppressive tumor microenvironment in a cancer-type-

dependent manner.

To further elucidate the association between succinylation and

immune modulation, we examined the correlation between

succinylation scores and immune-related gene expression. As

illustrated in Figure 4B, succinylation scores demonstrated a

significant negative correlation with the expression of immune-

related genes across most cancers. Notably, in cancers such as

COAD, BRCA, LUAD, READ, and CESC, tumors in the low-
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succinylation group exhibited elevated expression levels of

PDCD1 (PD-1), CD274 (PD-L1), and CTLA4 at both the

transcriptional and protein levels (Figures 4C–E). These results

suggested that tumors with lower succinylation scores exhibited

increased sensitivity to immune checkpoint blockade therapy, as

their immune microenvironment was enriched in checkpoint

molecules that were critical for immunotherapy response.

Collectively, these findings revealed that high succinylation-

related molecular activities were associated with a TME

characterized by immunosuppressive features, which may

contribute to poorer clinical outcomes in affected patients.

However, it is important to note that tumors with high

succinylation scores also exhibited significant immune infiltration

and distinct immune-related molecular signatures, which indicated

complex immunoregulatory effects. Given these observations,

succinylation scores could serve as a valuable biomarker for

identifying patients more likely to benefit from immunotherapy,

which offered new insights into personal ized cancer

treatment strategies.
FIGURE 4

Association between succinylation scores and immune checkpoint expression. (A) Correlation between succinylation scores and immune cell
infiltration in different cancer types. (B) Correlation between succinylation scores and the expression of immune-related genes (immunostimulators
and immunoinhibitors) across multiple cancers. (C–E) Differences in PDCD1 (PD-1), CD274 (PD-L1), and CTLA4 expression between high-
succinylation and low-succinylation groups. ns, not significant, p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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3.4 Succinylation as a potential predictor
of immunotherapy response

The immune alterations observed in different succinylation

score groups suggested that succinylation scores could serve as a

potential predictor for immune checkpoint blockade (ICB) therapy

response. To further explore this hypothesis, we analyzed the

succinylation scores of primary tumor samples (21,256 single cells

from GSE123813) in a scRNA-seq dataset of BCC, comparing ICB

responders and non-responders (Figure 5A). As expected, the

succinylation scores of cells from responders were lower than

those from non-responders.

To validate this finding, we extended our analysis to peripheral

blood immune cells from immunotherapy-treated patients in

BLCA-GSE145281 and SKCM-GSE120575, rather than tumor-

infiltrating cells. Similar to the observations in solid tumors,

immune cells from ICB responders exhibited lower succinylation

scores than those from non-responders (Figures 5B, C), which

suggested that succinylation-related molecular activities also

influenced systemic immune responses to immunotherapy.

We further assessed the predictive capability of succinylation

scores in large RNA-seq cohorts, including 411 patients across 8

independent ICB-treated cohorts. The succinylation score achieved

a mean area under the curve (AUC) of approximately 0.575 for

predicting ICB response across different cancer types (Figure 5D),

which suggested its potential as a predictive biomarker for

identifying ICB responders.
Frontiers in Immunology 10
Beyond immunotherapy, succinylation also influenced the

efficacy of chemotherapy and targeted therapy. Using the R

package “pRRophetic”, we estimated drug sensitivity values

(IC50) for 237 chemotherapeutic and targeted agents from the

Cancer Genome Project (CGP2016) across all TCGA samples.

Despite variations among different drugs, succinylation scores

exhibited significant correlations with IC50 values for

chemotherapy and targeted therapies at the pan-cancer level

(Supplementary Figure S2). Given that the effects of

chemotherapy and targeted therapies were partially mediated by

metabolic rewiring—which is influenced by succinylation—the

impact of succinylation varies across different drugs.

Taken together, our findings suggested that succinylation scores

could provide valuable insights into immunotherapy response

prediction and also be relevant in the context of chemotherapy

and targeted therapy. A deeper understanding of the metabolic role

of succinylation in tumor progression and treatment response could

further optimize therapeutic strategies across various cancer types.
3.5 Identification of molecular subtypes
based on succinylation-related genes

Given that CRC exhibited distinct succinylation-related

metabolic and immune characteristics compared to other cancer

types, we focused on classifying CRC based on succinylation-related

gene expression. We conducted unsupervised clustering analysis
FIGURE 5

Succinylation as a predictor of immunotherapy response. (A) Comparison of succinylation scores between immune checkpoint blockade (ICB)
responders and non-responders in a scRNA-seq dataset of basal cell carcinoma. (B, C) The association between succinylation scores and ICB
response in blood immune cells from immunotherapy-treated patients with bladder cancer and skin cutaneous melanoma. (D) Receiver operating
characteristic (ROC) curve of succinylation scores for predicting ICB response across eight independent immunotherapy cohorts. ns, not significant,
p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.
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using 29 succinylation-related genes across 430 tumor samples. The

clustering matrix (k) was increased from 2 to 10 to determine the

optimal number of clusters. As a result, consensus clustering

indicated that k = 2 was the most suitable solution, leading to the

identification of two distinct molecular subtypes, designated as

Cluster A and Cluster B (Figure 6A). Among them, Cluster A

included 229 cases, while Cluster B comprised 201 cases. Notably,

survival analysis revealed a significant prognostic difference

between the two subtypes, with Cluster A demonstrating a clear

survival advantage (p = 0.01, Figure 6B).

To further investigate the biological significance of these

molecular subtypes, we assessed immune infiltration patterns,

stromal composition, and TME characteristics between Cluster A

and Cluster B. Macrophages M1 infiltration was significantly

elevated in Cluster A, whereas Monocytes and Plasma cells were

significantly enriched in Cluster B (Figure 6C). In addition, immune

scores were significantly higher in Cluster A, whereas tumor purity

was significantly higher in Cluster B (Figure 6D). Given that TIDE

(Tumor Immune Dysfunction and Exclusion) scores positively

correlate with immune evasion and resistance to immunotherapy,

we further evaluated the TIDE scores of the two clusters in the

TCGA-COAD cohort. The results demonstrated that Cluster B had

significantly higher TIDE scores than Cluster A, which indicated a

stronger immune evasion phenotype and a lower likelihood of

response to immunotherapy (Figure 6E).

We then examined the association between succinylation-

related molecular subtypes and genomic alterations, including

CNV and somatic mutations. The top 20 most frequently

mutated genes were identified in both clusters (Figure 6F).

Interestingly, Cluster A exhibited a higher mutation frequency in

oncogenes, such as PIK3CA, whereas Cluster B displayed a higher

mutation frequency in tumor suppressor genes, including TP53 and

APC (Figure 6F). In terms of chromosomal alterations, Cluster B

exhibited a significantly higher fraction of genome alterations

(FGA), which indicated greater genomic instability (Figure 6G).

To gain deeper insights into the functional differences between

the two succinylation subtypes, we performed Gene Set Enrichment

Analysis. The results demonstrated that Cluster A was primarily

enriched in immune-related pathways, which included allograft

rejection, antigen processing and presentation, chemokine signaling

pathway, and Th17 cell differentiation (Figure 6H). These findings

highlighted that succinylation-related molecular subtypes were

strongly associated with tumor immune modulation and genomic

heterogeneity, and they potentially influenced tumor progression

and therapeutic responses.
3.6 Construction and validation of the
succinylation-related prognostic model in
CRC

To evaluate the prognostic significance of succinylation-related

molecular activities, we first examined the association between

succinylation scores and overall survival across multiple cancer

types. A significant difference in OS was observed between the low-
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succinylation and high-succinylation groups (stratified by the median

succinylation score) at the pan-cancer level (Supplementary Figure

S3). Further survival analysis confirmed that eight specific cancer

types exhibited statistically significant OS differences between these

two groups (Supplementary Figure S3).

To develop a simplified succinylation-based prognostic model

and identify key genes associated with prognosis, we used the

TCGA-COAD cohort (n = 430) and applied a Cox proportional

hazards regression model combined with three machine-learning

algorithms. Among 596 subtype-related genes, 48 genes were

initially identified as prognostically relevant via univariate Cox

regression analysis (Figure 7A). Lasso-Cox regression further

refined the selection to 19 genes (Figure 7B), while the CoxBoost

algorithm identified 20 genes (Figure 7C). A Venn diagram

intersection analysis revealed 18 core biomarkers (Figure 7D),

from which a final set of 11 genes (ATP6V1C2, CAPS, DAPK1,

P4HA1, PCED1A, RASL10B, AGT, EREG, HYAL1, SARAF, and

SLC4A4) was retained through stepAIC Cox regression for model

construction (Figures 7E, F).

The succinylation-related prognostic risk score was defined as

follows: succinylation predictor = expression of ATP6V1C2*

(0.2153) + expression of CAPS*(0.2015) + expression of DAPK1*

(0.3553) + expression of P4HA1*(0.5932) + expression of PCED1A

*(0.4037) + expression of RASL10B*(0.3168) + expression of AGT*

(-0.1860) + expression of EREG*(-0.2046) + expression of HYAL1*

(-0.1769) + expression of SARAF*(-0.5189) + expression of

SLC4A4*(-0.3361). Patients were then stratified into high-risk and

low-risk groups based on the median risk score. Kaplan-Meier

survival analysis demonstrated that patients in the low-risk group

had significantly better OS than those in the high-risk group, as

observed in the TCGA-COAD (p < 0.0001, Figure 7G), GSE39582

(p = 0.0034, Figure 7H), and GSE17536 (p = 0.0012,

Figure 7I) cohorts.

Univariate and multivariate Cox regression analyses confirmed

that risk scores were independent prognostic factors for CRC, which

outperformed common clinical variables such as age, TNM staging,

and metastasis status (Figures 8A, B). A heatmap summarizing the

clinical characteristics, risk score distribution, and key gene

expression profiles in COAD patients from TCGA was presented

in Figure 8C.

To assess the clinical applicability of the succinylation risk

model, we integrated age, TNM.T, and TNM.M staging into a

nomogram for predicting 1-, 3-, and 5-year OS in CRC patients

using the TCGA-COAD dataset (Figure 8D). The nomogram-based

model demonstrated superior prognostic performance compared to

the gene signature alone. Kaplan-Meier analysis revealed a

significant survival difference between the high- and low-risk

groups (p < 0.0001, Figure 8E). The time-dependent AUC for 1-,

3-, and 5-year survival was 0.857, 0.822, and 0.824, respectively

(Figure 8F), which showed high predictive accuracy. Calibration

curves confirmed the robustness and reliability of the model in

predicting long-term survival outcomes (Figure 8G). Furthermore,

the nomogram was independently validated in the GSE39582

cohort, demonstrating high accuracy in predicting OS across

different time points (Figures 8H-J).
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FIGURE 6

Identification of succinylation-related molecular subtypes in colorectal cancer. (A) Consensus clustering analysis based on succinylation-related
genes. (B) Kaplan-Meier survival analysis between patients in Cluster A and Cluster (B, C) Differences in immune cell infiltration between the two
succinylation-related clusters. (D) Comparison of four tumor microenvironment scores between the two clusters. (E) Comparison of Tumor Immune
Dysfunction and Exclusion (TIDE) scores between the two clusters. (F) Mutation frequency of the genes in each succinylation subtype, along with the
mutation characteristics of TP53, APC, and PIK3CA. (G) Comparison of the fraction of genome alterations (FGA) between the two clusters. (H) Gene
Set Enrichment Analysis (GSEA) based on differentially expressed genes between the two clusters.
Frontiers in Immunology frontiersin.org12

https://doi.org/10.3389/fimmu.2025.1571446
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2025.1571446
Taken together, these findings underscored that succinylation-

related molecular activities were strongly associated with CRC

prognosis. Moreover, the succinylation-based prognostic model

exhibited significant clinical relevance across multiple independent

cohorts, which indicated that ATP6V1C2, CAPS, DAPK1, P4HA1,

PCED1A, RASL10B, AGT, EREG, HYAL1, SARAF, and SLC4A4

hold potential as robust prognostic biomarkers in CRC.
3.7 Preliminary exploration of PCED1A
function in CRC

Using the TCGA-COAD dataset, we analyzed the differential

expression of the 11 genes in the succinylation-based prognostic
Frontiers in Immunology 13
model between tumor and adjacent normal tissues, as well as their

individual prognostic significance. The results showed that all genes

exhibited significant differential expression in tumor tissues;

however, only four genes (CAPS, DAPK1, P4HA1, and PCED1A)

demonstrated independent prognostic value (Supplementary Figure

S4). Based on a literature review, we selected PCED1A, which has

not been previously reported in CRC, for further molecular

functional investigation. We first employed IHC to assess

PCED1A expression at the protein level. The results showed that,

compared to adjacent normal tissues, PCED1A staining in tumor

tissues had higher scores both in intensity and extent, indicating

elevated protein expression in tumor tissues (Figures 9A-C).

Subsequently, we selected two CRC cell lines with high glycolytic

activity (SW480 and HCT116) (16) for PCED1A overexpression
FIGURE 7

Construction and validation of the succinylation-related prognostic model in colorectal cancer. (A) Univariate Cox regression identified 48
prognostically relevant genes from 596 subtype-related genes. (B) Lasso-Cox regression analysis for feature selection. (C) CoxBoost regression
analysis for feature selection. (D) Venn diagram of two sets of selected genes. (E, F) Univariate and multivariate forest plots of the 11-gene prognostic
model. (G–I) Kaplan-Meier survival curves between high-risk and low-risk groups in TCGA-COAD, GSE39582, and GSE17536 cohorts.
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and knockdown interventions to examine its effects on CRC cell

functions. As shown in Figures 9D-G, enhanced PCED1A

expression in CRC cells led to increased proliferation, migration,

and invasion capabilities, while knockdown exhibited the opposite

trend, which indicated the oncogenic potential of PCED1A. Then,

Western blotting revealed that PCED1A overexpression reduced

overall protein succinylation, whereas PCED1A knockdown
Frontiers in Immunology 14
increased it (Figure 9H). Given that SIRT5 is considered a global

regulator of lysine succinylation in mitochondria (17), we

performed correlation analysis between PCED1A and SIRT5

using the TCGA-COAD mRNA dataset to explore the

relationship between PCED1A and the overall succinylation levels

in CRC. The results revealed a positive association between

PCED1A and the desuccinylase SIRT5 in CRC tumors
FIGURE 8

Evaluation of the clinical applicability of the succinylation-based prognostic model. (A, B) Univariate and multivariate Cox regression analyses to
compare the prognostic value of the succinylation-based risk score and common clinical characteristics. (C) Heatmap to display the relationship
between clinical characteristics, risk score distribution, and key gene expression patterns. (D) Nomogram of the succinylation-based prognostic
model incorporating risk score and clinical parameters (Age, TNM.T, and TNM.M). (E) Kaplan-Meier analysis curves between high-risk and low-risk
groups. (F) Time-dependent ROC curves to illustrate the predictive accuracy of the nomogram-based model. (G) Calibration curves to confirm the
robustness of the nomogram. (H–J) External validation of the prognostic nomogram in the GSE39582 cohort.
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(Figure 9I). To further elucidate the mechanism linking PCED1A to

succinylation, we examined SIRT5 levels in total protein extracts

from PCED1A-overexpressing and knockdown CRC cells. The

results showed that PCED1A influenced SIRT5 expression

(Figures 9J, K), which provided insight into its potential

regulatory role in CRC pathogenesis.
4 Discussion

As a crucial post-translational regulatory mechanism,

succinylation garners significant attention for its role in cancer

progression (18). In gastric and lung adenocarcinomas, global

analyses of succinylation identify numerous succinylated proteins,

providing novel insights into tumorigenesis and metabolic

adaptations (5, 19). Lysine succinylation influences tumor cell

functions through various pathways, including mitochondrial

metabolism, gene transcription, and RNA repair (18). Additionally,

succinylation acts synergistically with other post-translational

modifications. Histone acetyltransferase 1 (HAT1) is recognized as

a pivotal succinyltransferase during tumorigenesis, targeting a wide

range of succinylated proteins distributed across subcellular

compartments and participating in complex cellular processes (20).

While succinylation plays a critical role in cancer progression, its

regulatory functions in the tumor immune microenvironment and its

prognostic implications remain largely unexplored in pan-

cancer contexts.

This study systematically analyzed the molecular activities of

succinylation-related genes and unveiled the critical biological

significance of succinylation scores in both pan-cancer datasets

and CRC. The findings demonstrated a strong association between

succinylation level and the tumor microenvironment, with

significant heterogeneity observed across both pan-cancer and

single-cell levels. Notably, cells with high succinylation scores

were closely linked to mitochondrial oxidative phosphorylation

and the electron transport chain, while cells with low

succinylation scores were predominantly involved in immune cell

differentiation. This metabolic dichotomy reflected distinct tumor

cell strategies: high succinylation activity supporting bioenergetic

demands, while low succinylation activity may facilitate immune

evasion by modulating inflammatory responses. Moreover, single-

cell analysis revealed that tumor cells with elevated succinylation

scores exhibited enhanced intercellular communication with

immune cells, particularly through pathways related to metabolite

transport and chemical metabolism. Given that tumor cells often

engage in metabolic crosstalk with the surrounding immune cells

(21), succinylation-related metabolic shifts played a role in shaping

the immunosuppressive tumor microenvironment. Spatial

transcriptomic data revealed that succinylation activity increased

in immune cells located closer to tumor cells, suggesting localized

metabolic reprogramming that may influence immune cell

polarization and function.

Interestingly, while succinylation levels were elevated in tumor-

proximal immune cells, overall succinylation scores in CRC showed

a negative correlation with the expression of immune checkpoint
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molecules such as PDCD1 (PD-1), CD274 (PD-L1), and CTLA4.

This apparent paradox may reflect the complex and spatially

dynamic metabolic landscape of the TME. One possible

explanation is metabolic competition, whereby tumor cells deplete

key nutrients such as glucose and glutamine, imposing metabolic

stress on nearby immune cells. This stress can impair mitochondrial

function and lead to accumulation of succinyl-CoA, promoting

stress-induced lysine succinylation in immune cells (18).

Additionally, metabolic interference may also contribute. Excess

tumor-derived succinate can be taken up by immune cells via

MCT1, inhibiting succinyl-CoA synthetase and suppressing

glucose oxidation, which in turn impairs T cell effector function

and induces a dysfunctional phenotype (22).

Moreover, our pan-cancer analysis revealed that the negative

correlation between global succinylation scores and immune

checkpoint gene expression is not limited to CRC, but extends to

multiple tumor types. While this pattern may seem to contrast with

recent findings in melanoma—where succinylation of PD-L1 at lysine

129 was reported to promote its degradation and enhance antitumor

immunity (23)—it is important to recognize that the immunological

effects of succinylation are likely highly context- and cell type–

dependent. A separate recent study further supports this

complexity by demonstrating that elevated succinylation in

immune tissues can actually impair antitumor immunity.

Specifically, Hu et al. (24) showed that SIRT7, an NAD+-dependent

lysine desuccinylase, is essential for maintaining T cell function. In T

cell–specific Sirt7 knockout mice, loss of SIRT7 led to hyper-

succinylation of enzymes involved in branched-chain amino acid

(BCAA) catabolism, resulting in metabolic dysregulation (including

acyl-CoA and fatty acid accumulation), T cell exhaustion, and

reduced IFN-g secretion. These findings underscore that elevated

succinylation within T cells can suppress antitumor responses under

metabolic stress. Together, these observations suggest that

succinylation may exert dual and context-specific roles in

modulating antitumor immunity. While site-specific succinylation

events may promote immune activation in certain tumor types,

elevated global succinylation, particularly in immune cells, may

reflect or even contribute to an immunosuppressive phenotype.

This duality likely arises from differences in dominant succinylation

targets, regulatory enzymes, and metabolic states across tumor types.

Future studies focusing on cell type–specific succinylation landscapes

and their downstream functional consequences will be essential to

fully elucidate the immunological roles of succinylation within the

tumor microenvironment.

Furthermore, we constructed an 11-gene CRC prognostic

model based on risk scores, with these 11 genes identified as

differentially expressed between high and low CRC groups

classified by succinylation scores. ATP6V1C2, a subunit of

vacuolar ATPase, mediates intracellular organelle acidification via

ATP hydrolysis and has been reported to promote CRC progression

by activating Wnt signaling and driving EMT (25). CAPS and

SARAF are both calcium signaling regulators. CAPS modulates

vesicle exocytosis in a calcium-dependent manner (26), while

SARAF fine-tunes store-operated calcium entry (SOCE) and

downstream transcriptional responses (27). Calcium-mediated
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FIGURE 9

Functional validation of PCED1A in CRC. (A) Representative immunohistochemistry (IHC) images. (B) Immunoreactive Scores (IRS) of 20 paired
paraffin-embedded tissue sections. (C) Staining intensity score (0–3) and staining distribution score (0-4). (D, E) Cell proliferation curve of SW480
and HCT116 cells. (F, G) Representative Transwell migration and invasion assay images of SW480 and HCT116 cells, with quantification of migrated
and invaded cells. (H) Effect of PCED1A expression levels on succinyllysine modification. (I) Correlation analysis between PCED1A and SIRT5
expression from the GEPIA2 online database (http://gepia2.cancer-pku.cn/). (J, K) Western blotting to detect the protein levels of PCED1A and SIRT5,
with quantification of relative protein expression. *p < 0.05; **p < 0.01; ***p < 0.001; ****p<0.0001.
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remodeling of mitochondrial metabolism, as recently described

(28), may in turn influence lysine succinylation by altering redox

state and tricarboxylic acid cycle dynamics. DAPK1, a serine/

threonine kinase, participates in oxidative stress regulation (29).

Oxidative stress has been shown to reshape mitochondrial

metabolism and promote the accumulation of intermediates such

as succinyl-CoA (30), suggesting that succinylation may serve as a

post-translational marker of metabolic stress. P4HA1, an enzyme

involved in collagen hydroxylation and hypoxia response, has been

recently shown to regulate succinylation in glioblastoma by

increasing intracellular succinate and enhancing PGK1 K191/

K192 succinylation, which stabilizes PGK1 and promotes aerobic

glycolysis via the HIF1a/ATF3 axis (31). RASL10B, a RAS-like

GTPase family member, has been identified as a right-sided CRC-

specific prognostic marker. High expression is significantly

associated with poor survival, suggesting a role in tumor

progression and subtype-specific stratification (32). AGT and

SLC4A4 are implicated in oxidative and metabolic stress. AGT

uptake induces reactive oxygen species (ROS) production in

epithelial cells independently of the classical angiotensin signaling

pathway (33). SLC4A4, a Na+/HCO3
- cotransporter, when

dysregulated, leads to intracellular alkalinization and impaired

mitochondrial function in b cells (34). These metabolic

disturbances may promote succinylation by increasing succinyl-

CoA levels or triggering stress-induced non-enzymatic

modifications. EREG, an EGFR ligand upregulated in CRC and

intestinal stem cell niches, contributes to tumor progression and

metabolic adaptation (35, 36). Through EGFR-mediated signaling

and microenvironmental remodeling, EREG may influence

mitochondrial metabolism and succinate accumulation, thereby

potentially affecting succinylation dynamics under oncogenic or

regenerative conditions. HYAL1, a lysosomal hyaluronidase

involved in hyaluronic acid degradation, has been shown to

suppress CRC metastasis by modulating the MMPs/TIMPs

balance and F-actin organization, thereby inhibiting cell invasion

and migration (37).

Although research on PCED1A remains limited, emerging

evidence suggests its involvement in fatty acid metabolism and

obesity development (38). Obesity often accompanies metabolic

disorders and mitochondrial dysfunction, and succinylation, as a

key regulator of mitochondrial metabolism, may play a critical role.

In our study, functional assays revealed that PCED1A

overexpression significantly promoted CRC cell proliferation,

migration, and invasion, while its knockdown exerted the

opposite effects. These phenotypes are not only hallmarks of

cancer progression but are also known to be regulated by

succinylation, particularly considering its intimate relationship

with energy metabolism (8, 39). In line with this, we observed

that PCED1A overexpression reduced global protein succinylation

levels, whereas PCED1A knockdown increased them, further

supporting a role for PCED1A in modulating cellular

succinylation dynamics. PCED1A encodes a protein containing a

PC-esterase domain, suggesting potential enzymatic functions

related to esterification, acylation, or deacylation (40). Notably,
Frontiers in Immunology
 17
PCED1A upregulation was associated with increased SIRT5

expression (Figures 9J, K), raising the possibility that PCED1A

may enhance desuccinylation at least partially through promoting

SIRT5 expression. Previous studies have established SIRT5 as a

master regulator of lysine succinylation across mitochondrial

metabolic pathways, with SIRT5 deficiency leading to widespread

hyper-succinylation and metabolic imbalance (17). Considering the

broader role of SIRT5 in regulating oxidative stress responses and

mitochondrial adaptation, future investigations are warranted to

elucidate the molecular mechanisms underlying PCED1A-mediated

SIRT5 upregulation and their contribution to mitochondrial

plasticity and tumor metabolic reprogramming in CRC (41).

Although this study systematically analyzed the significance of

succinylation scores in pan-cancer and CRC, several limitations

should be acknowledged. First, the study primarily relies on

bioinformatics analyses of publicly available databases. While the

prognostic model demonstrated stability in the validation cohort,

further experimental validation in larger clinical sample sets—with

detailed clinical records—is necessary to minimize potential

confounding factors. Second, the underlying mechanisms of

succinylation scores in the tumor microenvironment, particularly

their specific associations with immune evasion and metabolic

reprogramming, require further investigation. Lastly, although we

experimentally demonstrated that PCED1A overexpression

promotes global protein desuccinylation and upregulates SIRT5

levels in CRC cells, the precise regulatory mechanisms—such as

whether PCED1A directly modulates SIRT5 transcription, stability,

or enzymatic activity—are still unclear. Future studies should focus

on dissecting the molecular pathways by which PCED1A influences

the SIRT5–succinylation axis and determining its broader impact

on mitochondrial function and tumor metabolic adaptation.
5 Conclusions

Succinylation introduces a new perspective on metabolic

regulation in tumor progression. Not only broader biological

implications but also novel therapeutic strategies targeting

succinylation warrant further exploration. In this study, we

provided a comprehensive pan-cancer analysis of succinylation-

related molecular activities and showed that distinct succinylation

patterns correlate with the survival outcomes of patients with

various cancers. According to immune infiltration, single-cell, and

spatial transcriptomic analyses, succinylation may also participate

in shaping the tumor immune microenvironment, nevertheless, by

an unidentified mechanism. CRC displayed a unique succinylation-

related molecular signature, and PCED1A was identified as a key

gene. PCED1A upregulated SIRT5 expression, which suggested a

potential role in desuccinylation-mediated metabolic regulation.

The underlying connection between PCED1A and succinylation

in CRC requires further investigation. Collectively, the current

findings begin to help us understand the crucial role of

succinylation in tumor biology and provide a novel direction for

succinylation-based therapeutic strategies in cancer.
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SUPPLEMENTARY FIGURE 1

Genomic alterations of succinylation-related genes at pan-cancer level. (A)
The distribution of somatic mutations in succinylation-related genes. (B)
Somatic mutation frequency of succinylation-related genes. (C) Correlation
between Copy number variation (CNV) alterations and gene expression levels.
(D) CNV landscape of 29 succinylation-related genes.

SUPPLEMENTARY FIGURE 2

Correlation analysis between succinylation scores and drug sensitivity at the

pan-cancer level. (A) Correlation between Genomics of Drug Sensitivity in
Cancer (GDSC) drug sensitivity and mRNA expression of succinylation-

related genes. (B) Correlation between Cancer Therapeutics Response
Portal (CTRP) drug sensitivity and mRNA expression of succinylation-

related genes.

SUPPLEMENTARY FIGURE 3

Survival analysis of succinylation scores in different cancer types. (A) Kaplan-
Meier overall survival (OS) curves for adrenocortical carcinoma. (B) Kaplan-
Meier OS curves for breast invasive carcinoma. (C) Kaplan-Meier OS curves
for colon adenocarcinoma. (D) Kaplan-Meier OS curves for low-grade

glioma. (E) Kaplan-Meier OS curves for liver hepatocellular carcinoma. (F)
Kaplan-Meier OS curves for mesothelioma. (G) Kaplan-Meier OS curves for

pancreatic adenocarcinoma. (H) Kaplan-Meier OS curves for testicular germ
cell tumors.

SUPPLEMENTARY FIGURE 4

Differential expression and prognostic significance of succinylation-related

prognostic genes in CRC. (A) Differential expression analysis of 11
succinylation-related prognostic genes. (B) Kaplan-Meier overall survival

(OS) curves for CAPS in CRC patients. (C) Kaplan-Meier OS curves for
DAPK1 in CRC patients. (D) Kaplan-Meier OS curves for P4HA1 in CRC

patients. (E) Kaplan-Meier OS curves for PCED1A in CRC patients. **p <

0.01; ***p < 0.001;***p < 0.0001.
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