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Introduction: Gestational diabetes mellitus (GDM) and preeclampsia are prevalent 
pregnancy complications that threaten maternal and infant health while imposing 
substantial socioeconomic burdens. Although several interventions exist, 
shortcomings in individualized treatment and other limitations necessitate urgent 
in-depth research. This study aimed to examine alterations in autophagy-related 
gene expression in preeclampsia combined with GDM. 

Methods: We conducted bioinformatics analyses including gene expression 
profiling, weighted gene co-expression network analysis (WGCNA), gene ontology 
(GO) and KEGG enrichment analyses, machine learning modeling, immune 
infiltration analyses, and single-cell RNA sequencing. Differentially expressed 
autophagy-related genes linked to preeclampsia with GDM were identified. 
Expression levels of four key genes were validated in placental samples using 
reverse transcription quantitative polymerase chain reaction (RT-qPCR). 

Results: Our findings identified potential biomarkers and molecular mechanisms 
underlying preeclampsia with GDM. Single-cell analysis corroborated these 
results, revealing distinct autophagy-related gene signatures and enhancing 
understanding of the pathophysiology. 

Discussion: This study elucidates molecular mechanisms connecting GDM and 
preeclampsia, identifies novel biomarkers and therapeutic targets, and provides a 
valuable reference for future research and clinical applications. The integration of 
multi-omics approaches advances precision medicine strategies for these 
comorbid conditions. 
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1 Introduction 

Preeclampsia (PE) and gestational diabetes mellitus (GDM) 
represent two major pregnancy complications that have the 
potential to affect maternal and foetal health. PE affects 2-8% of 
pregnancies globally, whereas GDM occurs in approximately 1.8
20.3% of pregnancies (1, 2). These conditions pose an immediate 
risk to the mother and foetus, and have long-term health 
consequences (3, 4). PE is a significant pregnancy complication 
characterised by high blood pressure and proteinuria after 20 weeks 
of gestation (5). GDM is characterised by glucose intolerance that 
occurs or is diagnosed for the first time during pregnancy, leading to 
hyperglycaemia and associated metabolic disorders (6). The 
potentially severe consequences of these disorders underscore the 
importance of identifying reliable biomarkers for early diagnosis 
and intervention. 

Emerging evidence suggests that PE and GDM share common 
pathophysiological mechanisms, including endothelial dysfunction, 
inflammation, and metabolic dysregulation (7). GDM in late 
pregnancy increases the risk of developing PE, and patients with 
PE tend to have features of GDM, suggesting that the underlying 
biological pathways may overlap (8, 9). A number of large-scale 
cohort studies conducted among different populations have 
confirmed this association. For instance, a Latin American and 
Caribbean cohort demonstrated that GDM significantly elevates PE 
risk (RR: 1.93; 95% CI: 1.66–2.25) (10). Similarly, Swedish and 
Chinese cohorts revealed that GDM increases the likelihood of 
severe PE (Sweden: OR 2.29, 95% CI 1.88–2.80; China: OR 2.13, 
95% CI 1.58–2.87) (11). 

Autophagy, a cellular self-degradation process that supplies 
degradation products, is crucial for cellular homeostasis and 
linked to the pathogenesis of PE and GDM (12). In PE, abnormal 
autophagy can lead to an increased stress response and apoptosis of 
placental cells, resulting in placental dysfunction and impaired 
foetal growth and development (13). Autophagy may influence 
the onset and development of GDM by regulating the stress 
response and metabolic state of placental cells (13). Although 
extensive research has been conducted, the precise function of 
autophagy in PE and GDM remains unclear, necessitating 
additional studies to clarify its mechanism of action and 
therapeutic potential. 

Previous studies have emphasised the significance of 
autophagy and immune cell infiltration in PE and GDM. The 
infiltration of immune cells into the placenta contributes 
significantly to the progression of these diseases (14–16). 
Autophagy regulates immune responses and inflammation, 
which are key components of the pathophysiology of PE and 
GDM (17). Interactions between autophagy-related genes (ARGs) 
and  immune  cell  infi ltration  in  these  diseases  remain  
underexplored and require comprehensive research. 

This study used bioinformatics to identify differentially 
expressed autophagy-related genes (DE-AGs) in PE with GDM. 
We conducted differential expression and weighted gene co
expression network analysis (WGCNA) to identify DE-AGs in 
conjunction with autophagy-associated genes. We examined the 
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biological functions and pathways of these DE-AGs using 
functional enrichment analysis, constructed protein-protein 
interaction (PPI) networks, and identified key genes using various 
machine learning techniques. Receiver operating characteristic 
(ROC) curves were used to assess the diagnostic potential of DE-
AGs, and immune cell infiltration was evaluated to understand their 
immune efficacy. Finally, single-cell RNA sequencing data were 
analysed to determine the distribution of DE-AGs and different cell 
types in PE and GDM placental tissues. Our study comprehensively 
analysed the molecular mechanisms of PE complicating GDM and 
highlighted the roles of ARGs in these disorders. The identification 
of DE-AGs and their associated pathways provides potential 
biomarkers for early diagnosis and identification of therapeutic 
targets in PE and GDM. 
2 Materials and methods 

2.1 Data gathering and preparation 

Gene expression profiles related to GDM and PE were obtained 
from the NCBI Gene Expression Omnibus (GEO) database (https:// 
www.ncbi.nlm.nih.gov/geo/). Using the R package ‘GEOquery’ 
(v2.64.2) (18), data related to ‘preeclampsia’ and ‘gestational 
diabetes mellitus’ were retrieved from the GEO database. Five 
datasets were obtained from the GEO database: GSE103552, 
GSE75010, GSE24129, GSE154414, and GSE30186. The 
GSE75010 dataset comprises 80 patients with PE and 77 controls, 
the GSE24129 dataset contains eight patients with PE and eight 
control cases, the GSE30186 dataset contains six patients with PE 
and six control cases, the GSE154414 dataset contains four patients 
with GDM and four control cases, and the GSE103552 dataset 
includes ten patients with GDM and eight controls, and the 
GSE173193 dataset includes two placenta samples from PE, GDM 
and the control group respectively. We performed preprocessing on 
each dataset, employing the “leave-one-out” method to retain only 
the first occurrence of duplicate gene names in each dataset, the 
gene expression levels for all genes in each dataset were log-
transformed to ensure that the gene expression values within each 
dataset had the same distribution. Next, we removed the batch 
e ffec t s  between  GSE75010  and  GSE24129  us ing  the  
normalizeBetweenArrays function from the “limma” (v3.52.2) 
package, enabling comparability of expression levels between the 
two datasets, and subsequently merged GSE75010 and GSE24129. 
Principal component analysis (PCA) was conducted on the 
normalised dataset, and box plots along with PCA plots were 
created using the ‘ggplot2’ R package (v3.3.6) (19) to visualise 
sample distribution and clustering. 
2.2 Identification of differentially expressed 
genes 

DEGs were identified by extracting samples from the 
GSE103552 and Merged_Dataset_GSE75010_GSE24129 datasets 
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and conducting differential analysis using the R package 
‘limma’(v3.60.4) (20). To ensure higher sensitivity in detecting 
differentially expressed genes, we established a more permissive 
fold change threshold to capture a broader range of potential 
variations.DEGs were identified in the two datasets using the 
criteria |log2 fold change (log2 FC)| > 0 and p < 0.05 (21, 22), 
followed by de-duplication of the results (23). Volcano maps were 
created with the R package ‘ggplot2’, while heat maps utilised the R 
package ‘ComplexHeatmap’ (v2.13.1) (24). 
2.3 WGCNA 

The raw gene expression data were preprocessed using the R 
package ‘WGCNA’ (v1.72-5) (25), and The distances between 
samples were calculated using the dist function, with the default 
metr ic  be ing  Euc l idean  dis tance .  Subsequent ly ,  the  
pickSoftThreshold function was used to select the optimal soft 
threshold. Dynamic modules were identified using the 
cutreeDynamic function, with each module containing at least 50 
genes (26). A dynamic dendrogram was drawn using the 
plotDendroAndColors function to show the associations and 
differences between different modules. 

Topological Overlap Matrix (TOM) was calculated by the 
TOMsimilarity function to quantify gene co-expression similarity. 
Module eigengenes (MEs) were extracted for Pearson correlation 
analysis with clinical traits. Statistical significance was evaluated 
using Student’s asymptotic P-value (corPvalueStudent function), 
and results were visualized through a labeledHeatmap displaying 
correlation coefficients and P-values. 

Based on the visualization results of the module clustering, we 
defined a cutting height: MEDissThres. Subsequently, by calling the 
mergeCloseModules function, we merged similar gene modules 
based on this cutting height, producing merged module colors 
and new module eigengenes (MEs). This simplification of the 
module structure enhances the biological significance of the 
analysis and facilitates subsequent functional enrichment and 
network analysis. 

Modules significantly associated with preeclampsia (PE) were 
prioritized based on P-value ranking. Genes within PE-related 
modules were extracted for subsequent functional enrichment 
and regulatory network analyses. 
2.4 Screening of ARGs 

ARGs were sourced from four complementary databases: 
GeneCards (https://www.genecards.org/): A comprehensive 
repository integrating gene annotations from >150 biomedical 
r e s o u r c e s ;  Human  Au t o p h a g y  Da t a b a s e  ( h t t p : / /  
www.autophagy.lu/): A manually curated knowledgebase 
specializing in autophagy pathways and regulators; HAMdb 
(http://hamdb.scbdd.com/home/index/): A disease-focused 
platform linking autophagy genes to pathological mechanisms; 
MSigDB (https://www.gsea-msigdb.org/) (version: MSigDB 
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2023.2.Hs): A functional genomics resource providing hallmark 
gene sets for pathway enrichment. These genes were then 
intersected with DEGs and WGCNA modules and analysed to 
identify the DE-AGs in PE with GDM. Finally, the genes were 
visualized using the R package ‘VennDiagram’(v1.7.3). 
2.5 Enrichment analysis of DE-AGs was 
conducted using Gene Ontology and the 
Kyoto Encyclopedia of Genes and 
Genomes 

We performed GO enrichment analysis on the DE-AGs in 
Homo sapiens, systematically evaluating three functional categories: 
biological processes (BP), cellular components (CC), and molecular 
functions (MF). KEGG pathway analysis was concurrently 
conducted (27–29). Gene identifiers were standardized using the 
R package  ‘org.Hs.eg.db’(v3.19.1), followed by functional 
enrichment analysis with ‘clusterProfiler’ (v4.12.6) (30). To 
quantify directional enrichment patterns, z-scores were calculated 
for each term using ‘GOplot’ (v1.0.2) (31), enabling quantitative 
assessment of biological pathway activation states. Terms with p < 
0.05 and false discovery rate (FDR) < 0.2 were considered 
statistically significant (32). Results were filtered for both 
statistical significance and biological relevance, with final 
visualizations were generated. 
2.6 PPI network 

We utilized the STRING database (https://string-db.org/) 
(version:12.0) (33) to analyze protein–protein interactions among 
DE-AGs. The combined interaction confidence score (joint score) 
greater than 0.4 was selected as the medium confidence interaction 
threshold, and the interaction node data from STRING were 
imported into Cytoscape (v3.9.1) for PPI network analysis (34). 
Hub genes were systematically identified through the CytoHubba 
plugin by applying four complementary algorithms: Maximum 
Clique Centrality (MCC), Degree, Edge Percolated Component 
(EPC), and Density of Maximum Neighborhood Component 
(DMNC). The top 15 genes from each algorithm were cross-
compared, and consensus hub genes were defined as those 
overlapping across all four methods. This integrative approach 
was visualized through a Venn diagram, highlighting genes 
consistently prioritized by multiple centrality metrics (35). 
2.7 Identification of PE with GDM-related 
DE-AGs using machine learning 

This study employed three machine learning models: least 
absolute shrinkage and selection operator (LASSO), support 
vector machine (SVM), and random forest (RF). The R package 
‘DALEX’ (v2.4.3) was used to interpret these models and visualize 
residual distributions and feature significance. Hyperparameter 
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optimization was systematically performed using the R package 
‘caret’ (v6.0-94) through grid search across predefined parameter 
spaces. All models were evaluated via 10-fold cross-validation, with 
final parameters retained after validation. 

Subsequently, the R package ‘pROC’ (36) was utilized to plot the 
area under the receiver operating characteristic (ROC) curve 
(AUC). Feature screening was then performed using LASSO, RF, 
and SVM methods. The intersection of features derived from these 
complementary algorithms was prioritized to mitigate model-

specific biases. This integrative approach enhanced biomarker 
discovery reliability, as consensus genes were more likely to 
reflect biologically stable signatures in gestational diabetes 
mellitus (GDM) pathogenesis. 

For LASSO analysis, we employed the R package ‘glmnet’ 
(v4.1.7) to screen coefficients. This involved analyzing cleaned 
data,  extracting  lambda  values,  l ikel ihood  values,  L1  
regularization values, and classification error rates. The results 
were visualized as described previously (37). 

The SVM-based recursive feature elimination (SVM-RFE) (38) 
technique was implemented using the R package ‘e1071’ (v1.7-13) 
(39, 40). By incorporating a feature ranking process into the outer 
layer of cross-validation (41), we achieved an unbiased estimate of 
the generalization error. 

In the RF algorithm, gene importance rankings were obtained 
using the average reduction in the Gini index as the indicator (42). 
The intersection of results from LASSO, SVM-RFE, and RF 
identified PE with GDM-related DE-AGs. These consensus genes 
were visualized using UpSet plots to demonstrate multi-algorithm 
superiority over single-method outputs. These consensus genes 
were visualized using UpSet plots to demonstrate the advantages 
of multiple algorithms over single-method outputs. 

We employed the Spearman correlation method to evaluate 
relationships between four DE-AGs. Correlation heatmaps 
generated with the R package ‘corrplot’ (v0.92) illustrated gene 
associations and interactions. The non-parametric Spearman 
approach was chosen instead of Pearson correlation to account 
for potential nonlinear relationships and reduce sensitivity to 
expression value outliers. This strategy was critical for identifying 
robust co-expression patterns in heterogeneous clinical samples. 
2.8 Examination of differential expression 
PE with GDM-related DE-AGs 

We investigated the differences in the expression of PE with 
GDM-related DE-AGs between the experimental and control 
groups. Using Shapiro-Wilk tests for normality assessment 
(a=0.05) and F-tests for variance homogeneity, we selected 
appropriate statistical comparisons: independent t-tests for 
parametric data with equal variance (p>0.05) and Welch’s t-tests 
for unequal variance (p<0.05). Integrated visualizations combining 
scatter plots (showing individual data points), box plots (depicting 
quartiles), and violin plots (illustrating probability density) to 
comprehensively present distribution characteristics. Statistical 
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significance thresholds were maintained as: ns p≥0.05; *p<0.05; 
**p<0.01; ***p<0.001, with detailed annotation in figure captions. 
2.9 ROC analysis of PE with GDM-related 
DE-AGs 

The  ROC  curves  for  the  GSE103552,  Merged_Data  
set_GSE75010_GSE24129, GSE154414, and GSE30186 datasets 
were analysed using the R package ‘pROC’ (V1.18.0) to evaluate 
sensitivity and specificity. The accuracy of genes for diagnosing PE 
with GDM was assessed by predicting ROC-related information at 
specific cutoff values, quantified as the AUC. Genes with an AUC > 
0.6 were visualized (43). 
2.10 Exploration of the biological functions 
and signalling pathways of PE with GDM-
related DE-AGs 

We used the R package ‘clusterProfiler’(v4.12.6) to conduct gene 
set enrichment analysis (GSEA) (44) to identify pathways 
significantly linked to PE with GDM-related DE-AGs. Species: 
Homo sapiens; reference gene set: c2.cp.all.v2022.1.Hs.symbols.gmt; 
reference gene set source R package: msigdbr (v7.5.1); ID-converted 
R package: org.Hs.eg.db. The results of the enrichment analyses were 
filtered according to the following criteria: normalised enrichment 
score |NES| > 1, FDR < 0.25, p.adj < 0.05. 
2.11 Methods for evaluation of immune cell 
infiltration 

The infiltration frequency of immune cells in placental tissues 
was analyzed and compared between the normal group (placental 
tissues from healthy individuals) and the disease group (placental 
tissues from patients with specific conditions) using single-sample 
Gene Set Enrichment Analysis (ssGSEA) (45) implemented via the 
R package “GSVA”. We selected ssGSEA for its ability to provide a 
robust assessment of immune cell infiltration based on gene 
expression profiles, enabling evaluation of individual sample 
enrichment scores. Enrichment scores for each immune cell class 
were calculated using class-specific gene sets: LM22 (46), allowing 
assessment of immune cell infiltration in each sample. Comparisons 
were made between the clinically defined immune cell infiltration 
patterns of the two groups. Additionally, Spearman’s statistical 
method was used to analyze: pairwise correlations between 
different immune cell subtypes, and pairwise correlations between 
DE-AGs and immune cell proportions. The analysis results were 
visualized as group comparison plots, lollipop plots, and Plotted 
correlation scatter plots, along with data analysis and visualization 
of network diagrams using the R package “linkET” (v0.0.7.4), 
thereby enabling a more intuitive demonstration of the immune 
infiltration patterns associated with DE-AGs. 
 frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1571795
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http:org.Hs.eg.db


Wang et al. 10.3389/fimmu.2025.1571795 

 

 

2.12 Single-cell data pre-processing and 
clustering annotation 

High-throughput sequencing data from the single-cell dataset 
GSE173193 (47, 48) were obtained from the GEO database. We 
screened eligible samples, including two placental tissue samples 
from patients with gestational diabetes, two placental tissue samples 
from patients with pre-eclampsia, and two placental tissue samples 
from normal controls. The R package ‘Seurat’ (v5.1.0) (49) was used 
for data analysis. First, the relative proportions of mitochondrial, 
ribosomal, and erythrocyte genes were calculated using the Seurat 
function PercentageFeatureSet. Data quality was ensured by 
applying the following criteria: cells must express over 500 genes, 
genes should be present in more than three cells (prevents low-
abundance artifact retention), mitochondrial gene expression must 
be below 25% (excludes apoptotic cells per 10x Genomics 
standards), ribosomal gene expression must be above 3% (ensures 
active translation while filtering empty droplets), and haemoglobin 
gene expression must be less than 1% (removes erythrocyte 
contamination in non-hematopoietic tissues). The dataset was 
normalised using the NormalizeData function, and 2000 highly 
variable genes were identified using the FindVariableFeatures 
function (50).  The data were then scale-normalised using  the
ScaleData function. Highly variable genes were used as input 
features for PCA, and the RunPCA function was used to perform 
PCA analysis on the normalised data. To eliminate the batch effect, 
based on inspection of the PCA elbow plot (Supplementary 
Figure 3.) which revealed that the first 15 principal components 
captured the majority of variance while minimizing noise from 
additional dimensions, the Harmony algorithm (51) from the R 
package ‘harmony’ (v1.2.0) was used to select these dimensions for 
single-cell RNA sequencing data integration. Batch-corrected 
single-cell RNA sequencing data were visualised using the t-
distributed stochastic neighbour embedding (t-SNE) method (52). 
Initially,  cell-cell  relationships  were  established  using  
neighbourhood maps. Subsequently, clustering analysis was 
performed using the FindClusters function at a resolution of 0.3 
to distinguish various cell populations, with these clustering results 
serving as the basis for further analyses. We manually annotated the 
data by integrating established lineage markers and consulting the 
human placental cell atlas available on the CellMarker website 
(http://xteam.xbio.top/CellMarker/)(version: CellMarker 1.0) to 
ensure annotation accuracy and reliability (53)(“Marker genes can 
be found in Supplementary File 1”). DEGs in each cell cluster were 
identified using the Wilcoxon rank sum test via Seurat’s 
FindMarkers function, with criteria of p_val < 0.05 and abs 
(avg_log2 FC) > 0.5. 
2.13 Cell-cell communication 

We employed the R package ‘CellChat’ (v1.6.1) (54) to analyse 
potential cell-cell interactions. In the present study, we focused on 
the extravillous trophoblast (EVT) cell population. First, PE 
samples were extracted, and 3000 cells were randomly selected to 
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create CellChat objects. We then used the ‘human’ related data from 
the CellChatDB database (http://www.cellchat.org/). The ‘secretion 
signalling’ subset was prioritized for analyzing ligand-receptor 
interactions due to its critical involvement in cell-cell 
communication mechanisms essential for EVT cell function, 
particularly in placental development and crosstalk with the 
maternal immune system. This subset specifically encapsulates 
core ligand-receptor pairs that drive these biological processes. 
Overexpressed ligand-receptor pairs in CellChat  objects were

identified  using  the  identi fyOverExpressedGenes  and  
identifyOverExpressedInteractions functions and mapped to PPI 
networks using the R package ‘CellChat’. The probability of 
intercel lular  communication  was  calculated  using  the  
computeCommunProb function, excluding communication 
between cell populations involving fewer than three cells. Finally, 
the probability of communication for specific pathways was refined 
using the computeCommunProbPathway function. The number 
and strength of intercellular interactions were visualised using the 
netVisual_circle function, and chord plots were used to show the 
expression of vascular endothelial growth factor (VEGF), insulin-
like growth factor (IGF), epidermal growth factor (EGF), and 
macrophage migration inhibitory factor (MIF) in PE. The 
interactions involving VEGF, IGF, EGF, and MIF reveal critical 
insights into EVT cell regulatory mechanisms. For instance, VEGF 
is essential for angiogenesis, which is indispensable for placental 
development. IGF and EGF mediate cellular proliferation and 
differentiation, while MIF modulates immune responses. The 
ligand-receptor pairs involved in intercellular communication 
when EVT cells acted as signal senders and receivers were 
visualised  using netVisual_bubble  plots. All visualized 
communication probability results were subjected to significance 
screening using a threshold of (p < 0.05). Network centrality 
analysis was performed using the netAnalysis_computeCentrality 
function (55) and visualised as a heatmap. GDM samples were 
extracted, and the above process was repeated. 
2.14 Pseudo-temporal analysis 

We then performed a pseudotemporal analysis of the EVT cell 
population. The R package ‘monocle’ (v2.32.0) (56) was utilised for 
unsupervised pseudo-temporal analysis. The EVT cell clusters from the 
GDM and PE samples underwent further clustering analysis to identify 
significantly different cell clusters between the diseased and healthy 
samples. Then, using the gene-cell matrix at the original unique 
molecular identifier count scale derived from the Seurat-processed 
data as input, a cellular dataset containing the expression matrix, 
phenotypic data, and feature data was constructed using the 
newCellDataSet function with the parameter expressionFamily = 
negbinomial.size. Next, the discrete nature of the scale factors and 
gene expression between cells was corrected using the 
estimateSizeFactors and estimateDispersions functions. Dimensionality 
reduction  was  conducted  using  the  DDRTree  method  
(max_components set to 2), followed by cell sorting and visualisation 
using the plot_cell_trajectory function. DDRTree effectively captures the 
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intrinsic structure of data, demonstrating particular suitability for single-
cell RNA sequencing datasets. Specifically designed to handle complex 
trajectories and model branching structures, this method proves critical 
for pseudotime analysis of EVT cell populations. Compared to 
alternative dimensionality reduction techniques like PCA or t-SNE, 
DDRTree’s superiority lies in its capacity to preserve biologically 
meaningful relationships while maintaining cellular lineage 
associations. This capability enables accurate reconstruction of 
developmental trajectories, which is fundamentally important for 
delineating EVT cell dynamics in both physiological and pathological 
contexts (57). Scatter plots, violin plots, and proposed time trajectory 
plots were then used to display the potential marker genes screened in 
the bulk RNA analysis and visualised using functions inside the R 
package “monocle”. Pseudo-temporal highly variant genes were filtered 
by ‘qval < 1e-50’, ‘mean_expression ≥ 1 & dispersion_empirical ≥ 3 *  
dispersion_fit’, and the differentialGeneTest function was used to analyse 
the expression changes of these genes in pseudo-time (The threshold of 
qval < 1e-50 ensures that only genes with highly significant differential 
expression in pseudotime are included. This threshold minimizes the risk 
of false positives and ensures that the identified genes are robustly 
associated with the temporal dynamics of EVT cells. The choice of this 
threshold is consistent with standard practices in single-cell RNA-seq 
analysis). Finally, the plot_pseudotime_heatmap function was used to 
cluster and visualise the screened genes according to their expression 
patterns. We conducted KEGG enrichment analyses for each gene 
cluster individually using the R packages ‘clusterProfiler’ and 
‘org.Hs.eg.db’. The KEGG enrichment analysis revealed several 
biological pathways significantly associated with the gene clusters 
identified in our study. These pathways provide a deeper 
understanding of the underlying molecular mechanisms and 
highlight potential therapeutic intervention targets. 
2.15 Patient and tissue samples 

Twelve placental samples were collected from women who 
delivered at the Third Affiliated Hospital of Wenzhou Medical 
University. Six of the women had PE with GDM, whereas the 
remaining six were healthy controls at the same gestational week of 
delivery. To avoid the potential effects of uterine contractions on 
placental metabolism during labour, all women underwent elective 
caesarean section for clinical reasons that did not affect placental 
metabolism or perfusion. All women were aged 20–40 years, had 
singleton pregnancies, and underwent regular obstetric examinations 
with complete clinical data. The Research Ethics Committee of Ruian 
People’s Hospital approved this study (approval number YJ2024114), 
and all participating mothers provided written informed consent. The 
inclusion criteria for the PE with GDM group were: (1) blood pressure 
of at least 140/90 mmHg with 24-hour urine protein levels of 0.3 g or 
more after 20 weeks’ gestation; (2) a 75 g oral glucose tolerance test 
conducted between 24 and 28 weeks’ gestation showing fasting glucose 
≥5.1 mmol/L or 1-hour postprandial glucose ≥10.0 mmol/L or 2-hour 
postprandial glucose ≥8.5 mmol/L.  The inclusion  criteria  for the  control  
group were as follows: no abnormalities in blood pressure, glucose 
monitoring, oral glucose tolerance test, or routine urine tests. The 
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exclusion criteria were as follows: (1) Mothers who had severe heart, 
liver, or kidney disease during pregnancy; preexisting hypertension, 
diabetes, or other serious medical or surgical conditions; or severe 
obstetric complications or foetal congenital diseases, including 
abnormal amniotic fluid volume, placenta previa, placental abruption, 
intrauterine distress, or foetal congenital heart disease during pregnancy 
or at the time of delivery; (2) those who did not undergo regular and 
periodic obstetric examinations; and (3) pregnant women with a history 
of drug, alcohol, or drug addiction or who use drugs that affect the 
experimental results during pregnancy and delivery. Under strictly 
sterile conditions, within 15 minutes after delivery, a professional 
doctor takes placental tissue of 1cm³ from the central part, avoiding 
the umbilical cord insertion point and the infarcted area. The extracted 
placental tissues were washed with blood in 0.9% normal saline and 
transferred to a refrigerator at -80°C for long-term storage. 
2.16 Reverse transcription quantitative 
polymerase chain reaction 

RNA was extracted using the Tissue Total RNA Isolation Kit V2 
(Vazyme), followed by cDNA synthesis using HiScript III All-in
one RT SuperMix (Vazyme). RT-qPCR was performed on a CFX 
Connect Real-Time PCR System (Bio-Rad, Hercules, CA, USA) 
using Taq Pro Universal SYBR qPCR Master Mix (Vazyme). The 2 
−DDCt method was employed to quantify relative gene expression, 
using GAPDH as the reference gene. 
2.17 Statistical analysis 

R software (v4.4.1) was used for data processing and analysis. 
Unless otherwise stated, we used the independent Student’s t-test to 
evaluate the statistical significance of normally distributed variables 
when comparing two continuous groups. We used the Mann– 
Whitney U-Test (Wilcoxon rank-sum test) to assess differences in 
non-normally distributed variables. The Kruskal–Wallis test was 
used to compare three or more groups. Spearman’s correlation 
analysis was used to calculate the correlation coefficients between 
different molecules. P-values were reported as two-tailed, with 
statistical significance set at p < 0.05. 
3 Results 

3.1 Differential expression analysis of PE 
with GDM 

The GSE103552 and Merged_Dataset_GSE75010_GSE24129 
datasets were normalised separately. PCA was conducted, and both 
datasets showed more significant clustering results. In the GSE103552 
dataset, PC1 was 20.6% and PC2 was 12.4% (Figure 1A), whereas in 
the Merged_Dataset_GSE75010_GSE24129 dataset, PC1 was 16.9% 
and PC2 was 7% (Figure 1B), indicating a significant difference 
between the groups. Volcano plot analysis of the GSE103552 
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dataset, using a screening threshold of |log2 FC| > 0 and p < 0.05,  
identified 2767 DEGs, with 1261 upregulated and 1506 downregulated 
(Figure 1C). In the Merged_Dataset_GSE75010_GSE24129 dataset, 
application of the same screening threshold revealed 6523 DEGs, with 
3437 upregulated and 3086 downregulated (Figure 1D). The heat 
maps show the top 25 upregulated and downregulated genes in both 
datasets (Figures 1E– F). 
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3.2 WGCNA 

Using 88 PE samples and 85 control samples from the 
Merged_Dataset_GSE75010_GSE24129 dataset, the top 25% of 
genes with the largest fluctuations were selected for WGCNA, 
based on the standard deviation order. Next, the pickSoftThreshold 
function was constructed based on the scale-free R², and the scale-free 
FIGURE 1 

DEGs. (A, B) PCA of GSE103552 and Merged_Dataset_GSE75010_GSE24129 dataset. (C, D) Volcano plots of DEGs in GSE103552 and 
Merged_Dataset_GSE75010_GSE24129 datasets, |log2 FC| > 0, p < 0.05. (E, F) Expression heatmap of top 25 up- and downregulated genes in 
GSE103552 and Merged_Dataset_GSE75010_GSE24129 datasets. DEG, differentially expressed gene; PCA, principal component analysis. 
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power of different soft thresholds was evaluated for scale-free scale fit 
indices and average connectivity (Figure 2A). In this study, b = 5 and 
scale-free R² = 0.8 were chosen as soft threshold powers. A minimum 
of 50 genes per module was established, with hierarchical clustering 
via the cutreeDynamic function used to assign genes to the modules. 
These modules were depicted as a dynamic shear dendrogram, and 
the module labels were subsequently converted to colour labels for 
heat map visualisation. Feature genes from each module underwent 
secondary hierarchical clustering, leading to the merging of highly 
similar modules into a new module, followed by redrawing of the 
heatmap (Figure 2B). Hierarchical clustering trees were drawn to 
show the clustering results of the feature genes of the modules 
(Figure 2C), and correlation heatmaps were drawn to show the 
correlations between the different modules (Figure 2D). We then 
identified 12 modules and calculated and visualised the correlations 
and p-values between the different modules and traits (Figure 2E). 
Finally, the genes in the MEturquoise module were selected as 
alternative genes. 
3.3 Screening of co-expressed DEGs and 
results of GO and KEGG enrichment 
analysis 

The DEGs, genes in the MEturquoise module in WGCNA, were 
crossed with 8299 extracted ARGs, and the Venn diagram showed 
that 48 DE-AGs were obtained (Figure 2F). The 48 DE-AGs were 
analysed for GO and KEGG enrichment, with 438 BPs, 47 CCs, 56 
MFs, and 39 KEGGs. These were then ranked from lowest to 
highest FDR and visualised (Figure 2G). DEGs were significantly 
enriched in GO terms related to female gonad development, 
development of primary female sexual characteristics, glycogen 
biosynthesis, glucan biosynthesis, phosphatidylinositol 3-kinase 
binding, calcium-dependent protein binding, phosphatidylinositol 
3-kinase regulatory subunit binding, insulin receptor substrate 
binding, etc. (Figure 2H). KEGG enrichment analysis revealed 
that DE-AGs were associated with pathways such as insulin 
resistance, type II diabetes mellitus, insulin signalling, regulation 
of lipolysis in adipocytes, cortisol synthesis and secretion, lipid and 
atherosclerosis, IL-17 signalling pathway, aldosterone synthesis and 
secretion, NF-kappa B signalling pathway, Toll-like receptor (TLR) 
signalling pathway, etc. (Figure 2I). Insulin resistance in GDM 
impairs glucose metabolism, raising blood glucose levels and 
triggering metabolic disturbances that can lead to preeclampsia 
through endothelial dysfunction and inflammation. Factors like 
lipolysis regulation and cortisol may worsen insulin resistance, 
linking obesity and stress to GDM and preeclampsia risk. The IL
17 pathway affects vascular health, while lipid metabolism and 
atherosclerosis connect dyslipidemia to cardiovascular issues in 
GDM, increasing preeclampsia risk. These pathways illustrate the 
complex  relationship  between  metabolic dysregulation, 
inflammation, and vascular health in pregnant women with GDM. 
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3.4 PPI network 

A PPI network of the 48 DE-AGs was constructed using the 
STRING database (Figure 3A). The top 15 hub genes were identified 
using the MCC, Degree, EPC, and DMNC algorithms with the 
CytoHubba plugin. These genes were further refined to 15 DE-AGs 
by overlapping the results of the four algorithms (Figure 3B). 
3.5 Construction and screening of multiple 
machine learning models for PE with 
GDM-related DE-AGs 

We developed machine learning models, including LASSO, SVM, 
and RF, utilising the expression features of 48 DE-AGs. All three 
models showed a low root mean square of residuals (Figures 3C, D). 
ROC analysis indicated AUC values of 0.834, 0.900, and 0.906 for the 
LASSO, SVM-RFE, and RF models, respectively (Figure 3E). We 
employed the LASSO, SVM-RFE, and RF methods to collectively 
identify hub genes for detecting GDM alongside PE-related DE-AG 
biomarkers. Using LASSO, 15 variables were screened: BTG2, S100A6, 
PLEKHA1, SCARB1, COASY, DCXR, DNM2, RHOB, SLC23A2, 
SH3BP5, RELL1, KIAA0319, INHBA, PLEKHA2, and  GLA 
(Figures 3F–G). Thirty-eight significant variables were obtained by 
SVM-RFE, including SH3BP5, ERO1L, TET3, SCARB1, INHBA, 
PLEKHA2, SOD1, EAF1, UBE2Q2, TRPV6, DNM2, SLC20A1, BTG2, 
ASAH1, PPP1R3B, PIK3R1, GSTA3, LYN, SLC23A2, S100A6, ANXA4, 
VTCN1, XPO6, RAPH1, TRAK2, FRMD4B, GLA, RHOB, KIAA0319, 
TRAF3, TMEM106C, DDIT4L, PLEKHA1, VWA5A, RELL1, 
CDC42BPA, COASY, and  NT5E (Figure 3H). The top 20 features in 
terms of importance were obtained using the RF model with the 
average Gini index reduction as an indicator, including PLEKHA2, 
ERO1L, SH3BP5, TRPV6, DNM2, TET3, SLC20A1, SCARB1, INHBA, 
SLC23A2, SOD1, PIK3R1, BTG2, COASY, S100A6, TRAF3, ASAH1, 
EAF1, UBE2Q2, and  RAPH1 (Figure 3I). The results obtained using the 
three machine learning methods and the 15 key genes obtained by the 
MCC, Degree, EPC, and DMNC algorithms were considered as 
intersections to obtain four GDM-merged PE-related DE-AGs: 
BTG2, S100A6, SCARB1, and  INHBA (Figure 3J). Spearman’s 
correlations between the four biomarkers and their significance were 
calculated, and correlation heatmaps were generated (Figure 3K). 
3.6 Analysis of expression differences and 
screening identification 

Merged_Dataset_GSE75010_GSE24129 was used as the 
training set to analyse the expression of the four PE with GDM-

related DE-AGs. The results showed that the expression of BTG2 
was lower in the PE group than in the control group (Figure 4A), 
whereas the expression levels of S100A6, SCARB1, and INHBA were 
higher in the PE group than in the control group (Figures 4B–D). 
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FIGURE 2
 

WGCNA and functional enrichment analysis of 48 DE-AGs. (A) Analysis of scale-free fit index and average connectivity across various soft thresholds.
 
(B) Gene clustering tree integrated into a hierarchical clustering heatmap. (C) Module feature gene clustering tree. (D) Module correlation heatmap. 
(E) Gene-feature correlation heatmap. WGCNA, weighted gene co-expression network analysis. (F) Venn diagram plots illustrating the overlap of co
expressed genes among DEGs, MEturquoise module genes in WGCNA, and ARGs. (G) Enrichment analysis was conducted using GO and KEGG. GO 
analysis included BP, CC, and MF. (H) Enrichment results of 12 GO entries. (I) Enrichment analysis of 14 key KEGG pathways. DE-AG, differentially 
expressed autophagy-related gene; DEG, differentially expressed gene; WGNCA, weighted gene co-expression network analysis; ARG, autophagy
related gene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological processes; CC, cellular component; MF, 
molecular function. 
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FIGURE 3 

PPI networks and machine learning. (A) PPI network. Proteins are represented as nodes, and their interactions are depicted as edges. Shading of the 
node colour indicates the importance of the corresponding protein in the network. (B) Venn diagram illustrating the gene count overlap among 
MCC, Degree, EPC, and DMNC algorithms. (C, D) Root mean square of residuals for three machine learning models: LASSO, SVM-RFE, and RF. 
(E) ROC curves of the three machine learning models. (F) Cross-validation for parameter selection in LASSO regression. (G) LASSO regression for 48 
DE-AGs. (H) Tenfold cross-validation with SVM-RFE used to identify the optimal feature subset. (I) RF algorithm for ranking feature importance 
based on average Gini index reduction. (J) Upset diagram plots illustrating the gene counts across LASSO, SVM, RF, MCC, Degree, EPC, and DMNC 
methods. (K) Correlation heatmap: used to identify correlations between four GDM with PE-related DE-AGs. PPI, protein-protein interaction; LASSO, 
least absolute shrinkage and selection operator; SVM-RFE, support vector machine-based recursive feature elimination, RF, random forest; GDM, 
gestational diabetes mellitus; PE, preeclampsia. 
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The diagnostic performances of the four genes were evaluated using 
ROC curves. Analysis of the GSE103552 dataset revealed that BTG2, 
S100A6, SCARB1, and INHBA each achieved an AUC exceeding 0.7, 
indicating a high predictive accuracy (Figures 4E–H). In 
Merged_Dataset_GSE75010_GSE24129, the AUCs of BTG2, 
S100A6, SCARB1, and INHBA were higher than 0.7, and their 
predictive ability was highly accurate (Figures 4I–L). External 
validation utilised the GSE154414 and GSE30186 datasets with 
diagnostic models assessed via ROC curves. The analysis of 
independent external datasets GSE154414 and GSE30186 
validated the significant diagnostic value of BTG2, S100A6, 
SCARB1, and INHBA, each demonstrating AUCs exceeding 0.6, 
which aligned with the predicted outcomes (Figures 4M–T). 
Subsequently, GO and KEGG enrichment analyses were 
conducted (Figures 5A, B). In the KEGG enrichment analysis, 
SCARB1 was mainly enriched in ovarian steroidogenesis, cortisol 
synthesis and secretion, and aldosterone synthesis and secretion 
(Figure 5B). In GSEA, S100A6 and INHBA were mainly enriched in 
NABA_MATRISOME and NABA_MATRISOME_ASSOCIATED 
(Figures 5C, D). INHBA was predominantly associated with 
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 
and REACTOME_PEPTIDE_HORMONE_METABOLISM 
(Figures 5E, F). 
 

3.7 Immune cell infiltration and functional 
analysis 

A comparative analysis of immune cell infiltration revealed 
elevated levels of B cells, cytotoxic cells, dendritic cells, mast cells, 
NK CD56dim cells, plasmacytoid dendritic cells, T cells, T follicular 
helper cells, Th17 cells, Th2 cells, and regulatory T cells in the PE 
group. The levels of activated dendritic cells, CD8+ T cells, 
immature dendritic cells, macrophages, neutrophils, NK 
CD56bright cells, NK cells, T helper cells, central memory T cells, 
effector memory T cells, gdT cells, and Th1 cells decreased 
(Figure 6A). The correlation coefficient indicates the relationship 
between two variables: positive for direct correlation and negative 
for inverse correlation. The absolute value signifies the correlation’s 
strength, with 0.3-0.5 as weak, 0.5-0.8 as moderate, and 0.8–1 as

strong. A p-value less than 0.05 denotes statistical significance. In 
PE cases, the correlation lollipop plots indicated that the four DE-
AGs exhibited varying degrees of correlation with multiple immune 
cell types (Figures 6B–E). The expression of BTG2 was positively 
correlated with the infiltration levels of Th1 and T cells (Figure 6B), 
with correlation coefficients (R) of 0.433 and 0.367, respectively 
(Supplementary Figures 3A, B); while Th2 cell infiltration levels 
showed a negative correlation with BTG2 expression (Figure 6B), 
with a correlation coefficient (R) of -0.303 (Supplementary 
Figure 3C). The expression of S100A6 was positively correlated 
with the infiltration levels of NK and CD8+ T cells (Figure 6C), with 
correlation coefficients (R) of 0.373 and 0.365, respectively 
(Supplementary Figures 3E, F). The expression of S100A6 was 
inversely associated with T helper and Th1 cells (Figure 6C), with 
correlation coefficients (R) of -0.428 and -0.336, respectively 
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(Supplementary Figures 3D, G). The expression of SCARB1 was 
positively correlated with the infiltration levels of NK cells and Th17 
cells (Figure 6D), with a correlation coefficient R of 0.543 and 0.315 
(Supplementary Figures 3H, M). The expression of SCARB1 was 
inversely associated with the infiltration levels of macrophages, gdT 
cells, T helper cells, and T cells (Figure 6D), with correlation 
coefficients  (R)  of  -0.438,  -0.429,  -0.411,  and  -0.320  
(Supplementary Figures 3I–L), respectively. A negative correlation 
was observed between INHBA expression and the infiltration levels 
of Th1 and T cells (Figure 6E), with correlation coefficients (R) of 
-0.508 and -0.438, respectively (Supplementary Figures 3N, O). 
There was also a correlation between different types of immune cells 
(Supplementary Figure 3P). 
3.8 Single-cell data pre-processing and 
clustering annotation 

We conducted an extensive single-cell RNA sequencing analysis 
on the GSE173193 dataset. At a resolution of 0.3, 19 distinct cell 
clusters were identified (Figure 7A). Bubble plots further showed 
the expression of signature genes in different cell clusters 
(Figure 7B). Our analysis identified 11 cell populations: B cells 
(marker genes were CD79A, CD79B, CD19, FCER2), decidual cells 
(marker genes were DDK1, IGFBP1, PRL), EVT (marker genes were 
HLA-G, PAPPA2), granulocyte cells (marker genes FCGR3B, 
CXCL8, MNDA, SELL), macrophages (marker genes AIF1, CD14, 
CD163, CD209, CD53, CSF1R), monocytes (marker genes CD14, 
CD300E, CD244, HLA-DRA, CLEC12A, FCN1), myelocytes (marker 
genes TCN1, CEACAM8, S100A8, MMP8, DEFA4, CAMP), 
syncytiotrophoblast (SCT, marker genes CGA, CYP19A1, GH2), 
T/NK cells (marker genes are CD3G, GZMA, CD3D, TRBC2, 
GIMAP2 , XCL2 , GZMK , IFNG , CCL5 , SAMD3), villous 
cytotrophoblast (VCT, marker gene is PARP1), and venous 
endothelial cells (VECs, marker genes are CD34, CDH5, ICAM1, 
PLVAP). Subsequently, we applied t-SNE for visualisation 
(Figure 7C). Based on the criteria of |avg_log2 FC|>0 and 
p_val<0.05, we identified significant differential genes in GDM 
and PE samples compared with those in normal control samples 
using the FindMarkers function and presented these differential 
genes using multi-group volcano plots (Figures 7D, E). Notably, the 
potential marker genes for GDM versus PE identified in the bulk 
RNA analysis also showed significant differences in some cell 
populations in single-cell differential analysis. A significant 
difference in EVT distribution was observed between the control 
and disease groups (Figures 7F–G). Therefore, we selected EVT for 
further in-depth analysis. 
3.9 Cell-cell communication 

We analysed the cell-cell communication networks between 
different cell populations in GDM and PE samples using the R 
package ‘CellChat’. Circle plots show the number of interactions and 
their strength between cell populations in GDM (Figures 8A, B) and  PE  
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FIGURE 4 

Expression of four DE-AGs and ROC validation. (A–D) Expression of four DE-AGs: BTG2 (A), S100A6 (B), SCARB1 (C), and INHBA (D). (E–H) ROC 
curves for the training set GSE103552. AUC>0.700 for four DE-AGs (BTG2, S100A6, SCARB1, and INHBA). BTG2 (E), S100A6 (F), SCARB1 (G), and 
INHBA (H). (I–L) ROC curves for the Merged_Dataset_GSE75010_GSE24129 training set. AUC>0.700 for four DE-AGs (BTG2, S100A6, SCARB1, and 
INHBA). BTG2 (I), S100A6 (J), SCARB1 (K), and INHBA (L). (M-P) ROC curves for validation set GSE15441. AUC>0.600 for four DE-AGs (BTG2, 
S100A6, SCARB1, and INHBA). BTG2 (M), S100A6 (N), SCARB1 (O), and INHBA (P). (F–T) ROC curves for validation set GSE30186. Note: AUC>0.600 
for four DE-AGs (BTG2, S100A6, SCARB1, and INHBA). BTG2 (Q), S100A6 (R), SCARB1 (S), and INHBA (T). DE-AG, differentially expressed autophagy
related gene; ROC, receiver operating characteristic; AUC, area under the curve; TPR, true positive rate; FPR, false positive rate. Significance levels 
are denoted as follows: ns p ≥0.05; *p < 0.05; **p < 0.01; ***p < 0.001. 
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(Figures 9A, B). In GDM, chord plots showed communication with 
other cells through the VEGF (Figures 8C, D), IGF (Figures 8E, F), EGF 
(Figures 8G, H), and MIF (Figures 8I, J) pathways when EVT acted as a 
signal sender and receiver. We also visualised communication with 
other cells via the VEGF (Figures 9C, D), IGF (Figures 9E, F), EGF 
(Figures 9G, H), and MIF (Figures 9I, J) pathways when EVT acted as a 
signal transmitter and receiver in PE. The bubble diagrams show the 
ligand-receptor pairs involved in the communication of EVT cells as 
signal senders and receivers with other cells in GDM (Figures 8K, L) 
and PE (Figures 9K, L). As a signal transmitter, EVT communicated 
with SCT, VCT, decidual cells, and EVT itself via the VEGF pathway in 
both GDM and PE (Figures 8C, 9C). EVT, as a signal receiver, 
communicated with macrophages, monocytes, SCT, VCT, B cells, 
and decidual cells via the VEGF pathway (Figures 8D, 9D). As a 
signal sender, EVT did not communicate with other cells via the IGF 
pathway in either GDM or PE (Figures 8E, 9E). EVT as a signal receiver 
generated communication with macrophages and decidual cells via 
IGF in GDM, but not with others via the IGF pathway in PE 
(Figures 8F, 9F). As a signal emitter, EVT did not generate 
communication with other cells via the EGF pathway in either GDM 
or PE (Figures 8G, 9G). As a signal receiver, EVT communicated with 
macrophages, monocytes, and decidual cells via EGF in both GDM and 
PE (Figures 8H, 9H). As a signal transmitter, EVT communicated with 
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macrophages in both GDM and PE, monocytes, T/NK cells, VECs, and 
B cells through the MIF pathway in both GDM and PE cells (Figures 8I, 
9I). EVT, as a signal receiver, communicated with cells other than 
myeloid cells through the MIF pathway in GDM but not in PE 
(Figures 8J, 9J). We then performed a network centrality analysis of 
cellular communication in the GDM and PE samples, revealing the 
possible roles of EVT cell populations in the VEGF, IGF, EGF, and MIF 
pathways in cellular communication in GDM (Supplementary 
Figures 5A–D) and PE (Supplementary Figures 5G–I). We then 
comprehensively analysed the roles that different cell populations 
may play in the overall communication network in GDM 
(Supplementary Figures 5E, F) and  PE  (Supplementary Figures 5J, K). 
3.10 Proposed temporal trajectory analysis 

We further extracted EVT cells from the GDM and PE samples 
and applied the standard SeuratV5 procedure. In the GDM samples, 
EVT cells were reclustered into 14 subpopulations (Figure 10A). 
Scaled bar graphs were plotted to visualise the distinct 
subpopulations between the GDM group and healthy controls 
(Figure 10B). In the PE samples, EVT cells were reclustered into 
10 subpopulations (Figure 10C), and scaled bar graphs were used to 
FIGURE 5 

Enrichment analysis. (A) GO enrichment analysis. (B) KEGG enrichment analysis. (C–F) GSEA. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; GSEA, gene set enrichment analysis. 
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visualise significant differences in the subpopulations between the 
PE group and healthy controls (Figure 10D). Subpopulations 1, 6, 
and 10 were selected from the GDM samples, and subpopulations 0, 
1, and 2 were selected from the PE samples for subsequent analyses. 
We analysed the proposed time-series trajectories for selected EVT 
subpopulations in the GDM and PE samples. In the GDM samples, 
the entire trajectory was divided into three phases (Figure 11A). 
Figure 11B shows the direction of cell differentiation. The cell 
density maps along  the time axis further  demonstrate the
Frontiers in Immunology 14 
distribution and dynamics of EVT during the proposed time 
course (Figure 11C). We examined the expression changes of four 
potential biomarkers, BTG2, INHBA, S100A6 and SCARB1, during 
the mimetic process and found that BTG2, INHBA, and SCARB1 
showed  large  fluctuations  during  the  mimetic  process  
(Figures 11D–F), indicating that these factors could play a crucial 
role in EVT cell development. We analysed the expression patterns 
of significantly DEGs in EVT during mimicry and categorised them 
into four distinct clusters (Figure 11G). We conducted KEGG 
FIGURE 6 

Assessment of immune cell infiltration. (A) Subgroup comparison plot illustrating immune cell infiltration differences between the two groups 
determined using the ssGSEA algorithm. Significance level is denoted as follows: *** p < 0.001. (B) Lollipop plot showing the correlation between 
BTG2 and immune cells. (C) Lollipop plot illustrating the correlation between S100A6 and immune cells. (D) Lollipop plot illustrating the correlation 
between SCARB1 and immune cells. (E) Lollipop plot showing the correlation between INHBA and immune cells. ssGSEA, single sample gene set 
enrichment analysis. 
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enrichment analysis on the significantly DEGs, applying thresholds 
of p.adj<0.05 and qvalue<0.25. This analysis identified 33 enriched 
pathways, the top 30 of which were visualised using a lollipop plot 
(Figure 12A). For the PE samples, the entire trajectory was divided 
into five stages (Figure 13A), and Figure 13B shows the direction of 
Frontiers in Immunology 15 
cell differentiation. Cell density maps along the time axis further 
demonstrated the distribution and dynamics of EVT during the 
mimetic process (Figure 13C). We examined the expression 
changes of four potential biomarkers, BTG2, INHBA, S100A6, and 
SCARB1, during the mimetic process and found that BTG2, INHBA, 
FIGURE 7 

Single-cell sample clustering annotation and difference analysis. (A) t-SNE plot showing cell clustering results at 0.3 resolution. (B) Bubble plots 
showing marker gene expression in different clusters. (C) t-SNE plot after annotation. (D, E) Multi-subgroup volcano plots showing differential genes 
in GDM and PE samples, respectively. (F, G) Scale bar plots showing the difference in the proportion of each cell between groups in GDM and PE. 
t-SNE, t-distributed stochastic neighbour embedding; GDM, gestational diabetes mellitus; PE, preeclampsia. 
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FIGURE 8 

Analysis of cellular communication in GDM single-cell samples. (A, B) The number of interactions between cell populations and their strength in GDM 
samples. (C, D) Communication between EVT as a signal sender or receiver and other cell populations via the VEGF signalling pathway in GDM samples. 
(E, F) Communication of EVT as a signal sender and receiver via the IGF pathway with other cell populations in GDM samples. (G, H) Communication 
between GDM samples in which EVT acts as a signal sender to or receiver from other cell populations via the EGF pathway. (I, J) Communication 
between GDM samples in which EVT acts as a signal sender/receiver to or from other cell populations via the MIF pathway. (K, L) Ligand-receptor pairs 
are involved in generating communication of EVT cells as signal senders and receivers with other cells in GDM samples. GDM, gestational diabetes 
mellitus; EVT, extravillous trophoblast; IGF, insulin-like growth hormone; VEGF, vascular endothelial growth factor; EGF, epidermal growth factor; MIF, 
macrophage migration inhibitory factor. 
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FIGURE 9 

Analysis of cellular communication in PE single-cell samples. (A, B) Number of interactions between cell populations and their strength in PE samples. 
(C, D) Communication between EVT as a signal sender or receiver and other cell populations through the VEGF signalling pathway in PE samples. 
(E, F) Communication of EVT as a signal sender and receiver via the IGF pathway with other cell populations in PE samples. (G, H) Communication 
between PE samples in which EVT acts as a signal sender to or receiver from other cell populations via the EGF pathway. (I, J) Communication between 
PE samples in which EVT acts as a signal sender/receiver to or from other cell populations via the MIF pathway. (K, L) Ligand-receptor pairs are involved 
in the generation of communication of EVT cells as signal senders or signal receivers with other cells in PE samples. PE, preeclampsia; EVT, extravillous 
trophoblast; VEGF, vascular endothelial growth factor; IGF, insulin-like growth hormone; EGF, epidermal growth factor; MIF, macrophage migration 
inhibitory factor. 
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and SCARB1 showed large fluctuations during the mimetic process 
(Figures 13D–F), suggesting that they may be important factors 
during EVT cell development. We analysed the expression patterns 
of significantly DEGs in EVT during mimicry, categorising these 
genes into four distinct clusters (Figure 13G). We conducted KEGG 
enrichment analysis on significantly DEGs, identifying 13 pathways 
with p.adj<0.05 and qvalue<0.25, which were visualised using a 
lollipop graph (Figure 12B). 
3.11 Validation of key genes in PE with 
GDM 

We used RT-qPCR to determine the expression levels of the four 
key genes in placental samples. The analysis included six samples of 
PE with GDM and six control samples. Refer to Supplementary Table 
S1 for the primer sequences. RT-qPCR analysis revealed significantly 
reduced BTG2 expression in placental samples from patients with PE 
and GDM (Figure 14A), and the expression levels of S100A6, 
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SCARB1, and  INHBA (Figures 14B–D) were  significantly higher in 
placental samples from patients with PE complicated by GDM than 
in those from the control group. The significance levels are denoted as 
follows: **p < 0.01, ***p < 0.001. 
4 Discussion 

Through comprehensive bioinformatics analysis combining 
differential expression, WGCNA, and machine learning 
approaches (LASSO, SVM-RFE, RF), we identified 48 autophagy
related genes (DE-AGs) associated with PE and GDM. Subsequent 
PPI network analysis and hub gene screening revealed four key 
candidates: BTG2 (downregulated), S100A6, SCARB1, and INHBA 
(all upregulated) in PE with GDM patients compared to controls. 
While these genes have established roles in other pathologies 
BTG2 in cell cycle regulation (58), S100A6 in inflammation (59), 
SCARB1 in lipid metabolism (60), and INHBA in reproductive 
biology (61) - their specific functions in PE and GDM remain 
FIGURE 10 

Clustering analysis of EVT cell population subpopulations. (A) EVT subpopulations of GDM samples. (B) Histogram showing the proportion of each 
EVT subpopulation in GDM samples. (C) EVT subpopulations of PE samples. (D) Histogram showing the proportion of each EVT subpopulation in PE 
samples. EVT, extravillous trophoblast; GDM, gestational diabetes mellitus; PE, preeclampsia. 
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poorly characterized. This knowledge gap underscores the need for 
further investigation into these potential biomarkers and their 
shared molecular mechanisms to improve clinical management of 
these pregnancy complications. 
Frontiers in Immunology 19 
GO and KEGG analyses of DE-AGs revealed significant 
enrichment of DE-AGs in autophagy-related pathways including 
PI3K binding, insulin signaling, NF-kappa B signalling, and TLR 
signaling. The PI3K pathway serves as a central regulator of cell 
FIGURE 11
 

Proposed temporal analysis of GDM single-cell samples. (A) Three stages of EVT in GDM samples in the proposed temporal trajectory analysis.
 
(B) The direction of differentiation and evolution of EVT in GDM samples in the proposed temporal trajectory analysis. (C) Cell density plots of EVT in 
GDM samples along the time axis. (D, E, F) Fluctuation of expression of potential biomarkers during EVT mimetic time course in GDM samples. 
(G) Heatmap illustrating expression patterns of significantly DEGs in EVT from GDM samples. GDM, gestational diabetes mellitus; EVT, extravillous 
trophoblast; DEG, differentially expressed gene. 
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growth and metabolism (62), with its activation promoting 
autophagosome formation (63). Insulin signaling mediates 
glucose  homeostasis  (64),  while  PI3K-dependent  Akt  
phosphorylation activates downstream effectors including NF-kB, 
a key mediator of inflammatory responses implicated in chronic 
diseases (65). These pathways exhibit complex cross-regulation 
PI3K/Akt activation can suppress NF-kB to enhance autophagy 
(66), while NF-kB may reciprocally modulate PI3K/Akt activity 
(67). TLRs initiate immune responses through pathogen 
recognition and subsequently regulate autophagy via NF-kB and 
PI3K/Akt/mTOR pathways (68). Notably, our identified DE-AGs 
functionally intersect with these pathways: BTG2 modulates both 
insulin signaling and NF-kB-mediated inflammation (69, 70); 
S100A6 participates in TLR signaling (71) SCARB1 activates 
PI3K/Akt; and INHBA regulates NF-kB-dependent cellular 
processes (72). These findings position these genes as potential 
key regulators in PE and GDM pathogenesis through their 
involvement in these critical pathways. 

Enrichment analyses revealed other notable BPs and signalling 
pathways, including the development of primary female sexual 
characteristics, glycogen biosynthesis, glucan biosynthesis, 
calcium-dependent protein binding, and insulin receptor 
substrate binding. These pathways may contribute significantly to 
the pathophysiology of PE in GDM. For example, the enrichment of 
pathways such as insulin resistance and type II diabetes mellitus 
suggests a key role of metabolic dysregulation in the disease, 
whereas the enrichment of pathways such as lipid and 
atherosclerosis emphasises the impact of abnormal lipid 
metabolism on the development of the disease. Enrichment of the 
IL-17 signalling pathway, along with aldosterone and cortisol 
synthesis and secretion, underscores the significance of 
inflammatory response and endocrine regulation in PE with GDM. 
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This study utilised ssGSEA to evaluate the variations in immune 
cell infiltration between patients with PE and normal controls. A 
significant increase in the infiltration of B cells, cytotoxic cells, 
dendritic cells, mast cells, NK CD56dim cells, plasmacytoid 
dendritic cells, T cells, follicular helper T cells, Th17 cells, Th2 
cells, and regulatory T cells was observed in the PE group. The 
infiltration levels of various immune cells, including activated 
dendritic cells, CD8+ T cells, immature dendritic cells, 
macrophages, neutrophils, NK CD56bright cells, NK cells, T 
helper cells, central memory T cells, effector memory T cells, gdT 
cells, and Th17 cells, were significantly reduced. PE is widely 
believed to be associated with placental abnormalities resulting in 
insufficient uterine placental blood flow and subsequent maternal 
endothelial dysfunction. Endothelial dysfunction is thought to be 
caused by an imbalance between pro-and antiangiogenic factors, 
oxidative stress, and excessive inflammatory response (73). Our 
study confirmed that significant alterations occurred in the immune 
microenvironment of patients with PE, highlighting the crucial role 
of the immune system and immune cell-mediated inflammation in 
the progression of PE (74). 

Immune infiltration analyses revealed significant correlations 
between the four key DE-AGs (BTG2, S100A6, SCARB1, and
INHBA) and the infiltration levels of several immune cells. BTG2 
expression was positively correlated with Th1 and T cell infiltration 
but negatively correlated with Th2 cell infiltration. S100A6 
expression positively correlated with NK and CD8+ T cell 
infiltration and negatively correlated with helper T and Th1 cell 
infiltration. SCARB1 expression was positively correlated with 
macrophage, gd T cell, helper T cell, and T cell infiltration. 
INHBA expression was negatively correlated with Th1 and T cell 
infiltration. These findings underscore the significant role of 
immune cell infiltration in the pathophysiology of PE and 
FIGURE 12 

KEGG enrichment analysis of significantly DEGs. (A) KEGG enrichment analysis conducted on significantly DEGs in GDM samples with EVT during 
mimicry. (B) KEGG enrichment analysis conducted on significantly DEGs in PE samples with EVT during mimicry. KEGG, Kyoto Encyclopedia of 
Genes and Genomes; DEG, differentially expressed gene; GDM, gestational diabetes mellitus; EVT, extravillous trophoblast; PE, preeclampsia. 
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indicate that these key genes may affect the disease by altering the 
immune microenvironment. 

Our study examined the expression patterns and biological roles 
of four DE-AGs in individual placental cells. Conventional RNA-
seq transcriptomic data pose challenges in characterising the 
Frontiers in Immunology 21 
heterogeneity of different cell types within the placenta of patients 
with PE and GDM, and healthy individuals. Technological 
advancements have led to the development of high-throughput 
sequencing methods such as scRNA-seq, which offer transcriptomic 
insights at the cellular level. Based on the scRNA-seq data, we 
FIGURE 13 

Proposed temporal analysis of PE single-cell samples. (A) Five stages of EVT in PE samples in the proposed temporal trajectory analysis. (B) Direction 
of differentiation and evolution of EVT in PE samples in the proposed temporal trajectory analysis. (C) Cell density plots of EVT in PE samples along 
the time axis. (D-G) Fluctuation of expression of potential biomarkers in PE samples of EVT during the proposed time course. Heatmap illustrating 
expression patterns of significantly DEGs in EVT from PE samples. PE, preeclampsia; EVT, extravillous trophoblast. 
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annotated and identified 11 cellular isoforms. The results showed 
that BTG2, S100A6, SCARB1, and  INHBA exhibited specific 
expression patterns in different cell types within the placenta. 

BTG2 exhibited notable differential expression in EVT, which 
aligned with the trends observed in the bulk RNA analysis. Further 
refinement of the EVT cell subtypes revealed that BTG2 was 
predominantly expressed in specific EVT subpopulations in the 
placentas of patients with PE and GDM. Functional module scoring 
and enrichment analysis indicated that EVT subpopulations 
exhibited elevated autophagic activity and secretion of 
proinflammatory mediators. GSEA revealed that in patients with 
GDM and PE, these subpopulations activated pathways related to 
pro-inflammation and autophagy, influencing cell survival and 
metabolism regulation. 

Intercellular communication analyses revealed that EVT acts as 
both a signal transmitter and receiver in PE and GDM, communicating 
with various cells through the VEGF pathway. VEGF is crucial in 
pregnancy, significantly influencing maternal and foetal health by 
enhancing placental angiogenesis and improving nutrient and 
Frontiers in Immunology 22 
oxygen delivery to both the mother and foetus. Autophagy is crucial 
for regulating the VEGF pathway. For example, VEGF promotes 
autophagy by activating adenylate-activated protein kinase, which 
promotes endothelial cell survival and function. In a hypoxic 
environment, the upregulation of VEGF expression not only 
promotes angiogenesis, but also attenuates cellular damage through 
the autophagy pathway. By analysing the cellular communication of 
GDM samples, we found that there was intercellular communication 
between EVT and VECs, and the EVT acted as a signal transmitter to 
associate with the VEC; however, we did not find the same 
communication process in PE samples. Compared with EVT in 
GDM, EVT changed their communication pattern with VEC in PE, 
and in PE EVT only acted as a signal receiver to associate with VECs, 
which are not present in GDM, and two diametrically opposed modes 
of communication between EVTs and VECs were seen in both 
diseases. Physiological invasion and vascular remodelling of EVT and 
other BPs are critical for placental health in pregnant mice (13) and  this  
process is influenced by autophagy regulation, which when impaired 
leads to placental dysplasia under physiological hypoxia in early 
FIGURE 14
 

Expression of key genes in placental samples from control versus PE with GDM groups. Expression bars depict the levels of key genes BTG2 (A), S100A6
 
(B), SCARB1 (C), and  INHBA (D) in both control and PE with GDM groups. Significance levels are denoted as follows: **p < 0.01; ***p < 0.001. PE,
 
preeclampsia; GDM, gestational diabetes mellitus.
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pregnancy (75), which further supports the results of our analyses. Our 
study showed that EVT interacts with macrophages through the VEGF, 
EGF, and MIF pathways in both PE and GDM, indicating potential 
immune factor interference in their development. Additionally, 
macrophage infiltration was observed in PE samples, with significant 
differences in infiltration proportions between the groups, further 
implying the influence of immune cells in the progression of PE and 
GDM. Related studies have confirmed that meconium macrophages 
can promote the remodelling of uterine spiral arteries through the 
production of angiogenic factors (76), and the dysregulation of 
macrophage polarisation may lead to insufficient remodelling of the 
uterus and insufficient invasion of trophoblast cells, which may trigger 
a series of pregnancy complications, such as spontaneous abortion, 
preterm delivery, and PE (77). Therefore, the immune-inflammatory 
response and related mechanisms in PE with GDM are of great value to 
be investigated. 

Temporal trajectory analysis indicated that three DE-AGs—BTG2, 
INHBA, and  SCARB1— showed notable changes in expression during 
the mimetic process of EVT in PE combined with GDM. This suggests 
that they have crucial roles and physiological significance in EVT 
development. BTG2, an anti-proliferative factor involved in cell cycle 
regulation and apoptosis, may reflect the dynamic changes in EVT cell 
proliferation and apoptosis in GDM and PE (58, 78). INHBA plays a 
crucial role in cell proliferation, differentiation, and autophagy 
regulation, and its expression levels indicate its importance in the 
modulation of EVT cell function (79). Moreover, through the mimetic 
trajectory, we found the key nodes of EVT in GDM and PE during the 
mimetic process and performed BEAM analysis on them respectively, 
finding that BTG2 was the core gene at the branch in GDM, whereas 
INHBA was the core gene at the branch in PE, which further illustrated 
the core roles of BTG2 and INHBA in PE merged with GDM. KEGG 
enrichment analysis of genes with significant differential expression at 
the branches revealed enrichment in lipid and atherosclerosis and NF-
kappa B and TNF signalling pathways in GDM cases. In PE cases, 
genes were enriched in the lipid atherosclerosis and TNF signalling 
pathways. Additionally, four DE-AGs (BTG2, INHBA, SCARB1, and  
S100A6) were enriched in these pathways in bulk RNA samples, 
suggesting a potential link to the underlying mechanism of PE 
combined with GDM. Dyslipidaemia during pregnancy has been 
linked to both gestational hypertension and chronic hypertension 
postpartum (80). Additionally, histone deacetylase influences 
cytokine expression via NF-kB and  HIF-1a pathways, potentially 
contributing to pregnancy-related disorders like PE (81). 

This study has some limitations. First, this study focused solely on 
mRNA levels, necessitating further research to explore the protein-
level alterations of DE-AGs in PE with GDM and their functional 
implications. Second, the single-cell sequencing component was 
constrained by a relatively small sample size (n=6), which may 
limit the generalizability of cell-type-specific immune  infiltration 
patterns. The relatively small clinical sample size may also limit the 
universality of the results. These methodological boundaries highlight 
the need for expanded multi-omics validation cohorts in subsequent 
research. The validation of DE-AGs at the protein level is essential to 
confirm their functional role in PE combined with GDM. Validation 
at the protein level may provide insights into the post-transcriptional 
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regulation of these genes and their interactions with other proteins 
and signalling pathways. Future studies should focus on validating 
the expression and function of DE-AGs at the protein level using 
techniques, such as western blotting, immunohistochemistry, and 
mass spectrometry. Longitudinal studies with larger sample sizes are 
required to determine the clinical relevance of these findings. Larger 
sample sizes will provide greater statistical power and allow the 
identification of other DE-AGs that may be involved in PE associated 
with GDM, and longitudinal studies will help elucidate temporal 
changes in DE-AG expression and its relationship to disease 
progression. These studies will also provide insight into the 
potential use of DE-AGs as predictive biomarkers for the 
development of PE with GDM. 
5 Conclusion 

In summary, our analysis identified key ARGs involved in the 
pathogenesis of PE with GDM. These findings offer insights into the 
molecular mechanisms underlying these diseases and help identify 
potential therapeutic targets. Future research should aim to validate 
these targets and investigate their clinical applicability in enhancing 
pregnancy outcomes in patients with PE combined with GDM. 
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SUPPLEMENTARY FIGURE 1
 

Boxplots of the five datasets after cleaning. (A) GSE103552. (B) GSE30186.
 
(C) GSE24129. (D) GSE154414. (E) GSE75010. 

SUPPLEMENTARY FIGURE 2
 

PCAplots of the five datasets after cleaning. (A) GSE103552. (B) GSE30186.
 
(C) GSE24129. (D) GSE154414. (E) GSE75010. 

SUPPLEMENTARY FIGURE 3 

Scatterplot with correlation network heatmap. Scatterplot showing the 
correlation between BTG2 (A–C), S100A6 (D–G), SCARB1 (H–M), and

INHBA (N, O) and immune cells. (P) Heatmap of the correlation network of 
24 immune cells. 

SUPPLEMENTARY FIGURE 4 

Elbow plot for PCA dimensions selection during Harmony normalization. 

SUPPLEMENTARY FIGURE 5 

(A–D) Network centrality analysis of four signalling pathways (VEGF, IGF, EGF 
and MIF) in GDM samples. (E, F) Possible roles of different cell populations in 
the overall communication network in GDM samples. (G–I) Network 
centrality analysis of three signalling pathways (VEGF, EGF and MIF) in PE 
samples. (J, K) Possible roles of different cell populations in the overall 
communication network in PE samples.GDM, gestational diabetes mellitus; 
PE, preeclampsia; VEGF, vascular endothelial growth factor; IGF, insulin-like 
growth hormone; MIF, macrophage migration inhibitory factor. 
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