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Interleukin-21 (IL-21) is a cytokine that plays a crucial role in regulating immune

responses, affecting various immune cell types, including T cells, B cells, natural

killer (NK) cells, and dendritic cells. IL-21 is primarily produced by CD4+ T cells,

particularly follicular helper T (Tfh) cells and Th17 cells, and has been shown to be

extensively involved in regulating both innate and adaptive immunity. IL-21 is

particularly significant in the differentiation, proliferation, and effector functions

of T cells and B cells. In the context of organ transplantation, IL-21 contributes to

the promotion of acute transplant rejection and the development of chronic

rejection, which is primarily antibody-mediated. This review summarizes relevant

studies on IL-21 and discusses its multifaceted roles in transplant immune

rejection, providing insights into therapeutic strategies for either inhibiting graft

rejection or promoting tolerance. It also explores the feasibility of blocking the

IL-21 signaling pathway within current immunosuppressive regimens, aiming to

provide further clinical references.
KEYWORDS

interleukin-21 (IL-21), T lymphocyte, B lymphocyte, transplant rejection, antibody-
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1 Introduction

Organ transplantation is the only viable therapeutic option for patients with end-stage

conditions such as cirrhosis and renal failure. In allogeneic organ transplantation,

polymorphisms in the MHC genes between individuals facilitate immune cell recognition of

“foreign” components, initiating immune signaling between the donor and recipient. This

process triggers an immune response against the donor graft, which carries “foreign” antigens,

ultimately leading to transplant rejection. In innate immunity, NK cell infiltration into the graft

followed by the release of granzyme B and interferon-g is considered one of the hallmarks of

acute rejection (1, 2). Macrophages migrate to the local environment of the graft and exert

phagocytic activity (3), and they can also function as antigen-presenting cells (APCs) to activate

T cells (4), releasing various inflammatory cytokines (e.g., IL-1, IL-6, TNF-a) to amplify the

immune response (5). In adaptive immunity, T cell-mediated rejection (TCMR), which involves

cytotoxic CD8+ T cell responses against mismatched MHC class I allogeneic antigens, is
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considered the coremechanism of acute transplant rejection (6, 7). This

process induces target cell apoptosis via the release of perforin and

granzyme B or through the Fas/FasL pathway. Antibody-mediated

rejection (AMR) is considered the primary pathway for chronic graft

injury and dysfunction, where donor-specific antibodies (DSA)

secreted by plasma cells lead to chronic vascular changes in the graft.

For instance, in liver transplantation, DSA can cause occlusive arterial

lesions (8, 9), and in lung transplantation, it leads to intimal thickening

of pulmonary arteriovenous vessels (10–12). In summary, transplant

rejection is a dynamic and complex process mediated by both innate

and adaptive immunity. Various immune cells utilize different

mechanisms to recognize and attack the donor graft, leading to both

acute rejection and chronic graft injury and dysfunction.

Cytokines profoundly influence the fate of immune cells and

regulate immune responses. They are often regarded as the third

signal for T cell activation and differentiation (13). IL-21, as an

important pleiotropic cytokine, has become one of the focal points of

research in immunology and organ transplantation in recent years

(14–19). As a member of the type I cytokine family, IL-21 profoundly

affects immune cell fate and is involved in immune regulation in

diseases such as autoimmune disorders, allergies, transplant rejection,

and cancer. As shown in Figure 1, IL-21 enhances the cytotoxic

activity of NK cells and the expression of IFN-g (20). The IL-21

signaling pathway non-redundantly promotes the differentiation of

naïve T cells into Tfh cells, which assist B cells in secreting antibodies,

as evidenced by a significant reduction in both the number and

proportion of Tfh cells following IL-21 signaling loss (21). IL-21

particularly influences B cell fate, playing a critical and indispensable

role in numerous biological processes, such as promoting germinal

center responses, class switching of antibodies, differentiation of

B cells into plasma cells, and ultimately leading to the formation of

donor-specific antibodies (22, 23). Exogenous IL-21 significantly

promotes inflammatory infiltration in the allograft, induces

the proliferation of CD4+ T cells and B cells, and accelerates

rejection in allogeneic kidney-transplanted mice (15). Moreover,

some previous studies have reported elevated mRNA or protein
Abbreviations: IL-21, Interleukin-21; Tfh cells, Follicular helper T; Th17, T

helper 17; MHC, Major Histocompatibility Complex; NK cells, Natural Killer
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Inducible Costimulator; IFN-g, Interferon-gamma; c-Maf, Cellular Maf; JAK,

Janus Kinase; STAT, Signal Transducers and Activators of Transcription; NF-kB,
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Macrophage; IRI, Ischemia-Reperfusion Injury; APC, Antigen-Presenting Cell;
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levels of IL-21 and IL-21R in allografts, and this suggests that IL-21

is deeply involved in transplant rejection. Endomyocardial biopsies

from patients with allogeneic heart transplant rejection revealed

high levels of IL-21 and IL-21R mRNA (24). During acute rejection

in a rat allogeneic kidney transplant model, the mRNA and protein

levels of IL-21 expressed by mononuclear leukocytes were

significantly increased (25). Besides, Chronic lung allograft

dysfunction (CLAD) after lung transplantation is one of the major

challenges in the field. A study on donor-specific antibodies (DSA)

and non-HLA antibodies after lung transplantation showed that

CLAD lung lymphoid aggregates with local antibodies contained

larger numbers of IgG plasma cells and exhibited significantly greater

IL-21 expression (26). The effects of IL-21 on immune cells will be

discussed in detail in subsequent sections. In summary, IL-21 affects

the effector functions of various immune cells, which play a

significant role in the pathophysiological processes of transplant

rejection. Therefore, IL-21 is a key mediator in transplant rejection.

This review focuses on the functions of IL-21, exploring its

effects on immune cells and its role in the pathophysiological

mechanisms of transplant rejection, aiming to provide potential

diagnostic and therapeutic insights for clinical practice.
2 Structure, receptor, secretion
regulation and downstream signaling
of IL-21

IL-21 was discovered in 2000 (27, 28)and is classified as a type I

four-a-helix bundle cytokine, sharing a common g-chain with IL-2,

IL-4, IL-7, IL-9, and IL-15. Initially, IL-21 was thought to be

primarily produced by Tfh and Th17 cells (21). However, recent

studies have identified peripheral helper T cells (Tph), a subset of

CD4+ T cells, as another source of IL-21 production (29). The

secretion of IL-21 is mediated by ROCK2 via the RhoA-ROCK

signaling pathway (30). Because the IL-21 gene is adjacent to the IL-

2 gene, its transcriptional levels are significantly upregulated

following T cell activation, similar to IL-2. A calcium signal alone

is sufficient to induce IL-21 gene expression, and this calcium signal

can be blocked by calcineurin inhibitors, such as tacrolimus. NFAT

or NFATc2 directly activates the transcription of IL-21, while T-bet

inhibits IL-21 expression by suppressing the binding of NFATc2 to

the promoter (31). Furthermore, studies have shown that the

production of IL-21 is dependent on the B7/CD28 co-stimulatory

pathway (32). ICOS is another critical co-stimulatory molecule that

influences the binding of c-Maf to the IL-21 locus during Tfh and

Th17 cell development (33, 34). c-Maf activates the promoter and

enhancer regions of the IL-21 gene. Other cytokine signals also play

a crucial role in regulating IL-21 expression. IL-6, IL-12, and IL-23

have been shown to effectively induce IL-21 production in CD4+ T

cells (35, 36), while TGF-b, which has immune-suppressive effects,

significantly inhibits c-Maf-mediated IL-21 secretion in CD4+ T

cells (37, 38). These findings highlight that IL-21 expression is

regulated by multiple factors and is an important cytokine in

immune responses.
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The specific receptor for IL-21, IL-21R, is primarily expressed in

lymphoid tissues but has also been identified in other cell types,

such as synovial cells and epithelial cells (39). It shares a common

gamma (g) chain with the receptors for IL-2, IL-4, IL-7, IL-9, and

IL-15. Similar to other type I cytokines, such as IL-2 and IL-15, IL-

21 exerts its biological functions through the JAK/STAT signaling

pathway (40, 41). Upon binding to IL-21R, Janus tyrosine kinase

family members JAK1 and JAK3 are activated, leading to the

phosphorylat ion of STAT1 and STAT3, with weaker

phosphorylation of STAT5. STAT proteins are present as dimeric

complexes in the cytoplasm of quiescent cells and are activated by

growth factors and cytokines upon receptor activation. After

activation, these proteins translocate to the nucleus, where they

interact with regulatory regions of target genes (40, 42, 43). The

activation of STAT1 induces the transcription of a wide array of

genes, including T-bet, a key regulator in Th1 lineage differentiation

and immunoglobulin class switch recombination. In addition,

STAT1 also plays a critical role in Tfh and Th17 responses. A

study on IL-6 and STAT1 demonstrated that IL-6 signaling

specifically activates STAT1 in CD4+ T cells, and the absence of

IL-6 severely impairs Tfh differentiation (44). In another study,

inhibition of STAT1-mediated transcription was shown to

effectively alleviate Th1- and Th17-mediated inflammatory

diseases (45). Furthermore, STAT1 is critical for the generation of

T-bet+ memory B cells, which facilitate tissue-resident humoral

memory by producing IgG responses upon subsequent infection

(46–48). STAT3 has highly complex functions, interacting with NF-

kB family members to regulate the expression of numerous

cytokines and mediators such as IL-6, IL-1b, prostacyclin, and
Frontiers in Immunology 03
cyclooxygenase-2. These interactions play critical roles in

autoimmune diseases, as well as in the induction and

maintenance of pro-tumor inflammatory environments (49, 50).

STAT5, on the other hand, is associated with promoting cellular

transformation and preventing apoptosis (51, 52). IL-21 functions

through both autocrine and paracrine mechanisms, promoting and

maintaining the phenotypes of Tfh and Th17 cells (21).

Additionally, the phosphoinositide 3-kinase (PI3K/Akt) pathway

and the mitogen-activated protein kinase (MAPK) pathway are also

critical downstream signaling pathways of IL-21. Through these

pathways and their downstream genes, IL-21 participates in

immune responses (43). For instance, IL-21 enhances human NK

cell proliferation and effector functions, such as increased granzyme

and perforin expression, via the JAK/STAT and PI3K/MAPK

pathways (53). It also downregulates the expression of inhibitory

receptors Ly49 and NKG2D on human NK cells by inducing STAT3

tyrosine phosphorylation (54, 55).
3 Effects of IL-21 on immune cells

3.1 Macrophage

IL-21 enhances the phagocytic capacity of primary human

monocytes and GM-CSF-derived macrophages through the

MAPK, PI3K-Akt, and JAK-STAT signaling pathways (56, 57),

while also supporting protease activity and the expression of matrix

metalloproteinase 12 (58). Macrophage polarization remains a

crucial area of immunological investigation, and notably, IL-21
FIGURE 1

IL-21 affects a variety of immune cell effector functions, deeply involved in organ transplantation rejection. The Figure was created
with www.biorender.com.
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modulates macrophage polarization in context-dependent

manners. Locally administered IL-21 in tumors has been shown

to shift tumor-associated macrophages (TAMs) from the M2

phenotype towards the M1 phenotype, exerting anti-tumor effects

(59). In contrast, in the presence of LPS, IL-21 decreases the

expression of CD86, iNOS, and TLR4, promoting the polarization

of macrophages from the M1 to the M2 phenotype (60). IL-21 also

fosters M2 polarization in primary alveolar macrophages, and

following lung transplantation, elevated levels of IL-21 and M2

phenotype markers have been detected in patients with idiopathic

pulmonary arterial hypertension (61). In rheumatoid arthritis (RA)

patients, IL-21 has been found to impair the pro-inflammatory

activity of M1-like macrophages in synovial fluid and to inhibit

LPS-induced secretion of inflammatory mediators by synovial fluid

macrophages, thereby exerting anti-inflammatory effects (62).

During organ transplantation, the restoration of blood flow to

an isolated organ triggers ischemia-reperfusion injury (IRI). A study

indicated an upregulation of IL-21 expression in the graft,

suggesting its potential involvement in IRI (63). It has been

demonstrated that in the context of IRI, Kupffer cells shift

towards the M1 phenotype, exacerbating inflammatory damage

(64, 65). Besides, macrophage infiltration is closely associated

with the severi ty and outcome of a l logeneic kidney

transplantation. Significant infiltration of CD68+ cells has been

detected in graft biopsies from cases of acute rejection (66). Strong

expression of IL-21 and IL-21R mRNA was observed in leukocytes

isolated from the vascular perfusion of rat kidney allografts, with the

majority of IL-21R-positive cells being monocytes. This suggests

that IL-21R is induced in intravascular monocytes within the graft

in response to allogeneic transplantation (25).
3.2 Dendritic cells

Dendritic cells (DCs), as professional antigen-presenting cells

(APCs), are renowned for their powerful ability to activate naïve

T cells and are considered a bridge between innate and adaptive

immunity. Early in this century, studies demonstrated that IL-21

inhibits the activation and maturation of DCs, as evidenced by

lower expression of MHC class II molecules, increased antigen

uptake, and reduced T cell activation in vitro (67, 68), with similar

findings observed in chickens (69). Additionally, IL-21 stimulates

the secretion of granzyme B by human plasmacytoid dendritic

cells (pDCs), which downregulates TLR-induced CD4+ T cell

proliferation through pre-activated pDCs (70). In a type 1 diabetes

model, IL-21 regulates antigen transport in DCs, facilitating the

acquisition of C-C chemokine receptor 7 (CCR7), thereby

promoting their migration to draining lymph nodes (71). The

authors found that in a virus-induced diabetes model, DCs in the

pancreatic draining lymph nodes of wild-type mice had high CCR7

expression, whereas IL-21R-/- mice showed significantly reduced

CCR7 levels. Flow cytometry revealed that CCR7+MHCII+ DCs in

IL-21R-/- mice were only about 30% of those in wild-type mice,
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indicating IL-21R directly regulates CCR7 expression. Although IL-

21R-/- DCs could uptake antigen normally, they failed to upregulate

CCR7, reducing antigen-bearing DC migration to lymph nodes. This

demonstrates that IL-21/IL-21R signaling is essential for DC

migration in virus-induced type 1 diabetes, but whether this applies

to transplantation requires further validation. Although similar

studies are limited, this finding is important because this will cause

a cascade of reactions: DCs take up antigen in presence of CCR7.

Increased CCR7 expression mediates increased migration to the SLO

along a CCL19/CCL21 gradient. Enhanced homing of DCs to SLO

increases local T cell responses. Furthermore, IL-21 induces the

apoptosis of conventional dendritic cells (cDCs) through STAT3

and Bim, a process that can be inhibited by granulocyte-macrophage

colony-stimulating factor (GM-CSF) (72). ATR-107, a human anti-

IL-21R monoclonal antibody, has been shown to induce DC

activation and maturation, characterized by upregulation of co-

stimulatory molecules such as CD86 and CD40 (73).

The migration of DCs to secondary lymphoid organs (SLOs)

following organ transplantation is essential for the presentation and

recognition of allogeneic antigens. As shown in Figure 2, there are

three well-established pathways for allogeneic antigen recognition:

the direct pathway, the indirect pathway, and the semi-direct

pathway (74). The direct pathway occurs when the graft

vasculature connects with the recipient’s circulation, enabling

donor-derived DCs to migrate directly to the recipient’s SLO,

where they are recognized by recipient CD8+ T cells for their

mismatched MHC class I molecules, triggering a strong acute

rejection response, a phenomenon known as the “passenger

leukocyte” (75). In a fully mismatched rat spontaneous allogeneic

liver transplant model (PVG→DA), donor-derived DCs were found

in the recipient’s celiac lymph nodes (76). The indirect pathway

involves the recipient’s DCs capturing foreign antigens and

migrating to the recipient’s SLO, where they present antigens via

MHC class II molecules to activate CD4+ T cells that are specific for

the allogeneic antigens, which is more closely associated with

chronic rejection (77). The semi-direct pathway involves the

transfer of donor MHC molecules to the recipient’s DCs, allowing

them to present donor antigens directly to the recipient’s T cells by

“cross-modifying” the surface of recipient DCs (78). Interestingly,

the transfer of MHC II molecules is a bidirectional process. A

previous study (79) on mouse kidney and heart transplantation

found that donor and recipient MHC II molecules could be

bidirectionally transferred, forming double-positive cells and

facilitating crosstalk between direct and indirect antigen

presentation. Another study (80) in heart transplantation showed

that the semidirect pathway is crucial for CD8+ T cell-mediated

rejection, even without donor APCs. Moreover, in hematopoietic

stem cell transplantation, “cross-dressed” DCs, while unable to

independently induce T cell proliferation, enhance immunological

synapse formation and strengthen indirect antigen presentation

(81). Thus, the migration of DCs to SLOs is a critical process, and as

mentioned above, IL-21 aids DCs in acquiring CCR7. Therefore, IL-

21 seems to have multifaceted effects on DCs in the context of

transplant rejection.
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3.3 NK cells

Due to the negative regulation of NK cells by MHC class I-

specific inhibitory receptors, mismatched transplantation may trigger

NK cell alloreactivity, resulting in graft injury and dysfunction (82).

As previously mentioned, IL-21 enhances NK cell cytotoxicity and

effector functions, which is generally considered a risk factor in

allogeneic transplantation (20). Additionally, IL-21 promotes NK

cell expansion (83), reverses NK cell exhaustion (84), and restores NK

cell function in chronic HBV infection (85). Subsequent studies have

shown that IL-21 has a biphasic effect on immature NK cells at

different doses: low doses enhance their proliferation, while high

doses reduce it (86). Interestingly, IL-21R knockout mice did not

show defects in NK cell numbers or activation, and did not respond

to IL-21, indicating that IL-21 is not necessary for NK cell production

and development (20, 87).

In liver transplantation, NK cells display an interesting biphasic

effect, with donor-derived NK cells responsible for inducing tolerance,

while recipient-derived NK cells contribute to rejection (88). The latter

is easy to understand, as NK cell infiltration and increased IFN-g
expression are commonly observed after transplantation (89), while

NK cell exhaustion or reduced IFN-g expression leads to improved

graft survival (90). Regarding the former, a study by Marc Martıńez-

Llordella et al. on peripheral blood gene expression in liver transplant

recipients who had discontinued immunosuppressive therapy

suggested that the molecular pathways involved in the activation

and effector functions of innate immune cell types (NK and gdTCR
T cells) are central to maintaining operational tolerance after liver

transplantation (91). In a study aimed at identifying blood biomarkers

capable of predicting and diagnosing “operational tolerance” to safely
Frontiers in Immunology 05
reduce or even discontinue immunosuppressive therapy in liver

transplant patients, the authors identified 367 differentially expressed

genes in tolerant transplant recipients and further refined the gene set

to 13 genes. These 13 genes exhibited the highest expression levels in

patients with operational tolerance and were highly enriched in NK

cells, suggesting that NK cells may play a crucial role in maintaining

tolerance (92). Therefore, more research is needed to explore how IL-

21 affects NK cell function and consequently influences liver

transplant rejection.
3.4 T cells

T cells and B cells are the primary target cells of IL-21, and the

expression of IL-21R on their cell membranes is upregulated

following TCR and BCR signaling. As shown in Figure 3, we

primarily discuss how IL-21 regulates the fate of CD4 T cell

major subsets, CD8 T cells, and B cells in the context of

organ transplantation.

3.4.1 Tfh cells
Naive CD4+ T cells expressing chemokine receptor 7 (CCR7)

are attracted to the T cell zones of lymphoid organs by the

concentration gradients of CCL19 and CCL21. Upon activation

by dendritic cells, these T cells upregulate CXCR5 expression and

downregulate CCR7, enabling them to migrate to the T-B cell

boundary of lymphoid follicles. There, they interact with B cells that

recognize antigenic proteins. These activated T cells are referred to

as T follicular helper (Tfh) cells (93). Tfh cells play a critical role in

aiding B cells to differentiate into plasma cells, making them
FIGURE 2

Pathways of Allogeneic Antigen Recognition and the Impact of IL-21 on DCs. From top to bottom, the figure shows the pathways of direct
recognition, indirect recognition, and semi-direct recognition. On the one hand, IL-21 inhibits DC maturation by reducing the expression of surface
co-stimulatory molecules such as CD86 and CD40 (not shown in the figure). On the other hand, IL-21 maintains the expression of CCR7 on DCs,
enabling them to migrate to secondary lymphoid organs (SLOs). The figure was created with www.biorender.com.
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essential for antibody production (94). IL-21 is an extremely

important cytokine for the polarization of naive T cells into

Tfh cells (21). Initially, IL-21 was considered indispensable for

Tfh cell development (95, 96), but subsequent studies in animals

with IL-21 signaling deficiencies also revealed the formation of Tfh

cells (97, 98). Nevertheless, the absence of IL-21 signaling leads to

reduced levels of Bcl-6 protein and a diminished proportion of Tfh

cells, as Bcl-6 is a crucial transcription factor for the differentiation

and function of Tfh cells (99, 100). Bcl-6 antagonizes the

transcription factors that drive the differentiation of naive CD4+

T cells into Th1, Th2, and Th17 cells (101). IL-21 produced by Tfh

cells can act in an autocrine manner to maintain Tfh differentiation

and in a paracrine manner to act on germinal center (GC) B cells,

promoting their growth, survival, and class-switch recombination

(102). Tfh cells are key players in maintaining the GC response and

selecting GC B cells; without Tfh cells, the GC will collapse (103).

During homologous T: B cell interactions, Tfh cells provide

essential co-stimulatory signals such as CD40L-CD40 and ICOS-

ICOSL to B cells, which enable B cells to undergo class-switch

recombination and affinity maturation. This leads to the rapid

proliferation of B cells into antibody-secreting plasma cells and

memory B cells (104), generating an effective humoral immune

response, but also triggering AMR in organ transplantation.

Tfh cells, which produce IL-21, are core participants in driving

antibody-mediated rejection AMR by promoting B cell

differentiation, proliferation, and the production of DSA (105).

AMR is currently the leading cause of kidney transplant failure

(106). Significant increases in circulating Tfh cells and CD86+CD38

+ B cells numbers and serum IL-21 levels were observed in kidney

transplant patients with AMR, and these markers were positively

correlated with serum creatinine levels (107). Compared to patients

without DSA, those who developed DSA after kidney

transplantation had higher pre-transplant plasma IL-21 levels and

increased cTfh cells (108). Another study reported that kidney
Frontiers in Immunology 06
transplant patients with signs of chronic rejection had a

significantly higher percentage of cTfh cells and lower PD-1

expression compared to stable patients (109). Tfh cells can co-

localize with B cells to promote B cell effector functions in lymph

nodes and kidney grafts (19, 107, 110), resulting in chronic graft

injury. In chronic AMR patients, an increase in circulating Tfh cells

(cTfh, particularly cTfh2 and cTfh17) producing IL-21 is observed

in blood and kidney biopsies, while follicular regulatory T cells (Tfr)

are reduced (111). In the presence of IL-6 and IL-21, studies using

IL-21R antagonists in co-cultures with naive T cells show a

significant reduction in the proportion of Tfh cells and an

increase in Tfr cells (18). In fully mismatched mouse skin graft

models, lower levels of circulating DSA and reduced inflammatory

cytokine levels were observed. DSA can contribute to acute rejection

by forming the membrane attack complex (MAC) and can also

participate in chronic rejection by inducing endothelial cell

activation (112, 113). Allograft vasculopathy can indicate the

occurrence of AMR. In a murine heart transplantation study, the

administration of IL-21 receptor fusion protein blocked the

development of chronic allograft vasculopathy in wild-type

recipients of B6-bm12 heart allografts, significantly prolonging

graft survival (114). Studies using IL-21R antagonists in

humanized mouse skin graft models found a significant reduction

in the proportion of pSTAT3-positive CD4+ T cells, fewer

infiltrating CD4+, CD8+, and CD20+ cells in grafts, and

significantly lower levels of skin inflammation markers such as

Ker17 and Ki-67 (115). In a study of liver transplant recipients, it

was found that cTfh cells helped B cells differentiate into

plasmablasts in an IL-21-dependent manner in vitro, suggesting

that cTfh cells may participate in alloreactivity after liver

transplantation by aiding B cell differentiation into plasmablasts

and plasma cells (116). Another study indicated that cTfh2 is

associated with acute graft rejection after liver transplantation,

with higher proportions of B cells associated with cTfh2 and
FIGURE 3

IL-21 influences T cell lineage differentiation and effector functions. Since there is limited research on the effect of IL-21 on Th22 effector function,
this subset will not be discussed here. The figure was created with www.biorender.com.
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elevated serum IL-21 levels in patients with rejection compared to

those without rejection (117). In lung transplantation, AMR is also

thought to be related to graft dysfunction and chronic rejection,

with DSA participating in the occurrence and development of

obliterative bronchiolitis syndrome (10, 118, 119).

The first-line immunosuppressant used in clinical solid organ

transplantation is tacrolimus. Previous reports have shown that

adding tacrolimus to in vitro cell cultures does not inhibit the

production of Tfh cells. Specifically, after tacrolimus treatment, the

number of CD4+CXCR5+ Tfh cells was reduced by only 7%

compared to the control group. Tacrolimus could only partially

prevent Tfh activation (CD4+CXCR5+PD-1+ Tfh cells were reduced

by 48%) and plasmablast differentiation (120). Another study

reported that pre-treatment with tacrolimus one week before

transplantation significantly reduced the levels of cTfh and lymph

node Tfh cells, but had no significant effect on B cells, Tfr, or Treg

cells (121). Following transplantation, under tacrolimus-based

immunosuppressive therapy, the cTfh levels in patients remained

relatively stable (116, 122). Despite partial functional impairment,

these cells still retained the ability to assist B cell differentiation into

plasma cells and antibody production. These findings suggest that

current immunosuppressive regimens appear to have limited

efficacy in combating AMR. Considering the critical role of IL-21

signaling in Tfh cells, targeting IL-21 as a new immunosuppressive

approach may represent a promising strategy.

3.4.2 Th17 cells
Th17 cells are known for their high expression of IL-17, and the

increased expression of IL-17 in local tissues is closely associated

with allograft rejection in vivo (123, 124). In kidney transplantation,

exposure to IL-17 leads to the production of inflammatory

mediators by renal epithelial cells (125), which induces neutrophil

recruitment and contributes to acute rejection. An imbalance

between Th17/Treg cells results in severe renal interstitial and

tubular damage (126). In an allogeneic rat liver transplantation

model, strong expression of IL-17A, IL-6, TGF-b, IL-8, and

myeloperoxidase (MPO) was observed in the grafts, and the

proportion of Th17 cells in circulation significantly increased,

indicating that Th17 cells contribute to liver allograft rejection in

rats (127). Peripheral blood analysis of patients six months after

liver transplantation showed that the Th17/Treg ratio in stable

recipients was similar to pre-transplant values, while it was

significantly elevated in patients with acute allograft rejection,

suggesting that the Th17/Treg ratio may be a predictive factor for

acute rejection (128).

Th17 cells are also a major source of IL-21, with their IL-21

mRNA and protein levels being five times higher than those of Th1

and Th2 cells (129). A study on kidney allografts from patients

experiencing rejection found that Th17 cells accelerate graft

destruction by promoting lymphocyte neogenesis through IL-21

production. Complement activation and high IL-21 expression were

detected in grafts with high levels of Th17 infiltration (130). IL-21

plays a crucial role in Th17 effector functions, promoting CD4+ T

cell proliferation and maintaining Th17 cell identity by

upregulating RORgt and downregulating Foxp3, thereby
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inhibiting Treg differentiation (131–133). Th17 cells also assist B

cell activation, facilitating the generation of antigen-specific B cells

and promoting antibody class switching to IgG1, IgG2a, IgG2b, and

IgG3 (134). In IL-21R knockout mice, Th17 frequencies decrease

and the response is defective (129, 135).

The role of IL-21 in Th17 differentiation remains controversial.

While both IL-21 and TGF-b are considered essential for human

Th17 cell differentiation (136), studies in mice suggest otherwise. In

murine models, IL-6, IL-1b, and TGF-b are the primary cytokines

driving naïve CD4+ T cells toward the Th17 lineage, with IL-21

being dispensable. In IL-21 and IL-21R knockout mice, IL-6-

induced Th17 differentiation occurs independently of IL-21 and is

even stronger than IL-21-induced differentiation in vitro (137),

These findings indicate that while IL-21 is not required for Th17

differentiation in mice, it remains a critical factor for Th17

cell function.

3.4.3 Treg cells
As mentioned earlier, IL-21 can downregulate the expression of

Foxp3 in CD4 T cells, and Foxp3 is one of the important

transcription factors and markers for Treg differentiation.

Therefore, IL-21 can directly impair Treg homeostasis. In

addition, IL-21 inhibits the production of IL-2 in T cells.

Although conventional T cell responses are not impaired because

IL-21 can substitute for IL-2 as a T cell growth factor, IL-21 cannot

replace IL-2 in supporting the Treg compartment. Thus, IL-21

signaling in conventional T cells can indirectly affect Treg

homeostasis by reducing the availability of IL-2 (138).

In organ transplantation, Treg cells are generally considered

beneficial for promoting transplant tolerance. Treg cells secrete

CD25, which depletes IL-2 availability in other lymphocytes,

thereby inhibiting the survival of surrounding T cells (139).

Additionally, they can suppress effector T cell activation by

competing with CD28 for binding to CD80/CD86 through their

surface immune checkpoint molecule CTLA-4. Alessandra et al.

reported that IL-21 signaling enhanced T cell signaling and mixed

lymphocyte responses in T cells treated with IL-21 pOrf plasmid

and stimulated with anti-CD3/anti-CD28, suppressed Treg

generation and function, and observed strong immune tolerance

in a mouse islet transplant model after IL-21R blocking agent and

CTLA-4 globulin treatment (140). The study by Yeqi Nian and

colleagues (18) showed that treatment with an IL-21R antagonist in

mice after allogeneic skin transplantation significantly reduced the

Tfh/Tfr ratio in their splenocytes, thereby lowering the levels of

donor-specific IgG antibodies and significantly inhibiting AMR.

Christoph Bucher et al. (141)reported that IL-21 inhibited the

differentiation of inducible Tregs and further suggested that IL-21

blockade is a promising target to reduce graft-versus-host disease

(GVHD) damage. The maturation of dendritic cells in the liver is

much lower than in peripheral lymphoid organs, manifested by low

expression of MHC-II, CD80/CD86, and high expression of TGF-b,
which favors the expansion and functional maintenance of Tregs

(142–144). In patients without rejection, the Treg population

gradually returns to normal levels over time, whereas in patients

with acute rejection, it remains at lower levels (145), suggesting that
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Tregs are associated with the fate of allogeneic liver grafts.

Therefore, from the perspective of Tregs, IL-21 is an anti-

tolerance cytokine antagonizes Treg-induced immune tolerance.

3.4.4 Th1 and Th2 cells
Since Th1 and Th2 cells are the earliest classified CD4 T cell

subpopulations and antagonize each other in driving naive CD4 T

cell differentiation toward the opposing lineage (146), this section

discusses both subpopulations together. Early studies reported that

IL-21 can upregulate the transcription of Th1-related genes and

promote Th1 responses (147), which is understandable because IL-

21 is a strong activator of STAT1, which in turn upregulates the

Th1-related transcription factor T-bet. However, later studies

indicated that IL-21 is a Th2 cytokine, which specifically inhibits

the production of IFN-g by Th1 cells and amplifies the Th2 response

(148). Additionally, contradictory reports regarding IL-21’s role in

Th2 responses have emerged. One study stated that in an OVA-

induced airway inflammation model, IL-21 receptor signaling is an

indispensable part of the development of Th2 effector responses,

mediating Th2 cell survival or migration to peripheral tissues.

However, IL-21R signaling is not required to control the

development of severe Leishmania infection, suggesting it may be

redundant in Th1 responses (149). Another study in the same

OVA-induced airway inflammation model showed that IL-21

reduced cytokine production polarizing toward Th2 and induced

Th2 cell apoptosis by downregulating Bcl-2 (150). It is well known

that Th2 cells primarily contribute to the development of parasitic

infections and allergic diseases, in which IL-21 plays a dual role. IL-

21 can promote allergic airway inflammation by driving apoptosis

of FoxP3(+) regulatory T cells (151), but it can also suppress IL-4-

mediated IgE secretion (152), further exemplifying IL-

21’s multifunctionality.

It is widely acknowledged that Th1 responses dominate in solid

organ transplants. Various inflammatory cytokines produced by

Th1 cells, such as TNF-a and IFN-g, are hallmark markers of

transplant rejection and can mediate target tissue damage (153).

Considering that IL-21 primarily participates in regulating the fate

of Tfh and Th17/Treg cells, but not as a definitive cytokine for Th1/

Th2 lineage differentiation, this section does not further discuss it.

3.4.5 Th9 cells
Th9 cells are defined by the secretion of IL-9 (154) and

primarily exert effects in parasitic infections, allergic reactions,

and certain autoimmune diseases. It has been shown that IL-2-

JAK3-STAT5 signaling is essential for Th9 differentiation, while IL-

21 inhibits Th9 differentiation. This difference is mediated by Bcl-6,

whose increased expression suppresses IL-9 production (155). An

early study (156) had shown that IL-21 could support the

polarization of human Th9 cells in the presence of IL-4 and TGF-

b, which indicated the effect of IL-21 on Th9 differentiation may

exhibit species-specific differences.

To some extent, Th9 cells are believed to induce immune tolerance,

which is beneficial in transplantation. IL-9 secreted by Th9 cells can

recruit mast cells and promote their proliferation. Mast cells can

negatively regulate immune responses through surface co-inhibitory
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molecules and secretion of immunosuppressive factors, such as IL-4

and IL-10, to maintain immune homeostasis (157). Additionally, mast

cells are essential in Treg-dependent peripheral immune tolerance, and

neutralization of IL-9 significantly accelerates allograft rejection inmice

(158). Current research findings do not support the involvement of

Th9 and IL-9 in kidney transplant rejection. No detectable IL-9 gene

expression has been observed in allogeneic kidney transplant tissues.

Additionally, a study on kidney transplantation in rats reported that IL-

9 is expressed in normal kidneys but is nearly undetectable during

rejection, while IL-9Ra is barely expressed in normal kidney tissue

(159). A similar conclusion was drawn in a mouse heart

transplantation model. L.F. Poulin et al. observed that allogeneic

heart grafts were rejected within nine days in both wild-type and IL-

9 knockout mice (160). In a study by E. Fábrega and colleagues on 30

liver transplant recipients who had not experienced rejection for 8

years, their serum IL-9 levels were significantly higher than those of

healthy controls (n=30) (161). They then conducted another study

dividing 50 liver transplant recipients into two groups: Group I,

consisting of 15 patients with acute rejection, and Group II,

consisting of 35 patients without acute rejection. On postoperative

days 1 and 7, there were no significant differences in serum IL-9 levels

between Group I and Group II. However, the serum IL-9 levels of all 50

liver transplant recipients remained higher than those of healthy

controls (n=34), suggesting that IL-9 may be only minimally

involved in acute liver transplant rejection (162).

3.4.6 CD8 T cells
It is well-known that CD8 T cells play a crucial role in anti-

tumor immunity, and IL-21 can effectively enhance this effect (163).

However, CD8 T cell-mediated rejection (TCMR) is a key feature of

acute rejection after allogeneic transplantation. Naïve CD8 T cells

recognize alloantigens presented on MHC class I molecules by

APCs (antigen-presenting cells) in secondary lymphoid organs.

Upon co-stimulation with APCs, they become activated, exit the

secondary lymphoid organs, enter the circulation, and migrate to

local tissues to eliminate antigen-expressing target cells, resulting in

graft injury. The degree of CD8 T cell infiltration into the graft is

often considered a measure of the severity of acute rejection (164–

166). Previous studies have reported that using spleen cells from IL-

21R knockout mice significantly reduced the incidence and

mortality of GVHD (graft-versus-host disease) after bone marrow

transplantation (167). In addition, in a study on xenogeneic graft-

versus-host disease (X-GVHD) (168), the authors found that in

mice treated with IL-21 monoclonal antibody after receiving human

PBMCs, the number of CD8 T cells in peripheral blood and spleen

decreased, while the number and proportion of Treg cells in the

spleen increased. This suggests that IL-21 blockade may be an

attractive strategy in X-GVHD. Vinh Nguyen et al. (169) later used

IL-21R-deficient donor T cells to induce acute GVHD and found a

reduction in peak donor CD8 T cell numbers and a decrease in CTL

effector functions. This further suggested that effector CTL

maturation depends on IL-21R signaling in antigen-specific donor

CD8 T cells. Memory T cells, due to their lower activation

threshold, can respond rapidly upon reencounter with the

antigen, mediating acute rejection. Overexpression of IL-21 has
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been shown to promote the accumulation of a large number of

CD8^+ memory T cells, reducing the proportion of naïve T cells

(170, 171).

IL-21 promotes CD8 CTL (cytotoxic T lymphocyte) activity

through the transcription factor T-bet (172), making it an

important signal for CD8 T cell expansion and effector functions

(173, 174). The expression of IL-21R on the surface of CD8 T cells

enhances their activation (175). In an allogeneic mixed lymphocyte

reaction, IL-21 was observed to effectively expand both memory

(CD44^high) and naïve (CD44^low) CD8 T cells, increasing IFN-g
production in vitro. However, in IL-21R knockout mice, CD8 T cell

expansion and cytotoxicity were impaired (176). During chronic

viral infections, IL-21 derived from Tfh cells maintains the effector

CD8 T cell response (177, 178).
3.5 B cells

IL-21 has a significant impact on the fate of germinal centers

(GCs) and B cells. Germinal centers (GCs) are specialized

anatomical regions within lymphoid organs where activated B

cells undergo high-frequency somatic mutations, antibody affinity

maturation, rapid proliferation, and produce memory B cells and

long-lived antibody-secreting plasma cells. IL-21 signaling

promotes the formation and maintenance of GCs. IL-21 enhances

the synergistic induction of c-MYC and phosphorylated ribosomal

protein S6 by B cell receptor (BCR) and CD40 (179–181). Both c-

MYC and S6 are part of the mTOR pathway, a core pathway for cell

growth and metabolism that is essential for GC B cells to respond

effectively and support their rapid and extensive clonal expansion

(182). As shown in Figure 4, IL-21 signaling significantly increases

and maintains the expression of the key transcriptional regulator of

GC B cells, Bcl-6 (97, 98, 184). Bcl-6 is indispensable for GC

formation, and GC B cells lacking Bcl-6 cannot migrate to the

lymphoid follicle center to differentiate into long-lived plasma cells

(185). Although GCs can form without IL-21 signaling, mice

deficient in IL-21 or IL-21R expression have defective GC

structures, reduced numbers of GC B cells (98), and decreased B

cell proliferation (18, 186), while plasma cell differentiation requires

extensive B cell clonal expansion (187). GC B cells undergo AID-

mediated somatic hypermutation, and only those B cells with high

affinity are positively selected, then differentiate into plasma cells

with the help of Tfh cells. IL-21 has been identified as a key

differentiation factor for plasma cells derived from GCs and

promotes the expression of the plasma cell master transcription

factor B lymphocyte-induced maturation protein 1 (BLIMP1) (97,

186, 188). BLIMP1 further suppresses the expression of genes such

as AID, Bcl-6, PAX5, and c-Myc, ultimately terminating the GC

program and positively regulating XBP1 expression to prepare B

cells for antibody production and secretion (189). IL-21 induction

of Bcl-6 and Blimp-1 expression appears to be contradictory, in fact,

IL-21 exerts a spatiotemporal effect on B cells, making its regulation

of these factors dynamic. Initially, IL-21 activates STAT3,

enhancing the expression of Bcl-6, which supports the

proliferation of GC B cells. At this stage, Bcl-6 dominates,
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allowing GC B cells to continue proliferating and undergo

somatic hypermutation in the germinal center. As the immune

response progresses, IL-21 drives B cell differentiation into plasma

cells through STAT3-mediated upregulation of Blimp-1. In the

later stages of the immune response, IL-21 induces Blimp-1,

promoting the differentiation of high-affinity B cells into long-

lived plasma cells or memory B cells, ensuring long-term immune

protection. Additionally, IL-21 signaling upregulates the expression

of CD86 on the surface of B cells (190), further enhancing T:B co-

stimulatory signals. Interestingly, in the absence of BCR signaling

and T cell co-stimulation, IL-21 stimulation can induce B cell

apoptosis, which is thought to be related to the elimination of

self-reactive B cells (191). Moreover, Breg cells, a subset of B cells

with immunoregulatory functions, have recently been found to

develop and expand in response to IL-21 and CD40 signaling,

specifically driving the development of the B10 subset (IL-10

secreting Breg cells) (192), a function that has been subsequently

confirmed in research (193, 194).

In solid organ transplantation, alloreactive B cells are the direct

source of DSA. Combined with the previously discussed role of Tfh

cells in AMR, the importance of IL-21 in the pathophysiology of

AMR is self-evident. Kitty de Leur et al. reported that IL-21R

blockade inhibited plasma cell differentiation, significantly

reducing levels of IgM and IgG2 (195). Nian, Y et al. verified in a

fully mismatched mouse skin transplant model that IL-21R

blockade induced defects in germinal center structures and

reduced DSA production (18). Van Besouw NM et al. suggested

that the number of IL-21 producing donor-specific cells before and

after transplantation could predict renal transplant rejection (196).

In a study of serum cytokines in liver transplant patients, it was

found that in the group with acute rejection, IL-21 mRNA

expression patterns and serum IL-21 levels showed a steady

increase, suggesting that IL-21 exhibits pro-inflammatory

characteristics in liver transplant rejection patients (197).

Tacrolimus has limited effects on B cell proliferation and

antibody production, whereas mycophenolic acid and rapamycin

are more potent in this regard (198). Therefore, targeting the IL-21

signaling pathway may compensate for tacrolimus’ insufficiency in

suppressing AMR. Some research teams have explored strategies to

enhance tacrolimus-based immunosuppression by targeting

downstream signaling pathways involved in T cell and B cell

activation. Park JS et al. (199)reported that combining a STAT3

inhibitor with tacrolimus increased Treg numbers in lupus-

susceptible mouse spleen cells while decreasing the proportions of

GC B cells and plasma cells. Tobias Deuse et al. (200) demonstrated

that the JAK1/JAK3 inhibitor R507, when combined with

tacrolimus, had a synergistic effect, significantly prolonging the

survival of allogeneic heart transplants compared to tacrolimus

alone and reducing donor-specific IgM levels. While these studies

do not specifically target IL-21 signaling, they highlight the

potential of modulating JAK-STAT pathways to improve

immunosuppressive efficacy. Given that IL-21 signals

predominantly through JAK1 and STAT3, direct blockade of the

IL-21 pathway may represent an additional avenue for combination

therapy to enhance tacrolimus’ efficacy in preventing AMR.
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4 Clinical trials related to IL-21

Clinical studies involving the IL-21 signaling pathway as an

intervention in the field of organ transplantation are relatively

limited, but significant work has been done in the fields of

autoimmune diseases and cancer immunotherapy. The safety and

tolerability of NNC0114-0006 in SLE patients were evaluated in a

Phase I trial (NCT01689025), with researchers aiming to assess the

incidence of adverse events (AEs) and pharmacokinetic data (201).
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Unfortunately, this clinical study was forced to terminate due to the

enrollment of only 10 participants. ATR-107 is a fully humanized

monoclonal antibody targeting IL-21R (202). Its pharmacodynamic

studies have shown positive results. Intravenous administration of

60mg or 120mg can maximize the occupancy of IL-21 receptors,

and this occupancy effect can persist for up to 42 days after a single

dose. Unfortunately, 76% (35 out of 46) of the subjects receiving

ATR-107 developed anti-ATR-107 antibodies (ADA). These ADAs

were detected between 42- and 105-days post-administration. The
FIGURE 4

IL-21 promotes the formation and maintenance of germinal centers and plays a decisive role in the differentiation of GC-derived B cells into plasma
cells. The CD40L-CD40 signaling pathway has been shown to work synergistically with IL-21 to promote Blimp-1 activation and plasma cell
differentiation. CD40 signaling enhances STAT3-driven Blimp-1 upregulation by reducing Bcl-6 expression. Other co-stimulatory signals, such as
ICOS-ICOSL and CD28-CD80/86, also promote plasma cell differentiation. Subsequently, DSA can injure endothelial cells by activating the
complement system or through ADCC (antibody-dependent cellular cytotoxicity). In liver transplant patients experiencing AMR, hypertrophy of
portal vein endothelial cells, obstructive portal vein disease, and microvasculitis are commonly observed. The drawing was inspired in part by Aldo J.
Montano-Loza et al. (183). The figure was created with www.biorender.com.
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high immunogenicity of ATR-107 is considered a major obstacle in

its drug development. NNC01140006 is a monoclonal antibody

targeting IL-21. Previous safety trials indicated that it was well

tolerated in healthy subjects and RA patients, with initial signs of

reduced RA activity observed in the 25 mg/kg dose group (203).

Subsequently, a multicenter, randomized, parallel-group, placebo-

controlled, double-blind, phase 2 clinical trial aimed at evaluating

the protective effect of NNC01140006 combined with liraglutide on

b-cell function in adults with recent-onset type 1 diabetes showed

that at week 54, the MMTT-stimulated C-peptide concentration in

the combination treatment group decreased by 10% (ratio to

baseline 0.90), significantly better than the 39% decrease in the

placebo group (ratio 0.61). The decrease in all active treatment

groups at week 54 (approximately 0.50 percentage points) was

greater than in the placebo group (0.10 percentage points), but

the difference was not statistically significant. No adverse events

related to the trial treatment were observed throughout the trial.

This suggests that the combination of anti-IL-21 antibody and

liraglutide may help protect b-cell function in adults with recent-

onset type 1 diabetes, with good safety, and warrant further

evaluation (204). BOS161721 is a humanized IgG1 monoclonal

antibody with three mutations (M252Y/S254T/T256E) that inhibits

IL-21 bioactivity. It has been shown to be well-tolerated at various

doses, dose-dependently inhibiting IL-21-induced pSTAT3, and

reversing the downregulation of genes crucial for IL-21-induced

tolerance and T-cell exhaustion (205). The subsequent clinical trial

(206) investigating the efficacy of BOS161721 in SLE patients has

been completed. However, based on the data currently provided by

the researchers, the trial results do not appear to be particularly

promising. There was no significant difference in the SRI-4

response, which is associated with improved outcomes, between

the placebo group and the BOS161721 120 mg treatment group

(hereinafter referred to as the treatment group) (51.4% vs. 53.3%,

p=0.8434). However, the difference between the placebo group and

the treatment group was significant in terms of the absence of new

severe disease activity (73.0% vs. 90.7%, p=0.0141). Therefore,

further trials may be necessary to validate the efficacy of

BOS161721. In patients with metastatic melanoma and renal cell

carcinoma, intravenous infusion of recombinant human IL-21

resulted in upregulation of perforin and granzyme B mRNA

levels in CD8 T cells and NK cells (207). A Phase II study in

metastatic melanoma patients confirmed the biological activity of

IL-21, with 9 of 40 patients showing partial remission and 16

showing stable disease (208). Another study on metastatic

melanoma patients showed that IL-21-induced polyclonal CTL, in

combination with CTLA4 blockade, controlled refractory

metastatic melanoma. This combination therapy achieved durable

complete remission in patients where both monoclonal CTL and

anti-CTLA4 therapy had previously failed (209). When

recombinant human IL-21 was used in combination with the

monoclonal antibody cetuximab, which targets the epidermal

growth factor receptor, enhanced anti-tumor activity was

observed, with serum sCD25 levels increasing in a dose-
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dependent manner, and 60% of patients achieving stable disease

(210). While recombinant IL-21 has been investigated in cancer

patients to enhance anti-tumor immunity, in transplantation, IL-21

is more likely to contribute to allograft rejection. Therefore, in

contrast to oncology settings where IL-21 administration is

beneficial, transplantation research is supposed to focus on IL-21

blockade as a potential immunosuppressive strategy. These tumor-

related clinical studies have demonstrated that IL-21 can activate

CD8+ T cells and NK cells (upregulating perforin and granzyme B)

and induce polyclonal CTL responses, a mechanism similar to IL-

21-driven alloreactive T cell activation in transplant rejection.

Therefore, researchers focusing on transplant immunology may

find inspiration from the interventions used in these clinical studies.

For instance, this work (209) showed promising results with

exogenous IL-21 combined with CTLA-4 blockade therapy. This

naturally raises the question of whether combining IL-21 blockade

with a CTLA-4-related drug already used in transplantation, such as

Belatacept (Previous work (120) had shown that Belatacept has a

limited effect in the generation of both Tfh cells and donor antigen-

driven plasmablast), could yield more favorable results in

suppressing transplant rejection. Although this idea has been

validated by researchers in a murine allogeneic islet

transplantation model with positive results (140), more data are

still needed for support. We believe it could serve as similar

inspiration for readers.
5 Conclusion

IL-21 plays a crucial role in transplant rejection as a key

immunomodulatory factor. This review comprehensively

discusses the IL-21 signaling pathway, its role in immune cell

function regulation, and how these immune cells contribute to

the pathophysiology of transplant rejection. IL-21 is not only a

critical factor for the development and functional maintenance of

Tfh and Th17 cells but also plays a central role in the regulation of

immune effector cells such as B cells and NK cells. Its role in

transplant immune responses is complex and multifaceted.

The biological function of IL-21 is mediated by its receptor, IL-

21R, and it affects target cells through the JAK/STAT signaling

pathway. IL-21 activates STAT1, STAT3, and other signaling

pathways to induce the activation and expansion of CD8 T cells,

enhancing their cytotoxicity. Similar effects are observed in NK

cells, enhancing their immune surveillance of transplant tissues,

thereby participating in acute transplant rejection. Additionally, IL-

21 is essential for the differentiation and maintenance of CD4 T

cells, particularly Tfh and Th17 cells, which play significant roles in

AMR. IL-21 influences B cells by promoting the clonal expansion of

germinal center B cells and is indispensable for the terminal

differentiation of B cells into plasma cells. Therefore, IL-21 not

only exacerbates T cell-mediated rejection (TCMR) through its

effects on cellular immune responses but also drives AMR by

enhancing humoral immune responses.
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The role of IL-21 in transplant immunity suggests that it may

become a potential therapeutic target. Interventions targeting the

IL-21 signaling pathway, such as using IL-21R antagonists or

IL-21 antibodies, may provide new strategies for treating

transplant rejection. Such interventions could inhibit excessive

immune responses, reduce the incidence of rejection, and

promote transplant organ tolerance. Furthermore, existing

immunosuppressive protocols, such as those based on tacrolimus,

seem limited in their effect on AMR. Therefore, combining

tacrolimus with IL-21 signaling blockade may be a promising

therapeutic approach.

In summary, IL-21 plays a multifaceted role in transplant

rejection. The complexity of the IL-21 signaling pathway offers an

opportunity for in-depth research on immune regulation. Further

studies will help elucidate its specific role in transplant immunity

and drive the development of IL-21-targeted immunotherapy

strategies. In the future, therapies targeting IL-21 signaling may

offer new directions for improving long-term transplant organ

tolerance and enhancing the clinical outcomes of transplantation.
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