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Objective: This study aimed to identify and analyze immunogenic cell death

(ICD)-related multi-omics features in bladder cancer (BLCA) using single-cell

RNA sequencing (scRNA-seq) and bulk RNA-seq data. By integrating these

datasets, we sought to construct a prognostic signature (ICDRS) and explore

its clinical and biological implications, including its association with immune cell

infiltration, tumor microenvironment (TME), and drug sensitivity.

Methods: Publicly available datasets from TCGA and GEO, including scRNA-seq

(GSE222315, 9 samples) and bulk RNA-seq (TCGA-BLCA, 403 samples;

GSE13507, 160 samples), were analyzed. Single-cell data were processed using

Seurat, and ICD scores were calculated using single-sample gene set enrichment

analysis (ssGSEA). Weighted gene co-expression network analysis (WGCNA)

identified ICD-related modules, and machine learning algorithms (Lasso, Ridge,

CoxBoost) were employed to construct the ICDRS. Survival analysis, immune

infiltration, pathway enrichment, and drug sensitivity were evaluated to validate

the model.

Results: The ICDRS, based on eight key genes (IL32, AHNAK, ANXA5, FN1, GSN,

CNN3, FXYD3, CTSS), effectively stratified BLCA patients into high- and low-risk

groups with significant differences in overall survival (OS, P < 0.001). High ICDRS

scores were associated with immune-suppressive TME, including increased

infiltration of T cells CD4 memory resting (P = 0.02) and macrophages M0/M1/

M2 (P = 0.01). Pathway enrichment revealed correlations with cholesterol

homeostasis, epithelial-mesenchymal transition (EMT), and KRAS signaling.

Drug sensitivity analysis showed high-risk groups were resistant to Cisplatin (P

= 0.003), Mitomycin C (P = 0.01), and Paclitaxel (P = 0.004), with IC50 values

significantly higher than low-risk groups.
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Conclusion: The ICDRS serves as a robust prognostic biomarker for BLCA,

offering insights into tumor immune evasion mechanisms and potential

therapeutic targets. Its integration with clinical features enhances personalized

treatment strategies, highlighting the importance of ICD in BLCA immunotherapy

and precision medicine. The model’s predictive accuracy and biological

relevance were validated across multiple datasets, underscoring its potential

for clinical application.
KEYWORDS
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1 Introduction

Over the past few decades, the advent of personalized,

predictive, and preventive medicine (PPPM/3PM) has

significantly transformed the landscape of cancer treatment and

research (1). Among urological malignancies, bladder cancer

(BLCA) stands as the second most prevalent, with an estimated

550,000 new cases and approximately 200,000 deaths reported

annually worldwide (2). The management of BLCA continues to

be a critical focus in urological oncology. Platinum-based

chemotherapy remains the cornerstone of perioperative and

advanced BLCA treatment. More recently, the introduction of

immune checkpoint inhibitors (ICIs) has expanded therapeutic

options, particularly for first-line and platinum-resistant cases (3).

Despite these advancements, the proportion of patients

experiencing long-term remission through immunotherapy

remains limited. The overall response rate of ICIs in BLCA is no

more than 24% (4). To address this, future research must prioritize

the exploration of novel immunotherapeutic strategies, the

optimization of therapeutic sequencing and combinations, the

precise selection of therapies tailored to individual patients, and

the identification of new molecular targets.

Within the realm of BLCA immunotherapy, the investigation of

immunogenic cell death (ICD) within the tumor microenvironment

(TME) has emerged as a pivotal research avenue. ICD is

characterized by the release of damage-associated molecular

patterns (DAMPs), which activate the immune system to combat

tumors. This process involves the recruitment of antigen-presenting

cells (APCs) to damaged or infected cells, leading to the

presentation of captured antigens via major histocompatibility

complex proteins to primary T cells. Consequently, ICD enhances

the antigenicity of tumor cells and promotes robust anti-tumor

immune responses (5–7). As a novel biomarker, ICD holds

considerable promise. ICD has been extensively studied in various

cancer types, demonstrating its central role in antitumor immunity.

Conventional chemotherapeutics like anthracyclines, oxaliplatin,

and taxanes have been shown to induce ICD in multiple

malignancies, enhancing immunogenicity and correlating with
02
improved patient outcomes (8). However, its clinical applications,

such as prognostic stratification and the prediction of responses to

immunotherapy and chemotherapy, remain underexplored (9). A

comprehensive understanding of ICD at the molecular level,

coupled with advanced analytical techniques, is essential for its

accurate identification and effective utilization.

Recognizing the potential of ICD in BLCA treatment, the

systematic identification of its associated multi-omics features is

imperative for the development of innovative therapeutic strategies.

Furthermore, the application of diverse machine learning

frameworks to analyze these complex datasets not only enhances

the robustness of the research but also uncovers the intricate

interactions and integration mechanisms among different data

types. This approach is instrumental in identifying key

biomarkers and molecular pathways associated with BLCA (10).

In light of these considerations, this study aims to employ a

range of machine learning computational frameworks to

systematically identify and analyze ICD-related multi-omics

features in BLCA. By integrating genomics, transcriptomics, and

proteomics data, we seek to elucidate key molecules and pathways

that influence BLCA immune responses. Additionally, we aim to

provide new targets for precision therapy and construct risk models

using follow-up data. This research not only offers a novel

perspective on understanding the immunoregulatory mechanisms

of BLCA and advancing its precision treatment but also underscores

the significant potential of machine learning in the analysis of

complex diseases within the 3PM framework.
2 Materials and methods

2.1 Data source

In this study, we utilized publicly available genomic data from two

primary sources: The Cancer Genome Atlas (TCGA) and the Gene

Expression Omnibus (GEO) database. From the TCGA database

(https://portal.gdc.cancer.gov/), we obtained gene expression

profiles and corresponding survival data for 403 BLCA samples,
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providing a robust dataset for analysis (11). Additionally, we

accessed two BLCA-specific datasets from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/): GSE222315, which includes

single-cell RNA sequencing (scRNA-seq) data from 9 bladder

cancer samples, and GSE13507, which contains tissue-based RNA

sequencing data and survival information from 160 bladder cancer

samples (12).

For the TCGA dataset, we extracted gene expression data in

Transcripts Per Million (TPM) format from STAR count data. The

data were normalized using a log2(TPM+1) transformation to stabilize

variance and approximate a normal distribution. To ensure the

reliability of downstream analyses, we retained only those samples

with both RNA sequencing data and complete clinical information.

This approach allowed us to integrate diverse data types while

maintaining methodological consistency and analytical rigor.
2.2 Single-cell RNA sequencing analysis

2.2.1 Data preprocessing
The scRNA-seq data were processed using the Seurat package

(version 5.1.0) in R (version 4.3.1) (13). Quality control was performed

to remove low-quality cells, retaining those with between 200 and 6,000

detected genes and mitochondrial gene content below 5%. Red blood

cell contamination was assessed using hemoglobin genes (e.g., HBA1,

HBB), and samples with more than 1% hemoglobin gene expression

were excluded. The data were normalized using the LogNormalize

method with a scale factor of 10,000, and highly variable genes were

identified using the FindVariableFeatures function, retaining the top

3,000 genes for downstream analysis.

To address batch effects, the Harmony algorithm was applied,

ensuring robust integration across samples. Harmony was specifically

chosen for our batch correction strategy because of its demonstrated

effectiveness in single-cell data integration. The algorithm works by

iteratively clustering cells and adjusting their positions in the reduced

dimensional space to align shared cell populations across datasets, while

preserving biologically meaningful variations. Unlike other integration

methods that may overcorrect and remove important biological signals,

Harmony maintains cell type-specific transcriptional signatures while

minimizing technical variation. This balanced approach was critical for

our analysis, as we needed to integrate multiple scRNA-seq datasets

while preserving the subtle transcriptional differences that characterize

distinct immune cell states and their interactions within the tumor

microenvironment. Additionally, Harmony’s computational efficiency

allowed us to process our large-scale integrated dataset without

compromising resolution or accuracy, making it particularly well-

suited for our multi-source data integration approach. Principal

component analysis (PCA) was conducted, and the top 30 principal

components were selected for dimensionality reduction and clustering.

t-distributed Stochastic Neighbor Embedding (tSNE) (14) was employed

with parameters perplexity=30 and max_iter=1000 to visualize the data,

and clusters were identified using the FindNeighbors and FindClusters

functions with a resolution of 0.8. Cell types were annotated based on

well-established marker genes, including CD3D/CD3E for T cells, CD19/

MS4A1 for B cells, COL1A1/COL1A2 for fibroblasts, PECAM1 for

endothelial cells, CD163/CD68/CD14 for macrophages, and APC/
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GSTP1/CDKN2A/DAPK1 for cancer cells. Marker genes for each

cluster were identified using FindAllMarkers with parameters

logfc.threshold=0.35 and min.pct=0.35.

2.2.2 Immunogenic cell death analysis
To investigate the role of ICD in the tumor microenvironment,

a curated list of ICD-related genes was used to compute an ICD

score for each cell using single-sample gene set enrichment analysis

(ssGSEA) (15). Cells were stratified into high and low ICD score

groups using the median score as the cutoff. Differential expression

analysis between these groups was performed using the

FindAllMarkers function, with a log2 fold change threshold of

0.35 and a minimum detection rate of 35%.

Pathway enrichment analysis was conducted using the

clusterProfiler package, and significant pathways were identified

using gene set enrichment analysis (GSEA) on the Hallmark gene

sets. The results were visualized using dot plots and enrichment plots to

highlight pathways associated with high ICD scores. UMAP plots were

generated to visualize the distribution of ICD scores across cell types,

and violin plots were used to compare ICD scores between annotated

cell types. Statistical significance was defined as p < 0.05.

2.2.3 Cell-cell communication analysis
The CellChat package was employed to infer cell-cell

communication networks based on ligand-receptor interactions (16).

The human CellChatDB database was used to identify overexpressed

ligand-receptor pairs, and communication probabilities were computed

using the computeCommunProb function. Significant interactions were

filtered (min.cells = 10), and pathway-level communication networks

were aggregated using the computeCommunProbPathway function.

Key signaling pathways, such as MIF, ITGB2, MK, and APP,

were visualized using circle plots and heatmaps to illustrate their

strength and specificity across cell types. Chord diagrams were

generated to depict interactions between high-risk tumor cells and

other cell types, providing insights into the role of cell-cell

communication in the tumor microenvironment.

To further explore the impact of risk-associated genes on cell-

cell communication, cells were classified into high- and low-risk

groups based on a predefined set of genes (e.g., IL32, AHNAK,

ANXA5) using ssGSEA. Differential expression analysis between

these groups was performed, and enriched pathways were identified

using GSEA. The results were visualized using dot plots and

enrichment plots, highlighting pathways associated with high-risk

cells. Statistical significance was defined as p < 0.05.
2.3 Weighted gene co-expression network
analysis

To identify co-expression modules and explore their associations

with ICD in BLCA, we performed WGCNA using the R package

WGCNA (17). Gene expression data from TCGA-BLCA samples were

preprocessed, and ICD-related genes were selected based on a curated

gene list. The ssGSEA method was employed to calculate ICD scores

for each sample, which were used as traits in the WGCNA analysis.
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The expression matrix was filtered to retain genes with high

variability, and a soft-thresholding power was determined to

construct a scale-free network. Modules of co-expressed genes were

identified using hierarchical clustering and dynamic tree cutting.

Module-trait relationships were assessed by correlating module

eigengenes with ICD scores. The yellow module, which showed the

strongest association with ICD, was further analyzed. Gene significance

and module membership were calculated to identify key genes within

the yellow module.

Functional enrichment analysis of the yellow module genes was

performed using the clusterProfiler package to uncover biological

processes and pathways associated with ICD. Visualization included

dendrograms, heatmaps, and scatterplots to illustrate module-trait

relationships and gene significance. Statistical significance was

defined as p < 0.05.
2.4 Integrating machine learning methods
to construct prognostic features

We conducted an intersection analysis between ICD-DEGs and the

module genes identified through WGCNA to obtain a set of genes

related to immunogenic cell death (ICDRgenes). To construct a robust

prognostic model with high predictive accuracy, we randomly divided

the TCGA-BLCA dataset into a training set (302 samples) and an

internal testing set (101 samples) in a 3:1 ratio, ensuring an even

distribution of clinical characteristics between the two groups.

Furthermore, the GSE13507 dataset (160 samples) served as an

external testing set to ensure the robustness of the model.

During the model construction phase, our study incorporated

various machine learning algorithms, including least absolute

shrinkage and selection operator (Lasso) (18), stepwise multiple

Cox (StepCox) (19), Ridge (20), CoxBoost (21), Survival Support

Vector Machine (Survival-SVM) (22), Elastic Net (Enet) (23, 24),

Partial Least Squares Regression for Cox Models and Related

Techniques (plsRcox) (25, 26), Supervised Principal Components

(SuperPC) (27), Random Survival Forests (RSF) (28), and Gradient

Boosting Machine (GBM) (29). We arranged 100 combinations of

these 10 algorithms across the TCGA-BLCA and GSE13507

datasets, employing a ten-fold cross-validation framework for

variable selection and model building.

Ultimately, we selected the algorithm combination that

demonstrated the best robust performance and potential for clinical

translation based on its performance across the three datasets. This led

to the establishment of a final feature set called the immunogenic cell

death-related signature (ICDRS), which is used to predict overall

survival (OS) in BLCA patients.
2.5 Survival analysis and construction of
nomograms

Based on the median risk score of the ICDRS, we divided the

samples in the TCGA training set, internal testing set, and external

testing set into high-risk and low-risk groups. Kaplan-Meier(KM)
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survival curves were analyzed using the R package survminer (30),

and differences in OS between the high-risk and low-risk groups

were compared using the log-rank test. Additionally, the timeROC

package (31) was used to perform ROC curve analysis to assess the

sensitivity and specificity of ICDRS in predicting OS in BLCA

patients, with the area under the curve (AUC) reflecting the

robustness of the model (32, 33). Further, we stratified the ICDRS

scores by clinical characteristics and analyzed the correlation of

ICDRS with age, gender, tumor stage, T, M, N classification, and

other clinical features.

To enhance the predictive accuracy and prognostic capability of

our model, we developed a nomogram (34) that combines ICDRS

with clinical features to quantify the expected survival of BLCA

patients. Finally, we comprehensively evaluated the precision and

accuracy of the nomogram through ROC curves, the concordance

index (C-index), and calibration curves. Additionally, we used

decision curve analysis (DCA) (35) to assess the clinical net

benefit of the nomogram, ensuring its practicality and

effectiveness in clinical decision support. These comprehensive

assessments helped us validate the clinical application value of the

nomogram, ensuring its contribution to the survival prediction of

BLCA patients in actual medical settings. Statistical significance was

defined as p < 0.05.
2.6 Comprehensive analysis of immune
characteristics and responses to immune
checkpoint inhibitor therapy

To explore the relationship between immune cell infiltration

within TME of BLCA and ICDRS, we used the IOBR package (36)

to assess ESTIMATE scores, CIBERSORT infiltration estimates, and

the infiltration of 28 types of immune cells in BLCA samples from

TCGA. Firstly, we employed the CIBERSORT algorithm to quantify

the infiltration of 22 immune cell types. CIBERSORT is a

computational method based on the principle of linear support

vector regression (SVR) and uses a predefined reference gene

expression feature matrix (LM22) to deconvolute RNA

sequencing data. The LM22 matrix includes characteristic

expression profiles of 22 immune cell types, allowing us to

accurately estimate the relative abundance of these cell types at

the RNA transcription level, facilitating the identification and

quantification of cell types (37).

Following the initial analysis, we refined our results on immune

cell infiltration using the immune phenotype scoring method for 28

types of immune cells, as published by Charoentong et al. (38). We

then utilized the ESTIMATE algorithm to assess the correlation

between immune cells and genes in tumor samples. The combined

use of these methods not only provided a multidimensional

perspective on immune cell infiltration but also helped us to

verify and enhance the precision and robustness of the

CIBERSORT estimates. This ensured that our study results

accurately and deeply elucidated the relationship between

immune cell infiltration and survival prognosis in BLCA.

Statistical significance was defined as p < 0.05.
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2.7 Significance of the ICDRS in drug
sensitivity

We utilized the Genomics of Drug Sensitivity in Cancer (GDSC)

database (https://www.cancerrxgene.org/) to predict the sensitivity of

samples from high and low-risk groups to common anticancer drugs.

This database is one of the largest public resources in the field of

pharmacogenomics, providing rich data on drug sensitivity and related

genomic information, which is crucial for identifying potential cancer

treatment targets (39). We employed the pRRophetic package to

construct a Ridge regression model based on cell lines, using the

gene expression profiles and risk scores of ICDRS from BLCA to

estimate the half-maximal inhibitory concentration (IC50) of drug

samples (40). This method allows us to assess the sensitivity of different

ICDRS risk groups (high risk and low risk) to anticancer drugs.
2.8 HPA validation

We validated the protein expression of relevant genes in BLCA

using the Human Protein Atlas (HPA) database. The HPA database

(https://www.proteinatlas.org/) is the most extensive and

comprehensive resource on the spatial distribution of proteins in

human tissues and cells (41). By integrating advanced

transcriptomics and proteomics technologies, the HPA database

provides detailed information on protein expression at both RNA

and protein levels across various human tissues and organs. This

approach allows for a thorough validation of the protein expression of

genes of interest in BLCA, providing valuable insights into their

biological relevance and potential therapeutic significance.
3 Results

All analytical processes are illustrated in the flowchart (Figure 1).
3.1 ICD features of single-cell
transcriptomics

We assessed the single-cell transcriptomic landscape to

characterize the features of ICD across different cell types. Utilizing

t-SNE technology, we set marker genes according to previous relevant

literatures (42, 43), then identified cell types defined by marker genes,

annotating cells into 9 major clusters: endothelial cells, bladder

epithelial cells, macrophages, monocytes, cancer cells, fibroblasts,

mast cells, B cells, and T cells, thereby revealing the distribution

patterns of various cell populations (Figure 2). In the heatmap, we

displayed the expression of marker genes for each cell cluster, such as

high expression of CD68 and CD163 in macrophages (Figure 2). We

further assessed the ICD activity score in each single cell (Figure 2).

Using a continuous color gradient from green (low ICD score) to red

(high ICD score), we observed the distribution of ICD activity among

different cell groups. Finally, we presented the distribution of ICD

scores across different cell types by violin plots (Figure 2). Results
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indicated that immune cells like macrophages, T cells, and monocytes

exhibited higher ICD scores, while non-immune cells such as

fibroblasts, endothelial cells, and cancer cells showed lower scores.

Based on ICD activity, we categorized cells into high ICD and low ICD

groups and identified 7,233 ICD-DEGs between the two groups for

further analysis.
3.2 Identifying ICDRgenes in bulk RNA
sequencing

We utilized the TCGA-BLCA sample dataset and applied the

WGCNA method to identify and analyze genes related to the

immunogenic cell death-related modules.

By constructing a hierarchical clustering dendrogram of the

samples (Figure 3), we displayed the clustering relationships among

tumor samples. The heatmap at the bottom shows each sample’s ICD

score to illustrate the relative activity of ICD features within the

samples. In WGCNA, we constructed a dendrogram of sample

clustering (Figure 3) and revealed through a module-trait heatmap

(Figure 3) that the brown and yellow modules are closely associated

with ICD traits. In the brown module, the scatterplot of gene

significance (GS) and module membership (MM) relationships

(Figure 3) shows a positive correlation between them. We further

displayed the gene expression differences in single-cell tumor samples

classified by ICD scores through a volcano plot (Figure 3). Additionally,

using a Venn diagram (Figure 3), we identified 108 intersecting genes

between the two modules and bulk RNA sequencing ICD-DEGs,

termed ICDRgenes, which are considered to be significantly involved

in ICD at both the whole and single-cell transcriptomic levels.

Subsequently, we established a protein-protein interaction network

(PPI network) composed of 108 ICDRgenes (Figure 3), revealing

potential interactions among these genes. We then conducted GO

and KEGG enrichment analyses (Figure 3) to explore the distribution

of these ICDRgenes in BP, CC, and MF, as well as their potential roles

in various biological pathways. The results showed that these genes are

primarily enriched in pathways related to the regulation of the actin

cytoskeleton, which was further confirmed in KEGG analysis.

To further construct and validate the model, we performed a Cox

cross-validation with the TCGA gene list and clinical prognosis data,

identifying 31 genes with significant statistical significance. After

correlation analysis, these genes were further divided into three

clusters (Figure 3), which were used for subsequent analyses.
3.3 Construction of prognostic features
based on integrated machine learning

We utilized an integrated machine learning approach to develop a

consensus ICDRS. Within a ten-fold cross-validation framework, we

evaluated 100 different predictive models by assessing the accuracy of

each model across all datasets (Figure 4). The main criteria for model

selection was the best balance between predictive performance and

model stability across all datasets, with minimal reduction in C-index

values between training and testing sets compared to other algorithms.
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Considering the overall performance, we selected the Ridge model for

constructing the ICDRS and displayed the variable weights within the

Ridge model (Figure 4). These weights reflect the importance of each

variable in the model.

We further validated the prognostic capabilities of the ICDRS using

KM curves in three independent datasets. In the TCGA training set,

patients stratified into low-risk and high-risk groups based on the

ICDRS showed significant differences in survival (P < 0.001) (Figure 4).

In the internal TCGA testing set, while there was a trend indicating

survival differences, the differences did not reach statistical significance

(P = 0.096) (Figure 4). However, in the external GSE13507 testing set,

the high and low scores of the ICDRS demonstrated significant

statistical differences in survival (P = 0.007) (Figure 4).
Frontiers in Immunology 06
3.4 Assessing the performance of the
ICDRS

We assessed the distribution and performance of the ICDRS

across different clinical characteristic subgroups of BLCA patients.

Figure 5 shows the distribution of ICDRS low-risk and high-risk

groups among patients in terms of OS, T stage, N stage, M stage,

clinical stage, and gender.

Using violin plots, we demonstrated the differences in risk scores

among patients grouped by age, gender, M stage, clinical stage, and T

stage (Figure 5). We noticed that the risk scores were significantly

higher among older, female, stage III-IV, and T3-4 patients compared

to younger, male, stage I-II, and T1-2 patients. These results suggest
FIGURE 1

Study flowchart.
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that the ICDRS is associated with poor prognosis in BLCA patients.

Figure 5 reveals the proportion of T stage distribution within the

ICDRS risk subgroups, highlighting the differences in early versus late

stages among patients at different risk levels.

Further survival analyses demonstrated the stable performance

of the ICDRS across age and stage stratifications. As shown in

Figure 5, KM curves reveal the survival probabilities of low-risk and

high-risk groups as defined by the ICDRS among patients aged ≥60

and <60, as well as those in clinical stages I and II versus III and IV.

In all subgroups, the high-risk group exhibited poorer survival rates

compared to the low-risk group, and these differences were

statistically significant (p < 0.05).

These results indicate that the ICDRS can effectively

differentiate prognostic risks among BLCA patients with varying

clinical characteristics, providing robust clinical decision support

for personalized treatment.
3.5 Establishment and validation of a
nomogram integrating clinical features

To evaluate whether the ICDRS is an independent prognostic

factor for BLCA, we assessed the impact of age, gender, TNM

staging, clinical staging, and ICDRS on patient OS in two cohorts:

TCGA-BLCA and GSE13507. Univariate analysis results

(Figure 6C) showed that in the TCGA-BLCA cohort, age, TNM

staging, clinical staging, and ICDRS were all significant prognostic
Frontiers in Immunology 07
factors for OS. However, in the GSE13507 cohort, only ICDRS

significantly impacted OS as an independent prognostic factor.

Subsequent multivariate analyses (Figure 6D) further confirmed

ICDRS as an independent prognostic indicator in both cohorts. In

this analysis, ICDRS significantly influenced OS even after adjusting

for other clinical features.

A prognostic scoring nomogram was constructed based on

ICDRS and clinical features (Figure 6), integrating age and

ICDRS scores. The nomogram’s predictions for 1-year, 3-year,

and 5-year OS were highly consistent with the actual

observations, as shown by the calibration curve (Figure 6). We

also compared the nomogram’s C-index with that of other

individual clinical features (Figure 6), and the results showed that

its predictive capability for OS was superior to that of individual

clinical features alone. Decision curve analysis (Figure 6) indicated

that, within a certain range of high-risk thresholds, using the

nomogram could achieve a higher standardized net benefit

compared to other clinical features. This means that decision-

making based on the nomogram offers superior expected benefits

over traditional clinical feature-based decisions.
3.6 Transcriptomic feature analysis of
different ICDRS patient groups

To further investigate the molecular mechanisms underlying

the correlation between ICDRS and prognosis in BLCA, we
FIGURE 2

ICD Features in Single-Cell Transcriptomics. (A) t-SNE plot showing the cell types identified by marker genes. (B) Heatmap displaying the marker
genes in each cell cluster, where red and blue respectively indicate high and low gene expression levels. (C) The activity score of ICD in each cell.
(D) The distribution of the ICD scores in different cell types, with the width of each violin plot shape indicating the density and range of ICD scores in
the corresponding cell type.
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conducted GSEA and GSVA. These analyses can reveal differences

in biological processes and pathway activities related to patient

groups with high and low ICDRS scores.

Figure 7 from the GSEA analysis reveals the GO pathways enriched

in different ICDRS groups. Figure 7 shows pathways related to
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structural constituent of postsynaptic actin cytoskeleton,

norepinephrine transport, peptide cross-linking, sequestering of

metal ion, calyx of held, cornified envelope, ferrous iron binding, and

modulation of processes of another organism. Figure 7B’s ridge plot

highlights enriched GO pathways that involve different aspects of TME.
FIGURE 3

Identification of ICDRgenes. (A) Dendrogram showing the hierarchical clustering of TCGA-BLCA samples. The heatmap at the bottom represents the
ICD scores of each sample. (B) Cluster dendrogram of the WGCNA analysis. (C) Module-trait heatmap showing that the brown and yellow modules
were closely related to the ICD trait. (D) Scatter plot showing the relationship between GS and MM in the brown module. (E) The relationship
between GS and MM in the yellow module. (F) Volcano plot showing differential analysis results between TCGA-BLCA samples and normal samples,
with the top 5 most significantly different genes specially marked. (G) Venn plot showing the intersecting genes between the two modules and DEGs
in bulk RNA-seq. (H) PPI Network of 108 ICD-DEGs. (I) GO and KEGG Analysis Results. (J) After using Cox regression and cross-validation, 108 genes
resulted in 31 statistically significant genes related to prognosis, which were then divided into 3 clusters for correlation analysis.
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Figure 7 provides GSVA scores for KEGG pathways, further enhancing

our understanding of the pathway activities associated with ICDRS

scores. Through KEGG pathway analysis, we can quantitatively

compare differences in metabolism and signaling between groups

with high and low ICDRS scores.

In Figure 7, using the Hallmark gene set, we evaluated GSVA

scores to assess the correlation between ICDRS scores and activity

of typical pathways, and through KM survival plots, we

demonstrated a significant correlation between OS and GSVA

scores. Integrating these data, we conclude that ICDRS scores are

positively correlated with the activity of several key biological

pathways, including cholesterol homeostasis, estrogen response,

epithelial-mesenchymal transition (EMT), androgen response,

and the unfolded protein response (UPR). Moreover, the

upregulation of these pathways is significantly associated with

poor prognosis in BLCA patients. Conversely, pathways

negatively correlated with ICDRS, such as KRAS signaling, are

associated with a better prognosis. These results suggest that the

activation or inhibition of these pathways may contribute to the

different prognostic outcomes observed within ICDRS subgroups.

These findings underscore the importance of ICDRS as a potential

prognostic biomarker in BLCA treatment and provide a scientific

basis for future development of targeted therapies against

these pathways.
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3.7 Establishment and validation of an ICD-
related gene risk scoring model based on
Lasso regression

Building on the previous results, given the robustness and

universality of the Lasso-Cox model across most models, we

revisited the modeling of all 108 genes using the Lasso-Cox

approach. The Lasso regression coefficient path plot displayed

how the coefficients of the 108 genes shrink towards zero as the

L1 regularization penalty (l value) increases, revealing the model

variables ultimately selected (Figure 8). In Lasso regression, the

cross-validation deviation plot identified the optimal l value that

minimizes the cross-validation error, providing the best model

complexity (Figure 8). Figure 8 shows the distribution of risk

scores between high-risk and low-risk samples in the training set,

calculated based on the selected l value. The KM survival curves

illustrate significant differences in prognosis between the high-risk

and low-risk groups (P < 0.001), with median survival times of 1.6

years and 8.1 years, respectively (Figure 8). The risk score

distribution plot shows the relationship between each sample’s

score and survival status (alive/dead) in the training set, with

high-risk scores associated with the occurrence of death events

(Figure 8). The ROC curve evaluated the accuracy of the risk scoring

model in predicting survival at 1 year, 3 years, and 5 years. The
FIGURE 4

Through a machine learning-based integration process, we developed and validated a consensus ICDRS. (A) We evaluated 100 predictive models
within a ten-fold cross-validation framework and further calculated the C-index for each model across all validation datasets. (B) We visualized the
variable weights in the Ridge model, where red indicates negative weights, blue represents positive weights, and the size denotes the absolute value
of the weight. (C–E) KM curves for OS of ICDRS in the TCGA training set, TCGA internal testing set, and GSE13507 external testing set based on the
log-rank test.
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FIGURE 5

Assessing the performance of the ICDRS. (A) Clinical characteristics of ICDRS low-risk and high-risk groups are visualized through the proportions in
each ring, illustrating the risk distribution within each subgroup, with p-values used to assess the correlation between ICDRS and these clinical
features. (B–F) Differences in risk scores between patients grouped by age, gender, M stage, clinical stage, and T stage. (G) The proportion of T stage
distribution in ICDRS risk subgroups, showing the variation in early versus late stages across different risk levels. (H–K) KM curves demonstrating the
stable performance of the ICDRS in subgroups, including age and stage.
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AUC values for 1-, 3-, and 5- year OS are 0.733, 0.735, and 0.733.

The AUC at different time points showed the model’s strong

predictive performance (Figure 8). These results indicate that the

further developed ICDRS not only accurately distinguishes between

high-risk and low-risk BLCA patients with powerful prognostic

prediction capabilities but also significantly enhances the

model’s robustness.
3.8 Comprehensive correlation analysis of
ICDRS with single-cell characteristics

We intersected the top 10 upregulated and downregulated genes

in the Ridge model with the high-weight genes from the LASSO
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analysis to identify the eight most prominent genes in the ICDRS,

namely IL32, AHNAK, ANXA5, FN1, GSN, CNN3, FXYD3, and

CTSS. We conducted a detailed analysis of the expression of ICDRS

in different single-cell types and its functional associations

(Figure 9). Through single-cell RNA sequencing analysis

(Figure 9), we identified the expression patterns of these eight

genes across various cell types, showing that these genes are

primarily expressed in bladder epithelial cells, macrophages,

monocytes, cancer cells, fibroblasts, and T cells. This analysis

revealed the association of ICDRS with the functions of specific

cell populations.

KEGG pathway analysis further identified functionally enriched

pathways in DEGs between high-risk and low-risk cells (Figure 9).

Results show that various biological processes and signaling
FIGURE 6

Establishment of the nomogram. (A) Univariate analysis of the clinical characteristics and ICDRS for OS in the TCGA-BLCA cohort. (B) Multivariate
analysis in the TCGA-BLCA cohort. (C) Univariate analysis of the clinical characteristics and ICDRS for OS in the GSE13507 cohort. (D) Multivariate
analysis in the GSE13507 cohort. (E) Construction of the nomogram based on ICDRS and clinical characteristics. Each variable’s contribution to the
predictive model is represented by a point-line plot next to it, where a larger contribution indicates a stronger association with survival prediction.
(F) Comparison of the C-index between the nomogram and other clinical characteristics. (G) Calibration curve of the nomogram for 1, 3, and 5-year
OS. (H) Decision curve analysis showing the standardized net benefit of applying the nomogram compared to other clinical characteristics.
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pathways such as neurodegenerative disease pathways, the PI3K-

Akt signaling pathway, and extracellular matrix (ECM)-receptor

interactions are significantly enriched in high-risk cell populations.

Through GSEA analysis, we identified enriched HALLMARK

pathways in high-risk cells, including angiogenesis, activation of

the complement system, EMT, interferon-a response, activation of
Frontiers in Immunology 12
MYC targets, and myogenesis, revealing the key biological processes

these cells may be involved in (Figure 9).

The Cellchat diagram provides a detailed view of interactions

among different cell types within specific signaling pathway

networks (Figure 9), revealing the complexity and diversity of cell

communication. Furthermore, we visualized the molecular
FIGURE 7

Transcriptomic features of various ICDRS patient groups. (A, B) GO terms enriched by GSEA analysis. (C) Differences in KEGG analysis between the
high- and low-risk groups scored by GSVA. (D) Correlation between the risk score and hallmark pathway activities scored by GSVA. KM survival plots
showing the significant correlations between the OS and GSVA scores.
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interactions between tumor cells and other cell types with high and

low risk scores. Figures 9, 9F respectively show the ligand-receptor

interactions observed in high-risk and low-risk tumor cells.

Compared to the low-risk group, the high-risk group displays

specificity in the FN1 and CD99 signaling pathways. FN1, a

major extracellular matrix protein, is involved in various cellular

processes, including cell adhesion, migration, wound healing, and

embryonic development. Increased expression of FN1 is often

associated with higher malignancy, poor prognosis, and enhanced

invasiveness of cancer. The active FN1 signaling in the high-risk

group may indicate these cells have greater invasive capabilities and

metastatic potential. CD99, a cell surface glycoprotein widely

expressed in many cell types, is involved in cell adhesion,
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migration, and immune regulation. In high-risk tumor cells, the

expression of CD99 may be associated with immune evasion, cell

migration, and invasion.

To further discuss the expression and correlation of pathways

across various cell types, we selected several pathways for further

heatmap visualization, including the APP pathway, which

influences cell proliferation and death, the MIF pathway

associated with the worsening prognosis of various cancers, and

the MK and ITGB2 pathways, which are linked to tumor

aggressiveness and poor prognosis (Figure 9). The results indicate

that in high-risk tumor cells, the APP, MIF, and MK pathways

exhibited more significant expression compared to the low-risk

group. Moreover, the MIF pathway showed a high correlation with
FIGURE 8

Risk scoring model based on 108 ICD-related genes constructed using Lasso regression. (A) Lasso Regression Coefficient Path Plot for 108 Genes.
(B) Deviation in cross-validation for Lasso regression. The X-axis represents the logarithm of l values, and the Y-axis represents deviation. Red points
indicate the average deviation at each l value, gray lines represent the standard error of the deviation, and the vertical line on the X-axis marks the
optimal l value. (C) Risk profile in the training set. (D) KM survival curves for high-risk and low-risk groups in the training set. (E) Distribution of Risk
scores for each sample. (F) ROC curves for the training set.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1572034
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yan et al. 10.3389/fimmu.2025.1572034
fibroblasts, corroborating the specific expression of FN1 as seen in

Figure 9. However, the ITGB2 pathway did not show differences in

expression in BLCA and had very low expression levels, suggesting

that this pathway is less relevant to BLCA. These heatmaps provide
Frontiers in Immunology 14
an intuitive view for understanding the role of ICDRS across

different cell types and signaling pathways, supporting the

importance of ICDRS in cell communication and functional

execution within TME.
FIGURE 9

Correlation of ICDRS with Single-Cell Characteristics. (A) Expression of the 8 genes in various cell types by single-cell RNA-seq analysis. (B) KEGG
analysis of the DEGs between the high- and low-risk cells. (C) GSEA analysis identified the GO terms enriched in the high-risk cells. (D) Circos plots
showing the signaling pathway networks. (E) Ligand-receptor interactions sent from high-risk tumor cells. (F) Ligand-receptor interactions sent from
low-risk tumor cells. (G–J) The heatmaps showing the roles of different cell types in the APP, MIF, MK, and ITGB2 signaling networks.
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3.9 Immune landscape associated with
ICDRS in BLCA

Figure 10 provides a detailed display of the differences in the

immune landscape between high-risk and low-risk groups in BLCA
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patients. Using the Stromal Score, Immune Score, and ESTIMATE

Score, we quantified the varying immune states between the two risk

groups (Figure 10), revealing that the high-risk group has higher

Stromal Scores (P = 1.4e-5), Immune Scores (P = 0.11), and

ESTIMATE Scores (P = 0.002).
FIGURE 10

Correlation between TME, immune characteristics, and ICDRS. (A–C) The Stromal Score, Immune Score, and ESTIMATE Score were used to quantify the
different immune statuses between the high- and low-risk groups. (D) Activity of immune-related pathways showed significant differences between the
high- and low-risk groups. (E) Using the CIBERSORT algorithm to calculate the abundance of each type of TME-infiltrating cell in the high and low-risk
groups. (F) Quantitative scoring of infiltrating cell abundance using the scheme for 28 types of immune phenotype scores. (G) The association between
TME-infiltrated cells and genes built into the ICDRS. (H) Correlation analysis between TME-infiltrated cells and the ICDRS. Statistical significance is indicated
as follows: * for p-value < 0.05, ** for p-value < 0.01, *** for p-value < 0.001, and ns (not significant) for p-value ≥ 0.05.
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Additionally, using the ssGSEA algorithm, differences in the

activity of immune-related pathways were confirmed between the

high-risk and low-risk groups, including T cell receptor signaling

pathway, natural killer cell mediated cytotoxicity, Toll-like receptor

signaling pathway, cytosolic DNA sensing pathway, NOD-like

receptor signaling pathway, complement and coagulation

cascades, leukocyte transendothelial migration, chemokine

signaling pathway, hematopoietic cell lineage, B cell receptor

signaling pathway, and FC gamma R mediated phagocytosis

(Figure 10). This demonstrates that the activation status of these

pathways varies in the TME of different risk levels. To further

analyze the differences in specific immune cell infiltration between

the high-risk and low-risk groups, we used the CIBERSORT

algorithm to calculate the abundance of each TME infiltrating cell

type in high-risk and low-risk groups (Figure 10). It was found that

high-risk groups had a higher abundance of T cells CD4 memory

resting, macrophages M0, macrophages M1, and macrophages M2,

while the low-risk group had a higher abundance of T cells CD8, T

cell follicular helper, T cells regulatory, and dendritic cells activated.

Subsequently, these findings were validated using a quantitative

scoring scheme for 28 types of immune cell phenotypes (Figure 10)

and an analysis of the correlation between immune cells and risk

scores (Figure 10), both yielding consistent results.

The study further investigated the correlation between

infiltrating cells in the TME and the eight genes constituting the

ICDRS (Figure 10), revealing associations between specific immune

cell subpopulations and gene expression patterns in the ICDRS.

These findings collectively point to the ICDRS as an effective

tool for quantifying the immune status of BLCA patients, indicating

significant differences in the immune landscape characteristics of

patients at different risk levels.
3.10 Drug sensitivity prediction and HPA
validation

By analyzing the GDSC database, we calculated the IC50 values

for commonly used drugs in the treatment of BLCA across different

cancer cell lines. Specifically, significant differences were observed

in the IC50 values for Cisplatin, Mitomycin C, Paclitaxel,

Methotrexate, Gemcitabine, and Docetaxel between different risk

groups (Figure 11). This highlights the potential value of these gene

expression levels in predicting BLCA patients’ responses to specific

chemotherapy drugs.

In Figure 11, compared to normal tissue, IL32, FN1, FXYD3,

and CTSS are significantly upregulated in BLCA tissues, ANXA5,

AHNAK, GSN, and CNN3 are significantly downregulated in

BLCA tissues.
4 Discussion

In the field of BLCA treatment, the current reliance on costly

invasive surgeries makes it one of the most expensive cancers to

treat (44). Therefore, exploring new methods to reduce treatment
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costs is particularly important. In the new era of immunotherapy,

methods that classify, intervene, and predict cancer based on

immune characteristics are increasingly becoming a research

focus (45). Leveraging advancements in modern genomics and

transcriptomics, this study uses single-cell analysis methods to

calculate ICD scores and explore DEGs. Using the WGCNA

method, gene clusters were constructed in TCGA database

samples, and after integrating single-cell and TCGA data, key

genes related to ICD scores were identified. These genes were

then simulated through hundreds of machine learning models to

predict patient long-term survival, and the predictive performance

of the models was validated using external datasets. Additionally,

the effectiveness and robustness of the predictive model were

further confirmed through clinical data. To understand the

functions of key genes in the model, GSEA and GSVA were

conducted to explore related biological function pathways, and

the survival impacts of these pathways were analyzed, thus

affirming the importance of the new predictive model. Finally, by

testing the model in multiple immune databases and scoring

systems, and combining it with drug sensitivity analysis, we

assessed the variability of drug therapy in model predictions,

laying the foundation for further clinical application and

expansion of the model.

In this study, we integrated multi-omics datasets, including

single-cell and bulk data, to enhance the comprehensiveness and

depth of our analysis. We divided the TCGA database into a

training set and an internal testing set, adding an external testing

set to validate the generalizability of the model. Notably, the internal

testing set was not used in the model training process. In the

comparison of various machine learning models, although the RSF

model showed extremely high accuracy on the training set, its

accuracy significantly decreased on the testing set, indicating

potential overfitting issues. To overcome this, we focused

particularly on Ridge and Lasso regression models, combining the

fitting results of a hundred machine learning models. Both models

employ regularization techniques to reduce the risk of overfitting

but differ in how they handle variable selection and complexity

adjustment. The Ridge model applies L2 regularization to shrink all

variables, suitable for dealing with highly correlated variables. In

contrast, the Lasso model employs L1 regularization to achieve

sparse selection of variables, compressing the coefficients of

unimportant variables to zero, thus demonstrating advantages in

model simplification and variable selection. In our study, the Ridge

model was deemed more suitable due to its advantage in

maintaining variable stability. Additionally, we explored the

combination of the Lasso model with the Cox proportional

hazards model, particularly important in survival analysis,

allowing for deeper exploration and validation of biomarkers and

frequently appearing in other studies. These analyses showed that

the combination of Lasso and Cox models not only provided results

similar to other studies but also enhanced the predictive accuracy

and interpretability of the model on clinical data. Through precise

model selection and algorithm comparison, our research not only

improved the accuracy of predictive models but also provided new

molecular targets for future BLCA treatment strategies.
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Initially, we evaluated ICD features using single-cell

transcriptomic analysis methods. The results showed that

immune cells such as macrophages, T cells, and monocytes

exhibited high ICD activity, further confirming ICD’s critical role

in stimulating anti-tumor immune responses. In contrast, non-

immune cell types such as fibroblasts, endothelial cells, and cancer
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cells displayed lower ICD activity. Further analysis of the 108

ICDRgenes through GO and KEGG enrichment revealed that the

GO analysis predominantly points to the regulation of the actin

cytoskeleton pathway, closely related to the crucial role of the actin

cytoskeleton in tumor cell migration and invasion in BLCA. This

regulation not only affects the TME but may also impact the
FIGURE 11

(A) Distribution of IC50 scores for drugs in high- and low-risk groups defined by ICDRS. (B) Validation of the eight genes expression in the
HPA database.
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interactions between tumor cells and immune cells, potentially

influencing immune responses. Research indicates that the

occurrence of ICD depends not only on the immune cells’

recognition and elimination of tumor cells but also on the

presentation of tumor cell surface antigens, which is closely

linked to the regulation of the actin cytoskeleton (46–48). In the

KEGG analysis, in addition to evidence related to actin cytoskeleton

regulation, we found that ICDRgenes associated with viral infection

pathways were enriched in BLCA, highlighting the potential for

viral infections to promote tumor development through chronic

inflammation or impacting immune surveillance (49, 50).

We conducted a comprehensive comparison between our

model and previous gene prognostic models. Wang et al.’s risk

score model based on methylation-driven genes achieved an AUC

of 0.698 for 3-year OS in BLCA (51). Liang et al.’s model

constructed from ferroptosis-associated genes demonstrated an

AUC of 0.729 for 5-year OS (52). In contrast, our model achieved

AUC values of 0.733, 0.735, and 0.733 for 1-year, 3-year, and 5-year

OS, respectively. These results suggest that our ICDRS model offers

superior predictive performance and greater stability across

different survival timeframes compared to existing models,

highlighting its potential value for clinical application in BLCA

prognostication. In exploring the correlation between ICDRS and

BLCA prognosis, our analysis of transcriptomes from different

ICDRS risk subgroups uncovered significant differences in energy

metabolism processes and TME-related pathways between groups

with high and low ICDRS scores. GSVA scoring analysis using the

Hallmark gene set further revealed significant associations between

these scores and OS. Notably, ICDRS scores were found to

positively correlate with the activation of several key biological

pathways, including cholesterol homeostasis, early estrogen

response, EMT, androgen response, and UPR, all of which are

linked to poor prognosis. Cholesterol homeostasis is crucial for

maintaining tumor cell membrane integrity, producing bioactive

molecules, and providing energy, while disturbances in cholesterol

metabolism may enhance tumor invasiveness and metastasis (53,

54). This finding aligns with recent studies in BLCA, where Liang

et al. demonstrated that targeting cholesterol metabolism inhibited

BLCA proliferation (55). Early estrogen responses might accelerate

BLCA cell proliferation and progression by activating specific

estrogen receptor pathways (56, 57). EMT facilitates tumor

metastasis by reducing intercellular adhesion and increasing

migratory and invasive capacities (58). Dysregulation of EMT has

proven to drive the progression of BLCA (59–61). The androgen

response impacts tumor biology by regulating the cell cycle and

apoptosis (62). The androgen response pathway has particular

relevance in BLCA as recent studies have revealed sex disparities

in outcomes, with Chen et al. and Li et al. demonstrating that

androgen receptor expression correlates with advanced stage and

poor prognosis specifically in male BLCA patients (63, 64). And the

enhanced UPR helps tumor cells survive under adverse conditions

like hypoxia and nutrient deficiency (65, 66). In contrast, the KRAS

signaling pathway’s activity inversely correlates with ICDRS and

aligns with a better prognosis. The activation of KRAS may decrease

tumor cells’ adaptability to treatments and promote apoptosis,
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while its upregulation might inhibit tumor-promoting pathways

and enhance immune surveillance, thereby preventing tumor

escape (67). Overall, the KRAS pathway potentially exerts a

positive effect on BLCA prognosis by orchestrating tumor growth

regulation and immune response, highlighting its role in tumor

biology and as a target for therapeutic intervention.

By integrating single-cell transcriptomic data, we further unveiled

the molecular mechanisms associated with ICDRS. Our ICDRS

comprises eight key genes (IL32, AHNAK, ANXA5, FN1, GSN,

CNN3, FXYD3, CTSS) with diverse biological functions in the

tumor microenvironment. CTSS, ANXA5, GSN, AHNAK and IL-

32 have established roles in ICD: CTSS inhibition has non-redundant

therapeutic potential to enhance anti-tumor immune responses (68).

ANXA5 acts as an immunostimulatory agent to render apoptotic

tumor cells immunogenic and induce tumor regression (69, 70).

Galluzzi et al. proved that cells can avoid ICD by secreting large

amounts of GSN (8). IL-32 has the metastasis-promoting effect in

BLCA (71). And FXYD3 is an unfavorable prognostic biomarker

associated with hypoxia, pro-tumor TILs, and T cell exhaustion (72).

FN1 and CNN3 are genes encoding extracellular matrix and

cytoskeleton-related proteins (73). Analysis revealed that eight

characteristic genes were primarily expressed in bladder epithelial

cells, macrophages, monocytes, cancer cells, fibroblasts, and T cells,

illustrating the complex roles of ICDRS in tumor development and

immune regulation. Specifically, gene expressions in bladder

epithelial cells and cancer cells may be directly related to tumor

oncogenesis. M1 macrophages exhibit high anti-tumor activity,

whereas M2 macrophages may suppress immune responses and

support tumor growth and metastasis (74). Monocytes are crucial

for initiating and maintaining anti-tumor immunity, while TME can

alter their differentiation and function, sometimes promoting tumor

survival and immune evasion (75, 76). Fibroblasts play a significant

role in tumor fibrosis, intercellular signaling, and maintaining tumor

structure (77, 78). T cells can directly recognize and kill tumor cells or

enhance the attack against tumors (79). Additionally, immune cell

infiltration analysis showed that in the high ICDRS group, cell types

such as T cells CD4 memory resting and various macrophages were

more abundant, whereas the low ICDRS group was enriched with

activated immune effector cells like T cells CD8, T cell follicular

helper, T cells regulatory, and activated dendritic cells.

ICD and ICDRS scores are closely related, and while tumors

with high ICDRS scores would theoretically exhibit strong immune

cell infiltration, this does not necessarily imply effective immune-

mediated tumor control. In fact, tumors with high ICDRS may

evade immune surveillance by promoting an immunosuppressive

microenvironment, reflecting a poorer prognosis. For example, the

enrichment of M2 macrophages creates an immunosuppressive

environment that promotes chemotherapy resistance by

enhancing tumor cell survival and DNA damage repair

mechanisms, with previous studies showing that M2 macrophage

abundance is significantly positively correlated with BLCA

progression and metastasis (80, 81). Cell-cell interaction analysis

demonstrated reduced effector T cell-tumor cell engagement via

diminished co-stimulatory signaling and enhanced inhibitory

checkpoint interactions in high ICDRS tumors, providing a
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mechanistic basis for immune evasion despite the presence of

immune cells. In contrast, tumors with low ICDRS scores may be

more likely to stimulate effective cytotoxic T cell responses,

suggesting a more favorable immune environment and better

prognosis. These findings indicate that the specific conditions of

the TME in BLCA play a crucial role in determining the prognostic

value of ICDRS, pointing to the need for more personalized

treatment strategies for BLCA patients with high ICDRS scores to

optimize their prognosis. In summary, these research results not

only provide new insights into the mechanisms of BLCA

progression but also offer a scientific basis for developing more

targeted immune-mediated treatment strategies.

The potential clinical application of ICDRS in BLCA

management could significantly enhance current treatment. At

initial diagnosis, ICDRS could complement conventional risk

stratification, potentially identifying high-risk patients who might

benefit from earlier aggressive intervention or patients requiring

intensified neoadjuvant approaches. Our drug sensitivity findings

suggest ICDRS could guide therapy selection, directing high-risk

patients (showing resistance to conventional chemotherapeutics)

toward alternative treatments like immunotherapy or targeted

agents. Additionally, ICDRS could serve as a biomarker for

monitoring treatment response, with changes during therapy

potentially indicating resistance development. From an

implementation perspective, the eight-gene signature could be

assessed using RT-PCR or targeted RNA sequencing, making it

feasible for integration into clinical testing workflows alongside

established risk factors to guide treatment decisions throughout the

BLCA care continuum.

Although this study utilized multi-omics datasets for a

comprehensive analysis and explored various aspects such as clinical

features, immune infiltration, and TME, there are still significant

limitations to address. Firstly, despite our attempts to validate the

model using external datasets, batch effects between datasets and

differences in gene numbers led to significant heterogeneity across

datasets. This heterogeneity not only complicates model validation but

may also impact the consistency and accuracy of the model across

different datasets. Additionally, since the samples might predominantly

originate from specific clinical settings or geographic locations, this

limits the broad applicability and generalizability of the study results.

Secondly, in terms of technical choices, although Lasso and Ridge

regularization models were used to reduce overfitting, these models still

have limited capabilities in handling extreme data and capturing non-

linear relationships. Furthermore, the selection of regularization

strength is a challenge in itself and could introduce additional biases.

Although we conducted gene function enrichment and pathway

analysis, these analyses might not be sufficient to fully reveal the

complex biological mechanisms and pathways involved. From a

clinical application perspective, although our model has been

statistically validated for effectiveness, its real-world application might

face several challenges such as patient acceptance, treatment costs, and

operational complexity. Additionally, while drug sensitivity prediction

offers potential for personalized treatment, the impact of experimental

conditions, drug dosages, and individual biological variations may

cause fluctuations in prediction outcomes.
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In summary, future efforts should focus on enhancing the

generalizability of the model by incorporating samples from a

broader range of ethnicities and regions to verify the model’s

applicability. Additionally, further research should aim to integrate

more data at the biological level to strengthen the model’s biological

interpretability and to explore the challenges and solutions that may

arise in actual clinical applications. These efforts will help to increase

the practical impact and scientific value of the research.
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