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Multiple sclerosis (MS) is widely acknowledged as a chronic inflammatory

autoimmune disorder characterized by central nervous system (CNS)

demyelination and neurodegeneration. The hyperactivation of immune and

inflammatory responses is recognized as a pivotal factor contributing to the

pathogenesis and progression of MS. Among various immune and inflammatory

reactions, researchers have increasingly focused on the inflammasome, a

complex of proteins. The initiation and activation of the inflammasome are

intricately involved in the onset of MS. Notably, the NLRP3 inflammasome, the

most extensively studied member of the inflammasome complex, is closely

linked with MS. This review will delve into the roles of the NLRP3

inflammasome in the pathogenesis and progression of MS. Additionally,

therapeutic strategies targeting the NLRP3 inflammasome for the treatment of

MS, including natural compounds, autophagy regulators, and other small

molecular compounds, will be detailed in this review.
KEYWORDS

multiple sclerosis, NLRP3 inflammasome, inflammation, experimental autoimmune

encephalomyelitis, autophagy
Introduction

Multiple Sclerosis (MS) is a chronic, progressive, and frequently disabling

neurological disorder that affects the central nervous system (CNS), which comprises

the brain and spinal cord (1–3). This condition is characterized by the destruction of

myelin, the protective sheath surrounding nerve fibers, leading to disrupted
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communication between the brain and the rest of the body (4, 5).

Demyelination in MS results in a diverse array of symptoms,

including motor, sensory, and cognitive impairments. The

etiology of MS is multifaceted, involving a complex interaction

between genetic predisposition and environmental factors (6, 7).

Histopathologically, MS lesions or plaques are characterized by

focal demyelination, gliosis, and axonal loss (8, 9). These lesions

can occur throughout the CNS but are commonly found in the

periventricular regions, optic nerves, brainstem, and spinal cord

(10, 11). The pathogenesis of MS involves an autoimmune and

inflammatory response targeting CNS components (12–14).

Therefore, modulating the overactivation of immune and

inflammatory responses represents a promising therapeutic

strategy against MS (15–19). In this paper, we will focus on the

role of the NLRP3 inflammasome, a crucial component of the

innate immune system, in the pathogenesis and progression of

MS. Additionally, we will discuss the pharmacological application

of agents that inhibit the NLRP3 inflammasome.

To gather relevant studies, we conducted a comprehensive

literature search on PubMed (https://pubmed.ncbi.nlm.nih.gov/)

and Web of Science (https://www.webofscience.com/),

concentrating on publications from the past two decades. Our

search terms were “NLRP3 inflammasome, multiple sclerosis,

experimental autoimmune encephalomyelitis, natural compound,

autophagy, small molecular compound, inflammation, mechanism,

therapy”. We prioritized studies published in the last ten years. The

process involved initially screening titles and abstracts, then

obtaining full-text articles for in-depth analysis.
Part I: NLRP3 inflammasome in MS:
pathogenesis and progression

Assembly and activation of the NLRP3
inflammasome

The inflammasome, a critical inducer of the innate immune

response, plays a pivotal role in recognizing and targeting numerous

invasive or internal pathogens (20–22). It is widely recognized that

inflammasomes are primarily produced in immune and

inflammatory cells, including macrophages, T lymphocytes, and

natural killer (NK) cells, thereby contributing to the initiation of

anti-pathogen immune inflammatory responses (23–25). To date,

several types of inflammasomes have been identified, notably

including NLRP1, NLRP2, NLRP3, double-stranded DNA sensors

absent in melanoma 2 (AIM2), and NLRC4 inflammasomes (26–28).

The NLRP3 inflammasome, compared to other inflammasomes, is

the most well-studied and has been linked to various diseases,

including MS (29–31). It significantly contributes to MS

development through pro-inflammatory cytokine production and

interactions with other immune responses. This section details the
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NLRP3 inflammasome’s components, activation mechanisms, and its

importance in MS.

The NLRP3 inflammasome consists of three components: the

NLRP3 protein, the adapter protein apoptosis-associated speck-like

protein (ASC), and procaspase-1 (32, 33). In the absence of

activating factors such as pathogen-associated molecular patterns

(PAMPs) and danger-associated molecular patterns (DAMPs), the

leucine-rich repeats (LRRs) and NACHT domain in the NLRP3

protein interact tightly, preventing the interaction between the

NLRP3 protein and ASC (34–36). Upon exposure to immune

stimuli, the NLRP3 protein is activated, facilitating its interaction

with ASC and procaspase-1 via the pyrin domain (PYD) and

caspase recruitment domain (CARD), respectively, leading to the

assembly of the NLRP3 inflammasome (37–39).

As previously described by our group and other researchers, the

activation of the NLRP3 inflammasome involves two distinct steps

(29, 40–42). In the initial step, priming signals are triggered by

specific PAMPs or DAMPs acting on Toll-like receptor 4 (TLR4),

resulting in the activation of the NF-kB-mediated pathway. This

activation enhances the transcription of NLRP3 inflammasome-

related components, including the NLRP3 protein, pro-interleukin-

1b (proIL-1b), and proIL-18. In the subsequent second step, further

stimulation of immune and inflammatory cells leads to the

oligomerization of the NLRP3 protein, followed by the assembly

of the NLRP3 protein, ASC, and procaspase-1 into the NLRP3

inflammasome complex. The successful formation of the NLRP3

inflammasome catalyzes the conversion of procaspase-1 to caspase-

1, which subsequently processes proIL-1b and proIL-18 into their

mature forms, IL-1b and IL-18. These mature cytokines are

secreted, initiating a cascade of immune or inflammatory reactions.

Several factors have been identified as activators of the NLRP3

inflammasome. Lipopolysaccharide (LPS) is widely recognized as a

classic ligand for the activation of TLR4, initiating the first step of

NLRP3 inflammasome activation (43, 44). Additionally, various

factors have been shown to effectively induce the second step of

NLRP3 inflammasome activation, including adenosine

triphosphate (ATP, which triggers intracellular K+ efflux),

PAMPs, DAMPs, silica, b-amyloid, autophagy deficiency, and

factors leading to mitochondrial Ca2+ overload (45–49).
Relationship between the NLRP3
inflammasome and MS

The NLRP3 inflammasome has been implicated in the

pathogenesis and progression of various diseases, including

cardiovascular conditions (such as atherosclerosis and myocardial

infarction) (50–52), digestive disorders (such as inflammatory bowel

disease and pancreatic disease) (53–55), malignancies (56–58), and

metabolic diseases (such as diabetes and obesity) (59–61). In the

context of multiple sclerosis (MS), the role of the NLRP3
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inflammasome has been extensively studied. Elevated IL-1b levels

have been identified in the serum of patients with primary progressive

MS through RNA sequencing. Notably, primary progressive MS

patients with high IL-1b gene expression levels in peripheral blood

mononuclear cells exhibited significantly faster disease progression

compared to those with low IL-1b levels (62, 63). Further studies

demonstrated that the NLRP3 inflammasome was overactivated in

monocytes from patients with primary progressive MS (62, 63). These

findings suggested that IL-1b and the NLRP3 inflammasome could

serve as prognostic biomarkers and potential therapeutic targets in

primary progressive MS.

Variants in the NLRP3 inflammasome have also been associated

with the susceptibility and severity of MS. Single nucleotide

polymorphisms and expression levels of NLRP3 are closely

related to susceptibility to relapsing-remitting MS (64–66). A

pilot study reported overexpression of NLRP3 inflammasome

components, including NF-kB, NLRP3, and caspase-1, in the

serum during the early stages of MS (67). Moreover,

bioinformatics analyses have suggested that the NLRP3

inflammasome-related NLR signaling pathway may play a critical

role in COVID-19-related MS (68). These findings underscore a

close relationship between the NLRP3 inflammasome and MS.

Despite the growing body of research on this topic, the

mechanisms and influencing factors of the NLRP3 inflammasome

in the pathogenesis and progression of MS are not fully understood.

A recent s tudy us ing an exper imenta l auto immune

encephalomyelitis (EAE) mouse model, a widely accepted model

for MS, demonstrated that NLRP3 exacerbated EAE severity

through ROS-dependent neutrophil extracellular trap (NET)

formation in the brain (69). NLRP3 facilitated NET formation in

a ROS-dependent and PAD4-independent manner in brain-

infiltrated neutrophils. Additionally, the NLRP3 inflammasome in

microglial cells has been shown to contribute to demyelination and

neurodegeneration induced by the neuronal accumulation of

peroxidated lipids (70). The NLRP3 inflammasome has also been

implicated in TRPM2 and IL-11-mediated neuroinflammation and

cognitive deficits in a cuprizone-induced MS model (71, 72).
Part II: pharmacological application of
MS treatment targeting the NLRP3
inflammasome

As discussed above, the NLRP3 inflammasome is closely related to

the pathogenesis and progression of multiple sclerosis (MS), suggesting

that it is a promising target for therapeutic intervention. Numerous

studies have reported various agents that appear effective in attenuating

MS by inhibiting the NLRP3 inflammasome. Several popular and well-

studied agents will be introduced and discussed in detail in the

following sections (illustrated in Figure 1 and listed in Table 1).
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Natural compounds

Natural compounds, also known as natural extracts, are

substances isolated or derived from organisms such as plants,

animals, microorganisms, and humans (73–75). Some of these

compounds have demonstrated potential in alleviating MS

symptoms by targeting the NLRP3 inflammasome. For example,

Kiasalari et al. (76) revealed that sinomenine, a natural alkaloid with

various therapeutic benefits including anti-inflammatory and

immunosuppressive activities, decreased EAE severity. This effect

was attributed to its reduction of microglial and astrocytic

activation, demyelination, and axonal damage, along with its

suppression of neuroinflammation. Additionally, various

mushroom-derived natural products have been shown to exert

neuroprotective effects in MS through novel high-throughput

screening methods by suppressing NLRP3 inflammasome

activation and oligomerization (77). Cui et al. (78) demonstrated

that emodin, a compound extracted from herbs such as rhubarb,

could improve symptoms of experimental autoimmune

encephalomyelitis, potentially by regulating the silent information

regulator of transcription 1 (SIRT1)/peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (PGC-1a)/NLRP3
signaling pathway and inhibiting microglial inflammation.

Furthermore, 1,2,4-trimethoxybenzene, an active ingredient in

essential oils, significantly ameliorated EAE progression and

demyelination by inhibiting ASC and the protein-protein

interaction between NLRP3 and ASC (79). However, despite the

promising potential of these natural compounds in preclinical

studies, few have been successfully applied in clinical practice for

the treatment of MS. Therefore, further research is needed to

explore and validate the therapeutic efficacy of natural

compounds targeting the NLRP3 inflammasome in MS.
Autophagy regulators

Autophagy is a fundamental catabolic cellular process responsible

for degrading protein aggregates and damaged organelles into

metabolic components through lysosomal recycling, thereby

maintaining cellular homeostasis and vitality (75, 80–82). This

process is ubiquitously present in virtually all cell types and is

evolutionarily conserved from yeast to mammals (83, 84). In recent

years, extensive research has explored the role of autophagy in

inflammation- and immune-related diseases through its regulatory

effects on inflammatory and immune responses (85–87). Several

autophagy regulators have shown potential in alleviating MS by

modulating the NLRP3 inflammasome. Liraglutide, a glucagon-like

peptide-1 receptor (GLP-1R) agonist, has been shown to ameliorate

central nervous system demyelination and inflammation in EAE

models by regulating the pAMPK and AMPK/SIRT1 signaling
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FIGURE 1

Schematic illustration of biological process of NLRP3 inflammasome and pharmacological application of NLRP3 inflammasome inhibition in multiple
sclerosis treatment. Under the exposure of PAMPs/DAMPs including Epstein-Barr virus, reactive oxygen species, peroxidated lipids, and
lipopolysaccharide, the NLRP3 protein as well as proIL-1b and proIL-18 production. The assembly and formation of the NLRP3 inflammasome
through the combination of the NLRP3 protein, ASC and procaspase-1 were assembly, which triggered the formation and activation of the NLRP3
inflammasome. The NLRP3 inflammasome catalyzes the maturation and secretion of IL-1b and IL-18. The production and release of IL-1b and IL-18
contributed to the pathogenesis and progression of multiple sclerosis. The process of NLRP3 inflammasome activation can be blocked by several
kinds of NLRP3 inflammasome inhibitors in multiple sclerosis, including natural compounds (sinomenine, mushroom natural products, emodi, and
1,2,4-trimethoxybenzene), autophagy regulators (liraglutide, AZD8055, PNU282987, and HU308), and other small molecular compounds (MCC950,
lonidamine, and nebivolol), which serve as potential therapeutic strategies against multiple sclerosis.
TABLE 1 Potential pharmacological application of NLRP3 inflammasome inhibition in multiple sclerosis treatment.

NLRP3 inflammasome inhibitors Potential pharmacological mechanisms Reference

Type Name

Natural compounds Sinomenine Alleviating microglial and astrocytic mobilization,
demyelination, and axonal damage

(76)

Mushroom natural products Suppressing the NLRP3 inflammasome activation
and oligomerization

(77)

Emodin Regulating the SIRT1/PGC-1a/NLRP3 signaling pathway (78)

1,2,4-trimethoxybenzene Inhibiting ASC and protein-protein interaction between
NLRP3 and ASC

(79)

(Continued)
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pathways (88, 89). Additionally, He et al. (90) reported that

AZD8055, an autophagy activator, could reduce EAE severity

through anti-inflammatory and anti-pyroptotic effects via the

mammalian target of rapamycin (mTOR)/ROS/NLRP3 pathway.

Our previous studies have further elucidated the role of autophagy

in MS. We demonstrated that activating the a7 nicotinic

acetylcholine receptor (a7nAChR) with PNU282987 could alleviate

neuroinflammation in EAE models by enhancing monocyte/

microglia autophagy, thereby inhibiting the NLRP3 inflammasome

(91). Another study conducted by our group revealed that activation

of cannabinoid receptor 2 (CB2R) with HU308 protected against

neuroinflammation through autophagy-mediated suppression of the

NLRP3 inflammasome. This effect was mediated via the autophagy-

related gene 5 (ATG5)-dependent signaling pathway (92).
Other small molecular compounds

In addition to natural compounds and autophagy regulators,

several other small molecular compounds have been demonstrated

to effectively alleviate MS by inhibiting the NLRP3 inflammasome.

For instance, MCC950, a potent and selective small-molecule

inhibitor of NLRP3, was first reported in 2015 to alleviate MS, as

well as type 2 diabetes, Alzheimer’s disease, atherosclerosis, and

cryopyrin-associated periodic syndrome (CAPS), by blocking both

canonical and noncanonical NLRP3 activation at nanomolar

concentrations (93). Subsequent studies have shown that

MCC950 can reduce neurological impairment in EAE models by

inhibiting the NLRP3 inflammasome, thereby suppressing glial cell

activation and preventing the polarization of microglia to the pro-

inflammatory M1 phenotype (94–96). Additionally, lonidamine

(LND), a small-molecule inhibitor of glycolysis used as an

antineoplastic drug, has been evidenced to have anti-

inflammatory effects. LND was reported to alleviate EAE by
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directly binding to the NLRP3 inflammasome component ASC

and inhibiting its oligomerization (97). Another small molecular

compound shown to alleviate MS through NLRP3 inflammasome

inhibition is nebivolol, which has been found to modulate M1/M2

microglial polarization (98). These findings highlight the

therapeutic potential of small molecular compounds in targeting

the NLRP3 inflammasome for the treatment of MS. Further

research is warranted to explore the clinical applications and

efficacy of these agents in MS patients.
Conclusion

In conclusion, recent studies have highlighted the critical roles

of the NLRP3 inflammasome in the pathogenesis and progression

of MS (Figure 1). We are fortunate to have a variety of inhibitors

targeting NLRP3 inflammasome activation that have demonstrated

efficacy in alleviating MS symptoms. These include natural

compounds, autophagy regulators, and other small molecular

compounds. Despite progress, significant hurdles remain in

applying NLRP3 inflammasome-targeted therapies clinically,

especially concerning long-term safety and side effects. Few agents

have been successfully used in MS treatment due to insufficient

evidence for long-term safety and potential risks of side effects

associated with prolonged use of such agents. Therefore, further

research is essential to develop effective MS therapies by targeting

the NLRP3 inflammasome.
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TABLE 1 Continued

NLRP3 inflammasome inhibitors Potential pharmacological mechanisms Reference

Type Name

Autophagy regulators Liraglutide Regulating the pAMPK and AMPK/SIRT1
signaling pathways

(88, 89)

AZD8055 Regulating the mammalian target of mTOR/ROS/
NLRP3 pathway

(90)

PNU282987 Activating a7nAChR (91)

HU308 Activating CB2R (92)

Other small
molecular compounds

MCC950 Suppressing the activation of glial cells; preventing microglia
polarization to M1 phenotype

(93–96)

Lonidamine Binding to the NLRP3 inflammasome ligand ASC and
inhibiting its oligomerization

(97)

Nebivolol Regulating the M1/M2 polarization (98)
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