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Mutation of conserved
MHC class I cytoplasmic
tyrosine affects CD8+ T cell
priming, effector function,
and memory response
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The cytoplasmic domain of MHC class I (MHC-I) molecules contains a single,

highly conserved tyrosine residue (Y320). In previous work, we found that mice

expressing a Y320F-mutated form of H-2Kb had reduced capacity to generate

Kb-restricted cytotoxic T lymphocyte (CTL) responses following viral infection,

due at least in part to defects in endolysosomal trafficking of H-2Kb and antigen

cross-presentation by dendritic cells (DCs). In this study, we investigated whether

there are additional, post-presentation dependencies on Y320 for T cell priming.

We engineered both human- and mouse-derived antigen-presenting cells

(APCs) to express either wild-type MHC-I or variants of MHC-I containing

Y320F or Y320E mutations. We found that Y320E-mutated HLA-A*0201

elicited enhanced in vitro priming and expansion of human antigen-specific

CD8+ T cells, which showed a unique transcriptional profile compared to T cells

primed with APCs expressing either WT or Y320F-mutated A*0201. Furthermore,

the Y320E variant of H-2Kb expressed in the context of a murine DC vaccine

model induced altered T cell differentiation kinetics while improving both anti-

tumor immunity and augmenting the magnitude of memory CD8+ T cell

responses in vivo. These results suggest that Y320 phosphorylation of MHC-I

may play a role in determining the fate and function of CD8+ T cells and suggest

a novel strategy for improving DC-based cancer immunotherapies.
KEYWORDS

MHC class I, human leukocyte antigen (HLA), cytotoxic T cells, dendritic cells, tyrosine
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Introduction

The short cytoplasmic domains of classical MHC-I molecules

(~35 amino acids) display striking evolutionary conservation at

three sites of potential phosphorylation: two serine residues (S332

and S335) encoded by exon 7, and a single tyrosine residue (Y320)

encoded by exon 6 (1–6). Serine phosphorylation of the MHC-I

cytoplasmic tail has been associated with oncogenic signaling,

internalization, and intracellular trafficking, although the kinases

involved have yet to be identified, and exon 7-deleted forms of

MHC-I have been shown to elicit superior CD8+ T cell responses in

both mouse and human studies (1, 7–11). Although the serine

kinases targeting the MHC-I tail have yet to be identified

definitively, phosphorylation of Y320 (pY320) by Src kinase has

been demonstrated in vitro, and mass spectrometry studies of

various cell types have found pY320-containing peptides (3, 7,

12–14). Functional studies involving tyrosine phosphorylation of

MHC-I have largely involved cell types other than APCs (4),

but tyrosine phosphorylation of MHC-I was induced by Toll-like

receptor (TLR) ligand-mediated activation of mouse macrophages,

suggesting a link between pathogenic inflammation and the

induction of MHC-I tyrosine phosphorylation in APCs (15).

Intriguingly, Y320 is also a direct target of the HIV-nef protein,

through which it can drive the downregulation of surface HLA-A

and -B to promote immune evasion during HIV infection (16–19).

Previous studies showed that transgenic mice expressing H-2Db

containing a glycophosphatidylinositol (GPI)-lipid anchor in place

of the transmembrane and cytoplasmic domains demonstrated

significantly diminished Db-specific CTL responses against an

immunodominant Influenza A epitope. Subsequent work

demonstrated that mice expressing Y320F point-mutated H2-Kb

were similarly impaired in their capacity to generate

immunodominant Kb-restricted CTL responses following

vesicular stomatitis virus (VSV) or Sendai virus infection. Bone

marrow-derived DCs from these Y320F mice were also impaired in

their ability to cross-present the Kb-restricted OVA peptide

fol lowing exposure to exogenous ovalbumin protein.

Furthermore, Y320F-mutated Kb molecules showed intracellular

trafficking defects that rendered them incapable of traversing

through endolysosomal compartments of DCs that are the

primary sites of OVA peptide loading for WT-Kb molecules,

consistent with other reports (1, 20, 21). It is believed that the

conserved MHC-I cytoplasmic YXXA sequence motif is analogous

to tyrosine-based endocytic sorting signals with a YXXØ motif

(where Ø is a large hydrophobic amino acid) that are found in many

other transmembrane proteins (2, 22).

Although incapable of cross-presentation, Y320F-mutated Kb

molecules were shown to be fully capable of being peptide-loaded

and presented at the cell surface through the conventional antigen

presentation pathway or peptide pulsing (1). It is therefore possible

that at least some of the defect in antiviral CTL responses observed

in Y320F-Kb mice may be intrinsic to MHC-I function, occurring

despite peptide loading and surface presentation. In this study, we

sought to investigate the post-presentation role of MHC-I Y320

phosphorylation in determining the fate and effector function of
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CD8+ T cells. In the absence of a specific way to influence the

phosphorylation state of MHC-I Y320, we engineered human or

mouse APCs to express HLA-A*0201 or H-2Kb molecules bearing

glutamic acid at position 320 (Y320E), previously used to mimic the

biological activity of phosphorylated tyrosine in other proteins (23,

24). As before, Y320F mutants of A*0201 or H-2Kb were expressed

in APCs to mimic unphosphorylated tyrosine. In addition, we

employed “single-chain trimer” (SCT) molecules that covalently

link the MHC-I heavy chain, b2-microglobulin, and antigenic

peptide (25), in part because SCTs are not subject to cross-

presentation (26). Utilizing these engineered APCs, we found that

the Y320E variants not only facilitated enhanced priming and

expansion of CD8+ T cells against multiple epitopes in vitro, but

also promoted superior antitumor immunity and CD8+ T cell

memory in the context of a DC vaccine in vivo.
Results

Y320E mutation of HLA-A*0201 enhanced
antigen-specific CD8+ T cell priming and
expansion in vitro

To study priming of human CD8+ T cells, human macrophage-

derived KG-1 cells (which lack endogenous HLA-A*0201

expression) were transduced with lentiviral vectors encoding

wild-type (WT) A*0201 or cytoplasmic tail-mutated Y320F or

Y320E variants to serve as APCs. Flow cytometry of the

engineered KG-1 cells confirmed that the A*0201 variants

displayed similar levels of transcription and cell surface

expression (Figures 1A, Supplementary Figure S1A). Engineered

KG-1 cells were pulsed with the A*0201-restricted FluM1 peptide

GILGFVFTL, irradiated, and cocultured with peripheral blood

mononuclear cells (PBMCs) obtained from healthy A*0201-

positive human donors for two weekly stimulations (Figure 1B).

Expanded FluM1-specific CD8+ T cells were then quantitated via

flow cytometry using anti-CD8+ and a FluM1/A*0201 tetramer,

revealing that a significantly higher proportion of FluM1-specific

T cells was elicited by the Y320E-mutated A*0201, compared to

either the WT or Y320F-mutated forms of A*0201 (Figure 1C).

FluM1-specific T cells in human PBMC largely consist of effector

memory cells generated by prior influenza exposure; in contrast,

normal donors of HLA-A*0201 genotype have substantial numbers

of CD8+ T cells recognizing the MART-1 melanocyte peptide

antigen AAGIGILTV, and these are predominantly naïve (27). As

a test of in vitro priming of naïve CD8+ T cells, we incubated

PBMCs from HLA-A*0201 donors with engineered KG-1 cells

pulsed with the MART-1 peptide. Consistent with the FluM1

results, Y320E-mutated A*0201 significantly increased priming

and expansion of MART-1-specific CD8+ T cells compared to

WT-A*0201 (Figure 1C).

Since pulsed peptides are not covalently linked to MHC-I

complexes, it was possible that they might dissociate from the

KG-1 cells for subsequent binding and presentation by endogenous

WT-A*0201 molecules that are highly expressed on PBMC of
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A*0201-positive donors. To control for this, we employed A*0201

“single-chain trimer” (SCT) molecules that effectively mimic

natural HLA-I/peptide complexes generated via conventional

antigen processing (28–30) (Supplementary Figure S1B). We

transduced KG-1 cells to express WT or cytoplasmic tail mutant

(Y320F or Y320E) forms of A*0201/FluM1 SCTs, producing similar

cell surface levels (Figure 1D), and repeated the stimulation

experiment with PBMC from two additional healthy A*0201-

positive donors. The results were similar to those observed using

peptide-pulsed KG-1 cells, with the Y320E-mutated A*0201-SCT

eliciting significantly higher levels of FluM1-specific CD8+ T cell

expansion compared to the WT A*0201-SCT (Figure 1E).
Y320E-primed antigen-specific human T
cells showed a distinct transcriptional
profile compared with A*0201(WT)-primed
T cells

To determine whether CD8+ T cells primed by the different

A*0201 SCT variants exhibited any transcriptomic differences, we

performed the same KG-1 stimulation protocol using three

independent, healthy PBMC donors. Following two rounds of

PBMC stimulation with KG-1 cells bearing WT, Y320E-, or
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Y320F-mutated SCTs, antigen-specific T cells were isolated using

FluM1 peptide-specific tetramers and bulk RNA sequencing (RNA-

seq) was conducted. RNA-seq analysis revealed that Y320E SCT-

primed T cells showed a distinct transcriptomic signature

(Figure 2A), with upregulation of genes related to T cell

activation, differentiation, and effector functions, including CD69,

CLUH, IL21, and IFNAR1 (Figure 2B, Supplementary Figure S2).

Notably, SEMA4A transcript expression was also upregulated

(Figure 2B), consistent with its established role in enhancing

CD8+ T cell activation and differentiation. Previous studies have

identified SEMA4A as a key mediator of effector function and

proliferation in antigen-specific CD8+ T cells within tumor

microenvironments (TMEs) of both humans and mice (31, 32).

We also observed significant downregulation of the TSC1 gene

within FluM1 tetramer-positive T cells expanded with the Y320E

A*0201 variant (Figure 2B). TSC1 is associated with maintaining

cellular quiescence in CD8+ T cells, and reduced TSC1 expression

aligns with increased activation and proliferative potential, further

indicating that Y320E-primed T cells exhibit an effector-like

phenotype (33).

These individual RNA-seq findings suggested that Y320E SCT-

primed T cells exhibit a heightened activation state. Furthermore,

Gene Set Enrichment Analysis (GSEA) revealed enrichment of

pathways associated with T cell activation and differentiation,
FIGURE 1

Y320E mutation enhances human T cell priming in vitro. (A) Surface expression of HLA A*0201 forms on transduced KG-1 cells assessed by flow
cytometry. (B) Schematic representation of the workflow for antigen-specific CD8+ T cell priming using healthy donor PBMCs in vitro. (C) Frequency
of antigen-specific T cells after in vitro priming with pulsed FluM1 and MART-1 peptides in two different donors. Statistical differences among groups
were determined using one-way ANOVA (FluM1: p = 0.0067; MART-1: p = 0.0015), followed by pairwise comparisons using an unpaired two-tailed
t-test (only significant p values are shown). (D) Surface expression of OVA peptide-bearing HLA-A*0201 single-chain trimers on transduced KG-1
cells assessed by flow cytometry. (E) Comparison of FluM1 antigen-specific T cell frequencies in two donors primed with KG-1 cells transduced with
single-chain trimer (SCT) constructs expressing FluM1 antigen. Donor 1 is the same as was used for FluM1 peptide in panel (C) Group differences
were analyzed using one-way ANOVA (Donor 1: p = 0.0055; Donor 2: p = 0.0164), with pairwise comparisons performed using an unpaired two-
tailed t-test. All data are presented as mean ± standard error of the mean (SEM). Statistically significant p values (p < 0.05) are indicated in the graph.
For Donor 1, the experiment was repeated three times, and for Donor 2, it was repeated twice to ensure reproducibility.
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while pathways associated with oxidative phosphorylation were

downregulated (Figure 2C). A metabolic shift characterized by

reduced reliance on oxidative phosphorylation is consistent with

the transition from a resting state to an activated effector state in

CD8+ T cells (31, 34, 35). Taken together, these findings provide

supportive evidence that T cells stimulated by A*0201 molecules

containing a cytoplasmic Y320E mutation acquire a distinct

transcriptomic profile, potentially indicative of heightened

activation, differentiation, and effector potential.
Dendritic cell vaccination with Y320E-
mutated H-2Kb altered the dynamics and
phenotype of primed CD8+ T cells in
peripheral blood

To assess how mutations to Y320 of MHC-I molecules may

impact CD8+ T cell priming, effector function, and phenotype in

vivo, SCT complexes linking the H2-Kb heavy chain, b2m, and OVA
Frontiers in Immunology 04
peptide (SIINFEKL) were constructed (Supplementary Figure S3A)

(25). We expressed WT-Kb, Y320F-Kb, or Y320E-Kb SCT variants in

the syngeneic DC2.4 cell line, which has been used extensively for

murine DC vaccination and is capable of eliciting robust anti-viral

and anti-tumor responses both in vitro and in vivo (36–39). Flow

cytometric analysis using an antibody specific for Kb/OVA complexes

demonstrated similar levels of cell surface Kb/OVA peptide

presentation by WT, Y320F, or Y320E SCT variants on sorted

DC2.4 cells (Supplementary Figure S3A). Furthermore, using flow

cytometric analysis and confocal microscopy (Supplementary Figures

S3B, C, respectively), we found no apparent difference in rates of

internalization between the different SCT variants.

To control for variation in the number of OVA-specific

precursors in the T cell populations of WT mice, naïve OT-I T

cells from CD45.2 donor mice were adoptively transferred into

CD45.1 recipient mice 24 hours prior to vaccination with irradiated

DC2.4 cells expressing the Kb-SCT variants (Figure 3A). Five days

post-immunization, we observed that Y320E-SCT vaccination

induced a significantly higher frequency of OVA-specific T cells
FIGURE 2

Transcriptomic analysis of human primed antigen-specific CD8+ T cells reveals effects of HLA-A*0201 Y320 mutations. (A) Volcano plot displaying
differentially expressed genes between Y320E-primed and WT-primed T cells. PBMC from 3 healthy donors were stimulated twice with KG-1 cells
expressing WT or Y320E SCTs bearing FluM1 peptide, then CD8+/tetramer+ cells were sorted for RNA-Seq. Statistical significance was determined
using an unpaired two-tailed Student’s t-test with Benjamini-Hochberg correction for multiple comparisons. (B) Expression levels of selected genes
in WT-, Y320F-, and Y320E-primed T cells. Each data point represents the value for an individual donor, with paired comparisons performed using a
two-tailed paired Student’s t-test. Data are presented as mean ± standard error of the mean (SEM) from n = 3 donors. (C) Gene Set Enrichment
Analysis (GSEA) of differentially expressed genes, highlighting enriched pathways in Y320E- or Y320F-primed T cells relative to WT-primed T cells.
Enrichment scores were calculated using the Kolmogorov-Smirnov statistic.
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in peripheral blood, compared to either WT- or Y320F-SCT

(Figure 3B), consistent with our human in vitro studies. Co-

staining for CD45.1 and CD45.2 allowed for discrimination

between endogenous and adoptively-transferred OVA-specific T

cells, which unexpectedly revealed distinct patterns of

differentiation for the two populations. Interestingly, the

frequency of endogenous CD127+ OVA-specific T cells was lower

on Day 10 after Y320E-SCT vaccination than with WT- or Y320F-

SCT vaccination, possibly indicating a delay in memory cell

formation, although the difference was only significant between

Y320E and Y320F (Figure 3C). CD127+ frequency in endogenous

OVA-specific T cells was also lower on Days 5 and 7 after Y320E-

SCT vaccination, and significantly different from both WT- and

Y320F-SCT vaccination (Supplementary Figure S4A). Conversely,

Y320E-SCT vaccinated mice exhibited a higher percentage of

KLRG1-positive OVA-specific endogenous T cells compared to

the other 2 groups at these same time points, potentially

indicative of a more highly differentiated effector state, with

similar variation in the significance of comparisons (Figures 3C,

Supplementary Figure S4B). Interestingly, these differences in T cell

phenotype and kinetics were not observed in adoptively-transferred

OT-I T cells analyzed from the same vaccinated mice

(Supplementary Figures S4A, 4B).
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On day 10 post-immunization, OVA-specific T cells from both

endogenous and transferred OT-I populations primed from Y320E-

SCT vaccinated mice contained a significantly higher proportion of

cells with a CD44+CD62L-CD127lowKLRG1high phenotype,

indicating a highly differentiated effector T cell state (Figure 3D).

These results demonstrate that stimulation with APCs expressing

Y320E-mutated Kb can drive a sustained expansion and

differentiation of effector CD8+ T cells that is distinct from

stimulation with WT- or Y320F-Kb. The altered differentiation

status and memory T cell formation kinetics observed with

Y320E suggests that this phosphomimetic mutation to MHC-I

can drive CD8+ T cells toward a more potent and sustained

effector profile.

To determine whether these differences in priming were tissue-

specific, we also assessed the phenotypes of vaccine-induced T cells

in the spleen. WT C57BL/6 mice were immunized with irradiated

DC2.4 cells expressing the respective SCT constructs (1 × 10^6

cells/mouse, s.c. flank), and splenocytes were harvested on day 7 for

flow cytometric analysis. T cell subsets were defined as Teff (CD62L-

, KLRG1+, CD127lo, CX3CR1hi), Tem (CD62L-, KLRG1-, CD127lo,

CX3CR1lo), and Tcm (CD62L+, KLRG1-, CD127hi, CXCR3hi). In

contrast to the peripheral blood findings described above, no

significant differences in splenic CD8+ T cells were observed
FIGURE 3

Y320E mutation enhances CD8+ T cell priming in vivo. (A) Schematic representation of the OT-1 T cell transfer and DC/SCT vaccination strategy. (B)
Relative frequency of OVA-specific T cells in peripheral blood at multiple time points post-DC vaccination. Statistical differences across time points
were assessed using repeated measures one-way ANOVA (p < 0.0001), followed by pairwise comparisons using an unpaired two-tailed t-test; only
significant p values (p < 0.05) are shown. On day 5, WT vs. Y320F: p = 0.1653; on day 7, WT vs. Y320E: p = 0.1719. (C) Percentage of CD127+ and
KLRG1+ cells within endogenous OVA specific T cells 10 days post-DC vaccination. Statistical differences between groups were analyzed using one-
way ANOVA (CD127+: p = 0.0073; KLRG1+: p = 0.0288), with pairwise comparisons performed using an unpaired t-test; only significant p values are
shown. The median fluorescence intensity (MFI) of positive cells is also shown beneath the labels. (D) Frequency of CD44+ CD62L- KLRG1+ CD127-

OVA-specific T cell populations across different DC-vaccinated groups on day 10 post-vaccination. Statistical differences between groups were
assessed using one-way ANOVA (Host: p = 0.0088; Donor: p = 0.0114), with pairwise comparisons performed using an unpaired t-test; only
significant p values are shown. Data are presented as mean ± standard error of the mean (SEM).
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between SCT variants (Supplementary Figure S5). This discrepancy

may be explained by tissue-specific factors: peripheral blood

assessments may better capture recent immune activity near the

vaccination site, whereas the spleen reflects distinct kinetics of T cell

differentiation and maintenance (40, 41). Alternatively, this may

indicate tissue-specific differences in priming with DC2.4-expressed

SCTs, which do not undergo cross-presentation; it may also reflect

the absence of a substantial population of naïve, high-affinity CD8+

T cells, since priming in the context of adoptive transfer of OT-I

cells was not assessed in this experiment (42, 43).
CD8+ T cells initially primed with Y320E-
mutated H-2Kb demonstrated faster
memory recall responses upon boosting

Since the previous results suggested that vaccinating with APCs

expressing Y320E-mutated MHC-I may influence memory T cell

differentiation kinetics, we next asked whether Y320E-expressing

APCs can impact memory CD8+ T cell responses upon re-exposure

to antigen. To answer this question, we adoptively transferred OT-I

naïve T cells into recipient mice, followed by vaccination with DC2.4

cells engineered to express WT-, Y320F-, or Y320E-SCTs. Thirty days

later, all vaccinated mice were given a booster vaccine consisting of

DC2.4 cells expressing a WT Kb/OVA single-chain trimer.

Immediately prior to the boost, OVA-specific T cells were barely
Frontiers in Immunology 06
detectable across all groups. However, 48 hours after the second

immunization, mice in the Y320E-SCT vaccinated group exhibited a

significantly higher frequency of peripheral blood OVA-specific T cells

compared to mice in the WT and Y320F groups (Figure 4A). Both

transferred OT-I and endogenous OVA-specific T cells showed a trend

of more robust expansion in the Y320E-SCT group following the

secondary antigen encounter, with endogenous OVA-specific T cells

expanding significantly faster in the Y320E-SCT group (Figure 4B).

This indicates a faster and more efficient memory response.

Additionally, 48 hours after the second vaccination, endogenous

OVA-specific T cells in the Y320E-SCT group expressed

significantly lower surface CD127 levels, indicative of heightened

activation status (Figure 4C). Five days after the re-immunization,

these cells exhibited elevated KLRG1 expression, consistent with a

highly differentiated phenotype (Figure 4D). These findings suggested

that initial vaccination with Y320E-expressing APCs promoted a more

rapid and robust memory T cell response upon antigen re-encounter.
DC vaccination with Y320E-mutated H-2Kb

elicited better tumor control and altered
effector-to-memory T cell ratios

Building on the observation that Y320E-mutated MHC-I

altered the differentiation of antigen-specific effector T cell

populations and influenced memory T cell development, we next
FIGURE 4

Y320E mutation in DC2.4/SCT vaccination improves memory T cell response to rechallenge. (A) Relative frequency of OVA-specific T cells in
peripheral blood 48 hours and 5 days post-restimulation with WT DC2.4-OVA-SCT across different vaccinated groups. Statistical differences
between groups were assessed using one-way ANOVA (48 hours: p = 0.0032; 5 days: p = 0.2048), followed by pairwise comparisons at 5 days using
an unpaired t-test; only significant p values (p < 0.05) are shown. (B) Relative frequency of endogenous and donor OVA-specific T cells in peripheral
blood post-restimulation with WT DC2.4-OVA-SCT across different vaccinated groups at various time points. Statistical differences between groups
were assessed using one-way ANOVA, followed by pairwise comparisons using an unpaired t-test; only significant p values (p < 0.05) are shown.
(C) Expression of CD127, shown as the median fluorescence intensity (MFI), of peripheral OVA-specific T cells 48 hours post-restimulation. Statistical
differences between groups were analyzed by the Kruskal-Wallis test (p = 0.0234), followed by pairwise comparisons using an unpaired Mann-
Whitney test; only significant p values (p < 0.05) are shown. (D) KLRG1 expression (MFI) on peripheral OVA-specific T cells 5 days post-restimulation.
Statistical differences between groups were analyzed by the Kruskal-Wallis test (p = 0. 0352), followed by pairwise comparisons using an unpaired
Mann-Whitney test; only significant p values (p < 0.05) are shown. Data are presented as mean ± SEM.
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sought to determine whether these features translated into superior

anti-tumor immunity in vivo. To this end, C57BL/6 mice were

immunized twice with irradiated parental DC2.4 cells or DC2.4 cells

expressing WT-, Y320F-, or Y320E-OVA-SCT variants via

subcutaneous injection, followed by challenge with syngeneic

MC38-OVA colon carcinoma cells (Figure 5A). Five weeks

following tumor inoculation, mice that received the Y320E-SCT

vaccine demonstrated significantly delayed MC38-OVA tumor

growth compared with the other 3 groups of vaccinated

mice (Figure 5B).

To investigate the underlying mechanisms of this enhanced

tumor control, we analyzed tumor-infiltrating lymphocytes (TILs)

and tumor-draining lymph nodes (TLNs) 38 days after MC38-OVA

cell inoculation. Flow cytometric analysis of CD8+ TILs showed no

clear differences in CD25, CD69, PD-1, CTLA-4, IFN-gamma, or

perforin expression between vaccination groups (Supplementary

Figure S6). By contrast, analysis of TLNs revealed a distinct

difference in memory T cell distribution between different groups

of immunized mice. Although the overall percentage of CD8+ T

cells in TLNs remained consistent across all groups, Y320E-

vaccinated mice exhibited a significantly higher ratio of

CD62LhighCD44high cells, which we interpret as central memory T

cells (Tcm), to CD62LlowCD44high cells, which we interpret as
Frontiers in Immunology 07
effector memory T cells (Tem; Figure 5C). These findings

suggested that Y320E vaccination promoted enhanced central

memory T cell distribution in TLNs, which may have contributed

to sustained anti-tumor immunity. Collectively, these results

suggest that Y320E vaccination may promote improved anti-

tumor immunity through priming both highly differentiated

effector and robust central memory CD8+ T cell populations.
Discussion

In this study, we sought to advance our current understanding

of the role of the MHC-I cytoplasmic domain, and particularly that

of Y320, in the priming of CD8+ T cell responses. The results are

consistent with previous studies showing that MHC-I cytoplasmic

tail mutations can impact antiviral CTL responses in vivo (1, 2), and

complement those earlier findings by exploring the use of Y320E-

mutated forms of human and mouse MHC-I. Since Y320 has also

been implicated in facilitating MHC-I molecular trafficking to

endolysosomal peptide-loading compartments of APCs and

antigen cross-presentation (20), we employed single-chain trimer

(SCT) constructs to bypass both the conventional and cross-

presentation pathways (25). This approach enabled direct
FIGURE 5

Y320E mutation in DC2.4/SCT vaccination enhances tumor control. (A) Schematic representation of the tumor control study. (B) Tumor growth
curves for individual mice and combined tumor growth data across groups vaccinated with different DC2.4-OVA-SCT constructs. In the parental,
WT, and Y320F groups, all mice developed tumors, whereas in the Y320E group, one mouse remained tumor-free. Tumor growth data are
presented as mean ± standard error of the mean (SEM) until day 32, after which some mice were sacrificed due to tumor ulceration or tumor
volume exceeding 150 mm². Statistical comparisons of tumor growth trajectories between groups were conducted using a repeated measures two-
way ANOVA, followed by pairwise comparisons using an unpaired t-test for daily measurements. Statistically significant p values (p < 0.05) are
indicated in the figure. WT vs. Y320F: p = 0.0882. (C) Ratio and percentages of central memory T cells (Tcm) and effector memory T cells (Tem) in
CD8+ cells from tumor-draining lymph nodes of mice vaccinated with different DC2.4 constructs. Statistical differences between groups were
assessed using one-way ANOVA (p < 0.0001). Pairwise comparisons between groups were conducted using an unpaired t-test; only significant p
values (p < 0.05) are shown. Data are presented as mean ± SEM.
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evaluation of how Y320 mutations affect CD8+ T cell priming when

antigen is presented as a pre-assembled MHC-I/peptide complex.

In vitro, Y320E mutations to A*0201 enhanced human CTL

priming and expansion, yielding a higher frequency of antigen-

specific T cells with increased activation status. In vivo, vaccination

with DC2.4 cells expressing Y320E-mutated H-2Kb/OVA SCTs

similarly promoted sustained expansion of effector T cells and

altered differentiation dynamics in peripheral blood. The Y320E

mutation also accelerated memory recall responses and enhanced

protection against tumor challenge. Together, these results support

a model in which phosphorylation at Y320 promotes more effective

antigen-specific CD8+ T cell responses by enhancing both the

magni tude and the qual i ty of e ffec tor and memory

CTL differentiation.

The current study has several limitations which advise that

results be interpreted with some caution. First and foremost, while

tyrosine-to-glutamic acid point substitutions can effectively mimic

phosphotyrosine (pY) in some settings (23, 24), this has not been

formally demonstrated in the context of MHC-I. It is thus possible

that Y320E mutations to MHC-I only weakly mimic the effect of

Y320 phosphorylation, since glutamate lacks an aromatic structure

and possesses a significantly weaker negative charge. This could

imply that phosphorylated Y320 may have an even stronger impact

on CD8+ T cell priming than observed with the phosphomimetic

mutation, although this remains to be demonstrated. A further

limitation of this study is that although the model systems used are

well-established, they do not fully represent natural immune

responses in which physiological antigen densities, numbers of

responding CD8+ T cell precursors, and APC-cognate T cell

interactions are lower by several orders of magnitude. While these

models have clear drawbacks, it is also possible that the optimized

conditions may have served to mask potentially stronger impacts of

the Y320 mutations, which may become apparent when these

parameters are naturally limited. Finally, our current lack of

ability to monitor the pY320 status of MHC-I in either human or

mouse cells represents a severe limitation to directly assessing the

impact of this tyrosine phosphorylation event. Overcoming this

technical challenge by developing specific tools to enable detection

and quantitation of pY320 will be crucial for advancing our

understanding of this potentially important modification.

Although the Y320E-mutated forms of MHC-I generally

elicited more robust and persistent CD8+ T cell responses in our

study, Y320F-mutated MHC-I curiously did not consistently show

significant differences in priming compared to WT MHC-I (1); in

most experiments, WT and Y320F-mutated MHC-I molecules

elicited similar results that were distinct from Y320E. The

simplest explanation for this observation is that in the APCs

employed in our studies, Y320 phosphorylation either does not

occur naturally or is strongly inhibited; consistent with this, mass

spectrometry-based analysis of WT A*0201 molecules in KG-1 cells

failed to detect Y320 phosphorylation (unpublished data not

shown). If Y320 phosphorylation is indeed a signal for promoting

CD8+ T cell responses, it might be expected to be downregulated in

tumor cells, including KG-1 and DC2.4 cells. However, in some

experiments Y320F-mutated MHC-I elicited a phenotype
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intermediate between WT and Y320E. Based on this, we speculate

that the Y320F mutation may affect MHC-I function in additional

ways beyond a lack of phosphorylation; for example, Y320F

mutations to MHC-I have previously been shown to affect

complex stability at the APC surface, which could conceivably

alter antigen presentation to T cells compared to WT MHC-I (20,

21). Phenylalanine itself differs significantly from tyrosine in terms

of hydrophobicity, which could impact the degree to which residue

320 is exposed or potentially alter the natural structure of the MHC-

I tail. Further mechanistic studies will be required to distinguish

between these possibilities.

The mammalian tyrosine kinases and phosphatases that may

act on Y320 remain largely unknown, although Rous sarcoma virus

kinase (pp60v-src) was previously demonstrated to facilitate Y320

phosphorylation of HLA-A and -B molecules in vitro, and a Src-

family tyrosine kinase inhibitor prevented tyrosine phosphorylation

of MHC-I (4, 7). A more recent study reported that

phosphorylation of Y320 of MHC-I could be induced in primary

macrophages by TLR-mediated inflammatory signals (15), an

observation that dovetails nicely with the results of the current

study, in which Y320E consistently promoted the augmentation of

CTL responses. A major mechanism by which HIV causes

immunodeficiency in vivo is through HIV-nef, a viral protein that

specifically binds to Y320 to downregulate the surface expression of

HLA-A and -B molecules (16–19). However, it is currently

unknown whether HIV-nef may also promote immunodeficiency

by blocking the phosphorylation of Y320 (44). If TLR signaling in

APCs can indeed promote Y320 phosphorylation, it raises the

intriguing possibility that subsets of intracellular MHC-I

molecules trafficking through TLR-posit ive endocytic

compartments bearing internalized TLR ligand-containing cargo

could be simultaneously loaded with pathogen-derived peptides and

“tagged” with pY320 to distinguish them from HLA-I complexes

bearing self-peptides (37, 45–48). It will be interesting to explore

whether such a tagging mechanism could contribute to the immune

system’s ability to effectively discern self-antigens from non-self

antigens displayed by the same APCs (49–51).

Although it is somewhat counter-intuitive that CD8+ T cells

may “sense” and be influenced by cytoplasmic tail modifications to

cognate HLA-I/peptide complexes, there are several potential

mechanisms by which this could occur. For example, cytoplasmic

tail modifications to MHC-I are well-known to influence the rate of

internalization from the cell surface, which could impact the half-

life of peptide presentation (2, 11, 20, 52–56). To test whether

altered internalization might account for the priming differences

observed with the Y320 mutation, we directly quantified SCT

internalization in DC2.4 cells using both flow cytometry and

confocal microscopy. Unexpectedly, neither approach revealed

significant differences in internalization kinetics among the SCT

variants. This contrasts with earlier reports that Y320 mutations

affect internalization, which were conducted in other cell types.

Because endocytosis of the same molecule can proceed through

distinct mechanisms depending on the cellular context (57), our

findings suggest that the impact of Y320 on internalization is cell-

type dependent. Thus, at least in DC2.4 cells, the enhanced priming
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1572342
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2025.1572342
driven by Y320E cannot be explained by altered rates of

SCT internalization.

Other mechanisms may account for the observed effects of Y320

modifications. Tail alterations could influence clustering or

shedding of MHC-I/peptide complexes at the cell surface, with or

without TCR engagement (10, 21, 26), or modulate interactions

with the cytoskeleton and downstream signaling cascades (58, 59).

Since antigen density, MHC-I cell surface mobility, and cytoskeletal

interactions can all influence the strength of Signal 1 provided to

CD8+ T cells upon TCR-based recognition, tail modifications could

conceivably impact the way CTLs recognize and respond to cognate

antigen on APCs (60, 61). For example, little is known regarding

how tail modifications might influence cell surface localization,

particularly their inclusion or exclusion within lipid rafts, or their

ability to facilitate the co-localization of MHC-I/peptide complexes

with co-stimulatory or co-inhibitory molecules known to influence

T cell fate (4, 62–65). Lastly, since cognate CD8+ T cells have the

capacity through trogocytosis to acquire specific MHC-I/peptide

complexes that are subsequently observed on the T cell surface (66–

68), the cytoplasmic domain and any associated APC modifications

could be sensed from within, possibly influencing T cell fate long

after their direct interaction with APCs (69). Further studies are

required to determine the mechanism(s) by which MHC-I

cytoplasmic tail modifications impact CD8+ T cell-mediated

immunity (69).

In summary, our findings highlight a potentially significant role

for Y320 phosphorylation in facilitating effective CTL priming and

impacting T cell differentiation towards the promotion of memory

responses. Our demonstration that Y320E-mutated MHC-I

augments priming of both human and mouse CD8+ T cell

responses underscores the translational potential of targeting this

phosphorylation site as a nexus point through which to modulate

CTL-based immune responses. Identifying the mammalian tyrosine

kinases and phosphatases that act on the Y320 residue would be a

promising first step towards this goal, since inhibition of one or the

other could serve to inhibit or promote CTL responses, respectively.

If pY320 indeed constitutes a “Go” signal for promoting CTL-

mediated immunity, we speculate that its occurrence would likely

be inhibited within cold tumor microenvironments but would

potentially be augmented in lymph nodes during the initial stages

of robust antiviral CTL responses. Future work should explore the

potential of Y320E-based DC vaccines to enhance not only anti-

tumor immunity but also the effectiveness of current viral vaccine

platforms, possibly paving the way for inducing more robust and

sustained CTL responses in diverse clinical settings.
Materials and methods

Mice and cell lines

C57BL/6J (CD45.1 and CD45.2) and OT-I mice were purchased

from Jackson Laboratory, USA. The human macrophage cell line

KG-1 (ATCC, Cat# CCL-246) was obtained from ATCC, USA. The
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mouse DC2.4 cell line (Sigma-Aldrich, Cat# SCC142) was

purchased from Sigma-Aldrich, USA. The MC38 mouse tumor

cell line was kindly provided by Dr. Yared Hailemichael at MD

Anderson Cancer Center, USA. All cell lines were tested and

confirmed to be mycoplasma negative.
Single chain trimers and cell line
transductions

cDNA sequences for HLA-A2 variants and for H-2Kb WT were

synthesized by GenScript and inserted between NotI and ClaI sites

into the pMG-eYFP retroviral vector. For the construction of single-

chain trimers (SCT), sequences of HLA-A2 and H-2Kb were PCR-

amplified from pMG-eYFP and inserted into pSBtet-Bla (Addgene

plasmid #60510), with modification of their cytoplasmic tails so that

WT, Y320E, and Y320F forms could be created by oligonucleotide

insertion. InFusion cloning (Takara Bio) was then used to insert,

between the MHC-I signal peptide and the mature MHC-I heavy

chain, a gene block (Integrated DNA Technologies) containing

elements of the SCT (25), from 5’ to 3’: a Type IIS enzyme cassette

for “seamless” insertion of antigenic peptide by oligonucleotide

cloning; a linker encoding GGGAS(G4S)2; cDNA for b2-
microglobulin (b2mb); and a linker encoding (G4S)4. After

insertion of the antigenic peptide (FluM1 [GILGFVFTL] or OVA

[SIINFEKL]), the constructs transferred to a modified version of

pHR_SFFV (Addgene plasmid #79121), downstream of cDNA for a

puromycin resistance gene and a FMV 2A sequence. Lentivirus was

prepared by transient transfection into 293T cells, using pCMV-

VSV-G (Addgene plasmid #8454) and psPAX2 (Addgene plasmid

#12260), and fi l tered supernatant was transduced by

“spinoculation” with polybrene (8 mg/mL) at 1460xg for 90 min.

SCT constructs will be deposited with Addgene.
Human CD8+ T cell priming and expansion

Peripheral blood mononuclear cells (PBMCs) were isolated

from buffy coats obtained from healthy blood donors at

HemaCare. Written informed consent was obtained from all

donors before inclusion. Isolation of PBMCs followed the

protocol described by Eerkens et al. (70). PBMCs were plated at a

density of 1.5 × 106 cells/mL in 48-well plates. KG-1 cells expressing

HLA-A2 with cytoplasmic tail mutations were pulsed with FluM1

(58–66) peptide (30 mg/mL, GenScript, USA) or MART-1 peptide

(30 mg/mL) for 1 hour, washed with PBS (Thermo Fisher Scientific,

USA), and co-cultured with PBMCs. IL-21 (BioLegend, USA) was

added every 3 days. On day 7, the PBMCs were re-plated, and KG-1

cells were pulsed with peptide (10 mg/mL) and reintroduced for a

second stimulation. Two days later, IL-21 and IL-7 (BioLegend,

USA) were added to the cultures. On day 14, cells were stained with

anti-human CD8+ (BioLegend, USA) and FluM1 (MBL, Japan) or

MART-1 tetramer and analyzed by flow cytometry.
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RNA sequencing and data analysis

CD8+ tetramer+ T cells after flow sorting were sent for RNA

isolation and sequencing at Avera Genetics (Sioux Falls, SD). The

quality checkup of raw reads was performed by FastQC (v0.11.5)

and summarized by MultiQC (v1.7). FASTQ files were mapped to

the human reference genome (GRCh38) using STAR (v2.7.10a) and

RSEM (v1.3.3) with default parameter settings. Gene expression was

quantified by TPM (Transcripts Per Kilobase Million) and

transformed by log2(TPM + 1). Differential gene expression (DE)

analysis was performed on R software (v4.3.2) using package

DESeq2 (v1.40.2). GSEA was performed using R packages:

msigdbr (v7.5.1) and fgsea (v1.28.0).
Isolation of OT-I splenocytes and adoptive
transfer

Spleens from OT-I mice were mechanically disrupted through a

70 mm strainer, and red blood cells were lysed using ACK Lysing

Buffer (Gibco, USA). Mouse CD8+ T cells were isolated using the

Naïve CD8+a+ T Cell Isolation Kit (StemCell Technologies,

Canada, Cat# 19858) according to the manufacturer’s protocol.

Isolated cells were resuspended at 1 × 105 cells/mL in PBS and

adoptively transferred into recipient mice (100 mL/mouse) via tail

vein injection.
DC2.4 vaccination and tumor inoculation

For tumor control experiments, mice were immunized twice at

7-day intervals with 1 × 106 DC2.4 cells (irradiated at 2000 rads)

expressing OVA single-chain trimer via subcutaneous injection into

the right flank. One week after the final immunization, peripheral

blood (50 mL) was collected via tail nicking and stained with H2Kb-

OVA tetramer and anti-CD8 antibodies for flow cytometry.

Subsequently, 2 × 106 MC38-OVA cells were inoculated

subcutaneously into the left flank. Tumor size was measured

weekly with calipers and expressed as tumor area (mm²). Mice

with tumor areas >150 mm² or bearing tumor ulceration were

euthanized. Tumors and tumor-draining lymph nodes were

collected on day 40 post-tumor inoculation for further analysis.
Tumor infiltrating T cells, tumor draining
lymph node, and splenocyte analysis

Single-cell suspensions were prepared from tumors, lymph

nodes, or spleens by mechanical disruption followed by a 1-hour

enzymatic digestion at 37 °C in RPMI-1640 medium (Thermo

Fisher Scientific, USA) supplemented with 10% FCS, 100 U/mL

DNase, 300 U/mL collagenase type I, and 60 U/mL hyaluronidase

(Worthington Biochemical, USA). Digested tissues were filtered

through nylon meshes (70 mm and 40 mm) and centrifuged. Cell
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suspensions were stained with antibodies from BD Pharmingen,

USA; eBioscience, USA; or BioLegend, USA, and analyzed using an

Aurora Blue cytometer (Cytek Biosciences, USA). Data were

processed using FlowJo software (Tree Star, USA).
Assays of MHC-I internalization

For flow cytometry, DC2.4 cells expressing different SCTs were

initially labeled at 4 °C with APC-conjugated mouse antibody

recognizing the H-2Kb–SIINFEKL combined epitope (BioLegend,

Cat#141605). After washing, an aliquot of these cells underwent

secondary labeling at 4 °C with an FITC-conjugated antibody

recognizing primary antibody (BioLegend, Cat#406605).

Separately, the remaining primarily-labeled cells were incubated

at 37 °C for 60 min to allow spontaneous internalization, and then

underwent secondary labeling, after which all cells were fixed and

analyzed by flow cytometry. Internalization was quantified as the

APC: FITC ratio of intensities for each cell.

Confocal microscopy was performed similarly, although the

fluorophores were changed to overcome the problem of

photobleaching. DC2.4 cells were sequentially labeled as described

above. Primary labeling was done with Vio Bright B515-conjugated

humanized antibody to H-2K^b–SIINFEKL (Miltenyi Biotec,

Cat#130-116-919). Secondary labeling was done with Alexa Fluor

594-conjugated anti-human antibody (Jackson ImmunoResearch,

Cat#AB_2337856), followed by mounting on slides using ProLong

Glass Antifade Mountant with NucBlue counterstaining

(Invitrogen, USA). Confocal imaging was performed on a Leica

SP8 instrument.
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SUPPLEMENTARY FIGURE 1

Surface Expression of HLA-A*0201 constructs in KG-1 Cells. (A) Surface HLA-

A*0201 expression was assessed using BB7.2-APC antibody staining.
Expression of eYFP, encoded downstream of the same IRES element within

the lentiviral vector, served as a surrogate for HLA-A*0201 transcript levels.
MFI values for eYFP: Parental untransduced cells = 204, WT = 8,625, Y320F =

8,974, Y320E = 9,649. MFI values for APC: Parental = 113, WT = 17,589, Y320F

= 12,238, Y320E = 13,530. (B) Schematic representation of the HLA-A*0201
single-chain trimer chimeric protein.

SUPPLEMENTARY FIGURE 2

Effect of HLA-A*0201 Y320Mutations on Expression Level of Selected Genes in
Human Primed Antigen-Specific CD8+ T Cells. PBMC from 3 healthy donors

were stimulated twice with KG-1 cells expressing WT, Y320F, or Y320E SCTs

bearing FluM1 peptide, then CD8+/tetramer+ cells were sorted for RNA-Seq.
Each data point represents the value for an individual donor, with paired

comparisons performed using a two-tailed paired Student’s t-test. Data are
presented as mean ± standard error of the mean (SEM) from n = 3 donors.

SUPPLEMENTARY FIGURE 3

Surface OVA-Kb Expression and Cell Surface Internalization. (A) Schematics

of the SCTs and surface expression of OVA-Kb on cells assessed by flow
cytometry. (B) Flow cytometric analysis of surface H2-K^b–OVA SCT

internalization. APC vs. FITC fluorescence ratios were measured at 0 and
60 min to quantify internalization across WT, Y320F, and Y320E constructs.

Median APC/FITC ratios are shown in the accompanying tables. (C) Confocal
microscopy images of surface H2-K^b–OVA SCT internalization at 0 and 60

min. Internalized molecules are labeled in green, surface-retained molecules

are labeled in red (secondary antibody), and merged signals appear orange.
Nuclei are counterstained in blue.

SUPPLEMENTARY FIGURE 4

Phenotypic Analysis of OVA-Specific T Cells Post-Vaccination. (A) Relative
frequency of CD127+ and (B) KLRG1+ cells in donor and endogenous

peripheral OVA specific T cells across different vaccination groups at

various time points. Statistical differences between Y320 mutants were
assessed using one-way ANOVA, followed by pairwise comparisons using

an unpaired two-tailed t-test; only significant p values (p < 0.05) are shown.
Data are presented as mean ± standard error of the mean (SEM).

SUPPLEMENTARY FIGURE 5

Splenic T cell phenotypes following DC2.4/SCT vaccination. (A) Schematic

representation of the vaccination protocol. Mice were injected
subcutaneously with 1×10^6 irradiated (2000 rads) DC2.4 cells on day 1,

and spleens were collected on day 7. (B) Frequencies of OVA-specific CD8+ T
cells and distribution of distinct OVA-specific CD8+ T cell subsets in spleens

from mice vaccinated with parental, WT, Y320F, or Y320E DC2.4-OVA-SCT
constructs. Subsets shown include Tem (CD62L–, KLRG1-, CD127lo), Teff

(CD62L–, KLRG1+, CD127lo), and Tcm (CD62L+, KLRG1–, CD127hi)

populations. Data are presented as mean ± SEM. Statistical differences
between Y320 variant groups were assessed using one-way ANOVA.

SUPPLEMENTARY FIGURE 6

Surface Marker Expression of Tumor-infiltrating CD8+ T Cells in DC2.4/SCT-
vaccinated Mice. Statistical differences between Y320 groups were assessed

using one-way ANOVA, followed by pairwise comparisons using an unpaired

two-tailed t-test; only significant p values (p < 0.05) are shown. Data are
presented as mean ± standard error of the mean (SEM).
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