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Integrative bioinformatics and
machine learning approaches
reveal oxidative stress and
glucose metabolism related
genes as therapeutic targets
and drug candidates in
Alzheimer’s disease
Fatima Noor1†, Sidra Aslam2*†, Ignazio S. Piras3,
Cecilia Tremblay2, Thomas G. Beach2 and Geidy E. Serrano2

1Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan,
2Department of Pathology, Banner Sun Health Research Institute, Sun City, AZ, United States,
3Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
Background: Alzheimer’s disease (AD), the most common form of dementia, has

treatments that slow but do not stop cognitive decline. Additional treatments are

based on its pathogenic mechanisms are needed. Evidence has long highlighted

oxidative stress and impaired glucose metabolism as crucial factors in AD

pathogenesis. Therefore, in this study we aimed to find key AD pathogenic

pathways combining genes involved in oxidative stress and glucose metabolism

as well as potential small-molecule therapeutic agents.

Methods: Using autopsy brain RNA sequencing data (GSE125583) derived from

the Arizona Study of Aging and Brain and Body Donation Program, AD-related

genes were identified via differential gene expression, pathway and coexpression

analysis. Oxidative stress and glucose metabolism genes were correlated to

pinpoint module genes. GSE173955 was used an independent dataset was used

for validation, conducting molecular docking, assessing hub genes for AD, and

integrating machine learning approaches.

Results: We identified 13,982 differentially expressed genes (DEGs) in AD

patients. Through WGCNA coexpression analysis, 1,068 genes were linked to

AD-specific modules. Pearson’s correlation analysis highlighted 99 genes

involved in oxidative stress and glucose metabolism. Overlap analysis of DEGs,

module genes, and these metabolic genes revealed 21 key overlapping targets.

PPI network and receiving operating curve (ROC) curve analyses then identified

AKT1 and PPARGC1A as diagnostic hub genes for AD. Machine learning-based

virtual screening of small molecules identified various inhibitors and enhancers

with drug-like potential targeting AKT1 (upregulated) and PPARGC1A

(downregulated), respectively. Among others, the Random Forest model was

the most reliable for predicting molecular activity. Molecular docking further

validated the binding affinities of these small molecules (inhibitors/enhancers) to

AKT1 and PPARGC1A.
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Conclusion: This study identified AKT1 and PPARGC1A as potential therapeutic

targets in AD. We discovered drug candidates with strong binding affinities,

offering new avenues for effective AD treatment strategies.
KEYWORDS

oxidative stress, Alzheimer ’s disease, glucose metabolism, bioinformatics,
machine learning
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1 Introduction

Alzheimer’s disease (AD) is the most prevalent form of

dementia globally and is a major cause of death among the

elderly, significantly contributing to mortality and morbidity (1).

It is reported that approximately more than 42.3 million people

worldwide suffer from progressive cognitive impairment caused by

AD (2). Further, the epidemiological analyses suggest that the

number of people with AD will be more than double by 2060 (3).

The gradual worsening of cognitive abilities in AD is not only a

threat to the life quality of the patients, but also has social impacts

and burdens on families and healthcare systems (4). The disease

alters complex biochemical processes, particularly oxidative stress,

and glucose metabolism, which both may contribute to the

development of the disease and may be interconnected in such a

manner as to promote neuronal damage (5, 6).

It is noteworthy that oxidative stress occurs when there is an

excess of reactive oxygen species (ROS) as compared to the body’s

capacity to detoxify these toxic substances or restore the damaged

tissues (7). In AD, this may be further compounded by the

dysregulation of genes involved in the oxidative stress response

such as SOD, GPx, and catalases (8), leading to intraneuronal

oxidative injury and apoptosis, possibly contributing to the

cognitive impairment seen in AD (9, 10). At the same time,

glucose metabolism, which is necessary for providing energy to

the brain, may be significantly affected in AD (5, 11). The brain

largely depends on glucose metabolism which is affected by defects

in insulin signaling, glucose transport and glycolysis (12, 13).

Metabolic dysfunction potentially results in decreased glucose

availability, leading to the brain hypometabolism that is well

documented in AD patients (14).

Beyond its effect on glucose metabolism, oxidative stress

damages mitochondrial DNA and associated enzymes, ultimately

decreasing ATP generation with resulting increased neuronal

vulnerability (15). Additionally, impaired brain glucose

metabolism in AD can lead to increased levels of oxidative stress

due to enhanced ROS production (14). These two conditions

potentially create a vicious cycle where each condition enhances

the other. This has raised the need for more detailed research on the

metabolic interactions within the AD brain, as this may translate to

improved therapeutics.

This study attempts to unravel the complex nexus between

oxidative stress and glucose metabolism in AD, shedding light on

how these pivotal biochemical pathways influence the beginning

and subsequent trajectory of the disease. By analyzing RNA-seq

data, our study highlights critical metabolic disruptions that may

underlie AD pathology. Our research uncovers essential co-

expression networks and hub genes, spotlighting their significant

roles in AD’s metabolic molecular landscape. This investigation not

only deepens our understanding of the disease mechanisms but also

opens new avenues for targeted therapeutic strategies, leveraging

the potential of small molecules to modulate these key pathways.
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2 Methodology

2.1 Data acquisition

The RNA-seq data (GSE125583) used in this study was

generated from the Arizona Study of Aging and Brain and Body

Donation Program at Banner Sun Health Research Institute

utilizing temporal lobe fusiform gyrus from 219 autopsy-

confirmed cases and 71 age-similar controls from fusiform gyrus.

These data available in GEO database of NCBI (http://

www.ncbi.nih.gov/geo) were used as training set, while the

GSE173955 dataset (16), which includes a total of 18 biological

samples consisting of 8 cases from AD patients and 10 cases from

non-Alzheimer’s controls was used for independent validation (test

dataset). Further details of the methods used to generate and

analyze this data has been previously published (17). Gene

expression profiles were set based on two parameters 1) Tissues

samples collected from diseased fusiform gyrus tissue and normal

fusiform gyrus tissue, (2) number of samples were obtained for each

dataset were more than 3. Although the validation dataset

(GSE173955) includes a relatively small sample size (n=18), its

inclusion aligns with precedents in transcriptomic research, where

datasets with >3 biological replicates per group have been effectively

used for validation purposes (18). Given the biological relevance

and consistent tissue context, this dataset provided a valuable

reference point to support the reproducibility of our findings

across independent cohorts. MsigDB (https://www.gsea-

ms i gdb . o r g / g s e a /ms i gdb / ) and Geneca rd s (h t tp s : / /

www.genecards.org/) databases retrieved the oxidative stress and

glucose metabolism gene list using keywords “oxidative stress”

“glucose metabolism”, and “Glucometabolic”. The flowchart of

study is shown in Figure 1.
2.2 Analysis of gene expression variability
and pathway enrichment in AD

Differentially expressed genes (DEGs) between AD and controls

were identified using the DESEQ2 package in R with the cutoff point

adjusted p-value < 0.05. To illustrate the DEGs, volcano plots were

created using the R package ggplot2. KEGG pathway analysis was

conducted on DEGs to investigate their functional enrichment

using the clusterProfiler R-package. False discovery rate < 0.05

was selected as cutoff criterion to represent significant enrichment.
2.3 Coexpression analysis using WGCNA
and identification of key modules

WGCNA analysis (19) was conducted on dataset GSE125583 to

find the AD associated significant coexpression network and key

modules. DESEQ2 was used to normalize the counts table. After
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that, we computed the median absolute deviation (MAD) to

calculate the variability of genes and retained only the 50% of

high variable genes based on MAD score, eliminating the low

variable genes causing noise in the coexpression analysis. Soft-

thresholding value (b) was computed using pickSoftThreshold

function and the lowest value was selected when scale free

topology index curve flattens out upon reaching r2 = 0.90 (20).

We constructed a signed coexpression network and recognized the

resulting clusters utilizing the function blockwiseModules with the

following parameters: TOMtype: “signed”, deepSplit = 2, minimum

module size = 30,mergeCutHeight = 0.30, and pamRespectsDendro =

“TRUE”. We calculated the eigengene values for each individual

and module using singular value decomposition (SVD) (21). We

compared the eigengenes by module between AD and control using

a linear model implemented in limma. Covariates were not included

in the model since we used the adjusted expression matrix. To

account for multiple testing, we adjusted the p-values by accounting

for the number of modules using the FDR approach. The analysis

was conducted using the WGCNA R-package. Modules that

correlated the most with the clinical trait which includes disease

phenotype (AD vs control) were labeled as AD-related modules. We

only select those modules whose correlation with AD trait was

greater than 0.4 and then used these to explore the correlation

between module membership (MM) and gene significance (GS) to

find the key AD-related modules.
2.4 Selection of genes related to glucose
metabolism and oxidative stress

To find significant oxidative stress-related glucometabolic genes

(OSGMGs), the expression levels of glucose metabolism related

genes were compared with oxidative stress related genes to calculate

Pearson correlation coefficient using the cor.test() function in R

with the threshold set at p<0.05 and |r|>0.4.
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2.5 Intersection genes and Venn analysis
and hub gene prediction

We utilized a Venn diagram drawing tool (http://

bioinformatics.psb.ugent.be/webtools/Venn/) to create Venn

diagrams, representing the overlap between DEGs, WGCNA-

derived key module genes and OSGMGs genes. Intersection genes

were included in subsequent analyses. The STRING database

(http://www.string‐db.org/), which searches for known and

predicted interactions between proteins, was used to construct the

protein-protein interaction network between 21 genes. The

resulting network was then visualized using Cytoscape 3.9.1.
2.6 ROC analysis

ROC curve analysis was performed to check the prognostic

efficiency offive hub genes. Only those genes with AUC greater than

0.7 were retained for further study (22).
2.7 Machine learning-based virtual
screening of small molecules

2.7.1 Data preparation and preprocessing
The study commenced with the uploading of active and inactive

molecules of target proteins. These molecular structures were described

using SMILES (Simplified Molecular Input Line Entry System)

notation. The RDKit library (23), a cheminformatics toolkit, was

employed to convert these SMILES strings into RDKit Mol objects,

as required for molecular descriptor calculations. Potential decoys were

removed from the library of small molecules to get a balanced data set

of equal number of actives and inactives depending on molecular

weight. The final dataset was then shuffled to avoid any order influence

during the training of the model.
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FIGURE 1

(A) Volcano plot to illustrate DEGs (B) KEGG enrichment analysis. The size of bubble indicates the number of genes involved in these pathways.
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2.7.2 Feature engineering and descriptor
calculation

The approach involved calculating various molecular

descriptors to characterize and differentiate the active from

inactive molecules. RDKit’s Descriptors and GraphDescriptors

modules were employed to compute a wide array of features,

including molecular weight, logP, partial charges, EState indices,

and Morgan fingerprints, among others. These descriptors capture

different aspects of chemical structure and properties, essential for

effective modeling of biological activity. To address missing values, a

mean imputation strategy was implemented. Subsequently,

Principal Component Analysis (PCA) was performed to reduce

dimensionality while retaining critical variance in the data,

facilitating more efficient and insightful modeling (24).

2.7.3 Model development and selection
The preprocessed data (containing both active and inactive

molecules of target proteins) was partitioned into training and testing

sets, ensuring a 70:30 split to ensure that there is a strong evaluation

criterion in place. Several machine learning algorithms were then used

for training, namely k-Nearest Neighbors (kNN) (25), Support Vector

Machines (SVM) (26), Random Forest (RF) (27), Naive Bayes (NB)

(28), and Gradient Boosting (GB) (29) Classifiers. Parameter tuning of

eachmodel was done using GridSearchCV for the best hyperparameters

setting. To evaluate model performance on unseen data, Stratified K-

Fold cross-validation was used. The choice of the model was made

depending on the accuracy, sensitivity, specificity, MCC, and AUC

values (30). The final model was then used to screen a library of small

molecules (including both inhibitors and enhancers).

2.7.4 Virtual screening and drug-likeness
prediction

Choosing one model, a list of small molecules was filtered

(including both inhibitors and enhancers) to determine which

molecules had the highest probability of inhibiting/enhancing the

target protein. The list of hits was then narrowed down by using the

drug-likeness criteria defined by Lipinski’s Rule of Five. This rule

measures the drug likeness for a molecule in terms of molecular

weight, hydrogen bond donors and acceptors, and lipophilicity

(logP). Those molecules that fulfilled these criteria were regarded as

potential drug-like scaffolds and were transferred to the next stage of

testing. In adopting this strategy, the study sought to screen for new

drugs with possible therapeutic benefits rapidly and cost-effectively.

2.7.5 Molecular docking analysis
In the present work, molecular docking was used to examine the

binding mode of the target proteins with the small molecules to assist in

the identification of appropriate drug combinations for increasing

disease treatment effectiveness. The first 3D structures of target

proteins included in this study were obtained from the Research

Collaboratory for Structural Bioinformatics (RCSB) Protein Data

Bank, a public database containing structural information of biological

macromolecules (http://www.rcsb.org/pdb/) (31). The docking studies

were conducted using Autodock vina 1.1.2 within PyRx 0.8 (32),

employing the predicted X-ray crystal structure of key proteins and
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the active components. The SMILES formats of the compounds

were sourced from PubChem and converted using OpenBabel

integrated into the PyRx platform. A total of 2000 steps was set

for energy minimization, ceasing when the energy differential was

less than 0.01 kcal/mol, to achieve a stable conformation.

Subsequently, the compounds/ligands were converted into

the.pdbqt format for docking analyses. The active site residues of

the target proteins were identified with the CASTp tool (33). PyRx

0.8 facilitated the computation of binding affinities between the

small molecules and target proteins. The most favorable docked

complexes were selected based on their Root Mean Square

Deviation (RMSD) and binding energies, with values of less than

-5.00 kcal/mol indicating strong binding, and less than -7.00 kcal/

mol signifying very strong binding (34). The RMSD calculation

serves as a measure of how much the docked conformation deviates

from this reference structure, with lower RMSD values indicating a

closer match to the expected or known binding conformation.

Complexes with the lowest RMSD values were considered the

most favorable, as they suggest the least deviation from the

reference, implying a high degree of accuracy in reproducing

known or theoretically optimal binding poses. Finally, the visual

representation of the docked complexes was performed using

Discovery Studio (35), PyMOL (36), and ChimeraX (37) programs.
3 Results

3.1 Identification and functional
enrichment analysis of DEGs in AD

A differential expression analysis of the dataset GSE125583

identified 13,982 genes that were differentially expressed in AD,

including 7,131 upregulated and 6,851 downregulated genes

(Figure 1A) (adj-p < 0.05). Further, we performed Gene Set

Enrichment Analysis on the same dataset. Results showed that

there were significant functional class enrichments among the

DEGs, which were mainly enriched for pathways related to

oxidative phosphorylation, synaptic pathways, and signaling

pathways in AD (Figure 1B).
3.2 Weighted expression network
construction to identify key modules

A total of 20,000 genes were retained based on MAD score

derived from the 289 samples of the GSE125583 dataset. These

genes were used to construct a co-expression network. We obtained

a total of 20 coexpression modules, with the number of genes in

each module ranging from 214 (lightgreen module) to 5624 (black

module) (Figure 2A). After eigengene extraction and differential

analysis, 16 modules were associated with AD (Figure 2B). Only two

modules (royalBlue, black) were retained as key modules

(Figures 2C, D) (Pearson’s r > 0.4). A total of 1068 genes were

found in the two AD-associated modules, which were used for

further analysis.
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3.3 Selection of genes related to glucose
metabolism and oxidative stress

Based on the MsigDB and Genecards databases, we obtained

1,399 oxidative stress-related genes and 1,005 glucose metabolism-

related genes. Pearson’s correlation between glucose metabolism

and oxidative stress relative genes, with the threshold set at p<0.05

and |r|>0.4, identified 99 oxidative stress and glucose metabolism-

related genes (OSGMGs).
3.4 Intersection between DEGs, WGCNA,
OSGMGs, and PPI network construction

By taking the intersection of the DEGs, WGCNA-based key

module genes, and OSGMGs genes, 21 overlapping genes were

identified (Figure 3A). STRING database was used to construct the

PPI network to assess the interactions between proteins

corresponding to the DEGs at a combined score > 0.7. The

network was visualized using Cytoscape software, consisting of 21

nodes and 45 edges (Figure 3B).
3.5 Identification and validation of hub
genes through ROC analysis

The PPI network including 21 genes was analyzed using the

CytoHubba plugin in Cytoscape, with the goal to identify the most

influential hub genes. From this network, the top five hub genes

(AKT1, PPARGC1A, PPARA, PDK1, and ACACB) were selected
Frontiers in Immunology 06
for further validation. Subsequent ROC analysis was performed to

evaluate their prognostic utility (Figure 3). Among these, two genes,

AKT1 and PPARGC1A, demonstrated high predictive accuracy

with AUC values exceeding 0.70, indicating their potential

involvement in AD pathogenesis or progression.
3.6 Machine learning-based virtual
screening of small molecules

3.6.1 Data collection and processing
Following the identification and validation of hub genes

through ROC analysis, we conducted machine learning-based

virtual screening of small molecules. Data collection and

processing involved compiling a list of active and inactive

molecules associated with the AKT1 and PPARGC1A proteins.

After obtaining the molecular structures, a rich set of features was

defined to describe the chemical properties of each molecule. This

allowed the creation of a dataset suitable for the use of machine

learning algorithms in the context of molecular activity prediction.

The active and inactive molecules dataset was then split into a

training set and test set to enable the building and assessment of the

predictive models. The former was used to optimize the parameters

of the models and the latter was used to evaluate their accuracy. The

scatter plots shown in Figure 4 illustrates the correlation between

different chemical features in the training set. These maps are useful

for identifying the patterns of distribution of molecular descriptors

and their possible relationships. The observed pattern and

distribution in the training data can be explained by some
A B

C D

FIGURE 2

WGCNA analysis of GSE125583. (A) Cluster dendrogram of co-expression weighted Correlation network analysis (WGCNA) indicated through
different colors (B) Module-trait relationships; correlation between module eigengenes (ME) and disease phenotype (C) Key module in royalblue
represents highly negative correlation with disease phenotype (D) Key module in Black showed highly positively correlation with disease phenotype.
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chemical and physical properties that could be used to increase the

prediction accuracy of the model. The results of the study indicate

that some of the descriptors like molecular weight and LogP have

the potential to influence the molecular activity predictions. While
Frontiers in Immunology 07
other features can be less clear as to how they contribute to the

model’s ability to make accurate predictions and may need further

explanation or may have to be combined with other

descriptive features.
FIGURE 3

(A) A Venn diagram showing the overlap between three different groups: OSGMGs (99), DEGs (13982), and WGCNA (1068). (B) Protein-Protein
Interaction (PPI) network for 21 common genes identified in the Venn diagram. The nodes (circles) represent genes, and the edges (lines) indicate
interactions between them. The size of the node and its color intensity indicate the level of connectivity, with larger, darker nodes having more
connections. (C-G) These are Receiver Operating Characteristic (ROC) curves for five different genes: AKT1, PPARGC1A, PPARA, PDK1, and ACACB.
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3.6.2 Principle component analysis
The Principal Component Analysis (PCA) applied to the

molecular features resulted in a distinct distribution of variance

across the components (Figure 5). The first principal component
Frontiers in Immunology 08
(PC1) explained an overwhelming majority of the variance, at

98.9%, with an eigenvalue of 2301, signifying its dominance in

capturing the data’s variability. The second principal component

(PC2), although explaining a much smaller fraction of the variance
FIGURE 4

Visualization of molecular descriptors and target variable distribution across training and test datasets. (A) Molecular Weight (MolWt) vs. MolLogP,
illustrating the distribution of lipophilicity across a range of molecular sizes. (B) Number of Rotatable Bonds vs. Number of Heteroatoms, capturing
molecular flexibility and polarity characteristics. (C) Molecular Volume vs. TPSA (Topological Polar Surface Area), reflecting size and surface polarity.
(D) QED (Quantitative Estimate of Drug-likeness) vs. Chi0 (connectivity index), highlighting molecular quality and complexity. (E) MolWt vs. MolLogP
(F) NumRotatableBonds vs. NumHeteroatoms (G) MolVolume vs. TPSA (H) QED vs. Chi0.
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at 0.0358% and having an eigenvalue of 0.4925, still contributes

additional, albeit minor, details about the data’s structure. Given

these values, PC1 is the primary axis of variation, providing a strong

indication that it encapsulates the essential patterns within the

molecular features. PC2 and any subsequent components, such as

PC3, explain progressively less variance, indicating that they

capture more subtle and complex relationships in the dataset. The

transformed data, with its reduced dimensionality, was further

utilized for in-depth analysis. The concentration of variance in

PC1 facilitated a more streamlined and focused examination of the

molecular properties that are most influential in determining

compound activity. This transformation is instrumental for

enhancing the efficiency and accuracy of the predictive modeling

process, enabling the identification of compounds with desired

biological activities. The PCA results thereby provide a robust

foundation for the next stages of analysis, including the training

of machine learning models to classify the compounds effectively.

3.6.3 Model evaluation
The performance of four machine learning models—k-Nearest

Neighbors (kNN), Support Vector Machine (SVM), Random Forest

(RF), and Naive Bayes (NB) was meticulously assessed using a

dataset partitioned into training and test subsets. ROC-AUC and F1

scores were used as the key performance indicators for the models’

discriminative capacity and, correspondingly, the balance between

precision and recall. On the test dataset, the Random Forest model

stood out as the best-performing classifier with an AUC of 0. 990

indicating a better prediction ability of the model. This performance

was closely followed by kNN and NB models, both having

impressive AUC value of 0. 98 on the test set. 98 on the test set.

Even though the SVM model has AUC of 0. 975, it still offered a

good amount of accuracy (Figure 6).

The evaluation of F1 score for all the models at different threshold

indicated that all the models performed well for both for test and

training set and the reliability of their predictions. In the context of

further metrics like accuracy, sensitivity, specificity, and MCC,

additional peculiarities of every model became clear. The kNN

model provided a good balance with a high accuracy of 95.17% and

sensitivity 94.95%. While SVM model demonstrated a satisfactory

specificity of 94.07%. In addition to the improved AUC, the RF model

demonstrated high accuracy and specificity, with MCC being 0. 904

which proved its good predictive ability. However, the Naive Bayes

classifier, which has the least mean accuracy of the four (89. 65%) and

still retain a high specificity of 96 (Table 1). The ARI was moderately

high at 0. In conclusion, the Random Forest model was outstanding in

most of the criteria hence, it was the most accurate model for this data

set. However, the high AUCs for all models imply that each one of

them could be used for different forms of prediction roles depending on

the level of sensitivity and specificity necessary.

3.6.4 Quantitative evaluation of a small
molecules for drug likeness and molecular
property analysis

The Random Forest (RF) model was used to screen library of

molecules (inhibitors/enhancers) to identify molecules that would
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yield the desired selection criteria. These criteria were based on the

RF model’s predictive outcomes and the compounds’ compliance

with the five rules referred to as Lipinski’s rule offive, which include

the molecular weight (MW), the number of hydrogen bond donors

(HBD), the number of hydrogen bond acceptors (HBA), and the

octanol-water partition coefficient (LogP). To compare the

distribution of QED scores, which is the measure of drug-likeness

of molecules, histogram was plotted. Most of the molecules in the

library were confirmed to bear high QED scores proving their drug

like properties. A library of molecules with concentrations within

the range of 0.90 to 0.95 was observed, indicating a promising

segment of the library that can possibly be nurtured further. A

scatter plot of MW against LogP revealed a wide distribution of

molecules across different ranges of lipophilicity and molecular

weight (Figure 7). This plot demonstrates the diversity of the library

in terms of these two important descriptors. Despite the spread, no

clear trend was observed, suggesting the presence of both lipophilic

and hydrophilic molecules across various molecular weights. The

box plot of molecular weights highlighted the central tendency and

the dispersion of the MW data within the library. The plot showed a

relatively tight interquartile range, indicating that the majority of

the molecules had molecular weights within a narrow window,

which is consistent with typical drug-like molecules. The

correlation heatmap provided insights into the relationships

between different molecular descriptors. Notably, QED scores

were negatively correlated with molecular weight, suggesting that

as the molecular weight increases, the drug-likeness as per the QED

scores tends to decrease. Other descriptors such as HBD and HBA

showed varying degrees of correlation with LogP and QED, offering

a nuanced view of how these properties interplay in the context of

drug discovery. In conclusion, the comprehensive analysis utilizing

the RF model and adherence to Lipinski’s rule of five successfully

narrowed down a vast library to molecules with QED scores above

0.90. These selected molecules, representing a drug-like profile, are

earmarked for further in-depth docking analysis to assess their

potential as therapeutic agents. The use of such stringent selection

criteria ensures that the candidates progressing to the docking stage

have a higher likelihood of exhibiting favorable pharmacokinetic

and pharmacodynamic properties.

3.6.5 Validation using molecular docking
In the molecular docking study conducted to evaluate potential

inhibitors of the upregulated AKT1 protein, a series of small molecules

were analyzed for their binding affinities and conformational fits within

the protein’s active site (Figure 8). Themolecule 2-(2,3-dihydroindol-1-

yl)-N-(1-phenylethyl) acetamide exhibited a substantial binding affinity

of -7.4 kcal/mol and a conformational RMSD of 2.1 Å, indicating a

promising interaction with AKT1. Another notable molecule, N-

Tosylcyclohexanecarboxamide, demonstrated an even higher binding

affinity of -8.3 kcal/mol coupled with a lower RMSD of 1.4 Å,

positioning it as a strong candidate for further investigation as an

AKT1 inhibitor. Further, 1-methyl-N-[[2-(2-methyloxan-2-yl)

pyrimidin-5-yl]methyl]pyrazole-3-carboxamide also showed favorable

binding characteristics with a -7.2 kcal/mol affinity and a 2.1 Å RMSD

(Table 2). However, N-cyclopentyl-5-(2-furyl)-2-methyl-2H-1,2,6-
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thiadiazine-3-carboxamide 1,1-dioxide presented an atypical positive

binding affinity of 7.3 kcal/mol, suggesting it may not function

effectively as an inhibitor under the tested conditions. Lastly, N-[(2-

methoxyphenyl) methyl]-1-pyrazin-2-ylpiperidine-3-carboxamide

displayed a lower binding affinity of -6.3 kcal/mol and an RMSD of

2.8 Å, which, despite being the least promising among the candidates in

terms of binding affinity, could still be considered for optimization due

to its distinct chemical structure. These findings highlight the potential

of N-Tosylcyclohexanecarboxamide as a lead molecule, given its strong

binding affinity and structural stability within the AKT1 binding site,

while also acknowledging the need for further experimental studies to
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validate the computational predictions and to optimize the binding

efficiencies of the other small molecules.

In a parallel molecular docking study targeting the

downregulated PPARGC1A protein, various small molecules

(enhancers) were evaluated to ascertain their potential as

enhancer (Figure 9). The enhancer 1-(3,4-dihydro-2H-pyrrol-5-

yl)-3-(2-methoxyphenyl)-1-(4-methoxyphenyl)urea stood out

with a binding affinity of -9.1 kcal/mol and an RMSD of 1.1 Å,

which signifies a strong and stable interaction with the target

protein. Similarly, 3-(3-chloro-1H-1,2,4-triazol-1-yl)adamantane-

1-carboxylic acid displayed a notable binding affinity of -10.85
FIGURE 5

Two 2D scatter plots illustrating the relationships between (A) Principal Component 1 (PC1) and (B) Principal Component 2 (PC2) (left) and between
Principal Component 1 (PC1) and Principal Component 3 (PC3) (right) are displayed. (C) A 3D scatter plot illustrates the relationships between the
PC1, PC2, and PC3 obtained through PCA on molecular features. Each data point is color-coded according to the ‘Label’ column and uses the
‘viridis’ color map. The size of data points is standardized to 50.
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kcal/mol and an RMSD of 1.60 Å, suggesting a potentially potent

inhibitory effect on PPARGC1A.Furthermore, the 7-[(3-

Me thoxyph eny l )me t h y l ] - 2 - p y r r o l i d i n - 1 - y l - 3 , 5 , 6 , 8 -

tetrahydropyrido[3,4-d]pyrimidin-4-one exhibited an exceptionally

high binding affinity of -12.34 kcal/mol along with an RMSD of

1.64 Å, making it a prime candidate for further investigation due to

its substantial interaction with the protein. Another one, N-(5-

fluoro-2-methylphenyl)-2-[4-methyl-6-oxo-2-(pyrrolidin-1-yl)-

1,6-dihydropyrimidin-1-yl]acetamide, also showed a significant

binding affinity of -11.46 kcal/mol and an RMSD of 1.68 Å,

aligning it with strong contenders for PPARGC1A inhibition.

Lastly, N-[(2-Fluorophenyl)methyl]-2-(piperidin-1-YL)-5,6,7,8-

tetrahydroquinazoline-6-carboxamide recorded a binding affinity

of -6.44 kcal/mol and an RMSD of 1.76 Å (Table 3). Despite its

relatively lower binding affinity compared to the others, its

interaction with the protein could be optimized through further
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modifications to enhance its inhibitory action. These findings

collectively underscore the potential of these enhancers, especially

the ones with the highest binding affinities, to serve as effective

enhancers of PPARGC1A, pending further experimental validation

to confirm the computational predictions.
4 Discussion

Alzheimer’s disease is a progressive neurodegenerative disease,

typically observed in older individuals. While Ab amyloid plaques

and phosphorylated tau proteins have been the focus of most

attention, numerous studies indicate that there is a role for

oxidative stress in AD pathogenesis (38). However, the precise

mechanism by which oxidative stress contributes to AD

pathogenesis is still inadequately defined. Intensive investigation
FIGURE 6

(A) ROC-AUC curves on the test set for k- Nearest Neighbors (kNN), Support Vector Machine (SVM), Random Forest (RF), and Naive Bayes (NB)
models demonstrate high predictive accuracy where AUC values are presented. (B) The ROC-AUC curves on the training set indicate how well the
models capture the underlying patterns. (C, D) show the F1 scores against the decision threshold for the test and training data, respectively, making
it easier to understand the precision-recall curves and the ability of models to generalize different thresholds.
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of the underlying mechanism of oxidative stress in AD may be

crucial for developing novel therapeutic interventions (39). On the

other hand, the brain mostly relies on glucose for energy, but in AD

glucose metabolism is intensely decreased, probably owing, at least

in part, to oxidative damage to enzymes involved in glycolysis, the

tricarboxylic acid cycle and ATP biosynthesis (5). This defect likely

results in substantial part from oxidative damage to key proteins in

glycolysis, the TCA cycle and ATP synthase. However, how do

oxidative stress related genes and glucose metabolism genes cross

talk to mediate AD? Some studies suggest a role for oxidative stress
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related genes in AD (39) while some other studies point to specific

roles for glucometabolic genes in the onset and progression of AD,

on the basis of glucometabolic-associated DEGs and key genes (40).

However, in our study we worked on understanding possible

synergies of these in mediating AD.

In our research, we identified 21 oxidative stress and glucose

metabolism related DEGs in AD patients through bioinformatics

analysis. Via the PPI network and plotting ROC curve analysis,

we identified 5 oxidative stress and glucose metabolism-related

hub genes (AKT1, PPARGC1A, PPARA, PDK1, ACACB) in AD
FIGURE 7

Visualization of key properties and relationships among filtered molecules. (A) Histogram displaying the distribution of Quantitative Estimation of
Drug-likeness (QED) scores, with a density curve indicating the probability density. (B) Scatter plot illustrating the correlation between Molecular
Weight (MW) and the partition coefficient (LogP), revealing patterns in MW vs. LogP. (C) Correlation heatmap revealing the relationships between
molecular properties, with darker shades indicating stronger correlations. (D) Box plot presenting the distribution of Molecular Weights (MW) for the
small molecules, highlighting central tendencies and potential outliers. Enhanced colors and styles enhance the visual appeal of the plots.
TABLE 1 Comparative performance metrics of machine learning models for classification.

Model Accuracy Sensitivity Specificity MCC AUC

kNN 0.951724 0.949451 0.954217 0.903323 0.976097

SVM 0.917241 0.859341 0.980723 0.842064 0.975628

RF 0.951724 0.942857 0.961446 0.903585 0.990369

NB 0.896552 0.832967 0.966265 0.802135 0.975718
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patients with good diagnostic values in the training dataset

GSE125583 and external validation dataset GSE173955. These

top 5 hub genes are involved in the longevity related pathway,

glucagon signaling pathway, insulin resistance pathway and

Alzheimer disease pathway. The integrative analysis of
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OSGMGs, DEGs, and WGCNA datasets, followed by ROC

analysis and PPI network evaluation, highlighted the

importance of hub genes AKT1 and PPARGC1A. These genes

showed high predictive accuracy with AUC values exceeding 0.70,

underscoring their potential in AD pathogenesis and progression.
Lys 170 Arg 144

2-(2,3-dihydroindol-1-yl)-N-(1-
phenylethyl)acetamide

Thr 172

Arg 174

N-Tosylcyclohexanecarboxamide

FIGURE 8

Structural representation of AKT1 protein with inhibitor binding sites. The main image showcases the overall tertiary structure of the protein with two
inhibitor molecules bound at distinct sites. Insets provide detailed views of the binding interactions: the left inset highlights 2-(2,3-dihydroindol-1-
yl)-N-(1-phenylethyl)acetamide (in green) interacting with amino acids Arg 144 and Asp 170, while the right inset shows N-
Tosylcyclohexanecarboxamide (in red) in proximity to Arg 144 and Thr 172. These interactions are crucial for the inhibitory mechanism and provide
insights into the molecular architecture of the binding pockets within AKT1.
TABLE 2 Molecular docking results for AKT1 with screened molecules.

Inhibitors PubChem IDs Binding Affinity (kcal/mol) RMSD

2-(2,3-dihydroindol-1-yl)-N-(1-phenylethyl)acetamide 5203469 -7.4 2.1

N-Tosylcyclohexanecarboxamide 4879102 -8.3 1.4

1-methyl-N-[[2-(2-methyloxan-2-yl)pyrimidin-5-yl]methyl]pyrazole-3-carboxamide 110117862 -7.2 2.1

N-cyclopentyl-5-(2-furyl)-2-methyl-2H-1,2,6-thiadiazine-3-carboxamide 1,1-dioxide 22515296 7.3 2.1

N-[(2-methoxyphenyl)methyl]-1-pyrazin-2-ylpiperidine-3-carboxamide 23607864 -6.3 2.8
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The robustness of AKT1 and PPARGC1A as hub genes is further

accentuated by their pivotal roles in neuronal survival and energy

metabolism, respectively, which are critical processes implicated

in AD pathophysiology.
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Comparatively, our findings are consistent with existing

literature indicating the crucial roles of AKT1 and PPARGC1A in

neurodegenerative diseases. Previous studies have implicated AKT1

in neuronal cell survival pathways, and dysregulation of
FIGURE 9

Three-dimensional structure of the PPARGC1A protein with bound ligands. The central protein structure is shown in a ribbon diagram with two
ligands bound in distinct active sites. The left inset details the interaction of the ligand 7-[(3-Methoxyphenyl) methyl]-2-pyrrolidin-1-yl-3,5,6,8-
tetrahydropyrido[3,4-d] pyrimidin-4-one (in red) with key amino acids Tyr 222 and Ser 332. The right inset shows the ligand N-(5-fluoro-2-
methylphenyl)-2-(4-methyl-6-oxo-2-(pyrrolidin-1-yl)-6H-pyridazin-1-yl) acetamide (in green) in proximity to Tyr 222, Lys 230, and Ser 332,
illustrating the ligands’ positions relative to important residues within the binding domain of PPARGC1A.
TABLE 3 Molecular docking results for PPARGC1A with screened enhancers.

Enhancers
PubChem
IDs

Binding Affinity
(kcal/mol)

RMSD

1-(3,4-dihydro-2H-pyrrol-5-yl)-3-(2-methoxyphenyl)-1-(4-methoxyphenyl)urea 7287281 -9.1 1.1

3-(3-chloro-1H-1,2,4-triazol-1-yl)adamantane-1-carboxylic acid 601625 -1-.85 1.60

7-[(3-Methoxyphenyl)methyl]-2-pyrrolidin-1-yl-3,5,6,8-tetrahydropyrido[3,4-d]pyrimidin-4-one 135719671 -12.34 1.64

N-(5-fluoro-2-methylphenyl)-2-[4-methyl-6-oxo-2-(pyrrolidin-1-yl)-1,6-dihydropyrimidin-1-
yl]acetamide

49667243 -11.46 1.68

N-[(2-Fluorophenyl)methyl]-2-(piperidin-1-YL)-5,6,7,8-tetrahydroquinazoline-6-carboxamide 71836093 -6.44 1.76
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PPARGC1A has been associated with mitochondrial dysfunction in

AD. AKT1 influences various cellular processes, including

metabolism, growth, proliferation, survival, transcription, and

protein synthesis, which are critical in maintaining neuronal

health and function (41). In our study, we observed an

upregulation of AKT1 expression in AD, aligning with findings

from previous research (17). Yang et al. (42) reported that Akt is

increasingly activated in the neuronal cells of AD patients. Incessant

activation of the PI3K/Akt pathway suppresses mTOR inhibition

and the protective effect of FOXO signaling, thus aggravating the

impact of Tau hyperphosphorylation and Ab deposition, cognition

impairment, and synaptic damage. Due to the significant effect of

the Akt signaling pathway on AD deterioration, understanding the

dynamics of AKT1 upregulation could therefore provide critical

insights into developing targeted therapies as we suggest with the

inhibitor molecules that we identified in this article. Machine

learning-based virtual screening helped us identified molecular

patterns, docking and potential efficacy of multiple small

molecules that could interacts with AKT1. Interestingly, N-

Tosylcyclohexanecarboxamide exhibited the highest binding

affinity for AKT1, suggesting it as a lead molecule for

further development.

Additionally, PPARGC1A also referred to as PGC- 1a, involved in
the regulation of cellular mitochondrial biogenesis and energy

metabolism, functions which are impaired in AD. Reduction of

PPARGC1A, has been shown to modulate neuronal oxidative stress

and mitochondrial function besides being downregulated in brains of

AD patients (43). As previously mentioned, PPARGC1A is involved in

regulating energy homeostasis, in addition to other aspects of the

disease process, such as inflammatory gene expression and synaptic

function, which are impaired in AD patients (44). For instance,

research by Zheng et al. (45) has indicated that PPARGC1A

overexpression could prevent amyloid-beta disruption of both

mitochondrial capabilities and oxidative stress in neurons and

therefore enhancing the activity of PPARGC1A might possibly

provide a form of protection against the development of AD.

Similarly, interventions that help activate this PPARGC1A have been

demonstrated to elicit enhanced cognitive performance and lower

neurodegeneration in AD models, thus lending further credence to

the role of this pathway as a therapeutic target in AD (46). In this study

we also identified high binding affinities molecules targeting

PPARGC1A, particularly 7-[(3-Methoxyphenyl)methyl]-2-pyrrolidin-

1-yl-3,5,6,8-tetrahydropyrido[3,4-d]pyrimidin-4-one, underscore their

potential as effective PPARGC1A enhancer. Despite the promising

binding affinities observed through molecular docking, it is important

to note that these simulations are limited by assumptions such as rigid

protein structures and do not account for the full complexity of

biological systems, including solvation, protein dynamics, and cellular

environments. Furthermore, the potential for off-target effects or

adverse pharmacological interactions of the screened small molecules

was not assessed in this study, and future work will require detailed

ADMET profiling and experimental validation to fully evaluate their

therapeutic potential.
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We were able to show that molecular weight and LogP values

are significant features for molecule activity and established their

role for the AD drug discovery process. The Random Forest model

emerged as the most effective, with an AUC of 0.990, suggesting its

potential application in high-throughput screening assays. PCA

highlighted the dimensionality reduction in molecular feature

space, emphasizing the significance of certain features over others.

The dominance of the first principal component in explaining the

variance suggests that a few molecular descriptors may hold the key

to determining the activity of small molecules against AD targets.

Although the Random Forest model demonstrated high predictive

performance on our curated dataset, we recognize its reliance on

predefined molecular descriptors and the inherent limitations this

poses in capturing the full complexity of drug behavior in biological

systems. Future efforts will focus on external validation and

exploring more advanced modeling techniques, including

integration of biological features and deep learning approaches, to

enhance predictive accuracy and generalizability.

Our research has certain limitations that must be

acknowledged. While the bioinformatics and machine learning

approaches provide a powerful preliminary screening tool,

experimental validation in vivo and in vitro is imperative to

confirm the therapeutic potential of these molecules. Moreover,

the complexity of AD pathogenesis suggests that monotherapy

targeting a single protein may be insufficient. While AKT1 and

PPARGC1A are not brain-exclusive genes, RNA expression data

from the Human Protein Atlas (HPA) confirm their widespread

expression across key regions of the human brain, including the

hippocampus and cortex—areas central to Alzheimer’s disease

pathology (47). This supports their biological relevance in the

CNS. Notably, AKT1 has been shown to regulate neuronal survival

and synaptic plasticity, while PPARGC1A is critical for

mitochondrial biogenesis and neuronal energy metabolism—both

key processes impaired in AD (41, 44). However, we acknowledge

the necessity of cell-type–specific analyses in future studies and

propose that subsequent work integrate tissue-aware functional

networks such as GIANT and HumanBase, which model context-

specific gene interactions to enhance the precision of

computational predictions (48, 49). Given that AKT1 and

PPARGC1A are broadly expressed and serve as central signaling

hubs across multiple tissues, systemic targeting of these genes may

lack the specificity required for safe therapeutic application. As

such, these findings should be considered primarily as a proof-of-

concept, illustrating the potential of our integrative computational

pipeline for discovering and prioritizing candidate genes and small

molecules in Alzheimer’s disease, rather than as immediate

therapeutic leads.

Therefore, future studies could focus on multi-targeted drug

approaches and combinatorial therapies that may offer more

comprehensive treatment strategies. To sum up, our integrative

methodology exemplifies the utility of combining computational

and experimental approaches to hasten the discovery of potential

therapeutic agents for complex diseases like AD. This work provides
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direction for follow-up experimental work and highlights the

possibility of utilizing machine learning to improve drug

discovery. The implications of these findings are optimistic for

the use of precision medicine approaches in the management

of AD.
5 Conclusion

In conclusion, we have identified significant genes that link the

pathways of oxidative stress and glucose metabolism in AD based on

our comprehensive bioinformatics analysis. We have substantiated the

significance of AKT1 and PPARGC1A in maintaining neuronal

integrity and metabolism, both of which are disrupted in AD.

Understanding AKT1’s participation in the cell survival signaling

networks and the influence of PPARGC1A on mitochondria helps

elucidate AD at the molecular level. These findings support and extend

those previous studies by confirming that modulation of oxidative

stress and promotion of metabolism are potential approaches to AD

prevention. In our study, machine learning has not only helped

enhance the predictive accuracy of biomarker performance but also

supported the discovery of new small molecules by means of virtual

screening. This approach yielded promising leads, such as N-

Tosylcyclohexanecarboxamide and 7-[(3-Methoxyphenyl)methyl]-2-

pyrrolidin-1-yl-3,5,6,8-tetrahydropyrido[3,4-d]pyrimidin-4-one,

which demonstrated significant binding affinities to AKT1 and

PPARGC1A, respectively. Additionally, given the multifactorial

nature of AD, a single-target therapeutic strategy may not be

sufficient to address the complexities of the disease. Future research

should, therefore, consider multi-target approaches and the potential

for combination therapies to provide a more effective treatment

paradigm for AD. Our work lays a solid foundation for the further

exploration of oxidative stress and glucose metabolism in AD and

opens avenues for the development of targeted therapeutics. By

harnessing the power of computational biology and machine

learning, we move closer to expanding the therapeutic options for

treating Alzheimer’s disease.
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