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Background: While increased coagulation is linked to cancer progression, the 
specific roles of coagulation-related genes in colorectal cancer (CRC) have not 
been extensively studied. This research identified coagulation-related subtypes 
(CRSs) and evaluated a coagulation-related risk score for its prognostic value 
in CRC. 

Methods: CRC dataset from The Cancer Genome Atlas was analyzed to identify 
CRSs using nonnegative matrix factorization, which was validated across 
GSE39582 and pan-cancer datasets. A list of 285 coagulation-related genes 
was used to develop a risk signature via least absolute shrinkage and selection 
operator and multivariate Cox regression. We also assessed immune 
characteristics and treatment responses using single-sample gene set 
enrichment analysis, Tumor Immune Dysfunction and Exclusion, and 
immunophenoscore, and constructed an overall survival-related nomogram. 

Results: CRS analysis categorized pan-cancers, including CRC, into three 
clusters: C1 with poor immune infiltration but better prognosis, C2 with high 
immune activity and prolonged survival, and C3 marked by dense 
immunosuppressive cells correlating with poor outcomes. Drug sensitivity 
analysis showed distinct responses across CRSs, influencing treatment choices. 
We developed a coagulation-related risk score based on F2RL2, GP1BA, MMP10, 
and TIMP1, which stratified CRC patients by outcome and correlated with distinct 
patterns of immune infiltration and therapeutic response. A validated nomogram 
incorporating age, TNM stage, and risk score accurately predicted overall 
survival, while experimental validations confirmed the bioinformatics 
predictions regarding TIMP1’s role in CRC progression. 
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Conclusions: A coagulation-based classifier effectively categorizes CRC and 
potentially other cancers, interacting significantly with the immune 
microenvironment to influence disease progression and treatment responsiveness. 
This approach offers valuable insights for personalized cancer therapy. 
KEYWORDS 

coagulation, clustering, colorectal cancer, precision treatment, tumor microenvironment 
Introduction 

Coagulation is a dynamic and complex biological process that 
regulates the balance between clot formation and bleeding by triggering 
a cascade of reactions including the activation of coagulation factors 
and platelets (1, 2). According to theory, there is a close relationship 
between the coagulation system and malignancy. A number of cancer 
patients have coagulation abnormalities such as thrombosis and 
hemorrhage. The upregulation of procoagulant molecules is found in 
various cancers, especially tissue factor, which is associated with 
survival probability (3–6). Exposure of cellular procoagulant features 
during hemostatic activation can result in carcinogenesis at all cancer 
stages. Thereby, coagulation is associated with the development of 
cancer and the clinical prognosis for cancer patients. A deeper 
understanding of coagulation may help to identify potential 
biomarkers of cancer development and provide insight into new 
therapeutic options for cancer sufferers. 

Colorectal cancer (CRC) ranks as the second leading cause of 
cancer-related deaths worldwide and stands as the third most 
prevalent form of cancer. Recurrence and metastasis of cancer 
still trap almost half of CRC patients, making patient survival 
extremely low (7, 8). Genetic heterogeneities within and between 
CRC tumours contribute to the tumour microenvironment (TME) 
and resistance to therapeutic intervention, which ultimately leads to 
tumour metastasis. Of note, hemostatic components such as 
Ddimer and fibrinogen are associated with clinical stage and can 
be potential prognostic markers for CRC mortality prediction, 
tumor progression, and therapeutic response (9–14). In CRC 
patients, activation of the coagulation system is often associated 
with an advanced stage of the tumour and a bad prognosis (10, 12, 
15–18). Moreover, thrombotic events are common complications 
for CRC patients, indicating a hypercoagulable state (19). 
Therefore, gaining a deeper insight into the connection between 
the coagulation system and the CRC microenvironment is crucial. 

To date, the Consensus Molecular Subtypes (CMS) framework 
classifies CRC into four groups—CMS1 (immune), CMS2 (canonical/ 
WNT-MYC), CMS3 (metabolic), and CMS4 (mesenchymal)—and has 
been widely adopted for its biological interpretability (20). However, 
intra-subtype heterogeneity in patient prognosis, immune infiltration, 
and therapy response remains substantial, and CMS stability across 
pan-cancer cohorts is limited. Here, we introduce a novel coagulation-
related subtype (CRS), derived from 285 coagulation-related genes 
02 
(CRGs), and perform a head-to-head comparison with CMS. The 
prognostic value, TME, and treatment responses associated with these 
subtypes were evaluated. We validated subtype classification across an 
independent CRC cohort and extended the analysis to pan-cancer. 
Subsequently, we designed a coagulation-related risk score (CRRS) to 
predict the prognosis of CRC patients and assess the potential 
effectiveness of immunotherapy. Finally, in vivo and in vitro 
experiments evaluated coagulation-related hub genes by exploring 
coagulation associated gene expression patterns and the 
interconnection between coagulation and CRC. This approach 
provides for the development of more personalized and precise 
therapeutic strategies for treatment of CRC patients. The flow chart 
of the investigation is presented in Figure 1. 
Materials and methods 

Gathering and analysing data 

Gene Expression Omnibus (GEO) (https://cancergenome.nih.gov/) 
and Cancer Genome Altas (TCGA) (https://portal.gdc.cancer.gov/) 
provided the clinical and transcripts per million (TPM) RNA-seq 
data for CRC. A pan-cancer study was conducted subsequently. 
Download GSE39582 (n = 585) from the GEO database to do an 
impartial queue verification. The pan-cancer subsets on XENA were 
the source of the pan-cancer transcriptome data, which were then 
normalised using log2 (X+1). 8473 samples were kept for further 
examination after non-tumor samples were eliminated. TCGA and 
GEO all included 285 CRGs, which were obtained via the gene set 
enrichment analysis (GSEA) (https://www.gsea-msigdb.org/gsea/ 
index.jsp) and earlier research. 

The gene list is displayed  in  the supplementary materials 
(Additional File 10, Supplementary Table S1). In addition, we 
downloaded alteration data including Copy number alteration 
(CNA) and Somatic mutation counts from the cbioportal online 
tool (https://www.cbioportal.org) (21). The R package “maftools” 
was used to analyze and visualize the somatic mutation data. It 
included many modules for analysis and visualization that are often 
employed in cancer genomic research (22). We also studied the 
relationships between clinical outcome and patients with or without 
DNA alteration. Table 1 contains a list of the dataset profiles used in 
this investigation. 
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Non-negative matrix factorization 
clustering 

First, using univariate COX regression to identify the genes 
related to prognosis for consensus clustering, we investigated the 
interaction connection between various CRGs. Utilizing the “NMF” 
package, we conducted a cluster analysis of all CRC samples based 
on CRGs, considering both survival status and duration. This 
Frontiers in Immunology 03 
approach effectively reduced dimensionality and facilitated the 
investigation of potential molecular subtypes (23). We employed 
the “brunet” method with 30 iterations for non-negative matrix 
factorization (NMF) clustering. To identify the optimal cluster 
count, we calculated four metrics—cophenetic, residuals, RSS, and 
silhouette—across a rank range of 2 to 10. Based on the cophenetic 
metric, we set the optimal cluster count to 3, forming three 
stable subtypes. 
FIGURE 1 

Workflow of the study. 
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Clinical outcome and TME landscape 
analysis 

The “survminer” package was utilized to visualize survival 
differences across various groups. To illustrate the relationship 
between CRS and clinicopathological characteristics, a Sankey 
diagram was generated using the “ggalluvial” R package.  Different
coagulation patterns may indicate distinct tumor microenvironments. 
We assessed the immune score, stromal score, ESTIMATE score, 
and tumor purity for each sample using the ESTIMATE algorithm 
(24). The single-sample gene set enrichment analysis (ssGSEA) method 
was applied to quantify the enrichment levels of immune signatures 
based on the transcriptomic data (25). Previous study provided the 
marker genes, which include immune cell types, immune-related 
pathways, and activities (26). The “GSVA” R program was used 
to calculate the normalized enrichment score for each immunological 
sample in each gene set. We also used seven other algorithms including 
TIMER (27), CIBERSORT, CIBERSORT-ABS (28), QUANTISEQ 
(29), MCPCOUNTER (30), XCell (31), and EPIC (32) to ensure

the robustness and the results of ssGSEA. Lastly, calculations 
were made to determine the variations in T-cell stimulators, 
immunological checkpoints, chemokines, and human leukocyte 
antigen (HLA). P-values less than 0.05 denoted statistical significance. 
 

 

Functional enrichment analysis 

To identify the driving pathways of each coagulation-related 
subtype, we performed Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment 
analyses on the differentially expressed genes specific to each

subtype. First, we converted gene symbols to Entrez IDs using the 
org.Hs.eg.db package in R. Subsequently, we conducted the analyses 
using the enrichGO() and enrichKEGG() functions from the 
clusterProfiler (v4.0) package, with the  parameters  set at

pvalueCutoff = 1 and a significance threshold of p < 0.05. 
Prediction of immunotherapy and 
chemotherapy response 

Using the “maftools” program, we were able to determine the 
tumor mutation burden (TMB) for each patient with colorectal 
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cancer in the TCGA database. The tumor immune dysfunction and 
exclusion (TIDE) algorithm (http://tide.dfci.harvard.edu) was

employed to assess three cell types that impede T-cell infiltration 
into tumors: interferon-gamma (IFNG), myeloid-derived 
suppressor cells (MDSC), and M2 subtypes of tumor-associated 
macrophages (TAM.M2). Additionally, it evaluated the exclusion of 
cytotoxic T lymphocytes (CTL) by immunosuppressive factors 
(Exclusion) and the dysfunction of CTL in tumor infiltration 
(Dysfunction) (33, 34). By comprehensively assessing these two 
immune evasion mechanisms, TIDE predicts the clinical response 
of patients to immunotherapy. Moreover, to evaluate the clinical 
response to programmed cell death protein 1 (PD-1) blockers and 
cytotoxic T-lymphocyte antigen 4 (CTLA-4) blockers and gauge the 
likelihood of tumor immune evasion, immunophenoscore (IPS) was 
utilized, which was downloaded from the Cancer Immunome Atlas 
(TCIA) database (https://tcia.at/home) (35). Tumor stemness was 
evaluated using RNAss, derived from mRNA expression, and 
DNAss, based on DNA methylation. The scores ranged from 0 to 
1, with 1 indicating the highest level of undifferentiation. Drug 
sensitivity prediction was performed using the “pRRophetic” 
package (36), utilizing gene expression and drug sensitivity data 
from the Cancer Genome Project (CGP) as a training set (37). This 
approach employed ridge regression to forecast the sensitivity to 
various drugs. 
Development and validation of the 
coagulation-related risk score 

The differential expressed CRGs among different clusters were 
screened using “limma” R package. Least Absolute Shrinkage and 
Selection Operator (LASSO) approach was used to focus the gene 
screening procedure (38). Subsequently, the Cox proportional 
hazards analysis identified genes significantly associated with 
coagulation. Subsequently, a CRRS was developed using the 
regression coefficients obtained from the multivariable Cox 
regression analysis along with the training dataset. The formula 
for the risk score was defined as follows: 

Risk score = S Coefficient of (i)×Expression level of the gene (i), 
where “gene i” refers to the genes identified through the process. 

The expression of gene (i) is the expression value of each 
candidate CRG (i) for each patient, and the coefficient of gene (i) 
is the regression coefficient of gene (i). 
TABLE 1 The profile of datasets. 

Set Type Dataset Sample Type Number Source 

Training set 
TCGA-COAD tissue 480 TCGA 

TCGA-READ tissue 167 TCGA 

Validation set 
GSE39582 tissue 585 GEO 

TCGA-PANCAN tissue 8473 TCGA 

Re-validation set 
– nude mouse 10 This study 

– cell line 8 This study 
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Harrell’s Concordance index (C-index) was a regularly used 
metric to verify the correctness of the regression model. Using the 
time-dependent receiver operating characteristic (ROC) curve, we 
also projected the survival rates of patients with colorectal cancer at 
1, 2, 3, and 5 years. The ‘predict’ function in the survival R package 
was used to ascertain each patient’s risk score. Every patient was 
categorised into high- and low-risk categories based on the median 
value. Using analysis of risk score plots and survival curves within 
the training cohort, we evaluated the clinical value of the CRRS. 
Furthermore, the GEO cohort was used to confirm the prognostic 
accuracy of the CRRS. 
Nomogram development and assessment 

The “rms” R package was employed to integrate independent 
prognostic factors—identified through both multivariate and 
univariate Cox analyses of the signature—and clinical variables to 
construct a nomogram. To validate the accuracy of the nomogram 
and the risk score, the C-index was calculated using the “pec” R 
package. Using the Hosmer-Lemeshow test, survival probability 
calibration curves for several years were produced. Additionally, we 
assessed the net benefit and clinical utility of the nomogram in 
comparison to a risk score using decision curve analysis (DCA). 
Analysis of single-cell RNA sequences 

The Tumor Immune Single-Cell Hub (TISCH) analysis, which 
utilizes single-cell RNA sequencing data to provide detailed cell type 
annotations at the single-cell level, was used to evaluate data from 
the GSE146771 dataset to elucidate the elements of the tumor 
microenvironment (TME) (39, 40). We utilized the datasets derived 
from TISCH to calculate the expression of hub genes selected above 
in single cell populations. 
Quantitative real-time PCR and 
immunohistochemistry 

To assess the protein expression levels of the signature gene in 
colorectal cancer and normal tissue samples, we analyzed IHC data 
and images obtained from the Human Protein Atlas (HPA, https:// 
www.proteinatlas.org/). We cultured a normal human colon 
mucosal epithelial cell line (NCM460) along with seven colorectal 
cancer cell lines (SW480, HCT116, SW620, LS174T, HCT8, LoVo, 
and Caco2). Following RNA extraction from these cells, we 
performed quantitative real-time PCR (qPCR) to validate the 
expression of the signature gene. Total RNA was extracted using 
TRIzol reagent (#15596018, Invitrogen, Carlsbad, CA, USA) and 
subsequently reverse transcribed with a PrimeScript™ RT Reagent 
Kit (Cat#: E096-01A, Novoprotein, Shanghai, China). The qPCR 
was carried out following the TB Green Premix Ex Taq protocol 
(Novoprotein, Inc.), using specific primers. GAPDH was employed 
as the internal control, and the relative mRNA levels were 
Frontiers in Immunology 05 
determined by the 2-DDCt method. Both technical and biological 
replicates were conducted in triplicate for each gene during RT­
qPCR analysis. Additional details on the RNA molecules tested in 
the cell lines and the specific primers used can be found in 
Additional File 10, Supplementary Table S2. 
Cell culture and transfection 

Human-derived CRC cell lines were obtained from the 
American Type Culture Collection (Manassas, VA, USA). These 
cells were maintained in either RPMI or DMEM media, both 
sourced from Gibco (Carlsbad, CA, USA), and supplemented 
with 10% fetal bovine serum (FBS). Regular passage of cells was 
carried out, and routine screenings for mycoplasma contamination 
were performed, ensuring cells were utilized only upon receiving 
negative test results. 

The shRNA (Genepharma, China) targeting TIMP1 were 
recombined into lentiviral vectors to knockdown TIMP1, then 
CRC cells were selected by puromycin for 2 weeks after 72h 
infection. Stable knockdown cell lines were constructed and 
verified by q-PCR. The shRNA sequences used in this research 
are listed in Additional File 10; Supplementary Table S3. 
Cell proliferation and plate clone formation 
assays 

The proliferation capacities of colorectal cancer cells were 
assessed using the cell counting kit-8 (CCK-8) assay (Biosharp, 
China). Cells were seeded into a 96-well plate at a density of 5 × 103 

cells per well, with 6 wells allocated for each group. Grouped as 
follows: HCT116 (NC, shTIMP1#1, shTIMP1#2), SW480 (NC, 
shTIMP1#1, shTIMP1#2). Following TIMP1 knockdown, the 
CCK-8 assay was conducted by adding 10ml of CCK-8 solution to 
each well, followed by a 1.5-hour incubation in a dark environment 
within an incubator. Subsequently, absorbance readings were 
obtained at a wavelength of 450 nm using a microplate reader 
(BD Biosciences, San Jose, CA, USA). 

According to the same grouping method, we employed colony 
formation assays to assess cell proliferation capability. Cells were 
counted, diluted, and then seeded onto six-well plates, where they 
were cultured for 12 days. After the incubation phase, the colonies 
were treated with 4% paraformaldehyde for fixation and then 
stained using 0.5% crystal violet. 
Wound healing assay and transwell assay 

Cells were plated into six-well dishes, and a wound line was 
created using a 200 ml disposable pipette tip. Once cell confluence 
reached around 80% to 90%, lines were etched across the cell layer. 
The plates were subsequently rinsed twice with PBS to eliminate any 
dislodged cells. Images of wound closure were taken at 0, 24, and 
48 hours. 
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The cell migration capacity was evaluated using a transwell 
chamber (#3422, Corning, Cambridge, MA, USA). Cells were 
placed in the upper chamber containing 200 ml of serum-free 
medium at a concentration of 1.5 × 104 cells per well. In the 
lower chamber, 700 ml of medium supplemented with 20% serum 
was added. Following a 36-hour incubation, the cells were fixed, 
stained with crystal violet, and the migrated cells were quantified 
using an inverted optical microscope. 
In vivo animal studies 

All animal experiments were performed in strict accordance 
with the National Regulation of China for the Care and Use of 
Laboratory Animals. Male BALB/c nude mice, aged 6–8 weeks, were 
sourced from Beijing HFK Bio-technology Co. Ltd. (Beijing, China) 
and maintained in a specific pathogen-free (SPF) environment to 
develop the animal models. For each experimental group, 6 × 106 

treated CRC cells (sh-TIMP1 and sh-control) were collected and 
subcutaneously injected into the male BALB/c mice (n = 6). Tumor 
volumes were monitored every 72 hours using an electronic scale 
and vernier caliper, starting 6 days after tumor induction. After 27 
days of treatment, all mice were humanely euthanized by cervical 
dislocation, and the tumors were harvested for further analysis. 
Statistical analysis 

Bioinformatics analyses were performed using R software (version 
4.2.1). A p-value of less than 0.05 was considered statistically 
significant. Differences between the two groups were assessed using 
either the paired two-tailed Student’s t-test or the Mann-Whitney-

Wilcoxon test. For comparisons involving three groups, ANOVA or 
the Kruskal-Wallis rank-sum test was applied. The chi-square test was 
employed to analyze clinical characteristic differences. 
Results 

Landscape of genetic alteration profiles in 
CRC samples 

We analyzed the mutation spectrum of 539 CRC patients using 
data from the TCGA database, focusing on 285 CRGs, including the 
20 most frequently mutated ones. Mutations were present in 511 
out of 539 samples (94.8%). The genes with the highest mutation 
frequencies in CRC were PIK3CA (29%), LRP1 (11%), VWF (10%), 
FBN1 (10%), and FN1 (10%) (Figure 2A). Upon categorizing the 
mutations, missense mutations emerged as the most prevalent type 
(Figure 2B). Single nucleotide polymorphisms (SNPs) were more 
frequently detected compared to insertions or deletions (Figure 2C), 
with C>T substitutions being the most prevalent type of single-
nucleotide variant (Figure 2D). The median number of mutated 
bases per patient was two (Figure 2E). A box plot was used to show 
the frequency of different variant classifications (Figure 2F). By 
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reanalyzing the data to account for the total number of mutations 
and the presence of multiple hits, we identified the top 10 most 
frequently mutated genes (Figure 2G). Figure 2H presents the 
mutual exclusivity and co-occurrence analysis for the top 20 
mutated genes within the TCGA cohort. According to Figure 2I, 
CRG alterations were found in 93.4% of the 220 cases. Figure 2J 
displays the gene alteration frequencies among CRC patients, and 
Figure 2K reveals that 55.7% of CRC patients had at least one 
somatic CNA involving CRGs. Most of these genes exhibited high 
CNA frequency due to co-amplification rather than co-deletion 
(Figure 2L). Survival analysis indicated that patients with lower 
gene alteration frequencies had a better prognosis than those with 
higher frequencies (Figure 2M). However, no statistically significant 
difference was observed between the high and low CNA frequency 
groups (Figure 2N). 
Coagulation-related subtypes associated 
with prognosis and clinicopathologic 
features 

A network was employed to visualize a comprehensive 
landscape of the intricate relationships among CRGs and the 
predictive accuracy for CRC patients (Figure 3A). Subsequently, 
we classified the CRC patients in the TCGA database into CRS 
utilizing the NMF algorithm (Figure 3B). According to the total 
within sum of squares (Figures 3C, D), the samples were divided 
into three subtypes. The contour widths of the three types were 0.85, 
0.95, and 0.92 with an average silhouette width of 0.9. Principal 
component analysis (PCA) was conducted to compare the 
transcriptome expression of the various coagulation subtypes. In 
general, PCA results revealed that CRC samples were well-separated 
into three remarkably different subtypes, by CRGs (Figure 3E). 

It is well-accepted that coagulation is firmly associated with the 
local growth as well as metastatic potential of CRC. Consistent with 
previous studies, survival analyses demonstrated a specific 
prognosis for various clusters. KM analyses revealed that patients 
in clusters C1 and C2 exhibited a prolonged overall survival (OS), 
while patients in cluster C3 had the worst outcomes (Figures 3F–H). 
However, there was no statistically significant difference in disease 
free survival (DFS) among patients in the three clusters (Figure 3I, 
P=0.468). Figure 3J demonstrates that C1 primarily corresponds to 
CMS2 and CMS3. In contrast, C2 showed no specific distribution 
pattern, and C3 was mainly related to CMS4. This alignment is in 
agreement with the characteristic features and prognostic indicators 
of CRS. Notable differences were found in clinicopathologic factors 
such as T stage, N stage, pathological stage, and microsatellite 
instability (MSI) status (Figure 3K). A Sankey plot illustrates the 
summarized distribution of various clinical features among the 
patients (Figure 3L). Furthermore, the proportion of higher T 
stage (T3/T4), higher N stage (N1/N2), and later pathologic stage 
(stage III/IV) CRCs was greatest in subtype C3, suggesting 
relat ionships  among  CRC  subtypes,  progression,  and  
differentiation of CRC. In addition, patients in the C2 and C3 
clusters were associated with more MSI status, which suggested a 
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FIGURE 2 

The genomic landscape of CRGs in CRC. (A) Mutation frequency of CRGs in TCGA-COADREAD. (B–D) According to different classification 
categories, missense mutation, SNP, and C>T mutation types accounted for a larger proportion. (E) Mutation burden in each sample. (F) The 
summary of the occurrence of each variant classification. (G) Top 10 mutated genes in CRC. (H) Mutual exclusion and synergistic heat maps of 
mutated genes in of CRGs in CRC. (I) Histogram of the proportion of gene alteration in CRC. (J) Gene alteration frequency of CRC patients in TCGA. 
(K) Histogram of the proportion of somatic copy number alteration in CRC. (L) The CNA frequency of CRGs. (M) Kaplan-Meier OS, PFS, DSS, and 
DFS curves between gene altered and gene unaltered group. (N) Kaplan-Meier OS, PFS, DSS, and DFS curves between copy number altered and 
copy number unaltered group. 
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higher TMB (Figure 3M). By calculating the C-index and 
conducting DCA analysis, we found that our model’s predictive 
ability outperforms CMS molecular subtyping (Supplementary 
Figures S1H–K). The same trends were observed in the validation 
set (Supplementary Figure S1). 
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Coagulation-based subtypes are associated 
with distinct TMEs 

The coagulation system and CRGs are theoretically linked to the 
progression of malignant tumors and are also associated with the 
FIGURE 3 

Prognostic association of CRGs classifications. (A) Network diagram showing the interaction of 35 CRGs in CRC. The size of the circles indicates the 
p-value of each gene on survival prognosis. purple represents risk factors, and green dots represent favorable factors. The thickness of the lines 
indicates the correlation values between genes. The red and blue lines represent positive and negative correlations of gene regulation, respectively. 
(B) The consensus clustering heat map visualizes the degree of segmentation for 35 genes in 534 samples. (C) The average silhouette width 
represents the coherence of clusters. (D) The optimal number of clusters. (E) Principal component analysis plots. (F–I) Kaplan-Meier overall survival 
(F), disease-specific survival (G), progress-free survival (H), and disease-free survival curves (I). (J) The correspondence between CRS, CMS and 
survival status. (K) Heatmap presenting the clinicopathologic features of these subtypes. (L) Sankey diagram showing the relationship between CRS, 
MSI status, T stage, N stage, TNM stage and status. (M) The distribution characteristics of different clinicopathological factors in three subtypes. 
(*p<0.05 and ***p<0.001). 
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tumor microenvironment (TME). We investigated various cellular 
and acellular components within the TME. Overall, the immune 
score, stromal score, and estimate score gradually increased from 
cluster C1 to cluster C3, while tumor purity followed a similar 
upward trend (Figure 4A). These findings suggest that cluster C3 is 
characterized by a higher presence of immune cells, immune 
molecules, and stromal elements. Specifically, we assessed 
immune cell infiltration and immune activity across different 
subtypes using ssGSEA. The results indicated that cluster C3 was 
predominantly enriched with immunosuppressive cells and innate 
immune cells, including macrophages, immature dendritic cells, 
regulatory T cells, Th1 cells, and mast cells, in contrast to clusters 
C1 and C2. On the other hand, cluster C2 was rich in 
immunocompetent cells such as natural killer cells and Th2 cells 
(Figure 4B). Both clusters C2 and C3 showed significantly higher 
overall infiltration of immune-related pathways and increased 
immune activity compared to cluster C1, reflecting an 
environment of heightened immune activation (Figure 4C). An 
analysis of 29 immune signatures revealed that cluster C1 had the 
lowest abundance of immune-related cells and functions. 
Additionally, the distribution of infiltrating immune cells across 
the three clusters, as inferred by seven algorithms, demonstrated 
that most immune cells were more prevalent in clusters C2 and 
C3 (Figure 4D). 

We further examined the expression of HLA family genes, 
chemokines, immune checkpoints, and T-cell stimulators across 
different CRS. Our findings revealed a significant upregulation of 
most HLA family genes in cluster C3 (Figure 4E). Chemokine 
expression analysis across the subtypes indicated a more intense 
inflammatory response in clusters C3 and C2 compared to C1 
(Figure 4F). Additionally, immune checkpoint inhibitors displayed 
varying levels of expression, with uniform upregulation observed in 
the C3 cluster, suggesting that immune evasion might contribute to 
the poorer prognosis seen in patients with this subtype (Figure 4G). 
T-cell stimulators were also expressed at higher levels in clusters C2 
and C3 (Figure 4H). In summary, our study identified distinct 
microenvironments associated with each subtype, which may 
underlie the observed differences in patient prognosis. The TME 
analysis results from the validation dataset were consistent with 
those from the training group (Supplementary Figure S2). 
Functional enrichment analysis of 
coagulation-related subtypes 

Differentially expressed genes for the coagulation-related 
subtypes are listed in Supplementary Table S2. Overrepresentation 
analysis of GO and KEGG on the DEGs of C1, C2, and C3 subtypes 
revealed distinct pathway signatures (Supplementary Tables S3, S4). 

C1 is characterized by adaptive immunity and antigen 
presentation. Key GO terms include antigen processing and 
presentation via MHC class II, humoral immune response, and 
chemotaxis. Enriched KEGG pathways include Antigen processing 
and presentation, PI3K–Akt signaling pathway and Complement 
and coagulation cascades. C2 exhibits an innate immune and 
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inflammation-driven profile with matrix remodeling. Prominent 
GO terms are granulocyte migration, neutrophil chemotaxis, 
defense response to bacterium, and collagen catabolic process. 
Top KEGG pathways include Chemokine signaling pathway, TNF 
signaling pathway, and NF-kB signaling pathway. C3 is marked by 
complement activation and platelet–matrix interactions. Key GO 
terms include complement activation (classical pathway), collagen 
fibril organization, and extracellular structure organization. 
Enriched KEGG pathways include Complement and coagulation 
cascades and ECM–receptor interaction. These enriched GO terms 
and KEGG pathways highlight the unique immunological and 
coagulation profiles of each subtype. 
Somatic mutation landscape and 
prediction of clinical treatment efficacy 

The frequency of somatic mutations varied among the different 
subtypes. Although APC was the most frequently mutated gene, the 
rate of APC mutations differed across subtypes. Specifically,  the C2 and  
C3 subtypes exhibited reduced APC mutation frequencies, with 68% 
and 69% of the total mutations, respectively, compared to 81% in the C1 
subtype (Figures 5A–C). To determine the relationship between 
coagulation subtypes and immunotherapeutic efficacy, we assessed 
several indicators including TMB, TIDE, and immunophenoscore 
(IPS). Our analysis revealed that patients in clusters C3 and C2 had 
the highest TMB values, which corresponded to greater MSI status 
(Figure 5D). It is well established that a lower TIDE score is associated 
with a better clinical response to immunotherapy. As shown in 
Figure 5E, the TIDE score was highest in cluster C2, whereas cluster 
C1 had the lowest score. To further explore the relationship between 
coagulation subtypes and response to CTLA-4 and PD-1 blockers, we 
calculated the IPS for CRC patients. The results indicated that cluster 
C1 was significantly associated with a better response to these 
immunotherapies (Figure 5H), suggesting that patients in this group 
had the most favorable response to treatment. Additionally, tumor 
stemness was evaluated using RNAss and DNAss, revealing that tumors 
in the C1 subtype had the highest levels of stemness (Figures 5F, G). 

Using the pRRophetic R package, we calculated the IC50 values 
for key chemotherapeutic agents and targeted therapies across CRC 
samples. The results indicated that most drugs exhibited a potent 
cell-killing effect on the C2 subtype, which may contribute to its 
favorable prognosis. Several widely used CRC treatments, including 
5-Fluorouracil, Irinotecan, and Oxaliplatin, showed significantly 
different effects in the C2 group (Figure 5J, p<0.05). Conversely, the 
C1 subtype had lower IC50 values for Lapatinib, Dihydrorotenone, 
and Navitoclax (Figure 5I). The C3 subtype demonstrated reduced 
IC50 values for AZD1332, BMS−754807, Dasatinib, IGF1R_3801, 
and WZ4003 (Figure 5K). 
Pan-cancer analysis 

Given the link between coagulation and various cancer types, we 
explored the applicability of the previously mentioned classification in 
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other cancers. The algorithm was applied to categorize cancers, using 
TCGA-COADREAD as the training dataset. All solid tumors were 
successfully classified into three distinct subtypes with clear boundaries 
(Figure 6, Supplementary Figures S3–S6). 
Frontiers in Immunology 10 
We then employed the ESTIMATE algorithm to evaluate the 
overall TME status across different cancer types. In most cases, the 
immune landscape mirrored that observed in CRC. The highest 
estimate, stromal, and immune scores were observed in the C3 
FIGURE 4 

Immune landscape of CRS in the training set. (A) The violin plots display the immune score, stromal score, estimate score, and tumor purity score in 
the training cohort. (B, C) Immune cell infiltration (B) or functions (C) in the C1, C2 and C3 groups in the TCGA cohort. (D) Landscape of immune and 
stromal cell infiltration in the C1, C2 and C3 groups. Heatmap showing the normalized scores of immune and stromal infiltrations. (E–H) Boxplots 
representing the differential expression of HLA gene sets (E), chemokines  (F), immune checkpoints  (G), and T-cell stimulators (H). (*p<0.05, **p<0.01, 
***p<0.001, and ****p<0.0001). 
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subtype, indicating a higher abundance of immune cells and 
stromal components. Conversely, C3 exhibited the lowest tumor 
purity, which was inversely correlated with the estimate score. 
Immune infiltration analysis using multiple algorithms revealed 
significant differences in the levels of various immune cells among 
the pan-cancer CRS (Figure 6, Supplementary Figures S3–S6). 
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Development and validation of a 
coagulation-related prognostic signature 

To investigate the connection between coagulation and 
colorectal cancer (CRC), we analyzed the expression levels of 
CRGs in both cancerous and non-cancerous groups (Figure 7A). 
FIGURE 5 

Mutation landscape of CRS and drug sensitivity. (A–C) Top 20 mutated genes in the C1 (A), C2  (B), and C3 (C) in the TCGA cohort. (D-H) Violin plots 
presenting the TMB score (D), TIDE score (E), RNAss (F), DNAss (G), and IPS scores (H) in CRSs. (I–K) drug sensitivity analysis for C1 (I), C2  (J), and 
C3 (K). (*p<0.05, **p<0.01, and ***p<0.001). 
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Out of 285 CRGs, 14 differentially expressed genes (DEGs) were 
identified, as visualized in a volcano plot (Figure 7B). We analyzed 
the differentially expressed CRGs by applying LASSO regression in 
order to minimize the potential over-fitting problem and as well to 
narrow optimal prognostic signatures for the 285 CRGs. From the 
analyses, eight genes were selected with the optimal adjustment 
Frontiers in Immunology 12 
parameter (l) (Figures 7C, D). In the final analysis, multivariate 
Cox regression identified four prognosis-related genes among the 
CRGs: F2RL2 (P=0.02), GP1BA (P=0.02), MMP10 (P=0.01), and 
TIMP1 (P<0.01). A risk-score model was constructed using the 
following equation: risk score = (0.9015) × GP1BA + (0.4606) × 
TIMP1 + (-0.2331) × MMP10 + (-0.3357) × F2RL2 (Figures 7E, F). 
FIGURE 6 

Immune microenvironment of CRSs in pan-cancer. (A–F) The immune microenvironment in representative cancer: bladder cancer (A), glioblastoma 
(B), adrenocortical cancer (C), kidney clear cell carcinoma (D), prostate cancer (E), and ovarian cancer (F). (*p<0.05, **p<0.01, and ***p<0.001). 
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Time-dependent C-index curves were generated for various factors, 
revealing that the combined model had the highest C-index 
compared to individual variables (Figure 7G). Additionally, the 
combined model displayed the largest area under the ROC curve 
(AUC) relative to other single markers, highlighting the risk-score 
model’s strong predictive and prognostic capabilities (Figure 7H). 
Patients were stratified into high-risk and low-risk groups based on 
the median risk score. A Sankey diagram visually depicted the 
relationships between CRS, risk scores, and patient outcomes 
(Figure  7I).  Risk  heat  maps  from  the  training  cohort  
demonstrated that as risk increased, GP1BA and TIMP1 
expression levels rose, indicating high-risk genes, while F2RL2 
and MMP10 expression levels decreased, indicating low-risk 
genes. The high-risk group demonstrated a significantly higher 
mortality rate compared to the low-risk group (Figure 7J). 
Kaplan-Meier analysis further validated the prognostic accuracy 
of the risk model, revealing that higher risk scores were linked to 
poorer OS, progression-free survival (PFS), DFS, and disease-
specific survival (DSS) in the TCGA training cohort (Figures 7K– 
N). These results were also confirmed in the GEO cohort 
(Supplementary Figure S7). 
Risk-score model somatic mutation and 
TME landscape 

After dividing TCGA CRC patients into high-risk and low-risk 
groups based on CRRS, we analyzed the tumor microenvironment 
(TME) in both categories. Risk scores showed a positive correlation 
with the immune score (Figure 8A), stromal score (Figure 8B), and 
estimate score (Figure 8C), while being negatively correlated with 
tumor purity (Figure 8D). Immune infiltration analysis further 
revealed a higher abundance of immune-related cells, including 
activated dendritic cells, B cells, CD8+ T cells, macrophages, 
plasmacytoid dendritic cells, follicular helper T cells, and tumor-

infiltrating lymphocytes in the high-risk group compared to the 
low-risk group (Figure 8E), with an enhanced immune response 
also observed in the high-risk group (Figure 8F). 

The distribution of infiltrating immune cells between the two 
risk groups, evaluated using seven different databases, showed an 
increase in immunocytes such as macrophages, NK cells, CD4+ T 
cells, and CD8+ T cells in the high-risk group, while CD4+ memory 
T cells had reduced infiltration (Figure 8G). Box plots highlighted 
differences in immune cell infiltration, indicating that activated 
dendritic cells, eosinophils, plasma cells, and activated/resting CD4 
+ memory T cells were more prevalent in the low-risk group, 
whereas NK cells, activated T cells, CD8+ cells, and regulatory T 
cells (Tregs) were more abundant in the high-risk group 
(Figure 8H). T-cell stimulator expression was generally higher in 
the high-risk group, except for CD40LG (Figure 8I). 

One critical step in the adaptive antitumor response is the 
presentation of tumor antigens by HLA molecules to activate CD8+ 
T cells. Due to the importance of HLA, we compared its expression 
between the two groups, finding significantly higher levels in the 
high-risk group (Figure 8J). Chemokine expression levels varied 
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between the groups, as shown in Figure 8K. In both the screening 
and validation cohorts, heatmaps highlighted 29 immune-related 
gene sets, immune scores, stromal scores, estimate scores, and 
tumor purity (Supplementary Figures S8A, B), with validation 
dataset results consistent with the training set (Supplementary 
Figures S8C–I). 

To clarify distinctions between high- and low-risk groups, we 
analyzed gene mutations in each group. The high-risk group 
showed a higher TMB compared to the low-risk group. We 
analyzed the top 20 genes with the highest mutation frequencies 
in each group. APC (77% vs. 71%) and TP53 (58% vs. 54%) had 
higher mutation frequencies in the high-risk group, whereas KRAS 
(46% vs. 42%) had a lower mutation frequency. Furthermore, TTN 
displayed a significantly higher mutation rate in the high-risk group 
compared to the low-risk group (Figures 9A, B). A significant 
correlation between risk score and TMB was observed, with TMB 
showing a positive correlation and RNAss a negative one 
(Figures 9C, D). No significant correlation was found between 
DNAss and risk score (Figure 9E). Additionally, the TIDE score 
was higher in the high-risk group, suggesting a poorer response to 
immune checkpoint inhibitors (Figure 9F). Several commonly 
mutated checkpoint genes, including PDCD1, were notably 
elevated in the high-risk group (Figure 9G). 

The high-risk group also showed greater sensitivity to 
chemotherapeutics such as 5-Fluorouracil, Cisplatin, Cytarabine, 
Docetaxel, and Irinotecan, while the low-risk group was more 
responsive to drugs like Acetalax, Gefitinib, Lapatinib, Linsitinib, 
and Navitoclax (Figures 9H, I). 

To explore the differences between the high-risk and low-risk 
groups, we conducted a differential analysis to identify DEGs. These 
DEGs were then subjected to GO analysis, which revealed 
significant enrichment in biological processes related to 
regionalization, collagen-containing extracellular matrix within 
cellular components, and activities such as signaling receptor 
activation and receptor-ligand interactions in molecular functions 
(Figure 9J). Additionally, gene set enrichment analysis (GSEA) 
showed that pathways associated with cancer progression, 
including  mismatch  repair,  nucleotide  excision  repair,  
spliceosome, and cell cycle, were more active in the low-risk 
group (Figure 9K). Conversely, immune-related pathways, such as 
antigen processing and presentation, natural killer cell-mediated 
cytotoxicity, cytokine-receptor interactions, and the intestinal 
immune network for IgA production, were more active in the 
high-risk group. 
Construction of a nomogram and 
exploration of its clinical usefulness 

Given the strong correlation between a high risk score and 
increased mortality as well as poorer clinical outcomes, we explored 
whether the risk score could act as an independent prognostic factor 
for CRC patients. Both the CRRS and key clinicopathological 
indicators were assessed through univariate and multivariate Cox 
regression analyses (Figures 10A, B). After adjusting for potential 
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GURE 7FI   

Construction and validation of the coagulation-related prognostic signature in training set. (A) Heatmaps of the signatures in the screening set after 
differential analysis. (B) Volcano plot of signatures after differential analysis. (C, D) Lasso Cox analysis of 14 differential expressed CRGs. (E) Multivariate 
Cox analysis uncovered 4 CRGs associated most with overall survival. (F) The coefficient of the 4 genes identified by Cox analysis. (G) Time-dependent 
C-index plot for the risk score and individual genes. (H) The AUC assess the accuracy of the risk score. (I) Sankey plot summarized the relationships among 
the clusters, risk score and survival status. (J) Survival status and risk score of the two risk groups. (K–N) Kaplan-Meier OS (K), DSS  (L), PFS  (M), and  
DFS (N) curves for patients with high- or low-risk scores in TCGA cohort. 
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FIGURE 8 

Immune association of coagulation-related risk score. (A–D) Violin plots comparing the immune score (A), stromal score (B), ESTIMATE score (C), 
and tumor purity (D) between high- and low-risk groups. (E) Box plot comparing scores for 16 immune cell types between high- and low-risk 
groups. (F) Box plot comparing scores for 13 immune-related functions high- and low-risk groups. (G) Verification of ssGSEA results by seven other 
algorithms, namely TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCell, and EPIC. (H–K) Boxplots representing the fraction of 
immune cell types (H), differential expression of T-cell stimulators (I), HLA gene sets (J), chemokines (K). (*p<0.05, **p<0.01, and ***p<0.001). 
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IGURE 9
 F

Mutation landscape and drug sensitivity of risk score. (A, B) Top 20 mutated genes in the high- (A) and low-risk group (B). (C–F) Violin plots
 
presenting the TMB score (C), RNAss (D), DNAss (E), and TIDE score (F). (G) The differential expression of checkpoint genes in the two risk groups.
 
(H-I) Drug sensitivity between the low- (H) and high-risk (I) group. (J) GO analysis of DE-CRGs in terms of biological process, cellular component
 
and molecular function. (K) GSEA of the DE-CRGs showing the different pathways in the low-risk group and in the high-risk group. (*p<0.05,
 
**p<0.01, and ***p<0.001).
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confounders, multivariate analysis identified age (HR = 1.05, 95% 
CI: 1.03-1.07, P<0.01), TNM stage (HR = 1.74, 95% CI: 1.17-2.59, 
P=0.01), and risk score (HR = 1.76, 95% CI: 1.46-2.11, P<0.01) as 
significant factors. A total score was calculated for each patient by 
summing the points assigned to each prognostic variable 
(Figure  10C), with higher total scores associated with 
worse outcomes. 

Time-dependent C-index curves, based on TCGA data, 
demonstrated that the nomogram outperformed the CRRS in 
terms of survival prediction accuracy (Figure 10D). Calibration 
plots for the TCGA cohort also indicated a strong agreement 
between predicted and actual overall survival (OS) (Figure 10E). 
To assess the clinical utility of the nomogram, a DCA was 
conducted, showing that the nomogram provided greater net 
benefit compared to the CRRS alone (Figure 10F). The 
nomogram’s predictive accuracy was further validated using the 
GEO cohort (Figures 10G–J). 
Relationships among coagulation-related 
signatures and TME revealed by single-cell 
analysis 

To examine the associations between tumor microenvironment 
(TME) cell types and the expression of coagulation-related 
signatures, we analyzed GSE146771 CRC single-cell RNA 
sequencing (scRNA-seq) data. Using uniform manifold 
approximation and projection (UMAP)-based cell clustering 
following dimensionality reduction, we identified 19 distinct cell 
clusters (Figure 11A). These clusters were annotated based on 
lineage markers as B cells, conventional CD4+ T cells 
(CD4Tconv), CD8+ T cells, exhausted CD8+ T cells (CD8Tex), 
endothelial cells, fibroblasts, malignant cells, mast cells, monocytes 
or macrophages, NK cells, plasma cells, proliferating T cells 
(Tprolif), and regulatory T cells (Treg) (Figure 11B). The 19 
clusters were then grouped into three main cell categories: 
immune cells, malignant cells, and stromal cells (Figure 11C). 

Figure 11D displays the proportion of different cell types in each 
sample, and the percentage of absolute cell numbers across all CRC 
cases is visualized in Figure 11E. Our analysis revealed that TIMP1 
was predominantly expressed across various cell types, particularly 
stromal cells, while MMP10 and F2RL2 exhibited low expression 
levels in both non-tumor and tumor cells (Figures 11F–H). Notably, 
GP1BA was undetectable at the single-cell level. 
TIMP1 facilitates the malignant 
proliferation of CRC cells 

To experimentally validate our findings, we narrowed down the 
pool of coagulation- related signatures by constructing a protein-
protein interaction (PPI) network. This involved querying the 
STRING database to identify hub genes among the four genes 
constituting the CRRS. As illustrated in Supplementary Figure S9A, 
our analysis revealed a complex interaction between TIMP1 and 
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MMP10, suggesting their pivotal roles as central nodes in both 
coagulation and cancer pathways. The expression levels of TIMP1 
and MMP10 at both the mRNA and protein levels, as well as their 
relationships with clinical outcomes, were explored in 
Supplementary Figures S9B–Q. According to previous studies, 
genes that are upregulated in tumors typically promote tumor 
growth and progression. Moreover, if these upregulated genes are 
inversely related to patients’ survival times, an increase in their 
expression levels will notably reduce patient survival rates (41). 
Therefore, we performed validation of TIMP1. A number of studies 
have explored the role of TIMP1 in CRC. Among these, one study 
found that overexpressed TIMP1 in right‐sided CRCs significantly 
correlates with a poor prognosis (42). However, the exact role of 
TIMP1 among all CRC patients remains unknown. At the RNA 
level, we utilized the CCLE dataset to acquire a gene expression 
matrix of CRC cell lines (Figure 12A). We verified the expression of 
TIMP1 in normal colon cells (NCM460) and CRC cells (SW480, 
HCT116, SW620, LS174T, HCT8, LoVo, and Caco2) by q-PCR 
assay (Figure 12B). TIMP1 was overexpressed in CRC cell lines. 
Next, we assessed SW480 and HCT116, which had the greatest 
levels of TIMP1 mRNA expression, as verified by RT-qPCR 
(Figure 12C). The CCK-8 assay was conducted to investigate the 
function of TIMP1 in CRC cell growth. Knockdown of TIMP1 
inhibited the proliferation of SW480 and HCT116 cells 
(Figure 12D). Colony formation analysis demonstrated tumor cell 
growth to be weakened following TIMP1 knockdown (Figure 12E). 
In wound-healing and Transwell assays, migration, and invasion 
were reduced in shTIMP1 cell lines (Figures 12F–I). 
Reduced TIMP1 levels suppress tumor 
growth in vivo 

We evaluated the impact of TIMP1 in a tumor xenograft model. 
Cells harboring either sh-control or sh-TIMP1 lentiviral vectors 
underwent subcutaneous transplantation into nude mice, with 
subsequent monitoring of tumor progression for 27 days. As 
depicted in Figure 12J, TIMP1 knockdown markedly attenuated 
tumor growth in the mice. Analysis of tumor volumes and weights 
revealed that tumors originating from shTIMP1-transduced cells 
were substantially smaller compared to those derived from sh-
control transduced cells (P<0.001). 
Discussion 

CRC represents a significant global health issue, ranking as the 
second leading cause of cancer-related mortality worldwide. The 
treatment options for CRC are varied, encompassing surgery, 
chemotherapy, radiation, targeted therapy, and immunotherapy, 
which can be applied either alone or in combination. Nevertheless, 
it is essential to acknowledge CRC’s inherent heterogeneity, evident 
not only in its anatomical locations but also in its clinical and 
pathologic characteristics, TME, and drug response profile. 
Heterogeneity presents considerable challenges in CRC 
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FIGURE 10 

Development and assessment of the nomogram. (A) Univariate regression. (B) Multivariate regression of the clinicopathological indicators and gene 
signatures. (C) A comprehensive nomogram for predicting CRC patients’ survival probability in training set. (D) Time-dependant c-index plot for the 
nomogram and other clinical factors in training set. (E) Calibration curves of the nomogram at 1-, 3-, and 5-year intervals in training set. (F) DCA curves 
of the clinicopathological indicators and this nomogram in training set. (G) A comprehensive nomogram in validation set. (H) Time-dependant c-index 
plot in validation set. (I) Calibration curves in validation set. (J) DCA curves in validation set. 
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management, emphasizing the necessity for personalized and 
targeted therapeutic strategies. Therefore, a stable classification 
system is essential for devising effective treatment plans and 
improving patient outcomes. Endothelial cells, platelets, and 
coagulation factors play a pivotal role in the coagulation process, 
which is intricately organized to maintain equilibrium between clot 
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formation and bleeding (1). Over the past 10 years, a number of 
studies have supported the notion that coagulation was linked to 
infections, immune dysregulation, and malignancy (43, 44). 
According to theory, angiogenesis is a pivotal hallmark for cancer 
development, with a growing tumor requiring a significant blood 
supply (45). Cancer patients face a risk of developing coagulation 
FIGURE 11 

Single-cell profiles reveal CRGs expression patterns. (A) The identified cell clusters in colon cancer tissues based on the GSE146771 dataset. (B) The 
identified cell types in colon cancer tissues based on the GSE146771 dataset. (C) UMAP plot of immune, malignant and stromal cells from colon 
cancer scRNA-seq data. (D, E) Cell proportion in 10 colon cancer samples. (F, G) Violin plot for displaying the expression levels of CRGs in all cell 
types. (H) UMAP plots for visualizing the abundance distribution of CRGs. 
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abnormalities, especially cancer-associated thrombosis, with 
incidence much greater than that of the general population (46, 
47). Additionally, it has been observed that cancer patients receiving 
chemotherapy or targeted therapy face an elevated risk of 
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thrombotic events (46). Moreover, augmenting the immune 
response by employing immune checkpoint inhibitors can be 
associated with an increased mortality rate resulting from 
thrombotic complications (48, 49). Not only are tumor 
FIGURE 12
 

TIMP1 promotes malignant proliferation of CRC cells. (A) Distribution of mRNA expression across different cell lines obtained from the CCLE database.
 
(B) qRT-PCR results of TIMP1 expression level in NCM460 and CRC cell lines. (C) Efficiency of TIMP1 knockdown in HCT116 and SW480 cells. (D) CCK-8 
assay measuring cell viability in HCT116 and SW480 cells, respectively. (E) Colony formation assay assessing the colony-forming ability of HCT116 and 
SW480 cells. (F, G) Wound healing assay of migration in HCT116 (F) and SW480 (G) cells, respectively. (H, I) Transwell assay of migration and invasion in 
HCT116 (H) and SW480 (I) cells, respectively. (J) TIMP1 promotes CRC cell growth in vivo. (*p<0.05, **p<0.01, and ***p<0.001). 
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progression and prognosis associated with thrombotic problems, 
but such problems may also indicate an occult cancer (46). Some 
coagulation-related molecules are associated with tumor 
advancement as well as poorer prognosis (50). The close 
association of coagulation with tumorigenesis has prompted the 
functional evaluation of CRGs in TME, as a means by which to 
improve therapeutic strategies. 

This study showed that CRSs and signatures effectively 
differentiated prognostic outcomes for CRC patients, despite 
significant tumor heterogeneity. The subtype classification was 
validated in two CRC cohorts and further extended to a pan-
cancer analysis. The current clinical and pathologic staging 
system, which depended entirely on the anatomical extent of the 
tumor, did not adequately capture the biological variance observed 
in CRC patients. As a result, we developed a nomogram model 
incorporating age, TNM stage, and risk score to aid in assessing 
disease progression and providing personalized diagnosis. This 
nomogram has demonstrated excellent predictive performance. 
Furthermore, TIMP1 captured our focus due to its association 
with adverse CRC prognosis. Interfering TIMP1 expression in 
CRC cell lines HCT116 and SW480 produced a notable 
suppression of proliferation and migration by CRC cells. 

While CMS represents a widely used gene expression-based 
system derived from 18 heterogeneous datasets, we explored 
whether our NMF-based classification using TCGA data could 
complement it (20). Our results showed that CRS subtype C1 was 
enriched in CMS2 tumors, whereas CRS-C3 largely overlapped with 
CMS4, which is known for stromal activation and poor prognosis. 
Notably, CRS-C3 also displayed strong immunosuppressive 
infiltration and worse survival outcomes. Beyond this alignment, 
the CRS system introduces additional stratification based on 
coagulation-related signatures, offering refined prognostic value 
and the potential to guide therapeutic decisions, particularly in 
predicting responses to chemotherapy and immunotherapy. 
Importantly, the CRS model demonstrated superior predictive 
performance (higher C-index) and clinical utility (higher net 
benefit in decision curve analysis) compared to CMS across both 
TCGA and GEO cohorts. These findings suggest that CRSs not only 
correlate with CMS but also provide complementary insights to 
better support personalized treatment strategies for CRC patients. 

Factors related to the coagulation system within the TME 
contribute to conditions that favor tumor growth, metastasis, 
angiogenesis, and immune evasion (51–53). The interaction 
between the coagulation system and the immune system is critical 
in driving cancer progression (43). In our study, the C3 cluster and 
high-risk groups exhibited extensive immune cell infiltration, more 
non-tumor cell components, and reduced tumor purity, indicative 
of a more intense inflammatory and immune response. 
Furthermore, the high-risk group showed enrichment in immune 
activity-related signaling pathways, while cancer-related pathways 
were more prevalent in the low-risk group. Although tumor-

infiltrating lymphocytes (TILs) are essential for improving 
survival outcomes, activated T-cells that fail to completely 
eradicate the tumor may become exhausted over time (54). This 
exhaustion, resulting from prolonged antigen exposure, leads to 
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compromised cytotoxic T-cells, reducing their efficacy (55). Prior 
studies have shown that high levels of cytotoxic T-cells coupled with 
significant T-cell dysfunction can enhance tumor immune evasion, 
leading to severe dysfunction (33). Previous research has 
highlighted that high levels of cytotoxic T-cells, combined with 
significant T-cell dysfunction, can enhance tumor immune evasion, 
resulting in profound immune system dysfunction. Immune cell 
exhaustion, a phenomenon common in cancer and other diseases, 
drives tumor progression despite an active immune response (56). 
TIDE analysis, which evaluates immune dysfunction in tumors, 
revealed that cluster C3 and the high-risk group, both marked by 
elevated TIDE scores, are more likely to experience T-cell 
exhaustion (33). Our analysis of the TME revealed that immune 
infiltration was most extensive in the C3 and high-risk groups, 
including anti-tumor cells, Tregs, mast cells, and macrophages. 
Tregs within tumors suppress T-cell proliferation and activation, 
and together with tumor-associated macrophages, they form an 
immunosuppressive network that facilitates tumor immune evasion 
(57–59). Due to the potent immunosuppressive effects of Tregs and 
macrophages, the extensive immune infiltration observed in these 
groups does not guarantee effective tumor elimination. As a result, 
despite the increased presence of immune cells, immune escape may 
prevail because of functional impairment and the influence of 
suppressive cell populations, ultimately leading to a poor prognosis. 

Our comprehensive analysis of differences in immunotherapy 
and chemotherapy patient responses across various molecular 
subtypes, along with our risk score model, has provided valuable 
insight into the coagulation system’s function in CRC and the 
therapeutic potential of coagulation-related models. TIDE and IPS 
scores predict the response rate of cancer patients to immunotherapy. 
A greater TIDE score relates to a higher risk of immune escape, and 
reduced immunotherapy benefit (33). IPS can be used to predict the 
response to immunotherapy agents PD1 and CTLA4 (60). The 
patients in the C1 cluster and low-risk group had lower TIDE 
scores and higher IPS scores than the patients in other groups, 
indicating that those patients may have an increased likelihood of a 
positive response to immunotherapy. The patients in C2 with the 
highest TIDE scores may show strong resistance to immunotherapy. 

Additionally,  we  assessed  the  responses  to  various  
chemotherapeutic agents and targeted therapies across different 
risk score groups and molecular subtypes. Notably, despite showing 
increased resistance to immunotherapy, cluster C2 tumors 
exhibited heightened sensitivity to standard chemotherapies such 
as 5-FU, Oxaliplatin (FOLFOX), and Irinotecan. The analysis also 
identified potential new sensitive drugs for other subtypes. These 
results suggest  that  leveraging  molecular subtypes and  risk
signatures could improve treatment outcomes. Therefore, a 
strategy that tailors the integration of immunotherapy, 
chemotherapy, and targeted therapy based on the innovative 
applicat ion  of  CRGs  holds  promise  for  personal ized  
CRC treatment. 

In addition, we also applied this molecular classification to 
other cancer types. We found that this classification enabled 
separation of most samples into three distinct clusters. In the 
majority of pan-cancer tissues, the immune microenvironment 
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status of the molecular subtypes was similar to that of CRC. This 
was particularly true for hyper-coagulable cancers like bladder 
cancer and glioblastoma, with the classification showing excellent 
internal consistency and stability (61, 62). However, the pan-cancer 
analysis had certain limitations. First, the differences in the TME 
between subtypes within some cancers were not as pronounced as 
those observed in hypercoagulable cancers. Second, the survival 
outcomes and tailored treatment strategies across pan-cancers 
requires more in-depth investigation. While the coagulation-based 
classifier reproducibly stratifies multiple tumour entities, detailed 
survival outcomes and treatment implications across pan-cancer 
cohorts warrant dedicated future studies with harmonised 
clinical annotations. 

The CRRS comprises four genes. Elevated expression of F2RL2 
correlates with reduced risk and longer survival in colon 
adenocarcinoma (63). GP1BA-driven platelet–tumor interactions 
characterize the CRC macroenvironment and likely promote local 
immunosuppression and metastatic dissemination (64). Among 
these, MMP10 and TIMP1 form a functional interaction network. 
Subsequent in silico analyses revealed MMP10 overexpression in 
CRC, with higher protein levels correlating with improved patient 
survival. In this study, we found that TIMP1 was upregulated in 
CRC tissues, with higher expression levels correlating with a poor 
prognosis. As a tissue inhibitor of metalloproteinases, TIMP1 
played a central role in our investigation. It serves as a key 
regulator of matrix metalloproteinases, controlling the turnover of 
the extracellular matrix (65, 66). Previous research has highlighted 
the importance of TIMP1 in the progression and metastasis of colon 
cancer, particularly through the FAK-PI3K/AKT and MAPK 
pathways (67). Importantly, TIMP1 knockdown has been shown 
to reduce migration, proliferation, and invasion in various tumor 
cell types (42, 65, 68). In this study, our in vitro functional assays 
further confirmed TIMP1’s role in promoting malignant cell 
proliferation, migration, and invasion (69–75). These results were 
confirmed in vivo, in which human CRC cells knocked-down for 
TIMP1 developed tumors at a slower pace than their wild-type 
controls. Targeting TIMP1 directly may be an approach for specific 
targeted treatment of CRC patients. 

Our GO and KEGG enrichment analyses elucidated the underlying 
molecular pathways characteristic of each coagulation‐related subtype. 
Subtype C1 was predominantly associated with antigen processing and 
presentation via MHC class II, humoral immune responses, and 
complement–coagulation cascades, in keeping with its pronounced 
adaptive immune activity and favorable response to immunotherapy. 
Subtype C2 was distinguished by granulocyte and neutrophil 
chemotaxis, antimicrobial defense mechanisms, and matrix-

degrading enzyme activity, indicative of an acute inflammatory 
microenvironment with active extracellular matrix remodeling that 
may promote tumor invasion. Subtype C3 exhibited marked 
enrichment for classical complement activation, platelet a-granule 
components, and ECM–receptor interactions, consistent with its pro­
tumorigenic, immunosuppressive phenotype and poor clinical 
prognosis. These pathway‐level distinctions reinforce our findings on 
immune cell infiltration patterns, TMB/TIDE profiles, and patient 
outcomes, and they offer rationale for subtype‐specific therapeutic 
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strategies—for example, modulation of MHC class II presentation in 
C1, protease inhibition in C2, and targeting of complement or platelet 
pathways in C3. 

Our study faced certain constraints. First, the lack of transcriptomic 
data regarding immune checkpoint blockade therapy in CRC patients 
inhibited our ability to validate the discriminative efficacy of our 
predictive model (76). We intend to evaluate its accuracy as soon as 
ICB-related transcriptomic data for CRC patients become publicly 
available (77, 78). Second, the clinical data derived from public 
databases were incomplete, lacking essential clinical details, and were 
restricted to patients who have not received treatment. Consequently, 
the clinical utility of our risk model needs to be verified in a broader 
patient demographic. Third, functional validation was primarily 
conducted on TIMP1, although the risk signature consists of four 
genes. TIMP1 was prioritized due to its network centrality and clinical 
relevance; however, further studies are needed to elucidate the 
prognostic value of the full gene signature. 

Overall, this novel subcategorization of CRC tumors and the 
related risk score and nomogram are of clinical interest for 
treatment of CRC and pan-cancer patients, with regard to both 
patient prognosis and therapeutic decision-making. The limitations 
of the model have been identified and further clinical investigations 
will be required to validate benefits of the subcategorization. 
Conclusions 

In conclusion, our study delineates novel CRC subtypes based 
on CRGs, offering insights into prognosis and therapeutic strategies. 
The coagulation system’s influence on the TME and immune 
response underscores its significance in CRC progression and 
treatment. Our risk model and nomogram present promising 
tools for personalized treatment approaches. Furthermore, the 
applicability of this classification extends to other cancers, 
highlighting its potential for broad clinical impact. However, 
further validation and exploration are warranted to optimize its 
clinical utility and address existing limitations. 
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6. Ribeiro FS, Simão TA, Amoêdo ND, Andreollo NA, Lopes LR, Acatauassu R, et al. 
Evidence for increased expression of tissue factor and protease-activated receptor-1 in 
human esophageal cancer. Oncol Rep. (2009) 21:1599–604. doi: 10.3892/or_00000393 

7. Weitz J, Koch M, Debus J, Höhler T, Galle PR, Büchler MW. Colorectal cancer. 
Lancet. (2005) 365:153–65. doi: 10.1016/S0140-6736(05)17706-X 

8. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J 
Clin. (2023) 73:17–48. doi: 10.3322/caac.21763 

9. Ajona D, Pajares MJ, Corrales L, Perez-Gracia JL, Agorreta J, Lozano MD, et al. 
Investigation of complement activation product C4d as a diagnostic and prognostic 
biomarker for lung cancer. JNCI: J Natl Cancer Institute. (2013) 105:1385–93. 
doi: 10.1093/jnci/djt205%J 

10. Lin Y, Liu Z, Qiu Y, Zhang J, Wu H, Liang R, et al. Clinical significance of plasma 
D-dimer and fibrinogen in digestive cancer: A systematic review and meta-analysis. Eur 
J Surg Oncol. (2018) 44:1494–503. doi: 10.1016/j.ejso.2018.07.052 
11. Xu G, Zhang Y-L, Huang W. Relationship between plasma D-dimer levels and 
clinicopathologic parameters in resectable colorectal cancer patients. World J 
Gastroenterol. (2004) 10:922–3. doi: 10.3748/wjg.v10.i6.922 

12. Oya M, Akiyama Y, Okuyama T, Ishikawa H. High preoperative plasma D-
dimer level is associated with advanced tumor stage and short survival after curative 
resection in patients with colorectal cancer. Jpn J Clin Oncol. (2001) 31:388–94. 
doi: 10.1093/jjco/hye075 

13. Ferroni P, Roselli M, Martini F, D’Alessandro R, Mariotti S, Basili S, et al. 
Prognostic value of soluble P-selectin levels in colorectal cancer. Int J Cancer. (2004) 
111:404–8. doi: 10.1002/ijc.20189 

14. Sun Y, Han W, Song Y, Gao P, Yang Y, Yu D, et al. Prognostic value of 
preoperative fibrinogen for predicting clinical outcome in patients with nonmetastatic 
colorectal cancer. Cancer Manag Res. (2020) 12:13301–9. doi: 10.2147/CMAR.S275498 

15. Stender MT, Larsen TB, Sørensen HT, Thorlacius-Ussing O. Preoperative 
plasma D-dimer predicts 1-year survival in colorectal cancer patients with absence of 
venous thromboembolism (Vte): A prospective clinical cohort study. J Thromb 
Haemost. (2012) 10:2027–31. doi: 10.1111/j.1538-7836.2012.04887.x 
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AUC area under the ROC curve 
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CCK-8 cell counting kit-8 
CD4Tconv conventional CD4+ T cells 
CD8Tex exhausted CD8+ T cells 
CGP Cancer Genome Project 
CMS consensus molecular subtype 
CAN Copy number alteration 
CRC colorectal cancer 
CRG coagulation related genes 
CRRS coagulation-related risk score 
CRSs coagulation-related subtypes 
CTLA-4 cytotoxic T-lymphocyte antigen 4 
DCA decision curve analysis 
DEGs differentially expressed genes 
DFS disease free survival 
DSS disease specific survival 
FBS fetal bovine serum 
GEO Gene Expression Omnibus 
GSEA gene set enrichment analysis 
HLA human leukocyte antigen 
HPA Human Protein Atlas 
IHC immunohistochemistry 
IPS immunophenoscore 
LASSO least absolute shrinkage and selection operator 
MSI microsatellite instability 
ogy 26 
NMF nonnegative matrix factorization 
OS overall survival 
PCA Principal component analysis 
GO Gene Ontology 
KEGG Kyoto Encyclopedia of Genes and Genomes 
PD-1 programmed cell death protein 1 
PFS progression free survival 
PPI protein-protein interaction 
q-PCR quantitative real-time PCR 
ROC receiver operating characteristic 
scRNA-seq single-cell RNA sequence 
SNPs Single nucleotide polymorphisms 
SPF specific pathogen-free 
TCGA The Cancer Genome Atlas 
TCIA the Cancer Immunome Atlas 
TIDE Tumor Immune Dysfunction and Exclusion 
TILs tumor infiltrating lymphocytes 
TISCH tumor immune single-cell hub 
TME tumor microenvironment 
TMB tumor mutation burden 
TPM transcripts per million 
Tprolif proliferating T cells 
Treg regulatory T cells 
UMAP uniform manifold approximation and projection 
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