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of asthma in early life
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Around 10% of the Western population is diagnosed with asthma, and this

percentage is only expected to increase in the coming years. Allergic asthma

often develops during early infancy and is characterized by chronic pulmonary

type 2 inflammation and airway hyperresponsiveness. Severe viral infections in

early life are thought to be a risk factor for allergic asthma. The most common

causes of severe viral infections in early life are respiratory syncytial virus (RSV)

and rhinovirus (RV). How viral infections in early life are related to the later

development of asthma is not yet known, but the pathophysiology of RSV/RV

infection and asthma overlap in several areas. RSV and RV are both able to induce

type 2 immunity which may contribute to the development of allergic asthma

which is driven by type 2 responses against airborne allergens such as house dust

mites. In early life, infants’ intestines, microbiome and immune function need to

mature, and breastfeeding helps to facilitate these major steps in development.

Human milk oligosaccharides (HMOs) are the third largest component of human

milk and have been shown to promote the development and function of the

infant microbiome and may have a beneficial effect on immune maturation by

promoting type 1 and regulatory immune responses. In addition, they can

stimulate epithelial barrier integrity and directly interact with glycan receptors.

Certain bacteria in the gut can metabolize HMOs into short-chain fatty acids

(SCFA), which can exert beneficial anti-inflammatory effects locally in the gut or

systemically and help maintain barrier properties and immune homeostasis.

HMOs and SCFA could have protective effects on both the immune pathways

in allergic asthma and viral infections. This review describes the molecular and

immunomodulatory mechanisms by which different HMOs and SCFA may help

defend against viral infections and also protect against allergic asthma.
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1 Introduction

Asthma affects both adults and children and is one of the most

common noncommunicable diseases worldwide (1). It is

characterized by symptoms such as coughing, wheezing, shortness

of breath, and chest tightness, caused by chronic inflammation in

the lungs (2). The incidence of asthma has steadily increased in the

Western world over the past few decades. Around 10% of the

Western population is diagnosed with asthma, and this percentage

is only expected to increase in the upcoming years (1, 3). Asthma

can decrease the quality of life and places a financial burden both on

asthmatic individuals and their families, as well as on society.

Several different phenotypes of asthma exist, such as allergic

asthma, non-allergic asthma, late-onset asthma, obesity-related

asthma, neutrophilic asthma, and exercise-induced asthma (4).

Allergic asthma is the most common type of asthma and will

therefore be the focus of this review (5). The etiology of allergic

asthma is still not fully understood, but it is generally thought to

consist of multiple factors. These factors include genetic factors, and

many different genes associated with asthma have been identified.

No single gene or combination of genes can, however, predict

whether a person will develop asthma or not. Additionally,

environmental triggers, such as air pollution, life style, dust mites,

or pollen, are suggested to play a role in the etiology of asthma

(1, 6).

Beyond these contributing factors, severe respiratory viral

infections in early life are thought to be a risk factor for asthma

(7–9). Respiratory syncytial virus (RSV) and rhinovirus (RV) are

the most common cause of severe respiratory infections in infants

(10). Around 20%-30% of infants (<1 year) suffer from bronchiolitis

caused by RSV or RV. 2% to 3% of children are hospitalized before

the age of 1, with RSV responsible for 50%-80% and RV responsible

for 5%-25% of bronchiolitis-related hospitalizations (11). Proper

viral defense in early life is essential, as it can protect children from

the possible severe outcomes of respiratory infections, and can even

lower the risk of developing allergic asthma later in life.

Breastfeeding is the gold standard in feeding for infants. Human

milk is rich in nutritional factors and contains many different

bioactive components, such as antibodies, immune cells,

microbes, cytokines and chemokines, and growth factors (12).

Human milk furthermore contains human milk oligosaccharides

(HMOs), a large group of non-digestible oligosaccharides (NDOs).

HMOs are the third largest solid component of human milk. They

are present in a concentration of 20–25 g/L in the colostrum and 5–

15 g/L in mature human milk (13, 14). HMOs are a diverse group of

structures; currently more than 200 HMO structures have been

identified (14, 15). HMOs can be fermented by beneficial bacteria in

the gut and thus help to develop the microbiome, while also

supporting gut and immune maturation (16). Some of the health

benefits observed in breastfed children are thought to be mediated

at least in part by HMOs. Such health benefits are, for example,

fewer airway infections in early life and a lower risk of allergic

asthma later in life (13). Clinical studies show a protective effect of

breastfeeding in development of asthma later in life. Recent meta-

analyses show a general effect of breastfeeding on reducing the risk
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of asthma in children up to 12 and 18 years of age (17, 18). There is

no scientific consensus on which component(s) of human milk are

responsible for this effect. Studies on various components of human

milk have been done and for example show an effect of the TGFb
levels present in human milk or the composition of the milk

microbiome on the development of allergies and asthma (19, 20).

Studies remain inconclusive however and the study of other

components of human milk, such as HMOs, could further explain

the possible protective effect of breastfeeding on the development of

asthma. HMOs can potentially exert protective effects on viral

infections and asthma in several ways, which are described in

detail in this review.

Human milk contains many different types of HMOs. When

breastfeeding is not possible, formula milk products are used. These

are however mainly based on ingredients derived from cow’s milk,

which do not contain HMOs. Over the years, formula milk has been

enriched with NDO mixtures, such as galacto-oligosaccharides

(GOS) and long-chain fructo-oligosaccharides (lcFOS). NDO

have been shown to support bifidobacterium and lactobacillus

spp. colonization almost similar to human milk (21). However,

even with these substantial improvements, formula milk still does

not resemble the complexity of human milk.

Food and Drug Administration (FDA)-approved synthetically

produced HMO structures became available for large-scale

industrial production relatively recently. The addition of specific

HMOs structures to formula milk may help to further improve the

development of the infant’s microbiome and maturation of the gut

and immune system, and therefore potentially have beneficial,

protective effects against respiratory viral infections and the

development of allergic asthma (16).

In this review, we explore the possible mechanistic relation

between viral infections in early life and the development of asthma.

Additionally, studies suggest that HMOs can protect against both

severe respiratory viral infections and the development of asthma. We

first explore the mechanisms through which specific HMOs may exert

protective effects during viral infections. This includes their role in

preventing viral adhesion, modulating the microbiome and epithelial

barrier, and influencing both innate and adaptive immune responses

through interactions with various receptors. We also review relevant

pre-clinical and clinical evidence. Following this, we examine how

HMOs might contribute to asthma prevention, using a structure

similar to the outline on viral infections. Finally, we highlight the

overarching (immunomodulatory) mechanisms that link direct effects

of HMO and their indirect effects via bacterial fermentation products

in viral infections and asthma development.
2 Pathophysiology of allergic asthma

2.1 Sensitization/induction phase

Allergens can activate bronchial epithelial cells (BECs) via

pattern recognition receptors (PRRs) (2). BECs secrete thymic

stromal lymphopoietin (TSLP), interleukin (IL)25, IL33, C-C

motif ligand 2 (CCL2), and CCL20 in response to allergen
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binding (22, 23). Dendritic cells (DCs) are activated by IL33 and

TSLP or by direct allergen binding. Furthermore, IL25 and IL33

attract and activate group 2 innate lymphoid cells (ILC2s) (24).

ILC2s produce IL4, IL5, IL9, and IL13, promoting local

inflammation and DC maturation (24, 25). ILC2s are generally

activated before allergen-specific T helper (Th) 2 cells are recruited,

making them an important source of type 2 cytokines in the

sensitization phase in allergic asthma (Figure 1) (5, 26).

Activated DCs take up the allergen and migrate to the

mediastinal lymph nodes (medLNs). Here, they present the

processed allergen via the major histocompatibility complex II

(MHCII) to the T cell receptor (TCR) on naïve T cells. This,

combined with the stimulation of co-stimulatory molecules,

induces the allergen-specific naïve T cells to differentiate into Th2

cells (3, 5, 27, 28). Th2 cells home to the lungs, where they secrete

IL4, IL5, IL13, and granulocyte-macrophage colony-stimulating

factor (GM-CSF) (3, 29–31). IL4 secreting follicular helper (Tfh)

also develop from naïve T cells, which instruct allergen-specific B

cells in the medLN towards Immunoglobulin (Ig) E isotype

switching (Figure 1) (32).

In the tissue, IL4 promotes IgE secretion by plasma cells and

induces the upregulation of high-affinity IgE receptor (FCeR) on
mast cells (33–35). IL13 mainly mediates mucus hypersecretion and

airway hyperresponsiveness, while IL5 plays a role in the migration

and activation of eosinophils in the lung tissue (Figure 1) (36).

Recent studies have shown the possible involvement of type-2

CD8+ cytotoxic T cells (Tc2) in the pathophysiology of allergic

asthma as well. These effector Tc are also generated within the

medLN, but is driven by antigen presentation via MHCI instead of
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MHCII (37). Tc2 are capable of producing type 2 cytokines and Tc1

cells can be skewed towards Tc2 under inflammatory conditions,

which is promoted by IL33 signaling (38–41).
2.2 Effector/symptom phase

Upon secondary exposure, allergens bind IgE on the surface of

mast cells, leading to crosslinking of the FCeR receptors, and

degranulation (32, 42). Inflammatory mediators such as histamine

(HA), prostaglandins (PGs), and cysteinyl leukotrienes (cysLT) are

released and induce bronchoconstriction, mucosal edema, and

excessive mucus secretion (3, 32, 42). IL9 is also known to induce

excessive mucus secretion (43). The characteristics of chronic

asthma are induced by the release of IL4, IL5, and IL13 by Th2

cells (3, 5, 32). These cytokines mediate eosinophilic airway

inflammation, mucus hypersecretion, goblet cell hyperplasia, and

proliferation of IgE-producing plasma cells (2, 32, 44). Tc2

furthermore play a role in asthma exacerbations as well, as

demonstrated by an increase in Tc1 to Tc2 skewing observed in

patients experiencing an asthma exacerbation (Figure 1) (41).

Macrophages also participate in the chronic inflammation in

allergic asthma (5, 45). M1 macrophages are generally considered to

be the pro-inflammatory macrophages and M2 macrophages the

anti-inflammatory macrophages (46). However, the presence of

M2a macrophages contributes to allergic inflammation as well (47).

The M2a phenotype is induced by IL4 and IL13 and M2a secrete

high levels of IL1b, IL6, IL33, TSLP, CCL2, CCL17, and CCL22

upon activation (46, 47). These cytokines and chemokines are
FIGURE 1

Schematic overview of respiratory viral infection, allergic asthma pathophysiology and chronic type 2 inflammation. B, B cell; CysLT, cysteinyl
leukotrienes; DC, dendritic cell; Eos, eosinophil; HA, histamine; Ig, immunoglobulin; IL, interleukin; ILC, innate lymphoid cell; M, macrophage; MC,
mast cell; MO, monocyte; NK, natural killer cell; PC, plasma cell; PG, prostaglandin; RSV, respiratory syncytial virus; RV, rhinovirus; Tc, cytotoxic T
cell; Th, T helper cell; TSLP, thymic stromal lymphoprotein (created in BioRender.com).
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known to participate in the activation of Th2, stimulation of ILC2s,

and promote eosinophilia (45). Moreover, M2a macrophages might

also participate in the tissue remodeling observed in chronic

asthma, through transforming growth factor b (TGFb) and

platelet-derived growth factor (PDGF). This needs however yet to

be confirmed in humans (45, 48, 49).
3 Possible role of respiratory viral
infection in early life on the
development of allergic asthma

Severe respiratory viral infections can progress into

bronchiolitis, which is characterized by symptoms such as

wheezing and shortness of breath (50). The connection between

viral-induced bronchiolitis and asthma has been suggested by

several epidemiological studies. The most common viral causes of

bronchiolitis and wheezing in children are RSV and RV (10). RSV is

an enveloped negative-strand RNA virus, while RV is a large family

of non-enveloped RNA viruses, and is divided into 3 clades A, B,

and C (9, 51). Several longitudinal studies show an increased risk for

the development of asthma after severe infection with RSV and/or

RV in early life. Sigurs et al., for example, showed that children who

suffered from RSV-induced bronchiolitis during the first three years

of life had a 30% risk of developing asthma before the age of 7,

compared to only 3% in the control group, who had not had RSV

infection (52). More recently, a much larger study including

740.418 children in Scotland, confirmed these findings, showing

that children who had suffered from a severe RSV infection in early

life had a three-fold higher risk for asthma-related hospitalizations

and a two-fold higher asthma medication usage at an average age of

10.6 years (interquartile range [IQR]: 6.9‐14.6) (7). Similar

observations are described for RV infections. A study done in

Finland, for example, showed an increased risk of developing

asthma at age 8 if children had suffered from RV-induced

wheezing in early life (odds ratio, 13; 95% CI, 4.3-41) (8, 9). The

epidemiological data point to a connection between RSV and RV

infection in early life and the later development of asthma.

However, it is currently unknown whether viral infections are a

causal factor in the development of asthma. In this review, we will

dive into the cellular mechanisms of viral infection and their

possible connection to the development of allergic asthma, and

the possible protective role of HMOs.
3.1 Pattern recognition receptor activation
upon viral infection

Various immune responses are initiated upon respiratory viral

infection. The epithelial barrier is the first line of defense where

pulmonary epithelial cells (ECs) recognize viral pathogen-

associated molecular patterns (PAMPs) through PRRs (53).

Important PRRs for virus recognition include the TLRs (e.g.

TLR3, TLR7, TLR8, and TLR9), the retinoic acid inducible gene-I

(RIG-I)-like receptors (RLRs), the nucleotide oligomerization
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domain (NOD)-like receptors (NLRs), and the absent in

melanoma 2 (AIM2)-like receptors (ALRs) (54–57). Recognition

of PAMPs by PRRs on pulmonary ECs activates signaling pathways

that eventually result in the production of type I interferons (IFNs),

pro-inflammatory cytokines (IL6, tumor necrosis factor a (TNFa),
granulocyte colony stimulating factor (G-CSF), GM-CSF) and

chemokines (IL8, C-X-C chemokine ligand 10 (CXCL10), CCL5),

and assembly of inflammasomes. This innate immune response is

the first response upon viral encounter and will subsequently

activate the adaptive immune response (Figure 1) (50).
3.2 Innate immune responses during viral
respiratory infections

During infection with RSV or RV, airway inflammation and

airway remodeling can take place, compromising the integrity of the

epithelial barrier (58–60). The remodeling of the airways induced by

RSV infection starts with the cytokines produced by the epithelial

cells in response to the viral infection, such as type I IFNs. Several

underlying structural and immune cells are activated and/or recruited

to the lungs, such as lymphocytes and eosinophils, which can locally

produce inflammatory mediators. Fibroblasts and smooth muscle

cells in the lungs respond to the inflammatory mediators by

increasing their proliferation and matrix deposition, eventually

leading to airway remodeling (9, 61). Furthermore, the integrity of

the epithelial barrier is compromised by RSV and RV infection, due

to apoptotic cell death of ECs in response to the infection and

through degradation of the tight junctions (TJs) (59, 62, 63). In

relation to allergy, a decrease in barrier integrity allows aeroallergens

to easily cross the epithelial barrier and interact with DCs (60).

Moreover, lung ECs can produce the alarmins IL25, IL33, and TSLP

in response to viral infection, which also play an important role in the

development of asthma (64, 65). Lastly, RSV can activate ILC2s,

which are further stimulated by IL25 and IL33 released by damaged

ECs (66). ILC2s release IL4, IL5, IL9, and IL13, enhancing a type 2

immune response and therefore potentially also promoting the

development of allergic asthma (24, 25, 66).

RSV infections are characterized by a strong neutrophilic

response, as observed by a sharp increase in the number of

neutrophils both systemically and in the respiratory tract (67).

RSV can directly interact with and infect neutrophils in severe

infections (68). Additionally, some studies suggest that during RSV-

induced bronchiolitis, eosinophils are recruited to the lungs, with

higher levels of eosinophils in the lungs being associated with more

severe infection (69–71). Other immune effects are associated with

severe RSV infection as well. For example, low levels of

plasmacytoid DCs (pDCs), and on the other hand increased

numbers of conventional DCs (cDCs) in the blood are associated

with the development of RSV-induced bronchiolitis (72). cDCs

exert a pro-inflammatory phenotype promoting activation of T

cells, natural killer T cells, and natural killer (NK) cells in the lower

respiratory tract (73). NK cells play a critical role in the innate

immune response against viral infections, as they can kill infected

cells and secrete cytokines to recruit and activate other immune
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cells (74). NK cells are recruited from the bloodstream by

inflammatory mediators (such as CXCL8, CCL5, CXCL10)

produced by ECs in response to viral recognition (75, 76). NK

cells express both activating and inhibiting receptors (74, 77, 78).

Under normal conditions, all body cells express MHC I molecules

which inhibit the cytotoxic activity of NK cells (78, 79). When a cell

is infected with a virus, its expression of MHC I can be

downregulated, which prevents the detection of the infected cells

by CD8+ cytotoxic T cells. On the other hand, decreased MHCI

expression activates the NK cell to kill the infected cell (78). Proper

NK cell function is important for viral defense. The killing of

infected cells by NK cells happens through various mechanisms,

such as the release of cytotoxic granules, death receptor mediated

apoptosis, or antibody-dependent cellular toxicity (50).

Furthermore, NK cells secrete various cytokines, such as IFNg,
TNFa, and GM-CSF, which can activate other immune cells (78).

Interestingly, an NK cell deficiency has been observed in children

suffering from RSV infection (80). In addition, animal studies in

mice with pre-existing NK deficiency have reported that NK cell

deficiency during RSV infection induced skewing towards a Th2

response, which was dependent on IL25 secreted by lung ECs (80).

Such insights suggest a possible link between NK deficiency during

RSV infection and predisposition to a Th2 prone immune response.

Macrophages are of great importance for viral defense as well, as

they are one of the first immune cells to encounter viruses in the lung

(81). Recognition of viral particles by macrophages induces the release

of large amounts of cytokines and chemokines, recruiting more

inflammatory cells, such as monocytes, towards the site of infection

(81, 82). BECs can also be infected by a virus, triggering the

production of IFNa/b, which activates macrophages as well (83).

Once present in the lung, monocytes can differentiate into different

subsets of macrophages. At the start of viral infections, M1

macrophages are needed, while the number of M2a macrophages

increases during the course of the infection to promote tissue repair

(82). In general, infants have a bias towards M2 skewed macrophages,

resulting in a lower production of pro-inflammatory cytokines, and

thus possibly a reduced ability to clear a viral infection (84, 85). In

mice, however, lung pathology caused by RSV infection was reduced

when M2 differentiation was induced, showcasing the protective effect

of M2 macrophages (86).
3.3 Adaptive immune response during viral
respiratory infections

Secretion of cytokines by lung ECs, such as the type I IFNs, is

needed for the onset of the adaptive immune response. Such

cytokines lead to the activation of DCs, NK cells, and

macrophages, the enhancement of activities of various

lymphocytes, and the stimulation of antibody production. DCs

are impacted by type I IFNs in various ways. Type I IFNs

stimulate the differentiation of bone marrow derived monocytes

into DCs, induce the expression of chemokine receptors such as

CCR7 for migration to the lymph nodes and stimulate antigen

presentation and the expression of costimulatory molecules
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required for T cell activation (50, 87–89). In children with severe

RSV infection, Th2 skewing can be observed, instead of a Th1

response that normally occurs in viral infections (90).

Clearance of RSV infection is most likely mediated by plasma

cells which produce neutralizing antibodies and by recruited Tc cells

that directly kill infected cells (91). All types of circulating T cells are

decreased in severe RSV infection (92, 93). The low T cell counts in

RSV-infected infants may be the result of immune evasion strategies

of RSV. Fas-ligand and caspase-1 levels are elevated in RSV-infected

individuals, potentially inducing T cell apoptosis (94). Moreover,

programmed cell death 1 (PD-1) protein is elevated in CD8+ T cells

in RSV lower respiratory tract infection (LRTI), inhibiting pro-

inflammatory cytokine production in activated T cells and further

suppressing the T cell response (95). The generation of memory T

cells from CD8+ T cells might also be compromised by the activation

of mammalian target of rapamycin (mTOR) by RSV. Higher

expression of mTOR has been found in the lungs of infants with

RSV-induced bronchiolitis, potentially reducing the number of

memory T cells and thus lowering the protection against

reinfection (96). In addition, an association is found between lower

levels of systemic IFNg (a typical marker of type 1 response) and an

increased risk of RSV-induced bronchiolitis and the need for

ventilation (97). IFNg in the lungs exerts a protective effect during

viral infection and lower levels of IFNg in the lungs are associated

with more severe disease (98, 99). Type 2 responses can also be

induced by RSV infection. Several type 2 markers, both systemically

and locally in the lungs, are associated with disease severity (71, 100).

A high IL4/IFNg ratio, indicating a type 2 bias, is associated with

severe RSV-induced bronchiolitis (90). Clinical evidence supports the

hypothesis that a type 2 skewed response is associated with severe

RSV infection, as studies have found type 2 cytokine profiles, rather

than type 1 cytokine profiles, in children hospitalized with severe RSV

(100). Lastly, systemic mature and precursor B cells are present in

higher numbers in RSV LRTI, and IgA, IgG, and IgM antibodies in

response to the F and G glycoproteins of RSV are present in the lungs

of infants with RSV LRTI (101–103). An IgE response against the

RSV R and G glycoproteins can also be initiated and is associated

with severe disease (104). Children with high levels of IgE exhibited

worse symptoms and prolonged disease and also showed higher

eosinophil counts (71, 105).

The mechanism by which RV infection could contribute to the

development of asthma is less clear than for RSV infection. RV does

not have a cytopathic effect on the lung ECs but is still able to

compromise the epithelial barrier integrity through degradation of

the TJs (59, 106, 107). Furthermore, similar to RSV infection, RV

infection is suggested to be able to induce a type 2 response, which

could contribute to the subsequent development of asthma (65, 108,

109). Further evidence that viral infections in early life contribute to

the development of asthma, comes from studies treating viral-

induced wheezing in children. These studies show that treating

children suffering from RV-induced wheezing with oral

corticosteroids decreased the initiation of the use of asthma

controller medication within 5 years by 30%-40% (110, 111). No

reduction in the development of asthma was however observed in a

similar study treating children suffering from RSV infection with
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palivizumab, an antibody directed against RSV (112, 113). Viral

infection in early life and the subsequent development of asthma

could be related via various mechanisms. The nature of this relation,

and whether viral infections are a causal factor, have however yet to

be elucidated. Research into the molecular mechanisms of viral

infection and allergic asthma, as well as large cohort studies could

provide valuable information to answer this question.
4 What are human milk
oligosaccharides?

Human milk is a biologically complex fluid comprised of many

components. One of the most abundantly present solid ingredients in

human milk are the HMOs. Within this complex group of NDOs,

many different HMO structures have been identified so far (14, 15,

114). The various HMO structures consist of 3 to 23 monosaccharide

units and are created from the same five building blocks: glucose (Glc),

galactose (Gal), fucose (Fuc), n-acetylglucosamine (GlcNAc), and

sialic acid or n-acetylneuraminic acid (Neu5Ac) (13, 14, 16, 115). In

the mammary gland, Glc and Gal are linked with a b1–4 glycosidic

linkage by lactose-synthase to form lactose. Lactose forms the basis at

the reducing end of all known HMOs structures. The HMOs

structures are further elongated by the addition of Gal and/or

GlcNAc units to lactose with a b1–3 or a b1–6 glycosidic linkage, or

through fucosylation and sialylation. During fucosylation, Fuc is

added to Gal through a1–2 linkage or to Glc/GlcNAc through a1-
3/4 linkage. In sialylation, Neu5Ac is added to Gal through a2-3/6
linkage, or to GlcNAc through a2–6 linkage (13, 14, 115). Sialylation
results in acidic HMOs, while all others are considered neutral

(Figure 2) (13).

The composition of HMOs in humanmilk varies per person and is

dependent on several factors, such as the lactation stage, maternal diet,

and maternal phenotype (116, 117). The maternal phenotype results

from genetic polymorphisms in the Secretor (Se) and Lewis (Le) genes,

encoding the fucosyltransferase (FUT) -2 and FUT3 enzymes,

respectively. These enzymes determine the fucose linkages that a

lactating person can create (14, 16, 118, 119). Four maternal

phenotypic variants can be distinguished: Se+Le+, Se-Le+, Se+Le-,

and Se-Le- (119). Se+Le+ allows the lactating person to make a1-2/3/4
fucose linkages (e.g. 2’fucosyllactose (2’FL), 3-fucosyllactose (3FL)), Se-

Le+ enables a1-3/4 (e.g. 3FL, lacto-N-fucopentaose (LNFP) II, III), Se
+Le- a1-2/3 (e.g. 2’FL, 3FL), and Se-Le-,a1-3 (e.g. 3FL, LNFP III) (14).

HMOs have been linked to several biological functions in early

life development, such as supporting the establishment of the gut

microbiome in newborns. The intestinal microbiome is important

for general health and for the proper development and functioning

of the immune system (120). Infants are born with an immature

microbiome that should mature during the first years of life, and

reach a composition comparable to healthy adults around the age of

2 to 5 years (121). HMOs play an important part in the

establishment of the gut microbiome. HMOs act as prebiotics and

favor the colonization of commensal bacteria, such as

Bifidobacterium and Lactobacillus species (122). The microbiota

of breastfed infants specifically includes Bifidobacterium longum
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subspecies infantis (B.infantis), which is specialized and highly

efficient in the metabolization of HMOs (123).

Studies have shown that the microbiome of formula-fed children is

different compared to breastfed children (120). In one study the

composition of the microbiome was compared between breastfed

infants, formula milk supplemented with 2’FL and lacto-N-

neotetraose (LNnT) fed infants, and a control group fed formula milk

without the supplements. The microbiome of the children that were fed

the formula milk supplemented with 2’FL and LNnT was more similar

to breastfed children, as was observed previously for formula milk

containing more general NDOs (21, 124). The microbiome of the

formula-fed infants without the HMOs supplements contained higher

levels of Escherichia Coli and Clostridium difficile (124). These results

suggest that supplementing formulamilk withHMOsmay contribute to

infant’s health, as a healthy microbiome is important for proper

immune functioning (120).

HMOs are found to have more functions and effects on the body

besides supporting the development of a healthy intestinal

microbiome. For example, HMOs can enhance the gut epithelial

barrier and both directly and indirectly interact with the immune

system (14, 16, 112). Neutral and acidic HMOs have been observed

to cross the epithelial barrier in the gut, and neutral HMOs are

actively transported over the epithelial barrier as well (125). These

observations suggest a systemic availability of HMOs, which is

further supported by the detection of HMOs in the urine and

peripheral blood of infants (126). HMOs have also been detected in

the amniotic fluid. Amniotic fluid can enter the lungs of the fetus,

thus exposing the lungs to the HMOs present in the amniotic fluid.

HMOs might exert a direct effect on the lungs during gestation and

possibly shortly after birth (127).

Furthermore, while HMOs are indigestible for the infant,

various bacteria can digest HMOs into SCFA, which also support

the barrier integrity of the gut and can modulate immune responses

(14, 16). SCFA have been detected in the blood of infants as well

(128). The systemic availability of SCFA is relatively low: 100 µM in

serum for both humans and mice, of which acetate makes up 80%.

The concentration that reaches the lungs is therefore, also low (129–

131). Studies, however, show that SCFA have systemic effects

despite the low systemic availability. Trompette et al. for example

administered propionate in the drinking water of mice, which

resulted in decreased eosinophil recruitment to the lungs,

decreased goblet cell hyperplasia and decreased mucus

production, via imprinting the development of tolerogenic DC in

the bone marrow (132). The influence of HMOs and SCFA on viral

infections and the development of allergic asthma has been studied

and will be discussed in detail in the following sections.
5 Protective effects of HMOs during
viral infection

5.1 Inhibition of viral adhesion to cells

Viruses bind cell surface receptors to enter cells and replicate

(133). HMOs can intervene with the adhesion of the virus to the cell
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in two different ways: 1) as HMOs resemble glycan receptors found

on epithelial cells they can directly interact with the virus and act as

soluble decoy receptors (133, 134). Viruses that bind the HMOs will

not be able to bind a glycan receptor on a cell, and therefore will not
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be able to infect and replicate; 2) HMOs can also bind to receptors

on ECs themselves, thereby competing with viruses and blocking

viruses from binding and entering cells (133, 134). That HMOs can

reduce the viral load in both ECs was for example shown in an in
FIGURE 2

Schematic overview of HMOs. (A) The 5 building blocks of all HMOs. (B) Schematic representation of the building scheme of HMOs. (C) Schematic
representation of the composition of different HMOs structures. 2’FL, 2’-fucosyllactose; 3FL, 3-fucosyllactose; 3’SL, 3’-siallylactose; 6’SL, 6’-
siallylactose; Fuc, fucose; FUT, fucosyltransferase; Gal, galactose; Glc, glucose; GlcNAc, n-acetylglucosamine; LNFP I, lacto-N-fucopentaose I; LNT,
lacto-N-tetraose; LNnT, Lacto-N-neotetraose; LNT II, Lacto-N-triose; Neu5AC, sialic acid (created in BioRender.com).
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vitro study, where 2’FL and 3’SL downregulated the viral load of

RSV in 16HBE cells, while LNnT and 6’SL downregulated viral load

of influenza A (135).

Not all HMOs can bind viruses or epithelial cell receptors.

Rather, this function is dependent on the structure of the HMOs.

Fucosylated HMOs most closely resemble the glycan receptors

found on cells and thus most often fulfill the role of preventing

viral adhesion (14). A large percentage (35% to 50%) of the HMOs

found in human milk is fucosylated, indicating a potential biological

function in viral defense (14).

Furthermore, direct interaction of HMOs with intestinal ECs

(IECs) can modulate their gene expression, potentially resulting in

changes in surface glycans expression, as well as in other cellular

responses, such as cytokine production (136). Such effects of HMOs

may play a role in the responses upon encountering invading viral

pathogens. The modification of surface glycans expression could be

a plausible mechanism by which HMOs interfere with the adhesion

of pathogens at the lung epithelial barrier site and could prevent

infection. Since low concentrations of HMOs become systemically

available, it can be hypothesized that HMOs modulate lung ECs

gene expression, and cytokine secretion in the in vivo situation

(126). However, no experimental data is available to confirm

this currently.
5.2 Modulation of the microbiome and
epithelial barrier

Proper development of the microbiome contributes to a healthy

and strong epithelial barrier and a healthy immune system (120,

137). Not only the gut, but the lung has a microbiome as well. The

lung microbiome reaches maturity two to three months after birth

(138). Cross-colonization may take place between the lungs and the

gut, with sputum containing lung bacteria being swallowed and

small amounts of gastric fluids being aspirated into the lungs (5).

The predominant phyla found in the lung microbiome are

Bacteroidetes and Firmicutes, and the most common bacterial

communities consist of Streptococcus, Prevotella, and Veillonella

(139). HMOs can potentially support the health of the lung

microbiome indirectly through cross-colonization by the gut

microbiome, where the growth of commensal bacteria can be

directly influenced by higher concentrations of HMOs (5).

Alternations in the respiratory microbiome during respiratory

infections have been observed, specifically during RSV infection.

The severity of an RSV infection might be related to changes in the

respiratory microbiota (140). One study in 96 children for example

showed an increase in diversity of the upper respiratory

microbiome in children with severe RSV-induced bronchiolitis

(141). HMOs can potentially reduce the severity of RSV infection

by supporting the health of the lung microbiome.

The maturation and formation of a proper intestinal epithelial

barrier and a proper lung epithelial barrier is important to protect

against invading pathogens and to prevent sensitization to allergens

(16). HMOs can exert direct effects on the gut epithelial barrier, as

shown in in vitro studies. For example, LNnT, 2’FL, and 6’-
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sialyllactose (6’SL) are reported to dose-dependently induce

maturation of the gut epithelium, as evidenced by growth

inhibition and enhanced differentiation in HT-29, Caco-2, and

HIEC cells (142–144). Other reports show that 3’siallylactose

(3’SL), 6’SL, and 2’FL strengthen the gut epithelial barrier by

promoting the production of mucus and the formation and

strengthening of the tight junctions (144, 145).

Most of the HMOs reach the large intestine undigested. They

are then metabolized by specific gut bacteria. The main resulting

metabolites of this process are the SCFA, of which butyrate, acetate,

and propionate are the best-known and most-studied (16, 146, 147).

B.infantis, abundantly present in the infant gut microbiome, is

especially efficient at metabolizing HMOs into SCFA (123). In an in

vivo study in rats, it was shown that acetate can increase the

expression of genes related to mucus production, as well as

support the differentiation of goblet cells (148). In rats, it was

shown that the expression of mucus-related genes was upregulated

by butyrate as well (149). Another mechanism by which SCFA

support the barrier integrity, is by increasing the expression of tight

junction protein-related genes Zonula Occludens-1 (ZO-1) and

Occludin, therefore maintaining and strengthening the TJs

between ECs (149, 150).

Studies show that RSV and RV can disrupt the epithelial barrier

in the lung (151, 152). Both HMOs and SCFA become systemically

available and could thus directly affect the lung epithelial barrier

(14, 16, 126). For example, the expression of tight junction proteins

in an in vitro model of lung ECs was increased by butyrate and

propionate (153). HMOs and SCFA might have similar effects on

the lung epithelial barrier as on the gut epithelial barrier and thus

support a strong lung epithelial barrier.
5.3 Direct or indirect modulation of innate
and adaptive immune cells involved in viral
infections

HMOs can interact with cells of the immune system directly

and indirectly. Direct interaction takes place through various

glycan-binding proteins (lectins) which are expressed on immune

cells and ECs, allowing HMOs to directly influence both the

epithelial barrier and the immune response. Various types of

lectins exist and are relevant in the response to infections:

galectins, sialic acid binding immunoglobulin-like lectins (siglecs),

selectins, and C-type lectins (16, 147). Indirect interaction is

mediated by HMOs metabolites, the SCFA (Table 1). The

interactions between HMOs or SCFA with these receptors can

also play a role in asthma prevention and treatment. These

interactions and effects are described in section 6.2 and 6.3.

5.3.1 Galectins
Galectins are known to interact with viruses and can both

promote and inhibit viral infections (154, 155). Ligand-bound

galectins either directly relay signals into the cell, or become

soluble (156). Soluble galectins can act as ligands themselves and

bind receptors on mucosal immune cells (157). Some HMOs bind
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to a selection of galectins, while 25 HMOs were found to bind

galectin-1, -3, -7, and -9, albeit with varying affinities (158).

Another group reported that from the studied galectin-1, galectin-

2, galectin-3, galectin-4, galectin-7, and galectin-8, only galectin-2

did not bind HMOs. The galectins all recognized a unique binding

site in the HMOs (159). Galectins are involved in the modulation of

both the innate and adaptive immune response, and they can exert

both inflammatory and anti-inflammatory effects (154, 155). The

exact role of galectins during viral infections is not yet fully

understood, and further elucidation is warranted.

5.3.2 Siglecs
Siglecs are expressed on various antigen presenting cells

(APCs), basophils, eosinophils, NK cells, and mast cells, these are

cell types that are involved in either viral defense and/or allergic

responses (160, 161). The Siglec family consists of 15 members, of

which some contain immunoreceptor tyrosine-based inhibitory

motif (ITIM), a regulator of immune responses (146, 161). So far,

only 3’SL and 6’SL have been found to bind to siglec-1, siglec-5,

siglec-7, siglec-9, and siglec-10 (16). Siglec-1 was the first identified

siglec and therefore the most studied. Siglec-1 expression on

myeloid cells is induced by IFNg and is thought to play an

important role in the initiation of an immune response to viral

infections (162). Viruses can however also interact with siglec-1 to

downregulate the immune response. RV can for example inhibit the

ability of DCs to stimulate T cells by inducing the expression of PD-

L1 and siglec-1 (163). Inhibition of siglec-1 with a monoclonal

antibody reversed the inhibitory phenotype. 3’SL and 6’SL can bind

siglec-1, but the effect of binding is unknown. 3’SL and 6’SL could

have a similar effect as a monoclonal antibody if the binding blocks

the binding site of siglec-1 (16, 163).

5.3.3 Selectins
Pro-inflammatory cytokines induce the expression of selectins

on ECs. Selectins form a family of cell adhesion molecules which are

essential for the first stages of leukocyte trafficking in inflammation

(146). Sialylated HMOs (3’SL and 3’-sialyl-3-fucosyl-lactose

(3’S3FL)) have been shown to interact with selectins, which

inhibits the adhesion of monocytes, lymphocytes, and neutrophils

to human umbilical vein endothelial cells (164, 165). The reduced

influx of immune cells can possibly prevent severe inflammation in

the lungs (147).

5.3.4 C-type lectins
The last group of lectins interacting with HMOs are the C-type

lectins. Four subgroups of C-type lectins exist: the sialo-

glycoprotein receptor family, the dectin-1 subfamily of asialo

glycoprotein receptors, the DC immune receptor subfamily, and

the Mannose receptor family (146, 166). C-type lectins are

expressed by APCs, where they act as PRRs, and thus play an

important role in the regulation of immune responses to pathogens.

They are involved in the internalization of antigens and the

subsequent antigen presentation (146, 167). Some C-type lectins
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contribute to the transmission of viruses. Dendritic cell-specific

intercellular adhesion molecule 3 (ICAM-3) grabbing non-integrin

(DC-SIGN) for example aids in the transmission of several different

types of viruses. One study suggested that RSV binding to DC-SIGN

inhibits part of DC activation and might thus limit the antiviral

response via this mechanism (168). Moreover, evidence exists that

DC-SIGN signaling induced by fucose-expressing pathogens or

viruses induces a type 2 immune response (169). A study showed

that 2’FL, as well as a mix of HMOs from pooled human milk, bind

DC-SIGN and prevent other ligands from binding (170). Preventing

the binding of other ligands might prevent the inhibition of DC

activation by RSV and could thus possibly contribute to the

antiviral immune response. It is however unknown whether

binding of DC-SIGN by HMOs has a biological effect, or simply

blocks the receptor.
5.3.5 Toll-like receptors
TLRs are important for the recognition of viruses (54). Evidence

suggests that, besides lectins, HMOs are also able to bind TLRs.

Some HMOs activate while other HMOs inhibit TLR signaling.

Lacto-N-triose II (LNT II) was for example found to activate all

TLRs, while 3FL was found to only activate TLR2. 2’FL, 3FL, 6’SL,

and LNnT on the other hand were found to inhibit TLR5 and TLR7

signaling. 3FL additionally inhibited TLR8. Both the activation and

inhibition of TLRs by HMOs are thought to contribute to immune

balance (171–173).
5.4 Preclinical evidence

The effects of HMOs on viral infections have been tested in

animal models as well. In a murine model of influenza infection for

example, mice treated with 3FL prior to infection had an enhanced

anti-viral response and an increased survival rate (174) (Table 2).

Next to the direct interactions of HMOs with immune cells,

indirect effects of HMOs are possible via metabolites, such as SCFA,

resulting from the fermentation of HMOs. SCFA are known to have

effects on various immune cells. SCFA can increase the activation of

anti-inflammatory immune cells, such as Treg cells, and can increase

the production of regulatory cytokines (175, 176). On top of this,

SCFA have been shown to directly interact with DCs and T cells via

the G protein-coupled receptors (GPRs) present on the cell surface,

further increasing their ability to modulate immune responses (177)

(Table 2).

The effect of SCFA has been assessed in animal models as well. In

an in vivo murine model of RSV infection, Antunes et al. reported

that oral administration of acetate protected the mice from RSV

infection (178). The anti-viral effects observed involved the

activation of GPR43 and increased expression of interferon-

stimulated genes in the lungs, which subsequently led to lower viral

load. The effect of acetate was ameliorated in GPR43-/- mice,

supporting the involvement of GPR43 in antiviral pathways in the

lungs (Table 2).
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5.5 Clinical evidence

Several studies on the protective effects of specific HMOs on

viral infections have been performed, however, clinical evidence on

respiratory viral infections is still very limited. One study, for

example, followed mother-infant pairs for 24 weeks and showed

that higher levels of lacto-N-fucopentaose II (LNFPII) in the human

milk were associated with lower incidence of respiratory problems,

such as infection or wheezing, after 6 weeks of life (179). In an

intervention study, the effects of 2’FL and LNnT were studied in

infants receiving formula for 6 months. Supplementation of the

infant formula with 2’FL and LNnT was associated with lower

parent-reported episodes of bronchitis, suggesting that these

particular HMOs have a possible protective effect on the lungs

(180). In another intervention study with prebiotics (GOS

polydextrose mixture), probiotics, or placebo, infants in the

prebiotics and probiotics groups had a lower incidence of viral

respiratory tract infections compared to the infants receiving a

placebo, with RV being the most common infection. The severity of

the RV infections between all groups was similar (181).

More general effects of HMOs on inflammatory markers have

been observed in infants as well. For example, healthy infants

receiving formula milk supplemented with GOS in combination

with 2’FL had 29% to 83% lower concentrations of pro-

inflammatory cytokines (IL1ra, IL6, IL1b, TNFa, and IFNg) in

their blood compared to infants receiving formula milk GOS alone.

The cytokine levels of infants fed with 2’FL supplemented formula

were similar to infants fed human milk. In the same study,

peripheral blood mononuclear cells (PBMCs) were stimulated ex

vivo with RSV, and similar results were found. PBMCs from

formula-fed children secreted higher levels of pro-inflammatory

cytokines than PBMCs from breastfed infants and PBMCs from

infants fed with the 2’FL supplemented formula (182) (Table 2).
6 Possible connection between HMOs
and asthma prevention

6.1 Modulation of the microbiome and
epithelial barrier

An altered gut microbiome has been associated with the

development of asthma (183). The gut microbiota can be

modified using HMOs (124). Several bacterial strains have shown

beneficial effects in promoting intestinal epithelial barrier properties

and/or lowering inflammatory responses in intestinal epithelial cells

(144, 145).

Studies have shown a disrupted lung epithelial barrier in

asthma, which is associated with a decreased expression of the TJ

proteins occludin and ZO-1 (184, 185). Some allergens have

proteolytic activity, which can damage the lung epithelial barrier

and allow easier interaction of allergens and pathogens with

mucosal DCs. In addition, the type 2 inflammatory response in

the bronchial mucosa can affect the epithelial barrier of the lungs, as

IL4 and IL13 are known to downregulate TJ expression (186).
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Moreover, IL4 and IL13 also activate Notch-signaling, promoting

differentiation of airway basal cells into mucus producing goblet

cells, and thus leading to goblet cell hyperplasia and mucus plugging

(187, 188).

HMOs have been shown to promote barrier integrity in the gut

and could have similar effects on the lung epithelial barrier through

their systemic availability or via metabolites resulting from their

fermentation in the gut (e.g. SCFA) (144, 145). Moreover, in an in

vitro study using BECs from asthmatic patients, it was shown that

the epithelial barrier was restored with the addition of (histone

deacetylase) HDAC inhibitors (184). The SCFAs become available

in low concentrations systemically and could have similar effects in

the lungs, as they are HDAC inhibitors as well (189).
6.2 Direct or indirect modulation of innate
and adaptive immune cells involved in
asthma development and/or symptoms

Since HMOs are glycan-type structures, they can bind to

various glycan-binding receptors present on structural and

immune cells. HMOs may directly affect immune cells by

interacting with these glycan receptors. Additionally, they may

indirectly influence the immune system by modulating the levels

of soluble glycan receptors or SCFAs. Below, the potential

implications of HMOs in preventing allergic sensitization are

outlined first, followed by their direct or indirect effects on the

chronic inflammatory response in established asthma, based on in

vitro and in vivo studies. The receptors described may also play a

role in the protection against viral infections, which is described in

section 5.3 (Tables 1, 2).

6.2.1 Allergic sensitization cascade and cells
bridging the innate and adaptive immune
response

As previously mentioned, in allergic asthma, allergen-induced

type 2 activation of BECs leads to activation of ILCs and DCs. DCs

drive allergen specific Th2 immunity in the afferent lymph nodes,

where B cells are instructed for IgE isotype switching. HMOs are

thought to support a proper balance between Treg and Th1 versus

Th2 immune responses by modifying DC function. For example,

treatment of human monocyte derived DCs (moDCs) with HMOs

mixtures from pooled human milk increased the secretion of the

tolerogenic cytokines IL10 and IL27, while lowering the secretion of

inflammatory cytokines TNFa and IL6. Furthermore, when these

moDCs were co-cultured with naive T cells, the moDCs induced the

differentiation of naïve T cells into Treg cells (172). In transwell co-

cultures using IECs and activated PBMCs, a mixture of 2’FL and

short-chain (sc) GOS and lcFOS enhanced the secretion of IFNg
and/or galectin-9 after exposure to CpG, while decreasing IL13

(190). In models where IECs were co-cultured with moDCs and

moDCs with naïve CD4+ T cells, 3FL enhanced the secretion of

IL10 and IL17, while decreasing the production of IL12p70, IL13,

and IL23 in response to ovalbumin (OVA). Furthermore, 3FL

decreased the differentiation of naïve T cells into Th2 cells, while
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inducing differentiation into Treg cells. Moreover, 3FL silenced the

Th2 effector response (191). Even though these effects were

observed in mucosal in vitro models using IEC, HMOs may also

be capable of immunomodulation at the mucosal surface of

the lungs.

6.2.2 C-type lectins
HMOs become systemically available, and may therefore act on

BEC as well. C-type lectin receptors have been shown to be involved

in the modulation of the DC and T cell responses by HMOs. HMOs

can interact with C-type lectin DC-SIGN (16, 167). Allergens

binding DC-SIGN activate DCs, and DC-SIGN is thus thought to

be involved in the sensitization phase of allergic diseases (192). For

example, DC-SIGN was found to be involved in the recognition and

uptake of the house dust mite (HDM) allergen der p 1 (193). As

indicated previously, evidence exists that DC-SIGN signaling

induced by fucose-expressing pathogens or viruses induces a type

2 immune response (169). This might be prevented by HMOs

binding to DC-SIGN. Moreover, the binding of DC-SIGN by

HMOs could potentially prevent the binding and uptake of

allergens by DC-SIGN, thereby preventing DC maturation and

possibly activating tolerogenic responses via DC-SIGN.

Furthermore, one study has shown that a mix of HMOs isolated

from pooled human milk was able to reduce the expression of DC-

SIGN on DCs, which would limit DC activation and subsequent

allergic sensitization (172).
6.3 Effector cells in chronic allergic airway
inflammation and tissue remodeling

In allergic asthma, the binding of airway allergens to IgE

opsonizing bronchial mast cells leads to IgE receptor crosslinking,

resulting in airway narrowing via smooth muscle contraction,

mucus hypersecretion, and bronchial wall edema. The activity of

mast cells, therefore, plays an important role in the development of

symptoms in allergic asthma. Beneficial bacteria like Lactobacillus

spp. were able to suppress the genes encoding the FceR and

histamine receptors in vitro (194). The HMO fucosyl-a1,3-
GlcNAc (3FN) has been shown to increase the abundance of

Lactobacillus spp. in bacterial cultures derived from infant stool

samples (195). Lactobacillus spp. produce several fermentation

products, including the SCFAs propionate and butyrate.

Propionate and butyrate have been shown to inhibit mast cell

activation through modulation of FceRI-mediated signaling (153).

The results from these studies suggest that Lactobacillus spp. might

contribute to the inhibition of mast cell activation possibly through

the production of SCFA, which in turn suppress genes responsible

for FceRI-mediated signaling. Similarly, the abundance of E. faecalis

is found to positively correlate with the intake of HMOs, and these

bacteria inhibit degranulation of bone-marrow derived mast cells in

vitro (196).

In chronic asthma, a Th2-driven chronic inflammation and

eosinophilic airway inflammation contribute to airway

hyperresponsiveness, goblet cell metaplasia, tissue damage, and
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tissue remodeling. Inflammatory macrophages and Tc2 cells

contribute via additional secretion of type 2 cytokines IL4 and

IL13 (41, 45). The effects of HMOs on these types of cells are

currently largely unknown. However, HMOs may be able to modify

the responses of these effector cells in chronic inflammation via

several types of (soluble) glycan receptors.

6.3.1 Galectins
Various HMOs were shown to bind galectin-1 (158). Galectin-1

has a regulatory role in allergic asthma. T cell homeostasis is

maintained by galectin-1, by inducing the production of IL10 by

T cells, while suppressing the release of TNFa and IFNg, and
supporting the functions of Treg cells (197–199). These findings are

further supported by a murine study, in which galectin-1 deficient

mice developed more severe inflammation in response to allergen

challenge when compared with wild-type mice (200). Galectin-1 is

furthermore able to inhibit eosinophil migration, reducing the

number of eosinophils in the lungs and lowering inflammation

(201). Moreover, a study in a murine model of AAI showed that

administration of galectin-1 inhibited the recruitment of immune

cells to the lungs, as well as the secretion of cytokines and mucus

(202). HMOs could modulate the release of galectin-1 and support

immunomodulatory properties of galectin-1 (Table 1).

Galectin-3, on the other hand, appears to have a pro-

inflammatory role in allergic asthma, as a study in mice showed

that galectin-3 expressing inflammatory cells were recruited to the

lungs upon allergen exposure (203). Furthermore, the levels of

galectin-3 were found to be upregulated on the cell surface of

eosinophils derived from allergic subjects, and they had increased

adhesive interactions (201). A murine study showed that mice

deficient in galectin-3 had a decrease in eosinophilic infiltration

of the lungs, as well as a dampened development of a Th2

inflammatory response in the lungs and a reduction in airway

remodeling (204). Depending on the cell type, galectin-3 expressed

on the cell surface is mostly involved in cell activation, adhesion,

migration, and apoptosis. HMOs can bind various galectins,

including galectin-3. Blocking galectin-3 could influence these

processes and possibly reduce immune cell migration toward the

lungs (Table 1) (16, 205, 206).

Galectin-9 is evidenced to have both a pro-inflammatory and an

anti-inflammatory role in allergic asthma. In models of allergic

asthma in mice and guinea pigs, higher expression of galectin-9 in

the lungs was related to an increase in the recruitment of

eosinophils (207, 208). However, in a model of AAI in guinea

pigs, exogenously administered galectin-9 was shown to reduce

recruitment of eosinophils to the lungs and suppress airway

resistance (209). Another study showed that galectin-9 could be

involved in the regulation of activated eosinophils, as galectin-9

induced apoptosis in activated eosinophils, but not in non-activated

ones (210). Furthermore, in vitro studies have shown that galectin-9

can bind IgE, which prevents the formation of IgE-allergen

complexes and thus the degranulation of mast cells (209).

Moreover, low levels of galectin-9 were found to be associated

with lower levels of Tregs and tolerogenic DCs in the blood and

intestinal biopsies of food-allergic individuals. After DCs were
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TABLE 1 The effects of interactions between HMOs and receptors, and SCFA and receptors.

HMOs

HMO Model Receptor Effect Reference

2’FL Binding assay Galectin-1, -3, -4, -7 and -8 (158, 159)

OUW-SIGN cells DC-SIGN Prevent binding of other ligands (170)

THP-1 reporter cell line
and HEK reporter cell line

TLR5, TLR7 Inhibition of TLR5 and TLR7 activation. (171)

RAW264.7 cells TLR4 Dose-dependent inhibition of TLR4/NF-kB pathway, upregulation
miR-146a expression

(221)

3FL THP-1 reporter cell line
and HEK reporter cell line

TLR2, TLR5, TLR7, TLR8 Activation TLR2, inhibition TLR5, TLR7, TLR8; contribute to
immune balance

(171)

3’SL Binding assay Siglec-1, -3, -5, -7, -9, -10 (159, 246)

Autologous human moDC-
T cell co-culture

Siglec-1 May enhance immune response to RV infection (163)

Monocytes, lymphocytes,
neutrophils migration
over HUVEC

Selectins Inhibition adhesion monocytes, lymphocytes, neutrophils to human
umbilical vein endothelial cells

(164, 165)

Murine model of AAI Galectin-1, -8 Involved in modulation of adaptive and innate immune response,
both pro-inflammatory and anti-inflammatory. Effect of HMO
binding not yet studied

(158, 159)

6’SL Binding assay Siglec-1, -3, -5, -7, -9, -10 (159, 246)

Autologous human moDC-
T cell co-culture

Siglec-1 Possibly enhance immune response to RV infection (163)

THP-1 reporter cell line
and HEK reporter cell line

TLR5, TLR7, TLR8 Inhibition of TLR5 and TLR7 activation. Synergistic effect on
ssRNA40 induced TLR8 activation.

(171)

3’S3FL Monocytes, lymphocytes,
neutrophils migration
over HUVEC

Selectins Inhibition adhesion monocytes, lymphocytes, neutrophils to human
umbilical vein endothelial cells

(164, 165)

LNT II THP-1 reporter cell line
and HEK reporter cell line

TLR2, TLR3, TLR4, TLR5,
TLR7, TLR8, TLR9

Dose-dependent activation of all TLRs. NF-kB dependent IL10 and
TNFa secretion.

(171)

LNnT Binding assay Galectin-1, -3, -4, -7 and -9 (158, 159)

THP-1 reporter cell line
and HEK reporter cell line

TLR5, TLR7 Inhibition of TLR5 and TLR7 activation. (171)

LNFP I Binding assay Galectin-1, -3, -4, -7 and -9 (158, 159)

HMOS Human moDC-naïve CD4
+ T cell co-culture

TLR4, DC-SIGN Increased regulatory and decreased type 1 moDC and T cell
responses during LPS exposure, mediated via HMOS binding to
TLR4 and DC-SIGN

(172)

OUW-SIGN cells DC-SIGN Preventing binding of other ligands (170, 172)

SCFAs

SCFA Model Receptor Effect Reference

Acetate Murine model of
RSV infection

GPR43 Activation of GPR43, increase IFN-b production, protect against
RSV infection in mice

(178)

Murine model of AAI GPR43 Activation of GPR43, reducing recruitment of immune cells (225)

Murine model of AAI HDAC9 Increase in Foxp3 acetylation, upregulation of number of Treg and
increasing their function

(177)

Butyrate Murine model of AAI HDAC Inhibit cytokine production of ILC2, as well as proliferation ILC2 (229)

Specific pathogen-free,
microbiota -deficient, and
germ-free mice

histone H3 acetylation Upregulation of FoxP3 expression and subsequent increased number
of Treg cells

(228)

(Continued)
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exposed to galectin-9, their ability to generate Treg cells was

restored (211). Similar results were found in a mouse model of

food allergy, where galectin-9 levels were found to be increased after

dietary intervention with GOS/lcFOS and B.breve, which

corresponded with decreased mast cell degranulation in vivo, as

well as increased differentiation into Th1 and Treg cells in vitro and

in vivo (212). More studies into the role of galectin-9 are however

needed to determine whether similar mechanisms play a role in

allergic asthma and whether HMOs could potentially influence

galectin-9 levels in a similar fashion as GOS/lcFOS.

6.3.2 Siglecs
Siglec-7 and siglec-8 were shown to be involved in allergic

immune responses, possibly playing a role in allergy and allergic

asthma (213–215). Sialic acid containing HMOs, such as 3’SL and

6SL, can bind siglec-7 and siglec-8 with low affinity (16). Siglec-7 is

expressed on various immune cells, including monocytes,

eosinophils, and mast cells. Activation of siglec-7 with a

humanized antibody prevented the degranulation of human cord

blood-derived IgE-sensitized mast cells (216). The gene expression

of siglec-8 is increased in the sputum cells of asthmatic individuals.

Siglec-8 is expressed on the surface of both eosinophils and mast

cells and, similar to siglec-7, crosslinking siglec-8 with a humanized

antibody prevented the degranulation of mast cells ex vivo (214).

HMOs could potentially exert a similar effect on siglec-7 and siglec-

8 as an antibody, preventing the degranulation of mast cells.
6.4 Pre-clinical evidence

In various murine studies, Th2 skewing was reduced, and

intestinal Treg numbers increased by treatment with

Bifidobacterium, and Lactobacillus spp supplementation (217,

218). HMOs support the colonization of Bifidobacterium and

might thus exert its protective effects via modulation of Th

skewing (122). A study performed in a murine model of HDM

allergic asthma revealed that both 2’FL and 6’SL at biologically

relevant doses decreased the amount of circulating IgE, decreased

levels of IL4 and IL6 in the lungs, and decreased inflammatory cell

infiltration in the lungs. Moreover, increased levels of Bacteroidetes

and Clostridia were found, as well as increased levels of SCFA in

both the intestine and the blood (219). Studies on the effects of

HMOs in food allergy can be relevant for understanding the effect of

HMOs in allergic asthma, as the involved immunological

mechanisms are thought to be comparable. One study for

example showed that mice, previously intragastrically sensitized

to OVA, had increased airway inflammation after intranasal
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exposure to both OVA and HDM. These results show a

connection between intestinal sensitization, and thus a break in

oral tolerance, and allergic asthma (220). In a murine cow’s milk

allergy model, 2’FL specifically reduced the secretion of allergen-

specific IgE, mast cell degranulation, and the levels of TNFa, IL4,
and IL6 in serum. These results are similar to what was observed in

an HDM allergic asthma model using 2’FL. Further in vitro studies

revealed that 2’FL directly inhibits TLR4, which plays an important

role in allergy (221). Similar findings were obtained in OVA-

sensitized mice after daily treatment with 6’SL. An increase in

Treg cells was found in the Peyer’s patches and mesenteric lymph

nodes in the 6’SL treated mice as well (222). Yet another study

showed that mice treated with 3FL during OVA sensitization had

decreased Th2 activation, while Treg numbers increased. The

administration of 2’FL had beneficial effects as well, resulting in

decreased mast cell activation (223). These studies provide evidence

for the anti-inflammatory role that HMOs can play in allergy.

SCFAs can interact with various receptors, such as GPR43,

GPR41, and GPR109A (177, 178). GPR43 and GPR41 are expressed

on a wide variety of cells, including IECs, BECs, and immune cells.

GPR109A is expressed on immune cells as well. All three major SCFA

can bind GPR41, while only acetate and propionate can bind GPR43,

and only butyrate can bind GPR109A (224). In a murine asthma

model, it was shown that GPR43 is involved in protective mechanisms

in asthma. OVA-sensitized Gpr43-/- mice had unresolved or

aggravated inflammation, which appeared to be due to an increase

in the recruitment of immune cells to the lungs (225). In another

study, mice fed a high-fiber diet had increased concentrations of SCFA

in their blood. This increased tolerogenic DC precursor numbers in

the bone marrow, which in turn resulted in reduced HDM induced

allergic inflammation in the lungs. In the same study, it was shown

that the administration of propionate via drinking water protected

against HDM-induced AAI as well, in a GPR41-dependent manner.

This effect was mostly due to a decreased recruitment of eosinophils to

the lungs (132). Activation of GPR43 and GPR41 by propionate could

thus possibly have a protective effect on inflammation in asthma by

promoting a tolerogenic DC phenotype and reducing the recruitment

of immune cells, pointing to a potential role of HMOs as a source for

SCFA production.

Furthermore, SCFA interact with histone deacetylases

(HDACs) and therefore modify the expression of several genes.

HDACs are regulators of T cell differentiation, and several HDACs,

such as HDAC1 and HDAC9, have been found to be upregulated in

allergic asthma (184, 226). Butyrate and propionate have been

shown to inhibit HDACs in immune cells in mice, inducing the

upregulation of Foxp3 and IL10 secretion, and the subsequent

differentiation into Treg cells (227, 228).
TABLE 1 Continued

SCFAs

SCFA Model Receptor Effect Reference

Propionate Murine model of AAI GPR41 Protection against HDM-induced AAI. Decreased recruitment of
eosinophils to the lungs. Altered DC function, resulting in decreased
Th2 effector function

(132)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1572787
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rijks et al. 10.3389/fimmu.2025.1572787
The inhibitory effect of SCFA on HDACs has been studied in

murine models of asthma. One study showed that the

administration of butyrate via drinking water reduced airway

inflammation in an ILC2 driven asthma model in mice, by

inhibiting the proliferation and cytokine production of ILC2s,

likely via HDAC inhibition (229). Another study showed that

administration of acetate increased Foxp3 acetylation through

HDAC inhibition, which upregulated the number of Treg cells, as

well as increased their suppressive function. The induction of Treg

cells was associated with the suppression of AAI symptoms (177).

Yet another study showed that administration of 2’FL and 6’SL

reduced ILC2 mediated airway inflammation in mice. This effect

was shown to be due to increased SCFA levels (230).
6.5 Clinical evidence

Meta-analyses show that breastfeeding can reduce the risk of

allergic asthma development in children (17, 18). The rich and

varying composition of human milk poses challenges in linking

breastfeeding to allergy and asthma risk, but HMOs could be one of

the main factors involved. The composition of human milk can

affect the outcomes of linking breastfeeding to allergy risk. One

study determined different profiles of maternal HMOs in a cohort of

620 babies. From these profiles, 7 classes were identified, based on

the secretor and Lewis groups, as well as neutral and acidic groups

present. Children receiving acidic Lewis HMOs human milk (e.g.

high 3FL, 3’SL) had a higher risk of allergic disease and asthma up

to 18 years of age compared to children receiving neutral acidic

HMOs. The group fed with acidic predominant HMOs human milk

(e.g. high 6’SL, low 3FL, 3’SL) however, had a lower risk of being

sensitized to food allergens up to 18 years of age (231). In another

study focusing on FUT2-dependent oligosaccharides, it was found

that C-section-born children had a lower incidence of allergic

disease at 2 years of age when fed with human milk containing

FUT2-dependent oligosaccharides (232). Furthermore, a strong

association between the levels of SCFA in infant’s feces and the

development of asthma between 3 and 5 years of age was found.

Children with high levels of butyrate and propionate in the feces

were significantly less likely to develop atopic sensitization and

subsequent development of asthma (233).

Current clinical studies give some evidence for the protective

effects of breastfeeding on allergic diseases. More studies are needed

to elucidate the influence of the composition of human milk on the

effects on allergic diseases. Moreover, studies focusing specifically

on the role of HMOs in asthma are needed as well, to better

understand the presumed protective effects of HMOs.
7 The Gut-Lung axis

Besides the direct effects that HMOs and SCFA can have on the

microbiome of the lung, they also affect the microbiome in the gut.

The beneficial effects of a diverse, well-developed, and properly
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functioning gut microbiome may translate to a healthy

development of the lungs as well, via the gut-lung axis. The gut-

lung axis allows the interexchange of microbes and metabolic

products of commensal bacteria to impact the lungs and vice

versa. Microbiota can interchange via the trachea and gut tissue,

while gut bacterial fermentation products, such as the short chain

fatty acids (SCFA) acetate, propionate and butyrate, can enter the

bloodstream and be transferred, albeit in low concentrations, to the

bone marrow, and to the lungs where they can have anti-

inflammatory effects (128, 132, 139). Evidence for the existence of

a gut-lung axis comes from murine studies, as well as

epidemiological studies. For example, germ-free mice were found

to be highly susceptible to allergic airway disease (234). Similarly,

depletion of the gut microbiome through antibiotic use in early life

increases the risk of developing airway disease (235, 236).

Furthermore, epidemiological studies point to an association

between the use of antibiotics in early infancy, microbiome

dysbiosis, and an increased risk of developing asthma (237, 238).

A recent study in a murine HDM-induced allergic asthma model

showed that this increased susceptibility might be related to the

decreased systemic levels of indole-3-propionic acid (IPA), a

bacterial metabolite. Mice treated with antibiotics had an

increased susceptibility to HDM-induced allergic airway

inflammation (AAI) and had a decreased level of IPA. While oral

supplementation with IPA protected the mice from AAI (239).

Moreover, another study demonstrated that inflammation in the

gut predisposed mice to the development of allergen-specific airway

response (220).

Beyond the interchange of microbes and metabolic products,

Tregs generated in the gut are known to migrate to the lungs and

vice versa (240). These migrating Tregs have been shown to reduce

Th2 allergic responses in the lungs of allergic individuals (240).

Lastly, antigens can travel from the gut to the lung and the other

way around via the bloodstream (241). The lung can also influence

the gut, as shown in mice, where respiratory influenza infections

resulted in an altered intestinal microbiome, as well as intestinal

injury (242). Furthermore, chronic pulmonary disorders are

associated with symptoms of the gastrointestinal tract as well

(243, 244). In early life, the composition and function of the

microbiota can be shaped via breastfeeding (124). HMOs can

function as prebiotics for beneficial bacteria and can in addition

to this also directly impact immune function.
8 Discussion

In this review we described asthma as a common immune

disease with an increasing prevalence worldwide (3). It is unknown

how asthma exactly develops, but it is known to be associated with

several risk factors, such as a genetic predisposition and a severe

viral infection in early life, among others (1, 6).

Viral infections can increase the risk of developing allergic

asthma by damaging the lung epithelial barrier (58–60). The lung

epithelial barrier can be damaged by apoptotic cell death and TJ
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degradation (59, 62, 63). Allergens can cross the damaged lung

epithelial barrier more easily, which increases the risk of

sensitization (60). In addition, apoptotic ECs produce alarmins,

which play a key role in the allergic response (64, 65).

On top of damaging the lung epithelial barrier, viral infections

can cause a type 2 immune reaction, which can increase the risk of

developing asthma as well (58–60). A type 2 skewed immune system

could be more easily sensitized to allergens, especially if the lung

epithelial barrier is also damaged. The combination of a damaged

epithelial barrier and a type 2 skewed immune system might explain

how severe viral infections increase the risk of allergic asthma.

Breastfed infants have a lower risk of developing a severe viral

infection and/or asthma than formula fed infants, according to

epidemiological data (245). HMOs might directly play an important

role in this protective effect, but might also indirectly play a role via

specific SCFAs (16, 146, 147). Directly, HMOs might strengthen the
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lung epithelial barrier (Figure 3). A strong lung epithelial barrier

protects against invading pathogens and sensitization against

allergens. HMOs can strengthen the gut epithelial barrier and

possibly also exert similar strengthening effects on the lung

epithelial barrier, as HMOs become systemically available in low

concentrations (126, 142–144). HMOs might furthermore have

protective effects through directly interacting with immune cells

through glycan-binding proteins (Figure 3) (16, 147). Indirectly,

SCFA might also strengthen the lung epithelial barrier (Figure 3).

SCFA also strengthen the gut epithelial barrier and also become

systemically available in low concentrations (14, 16). Furthermore,

SCFA can also interact with immune cells through glycan-binding

proteins, and exert protective effects in this way (Figure 3).

To conclude, evidence exists for the interplay between viral

infections, asthma, and HMOs. However, the mechanisms behind

these relations remain unknown. How viral infections exactly
FIGURE 3

Suggested effects of HMOs and SCFA during viral infections and allergic sensitization. DC, dendritic cell; Eos, eosinophil; HMOs, human milk
oligosaccharides; ILC2, group 2 innate lymphocyte cell; MC, mast cell; MØ, macrophage; MO, monocyte; SCFA, short chain fatty acids; Th0, naïve T
helper cell; Th2, T helper 2 cell; TJ, tight junctions; Treg, T regulatory cell (created in BioRender.com).
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increase the risk of developing asthma, how HMOs protect against

viral infections and asthma, and how HMOs interact with the

relevant immune cells remains to be elucidated. Further studies will

provide valuable insights into these relations and allow for the further

improvement of formula milk when breastfeeding is not possible.
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TABLE 2 Models exploring the effects of HMOs.

HMO Model Effect Reference

2’FL 16HBE Reduced viral load of RSV (135)

Co-culture of HT-29 intestinal
epithelial cells and PBMCs

Promoted Th1 function, reduced IL13, increased galectin-9 (190)

Co-culture of HT-29 intestinal
epithelial cells with moDCs and
subsequent naïve Th cells

Decreased differentiation of naïve T cells into Th2 cells, while increased differentiation
into Treg cells

(191)

HT-29, Caco-2Bbe intestinal epithelial
cells and fetal small intestinal
epithelial crypt cells

Induced maturation of epithelium cells (142–144)

HT-29, Caco-2Bbe and Caco-2
intestinal epithelial cells

Promoted mucus production. Promoted formation of TJs. (144, 145)

Murine model of HDM allergy Decreased levels of circulating IgE, decreased levels of IL4 and IL6 in the lungs,
decreased inflammatory cell infiltration in the lungs. Increased levels of Bacteroidetes and
Clostridia and increased levels of SCFA in intestines and blood

(219)

Murine model of cow’s milk allergy Reduced allergic symptoms. Reduced secretion allergen-specific IgE, reduced mast cell
degranulation, reduced serum levels of TNFa, IL4 and IL6

(221)

Healthy infants Lower concentrations of pro-inflammatory cytokines in plasma. Lower levels of pro-
inflammatory cytokines in response to ex vivo stimulation with RSV

(182)

3FL Co-culture of HT-29 intestinal
epithelial cells with moDCs and
subsequent naïve Th cells

Lowering IL12p70, IL23, IL13, enhancing IL17 and IL10 secretion. Silenced Th2
effector response

(191)

3FN Bacterial cultures derived from infant
stool samples

Increased abundance of Lactobacillus spp. (195)

3’SL 16 HBE cells Reduced viral load of RSV (135)

HT-29, Caco-2Bbe and Caco-2
intestinal epithelial cells

Promoted mucus production. Promoted formation of TJs. (144, 145)

6’SL 16 HBE cells Reduced viral load of influenza A (135)

HT-29, Caco-2Bbe, Caco-2 intestinal
epithelial cells and fetal small
intestinal epithelial crypt cells

Induced maturation of epithelial cells. Promoted mucus production and formation
of TJs.

(142–145)

HDM mouse model of allergy Decreased amount circulating IgE, decreased levels IL4 and IL6 in the lungs, decreased
inflammatory cell infiltration in the lungs. Increased levels of Bacteroidetes and Clostridia
and increased levels of SCFA in intestines and blood

(219)

LNnT 16 HBE cells Reduced viral load of influenza A (135)

HT-29, Caco-2Bbe intestinal epithelial
cells and fetal small intestinal
epithelial crypt cells

Induced maturation epithelium cells (142–144)

2’FL + LNnT Healthy infants Fewer parent-reported bronchitis episodes (180)

2’FL + 6’SL Mouse model of AAI Decrease in number, proliferation, and cytokine production of lung ILC2. Reduced
airway inflammation

(230)

Total mixture Human moDC-naïve CD4+ T cell
co-culture

Increased secretion IL10, IL27, lowered secretion TNFa, IL6. Induction of differentiation
into Treg

(172)
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