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Background: Esophageal cancer (EC) remains a significant clinical challenge,

characterized by its aggressive nature and poor prognosis. Current therapeutic

strategies, including targeted therapies, have limitations due to the complex

interplay between tumor heterogeneity and the tumor microenvironment (TME).

However, the specific contributions of N6-methyladenosine (m6A) methylation

to the TME in EC are yet to be fully elucidated.

Methods: Through comprehensive bioinformatics analyses, a detailed

examination of m6A regulators were conducted in EC using datasets from The

Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Single-cell

RNA sequencing (scRNA-seq) and a consensus clustering algorithm was

employed to classify m6A modification patterns and analyze their relationships

with immune cell infiltration and clinical outcomes. Additionally, an m6A scoring

system was developed based on principal component analysis to assess the

prognostic value of identified m6A modification patterns.

Results: The findings revealed two distinct m6A modification clusters associated

with divergent TME characteristics and immune infiltration profiles. Patients

exhibiting the immune-inflamed phenotype (m6A cluster B) demonstrated

significantly improved survival compared to those with the immune-excluded

phenotype (m6A cluster A). Notably, m6A scores correlated positively with

immune cell presence and related with adverse prognostic outcomes,

indicating their potential as predictive biomarkers for immunotherapy

responses. A low m6A score indicated a better response to immunotherapy.

Conclusion: This study highlights the critical role of m6A methylation in shaping

the TME and influencing immune dynamics in EC. The m6A score developed
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herein provides a novel quantitative tool for predicting tumor behavior and

treatment efficacy, paving the way for more personalized immunotherapeutic

strategies in clinical practice. This scoring system illustrates a strong correlation

of ECwith TME immune cell composition, suggesting potential as a biomarker for

targeted therapeutic strategies for EC.
KEYWORDS

esophagus cancer, m6A, tumor microenvironment, immunotherapy, prognosis,
immune infiltration
1 Introduction

N6-methyladenosine (m6A) has been recognized as a crucial RNA

modification. m6Amodifications are dynamically regulated by various

regulators, including methyltransferase complex writers such as

METTL3, METTL14, METTL16, RBM15, RBM15B, VIRMA,

WTAP and ZC3H13, and several binding proteins, such as FMR1,

HNRNPC, HNRNPA2B1, IGFBP1/2/3, LRPPRC, RBMX, YTHDC1/

2, and YTHDF1/2/3, have been identified as readers, as well as

demethylases erasers such as FTO and ALKBH5. Numerous studies

have demonstrated that aberrant expression of m6A core modification

and reading proteins is implicated in diverse physiological and

pathological processes, including biological growth and

development, DNA damage repair, biological rhythms, angiogenesis,

and various types of tumors (1). In recent years, substantial progress

has been achieved in m6A epitranscriptomics, underscoring its pivotal

roles in cancer initiation and progression by modulating RNA

stability, mRNA splicing, microRNA processing, and mRNA

translation (2). Unlike genetic events, m6A modifications are

reversible, making epigenetic regulation particularly interesting for

the development of new therapeutic technologies for cancer treatment.

Esophageal cancer has the sixth highest cancer-related mortality

rate, but research data on this disease are limited compared to other

cancers (3–5). Esophageal cancer is characterized by its aggressive

nature and dismal 5-year survival rate, which stands at only 18% (6).

Recent advances in the identification of molecular markers specific to
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esophageal cancer have led to the development of novel targeted therapy

approaches by targeting these markers (7–12). However, inhibitors have

the potential to cause primary or acquired resistance in patients who

receive these treatments (13–16). Furthermore, in esophageal cancer, a

diverse array soluble immunosuppressive factors and cells with

immunosuppressive properties can interfere with immune effector

cells, thereby creating a distinct immunosuppressive microenvironment.
Multiple factors influence the outcome of multi-modality

treatments. An individual tumor’s intrinsic features are crucial to

shaping its immune microenvironment and affecting the effectiveness

of immunotherapy in esophageal cancer (17). As our understanding

of the tumor microenvironment deepens, we increasingly recognize

the significance of immune cell subsets in tumor development and

the identification of potential therapeutic targets. The

microenvironment in esophageal cancer is complex, comprising of

various components such as NK cells, tumor-associated

macrophages, dendritic cells (DCs), myeloid-derived suppressor

cells (MDSCs), neutrophils, mast cells (MCs), eosinophils,

endothelial cells, tumor angiogenesis, and cancer-associated

fibroblasts (CAFs) (18, 19). Extensive exploration has been

conducted on the utilization of clinical immunotherapy approaches

that target innate immune cells as adjuvant therapies in conjunction

with surgical resection and chemoradiotherapy for the treatment of

diverse cancers. The strategies encompass the utilization of immune

checkpoint inhibitors and Chimeric Antigen Receptor T-Cell

Immunotherapy (20, 21). Analyzing the characteristics of cells

within the tumor microenvironment to predict immune infiltration

is crucial for exploring new immunization strategies and studying

responses to existing immune checkpoint inhibitors (22, 23). Recent

research has categorized the microenvironments of tumors in cancer

patients into three fundamental immune profiles: tumors that are

immune inflamed (“hot”), immune excluded, and immune desert

(“cold”). These profiles suggest different treatment options, excluding

esophageal cancer, and provide valuable insights for effective

therapeutic interventions (24, 25). To conclude, a meticulous and

all-encompassing examination of the esophageal cancer tumor

microenvironment, coupled with the determination of the

corresponding tumor immunophenotype, can prove to be a

valuable approach in directing immunotherapy and forecasting its

effectiveness (20, 21, 23).
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Several studies have substantiated the significant involvement of

m6A modification in the development of tumor microenvironment

(TME) diversity and complexity, a phenomenon that cannot be

entirely elucidated by the RNA degradation mechanism (26). m6A

modulators affected inflammation infiltrates and neovascularization

of tumor tissues in human abdominal aortic aneurysm samples,

where the markers METT14, FTO, and YTHDF3 are strongly

colocalized with CD45+ leukocytes and CD3+ T cells, as well as

CD68+ macrophages (27). Similarly, a METTL3/FTO-m6A

methylation-mediated generation of M1/M2 macrophages from

murine bone marrow-derived macrophages (BMDMs) has been

described (28, 29). A new class of drugs targeting DNA

methyltransferases (DNMTs) has been shown to successfully

restore coordinated immune responses in solid tumors by

triggering MHC 1 and interferon (IFN)-triggered immune-related

signaling (30, 31). However, most studies, which are constrained by

the state of technology, focus on just one or two m6A regulators,

which is insufficient to describe the intricate functions of regulators

in tumors. These research were made feasible by the ongoing

development and collection of transcriptomics and genomic data,

which offer a wealth of tools and resources for the study of m6A

regulators and immune modulation (32).

In current study, we conducted a comprehensive analysis of

m6A modifications and identified two distinct patterns of

modifications, termed m6A clusters. These patterns were

associated with different survival advantages and exhibited

characteristics relevant to the TME, immune cell infiltration, and

transcriptome (33). The observation that the TME characteristics

linked with each m6A modification pattern closely corresponded

with the manifestations and features of immune exclusion and

immune inflammation, respectively, was of significant interest. This

indicates a significant influence of m6A modification on individual

tumor microenvironments (34, 35). Furthermore, a scoring system

was devised to evaluate singular m6A modifications, facilitating the

prediction of prognosis and the efficacy of immunosuppressive

therapy. The strong correlation between m6A modifications and

TME immune cell infiltration suggests that these modifications

could serve as important prognostic markers and guide

immunotherapy decisions in esophageal cancer.
2 Materials and methods

2.1 Esophageal cancer data acquisition and
preprocessing

The Supplementary Figure S1 depicts the workflow employed in

this study. The esophageal cancer samples’ transcriptional and clinical

feature data were obtained from Gene Expression Omnibus (GEO,

https://www.ncbi.nlm.nih.gov/geo/) databases and The Cancer

Genome Atlas (TCGA, 2022.12.01, https://portal.gdc.cancer.gov/).

Two distinct cohorts of esophageal cancer (ESCA), namely TCGA-

ESCA and GSE13898, were used for further analysis. The RNA-Seq

data obtained from the TCGA cohort underwent additional

processing, resulting in the conversion of the data into transcripts
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per kilobase (TPM). Retrieve the normalization matrix file from the

GEO database and employ R’s SVA package to address batch effects

across distinct datasets. Obtain the survival duration and survival

outcome data of two cohorts, with the exclusion of samples with

survival periods less than 31 days and incomplete survival

information. The Cancer Genome Atlas database was utilized to

obtain somatic mutations, and copy number variation data for

esophageal cancer were obtained from the UCSC Xena database

(http://xena.ucsc.edu/) (36).
2.2 Classification according to 23 m6A
regulators

These regulators include eight writers (METTL3, METTL14,

METTL16, RBM15, RBM15B, VIRMA, WTAP and ZC3H13), 13

readers (FMR1, HNRNPC, HNRNPA2B1, IGFBP1/2/3, LRPPRC,

RBMX, YTHDC1/2 and YTHDF1/2/3), and two erasers (FTO and

ALKBH5). These modulators have been reported to affect or

modulate the performance of RNA (Supplementary Figure S2).

The expression levels of these 23 m6A regulators were utilized for

unsupervised clustering analysis to identify distinct subtypes of

m6A methylation modifications and classify patients for further

analysis. The consensus clustering technique, implemented with the

R package ConsensusClusterPlus, was utilized to calculate the

number of clusters and assess their stability (37, 38).
2.3 scRNA-seq data processing

We analyzed the dataset GSE196756 about Esophageal

Squamous Cell Carcinoma (ESCC) cells from the GEO repository

(39). The data were sourced from Homo sapiens, with the data

platform being GPL24676. We picked specific ESCC samples

(GSM5900215,GSM5900216,GSM5900217,GSM5900218,

GSM5900219,GSM5900220) for analysis. The R package: “Seurat”

was used to analyze the transcript count matrix for quality control

and preliminary data exploration (40). The filtering threshold was

set as follows: Excluding genes detected in less than 3 cells,

excluding cells with < 200 genes detected, Excluding cells with >

20% mitochondrial gene expression. We addressed batch

differences using LogNormalize, Harmony and Principal

Component analysis (PCA) helped us cluster cells based on

variable genes via Seurat’s “FindNeighbors” and “FindClusters”

functions. Uniform t-distributed Stochastic Neighbor Embedding

(t-SNE) helped visualize this.
2.4 Estimation of immune infiltrating cells
in TME

The R software package GSVA was utilized to conduct GSVA

enrichment analysis to look at variations in m6A modification

patterns in biological processes. The GSVA technique is a
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nonparametric and unsupervised approach that is predominantly

employed to assess alterations in the activity of biological processes

and pathways within samples (41). The gene sets from

“c2.cp.kegg.v7.2.symbols” were downloaded from the MSigDB

database for performing GSVA analysis. The present study

utilized Single Sample Gene Set Enrichment Analysis (ssGSEA) in

the R software package GSVA to assess the infiltration rates of 24

immune cells across various m6A regulator clusters. The differences

between different m6A regulator clusters were assessed using the

Wilcox test, and survival analysis was conducted to examine their

association with patient outcomes.
2.5 Gene expression differences among
phenotypes modified with m6A

Using a consensus clustering algorithm, we were able to divide

esophageal cancer patients into two distinct subtypes according to

m6A regulator expression. We revealed that the relationship

between the two m6A clusters and immune landscape by

CIBERSORT, EPIC, MCPCOUNTER, QUANTISEQ, TIMER, and

XCELL algorithms (42). The differentially expressed genes (DEGs)

between these two m6A-modified clusters were subsequently

identified using the Limma package. The significance criterion for

determining differential genes was set at a p-value < 0.05.
2.6 Differentially expressed genes enriched
in functional pathways and functions

An important bioinformatics tool for gene annotation and

analysis is the Gene Ontology (GO). It encompasses three

categories: cellular component (CC), biological process (BP), and

molecular function (MF). The Kyoto Encyclopedia of Genes and

Genomes (KEGG) database serves as an integrative platform for

genomic, chemical, and system function data, enabling the

correlation of gene catalogs with higher-level system functions

across various levels, including the cell, species, and ecosystem.

To annotate the DEGs and gain insights into their biological

functions, we utilized the clusterProfiler package, a widely used R

package for functional enrichment analysis. The clusterProfiler

package offers convenient functions to perform GO and KEGG

enrichment analyses. For the study to be meaningful, the p-value

must be less than 0.05 and the q-value must be less than 0.05.
2.7 The construction of the m6A score

We created a scoring system for m6A based on PCA to measure

the patterns of m6A change in specific esophageal cancer patients.

Genes demonstrating significant prognostic effects were selected

from the different m6A modification clusters, based on which

clustering of samples and construction of m6A scores were

performed using a univariate Cox regression model. We
Frontiers in Immunology
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determined the number of gene clusters and ensured stability using

the consensus clustering algorithm. Marker scores for m6A-related

genes were generated using PCA, and the first and second principal

components were extracted as the marker scores. The method

emphasizes the scores based on the collective behavior of highly

correlated or inversely correlated genes within significant gene

clusters, while minimizing the impact of genes that do not align

with other members of the cluster. PCA is a dimensionality

reduction method typically used to reduce the dimensionality of a

dataset by transforming a large number of variables into fewer

variables that still contain most of the information in the set (43,

44). We used the following method to define m6A scores: m6Ascore

= S(PCA1i + PCA2i), the variable “i” denotes the final gene

expression linked to the m6A phenotype (45, 46).
2.8 Evaluate the m6A scoring model

To evaluate the clinical applicability and reliability of the m6A

score, receiver operating characteristic (ROC) curves were utilized

to predict the outcomes at 1 year, 3 years, and 5 years. Initially, the

ROC curve was constructed using all samples, followed by a

separate analysis focusing on the TCGA-ESCA cohort to compare

the prognostic predictive performance of the m6A score against

other clinical variables. Correlations between the m6A score, clinical

variables, and prognosis were examined using both univariate and

multivariate Cox regression analyses. The purpose of the study was

to examine the potential of the m6A score as a standalone predictive

marker for esophageal cancer. Significance at the p < 0.05 level is

usually used to determine statistical significance in a forest plot

diagram. Furthermore, a nomogram was constructed using eight

indicators (age, gender, tumor grade, stage T, N, M, pathologic

stage, and m6A score) to anticipate the patient’s 1-, 3-, and 5-year

survival rates. The predictive performance of the nomogram was

evaluated using ROC curves. The R packages timeROC, rms,

survival and survminer were employed for the necessary

calculations and graphical representation.
2.9 Data research on genome mutations

The frequency of copy number variation (CNV) for the 23 m6A

regulators in the TCGA-ESCA cohort was computed to assess the

occurrence of copy number increases or losses. Copy number

variation plots were generated using the R package Circos to

visualize CNV patterns of m6A regulators of human chromosomes.

The Tumor Mutation Burden (TMB) was computed by quantifying

the aggregate count of nonsynonymous mutations present in the

TCGA-ESCA cohort. The R package maftools was employed to

create an oncoprint, which visually represents the gene mutation

landscape. Using these approaches, the copy number variation map

and oncoprint provide insights into the copy number alterations and

mutation profiles of the m6A regulators in esophageal cancer based

on the TCGA-ESCA cohort.
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2.10 Tumor immune dysfunction and
exclusion prediction and IC50 estimation

The Tumor Immune Dysfunction and Exclusion (TIDE) model,

developed by researchers (47, 48), is used to evaluate the clinical

efficacy of immune checkpoint inhibition therapy. The TIDE model

provides prediction scores that reflect the likelihood of a patient’s

response to immune checkpoint inhibition. Higher TIDE prediction

scores are associated with a poorer response to immune checkpoint

inhibition therapy. This model helps clinicians and researchers

assess the potential effectiveness of immune checkpoint inhibition

in individual patients.
2.11 Collect critical information for ICI-
based cohorts

A systematic search was conducted to identify publicly available

gene expression profiles of patients undergoing immune checkpoint

inhibitor (ICI) therapy. The search aimed to identify datasets that

included detailed clinical and pathological information. Ultimately,

three immunotherapeutic cohorts were included in our study:

metastatic melanoma patients treated with nivolumab (anti-PD-1

monoclonal antibody) (49) or ipilimumab (anti-CTLA-4 monoclonal

antibody) (50), and patients who have been diagnosed with

metastatic urothelial carcinoma (mUC) and have received

treatment with the anti-PD-L1-targeting drug Atezolizumab (51).

The ESCA-specific immunotherapy-treated cohort GSE165252 was

found (n=45 ESCA patients treated with anti-PD-1 monoclonal

antibody Atezolizumab), which contains the binary information on

immune therapy response (response and non-response groups). We

curated gene expression profiles from pre-therapy biopsy samples

and transformed them into TPM (Transcripts Per Million) format.

These datasets provide valuable information for our study on the

response to ICI therapy and associated gene expression patterns.
2.12 Sensitivity analysis of anticancer drugs

For the study of molecular therapies for cancer and gene

mutations, relevant data from the Genomics of Cancer Drug

Sensitivity (GDSC) database were downloaded (52). This database

offers a valuable resource for studying drug sensitivity in various

cancer types. We utilized the pRRophetic package to obtain cell line

gene mutation data and IC50 values associated with various

anticancer drugs from GDSC, allowing us to analyze the

correlation between patients with high- and low-risk scores and

their sensitivity to different anticancer drugs. Through this analysis,

we were able to examine the correlation between patients exhibiting

high- and low-risk m6A scores and their responsiveness to a diverse

array of anticancer medications (53). By leveraging these resources,

we aimed to gain insights into the association between m6A

modification patterns and the response to specific anticancer

therapies, further enhancing our understanding of personalized

cancer treatment approaches.
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2.13 Cell transfection and cell line
establishment

Esophageal carcinoma cell lines KYSE510 and TE-1 were

cultured in RPMI 1640 medium supplemented with 10% fetal

bovine serum (FBS) at a temperature of 37 degrees Celsius and

under a 5% CO2 atmosphere. In preparation for cell transfection,

these cell lines were seeded into 6-well culture plates and incubated

overnight to allow for attachment and initial growth. On the

subsequent day, once the cells had reached a confluence of 20%-

30%, transfection was performed with siRNAs at a final

concentration of 50 nmol/L using Lipofectamine 2000

(Invitrogen), following the protocol provided by the manufacturer.
2.14 Explore and validate potential
oncogenic functions of RBMX In ESCA

Supplemental Experimental Procedures include the following

information: Western blot for protein expression, Plate clone

formation assay, EdU assay for cell proliferation detection,

Wound healing assay for assessing cellular migration, Transwell

migration/invasion assay (Supplementary Data Sheet S1:

Supplemental Experimental Procedures).
2.15 Statistical analyses

Statistical analyses and graphical representations were conducted

using R version 4.3.1. TheWilcoxon rank sum test, a statistical method,

is useful for assessing and contrasting dissimilarities between two

groups. The correlation between m6A regulators and prognosis was

assessed with univariate Cox regression models and Kaplan-Meier

survival analysis. The selection of cutoff points for the m6A score was

performed by repeatedly testing all possible cutoffs using the survminer

package in R, aiming to identify the maximum rank statistic. Partition

the samples into groups based on their m6A scores, with one group

consisting of high scores and the other of low scores. Prognosis was

assessed using the Kaplan-Meier method, and the log-rank test was

assessed for both cohorts. At the same time, there are other statistical

methods for targeted analysis. Heatmaps were generated using the

pheatmap package in R. All statistical tests were two-tailed, and a p-

value less than 0.05 was considered statistically significant.
3 Results

3.1 Mutation of m6A regulators, immune
infiltration, and construction of the
prognostic landscape

Our study included 23 m6A regulators. Firstly, we calculated the

frequency of mutations in the 23 regulators in ESCA. The 23 m6A

regulators exhibited low mutation frequencies, with only 23 (12.5%)

out of 184 ESCA samples from the TCGA database showing genetic
frontiersin.org
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alterations. Mutation information for each gene in each sample was

presented in the waterfall plot, with different colors and specific

annotations at the bottom representing the different mutation types.

Interestingly, the Oncoplot analysis revealed that ZC3H13

displayed the highest mutation rate, predominantly characterized

by nonsense mutations, while YTHDC2 had a mutation frequency

of 2% (Figure 1A).

Moreover, our analysis of copy number variations (CNVs) in

the 23 m6A regulators highlighted the prevalence of CNVmutations

in ESCA. Notably, YTHDC1, FMR1, VIRMA, YTHDF1, METTL3,

WTAP, HNRNPA2B1, RBMX, HNRNPC, and IGFBP1 exhibited a

high frequency of CNV amplification, while HNRNPC, RBM15,

YTHDF2, IGFBP2, and RBM15B displayed extensive CNV

deletions (Figure 1B). The chromosomal alterations associated

with these CNVs are visually depicted in Figure 1C. In order to

evaluate the influence of m6A regulators on patient prognosis, a

Kaplan-Meier survival analysis was conducted. The findings

demonstrated significant correlations between the prognosis of

ESCA patients and 8 m6A regulators (Supplementary Figure S3).

Additionally, seventeen modifiers with prognostic value in ESCA

patients were identified using univariate Cox regression analysis

(Supplementary Table S1). Furthermore, our analysis of the m6A

network revealed the intricate interactions, connectivity, and

prognostic significance of m6A regulators in ESCA (Figure 1D).

Our findings indicate noteworthy correlations between the

expression levels of m6A regulatory factors within the same

functional class, as well as significant associations among the

three distinct types of regulatory factors. This interplay is likely to

contribute to the generation of distinct m6A modification patterns,

which play a crucial role in the initiation and progression of cancer.

As well, we identified CNV alterations as a potential underlying

cause of disrupted expression of m6A regulatory factors. To further

investigate this, we compared the gene expression levels of the 23

m6A regulators between normal and tumor tissues (54). In ESCA

tissues, m6A regulatory factors’ expression exhibiting CNV

amplification (such as METTL3, WTAP, VIRMA, YTHDC1,

YTHDF1, HNRNPC, FMR1, and HNRNPA2B1) was significantly

higher than in normal esophageal tissues, while the expression of

IGFBP2 was lower (Figure 1E). Collectively, these analyses

underscore the noteworthy diversity in the genetic and expression

profiles of m6A regulators detected between normal and ESCA

specimens. These findings emphasize the critical role of

dysregulated expression of m6A regulators in the development

and progression of ESCA.
3.2 scRNA-seq analysis

Single-cell RNA sequencing (scRNA-seq) of 25,796 immune

and 8,197 non - immune cells from three primary tumor and paired

normal samples in ESCA patients was generated by using 10x

Genomics platform. Before filtration, there were 33993 cells in the

6 ESCA samples. For GSE196756, counts were normalized and

technical covariates (mitochondrial percentage) were regressed out

using the LogNormalize method (default settings), and batch effects
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across samples (6 ESCA patients) were corrected for using

Harmony with theta = 2 to preserve biological variance (55). We

then performed data normalization and quality control, and finally

selected the top 2000 highly expressed and variable genes for further

analysis. PCA used to reduce the dimensionality of the data showed

no clear tendency for cells to separate. Nonlinear dimensionality

reduction was performed using the t-SNE algorithm, which

successfully clustered the cells into 13 clusters (Figure 2A). We

then annotated all clusters and identified 9 cell types (Figure 2B).

Furthermore, the expression levels of 23 m6A modulators were

most abundant in B cells and T cells (Figure 2C). WTAP, ZC3H13,

YTHDC1, HNRNPC, HNRNPA2B1 and RBMX are expressed in

most cell types.
3.3 Twenty-three regulator-mediated
isoforms of m6A methylation

Using the ConsensusClusterPlus R software package, we

performed patient classification based on the expression of the 23

m6A regulators to delineate distinct m6A-modified subtypes. Our

analysis revealed two subtypes: subtype A consisting of 111 cases

and subtype B consisting of 75 cases (Figures 3A–D and

Supplementary Table S2). Notably, patients belonging to m6A

regulator group B exhibited significantly longer survival

compared to those in m6A regulator group A (P = 0.019,

Figure 3E). We generated a heatmap to visualize the expression

patterns of the 23 m6A regulators in the two m6A-modified

subtypes (Figure 3F).
3.4 TME cell infiltration characteristics in
distinct m6A modification patterns

To gain insights into the underlying biomolecular signatures

associated with the different m6A-modified phenotypes, we

integrated the expression profiling data of both TCGA-ESCA and

GSE13898 cohorts and performed differential expression analysis

using the Limma R software package. This analysis identified 2599

DEGs, which were subsequently annotated using the clusterProfiler

R package. The DEGs were found to be enriched in several

important biological processes, including T cell activation,

regulation of immune effector process, neutrophil-mediated

immunity, mesenchyme development, mesenchymal cell

differentiation, leukocyte transendothelial migration, chemokine

signaling pathway, and VEGF signaling pathway (Figures 4A, B,

Supplementary Tables S3, S4).

In order to examine the biological alterations linked to diverse

m6A modification patterns, a comparative analysis of immune cell

composition in the TME was performed. The findings indicate that

the A subcluster exhibited a higher degree of infiltration by memory

B cells, immature B cells, T helper 1 (Th1) cells, activated memory

CD4+ T cells, and regulatory T cells (Treg). On the other hand, m6A

cluster B exhibited significantly increased infiltration of natural

killer cells and neutrophils (Figure 4C).
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FIGURE 1

Landscape of genetic and expression variation of m6A regulators in esophagus cancer (A) Mutations of 23 m6A regulators in the TCGA-ESCA cohort.
Each column represented individual patients. The upper barplot showed TMB, the number on the right indicated the mutation frequency in each
regulator. The right barplot showed the proportion of each variant type. The stacked barplot below showed fraction of conversions in each sample.
(B) In an TCGA-ESCA cohort, we looked at the CNV mutation rates of 23 m6A regulators. The findings were represented by red and green dots to
represent increased and absent frequencies, respectively. (C) The precise chromosomal locations of CNVs in m6A regulators across all 23
chromosomes. (D) Interactions and prognostic implications of 23 m6A regulators in ESCA. The three types of m6A regulatory modifiers are
represented by different colors: eraser in red, reader in orange, and writer in gray. The size of the circles corresponds to the prognostic relevance of
each m6A modulator. The lines connecting the regulators indicate their interactions, with positive correlations in pink and negative correlations in
blue. Prognostic risk factors are highlighted in purple, while prognostic protective factors are shown in green. (E) The expression of 23 m6A
regulators between normal tissues and gastric tissues. Tumor, red; Normal, blue. The upper and lower ends of the boxes represented interquartile
range of values. The lines in the boxes represented median value, and red and blue dots showed outliers. The asterisks represented the statistical
p value (*P < 0.05; **P < 0.01; ***P < 0.001).
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We further employed GSVA enrichment analysis to gain insights

into the biological activity associated with these distinct m6A

modification patterns. The results of our observations indicate that

m6A cluster A exhibits noteworthy enrichment in pathways linked to

stroma and cancer metastasis, including ECM-receptor interaction,

focal adhesion, and others. On the other hand, m6A cluster B showed

enrichment in metabolic pathways such as histidine metabolism, fatty

acid metabolism, propanoate metabolism, glycolysis, fructose, and

mannose metabolism (Figure 4D).

Interestingly, GSVA enrichment analysis revealed that m6A

cluster A exhibited significant enrichment in adaptive immune

cell infiltration, encompassing memory B cells, activated memory

CD4+ T cells, immature B cells, Th1 cells, regulatory T cells (Treg),

and stromal activation (Figures 4C–G, 5E). Surprisingly, despite the

higher immune cell infiltration, patients with this m6A modification

pattern did not demonstrate a survival advantage (Figure 4F). Prior

research has detected an immune-excluded phenotype within

tumors, wherein immune cells exist in the stroma encircling nests

of tumor cells, yet are unable to penetrate the tumor parenchyma.

T-cell suppression is known to occur when the stroma in the TME is

activated. Hence, our speculation is that the stromal activation

observed in cluster A suppresses the antitumor effect of immune

cells in patients with ESCA. The aforementioned conjecture was

subsequently substantiated through analyses that demonstrated a

marked increase in stromal activity within cluster A, which
Frontiers in Immunology 08
encompassed the activation of epithelial-mesenchymal transition

(EMT), transforming growth factor beta (TGF-b), and WNT

pathways, all of which were found to be statistically

significant (Figure 4G).

We have integrated immune deconvolution tools such as

CIBERSORT, EPIC, MCP_COUNTER, QUANTISEQ, TIMER

and XCELL to distinct immune microenvironments characterize

two m6A clusters (Supplementary Figure S4). Comparative analysis

of immune infiltration patterns between the two m6A clusters

revealed significant heterogeneity. Cluster A exhibited higher

infiltration of immunosuppressive regulatory T cells (Tregs, P <

0.01 by CIBERSORT/QUANTISEO) and exhausted CD8+ T cells

(PD-1+Tim-3+, P < 0.05), whereas cluster B showed elevated

cytotoxic CD8+ T cells (Granzyme B+, P < 0.001 by TIMER).

Pro-tumor M2 macrophages were enriched in cluster A (P < 0.001

across CIBERSORT/QUANTISEO/XCELL), while cluster B had

higher M1 macrophages (P <0.05), suggesting divergent

macrophage polarization states. CAFs were markedly increased in

cluster A (P < 0.001 by EPIC/MCP-counter), correlating with

elevated ECM remodeling scores (e.g., collagen cross-linking, P=

0.002). These findings were robust across multiple deconvolution

algorithms (CIBERSORT, EPIC, XCELL).

Based on the comprehensive analyses conducted, it is intriguing

to note that the two m6A modification patterns exhibit distinct

characteristics in terms of TME cell infiltration. Cluster A is
FIGURE 2

scRNA-seq data analysis. (A) The t-SNE algorithm divided the cells into 13 clusters by principal components. (B) The tSNE plot revealing 13 clusters
was annotated into 9 different cell types. (C) The expression of 23 m6A regulators in 9 cell types.
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FIGURE 3

Identification of m6A methylation modification subtypes. (A) Consensus clustering and generated a CDF with the number of subtypes ranging from k
= 2 to 9. (B) The heat map of sample clustering under k = 2 in 2 independent ESCA cohorts. (C) The relative change in the area under the CDF curve
for values of k ranging from 2 to 9. (D) Principal component analysis of transcriptome profiles of two m6A modification patterns (E) Survival analyses
for the two m6A modification patterns based on 186 patients with esophagus cancer from TCGA-ESCA and GEO cohorts (GSE13898) including 111
cases in m6Acluster-A, 75 cases in m6Acluster-B, Kaplan-Meier curves with Log-rank p value 0.019 showed a significant survival difference among
two m6A modification patterns. The overall survival rate of cluster B in m6A cluster A and B subclusters is better. (F) Unsupervised clustering of 23
m6A regulators in two cohorts with heatmap analysis of m6A cluster, tumor stage, survival status, and age. Red is high expression, blue is low
expression.
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FIGURE 4

Comparison of the enrichment analysis for immune cells and immune pathways between two m6A clusters. (A) Functional annotation of the genes
with different expressions between cluster A and cluster B using GO terms. (B) Pathway of KEGG enrichment of DEGs between two m6A clusters.
(C) The abundance of each TME infiltrating cell in two m6A modification patterns. The upper and lower ends of the boxes represented interquartile
range of values. The lines in the boxes represented median value, and the dots showed outliers. The asterisks represented the statistical p value
(*P < 0.05; **P < 0.01; ***P < 0.001). (D) The heatmap was used to visualize these KEGG enrichment pathways, and blue represented activated
pathways and yellow represented inhibited pathways. (E) The heatmap was used to visualize these immune cells. (F) The heatmap was used to
visualize these immune-related pathways. (G) The box plot figure demonstrates the enrichment scores for clusters A (red) and B (yellow) across
several biological processes, highlighting statistically significant differences (*P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001).
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associated with an immune-excluded phenotype, characterized by

the infiltration of adaptive immune cells and stromal activation. On

the other hand, cluster B corresponds to an immune-inflamed

phenotype, characterized by the infiltration of innate immune

cells and metabolic reprogramming (Figures 4C–G). These

findings suggest that m6A methylation modifications may be

involved in tumor metabolism, EMT, immune regulation, and

have close associations with tumor initiation and progression.
3.5 Characteristics of clinical and
transcriptome traits in m6A-related
phenotypes

Despite the successful categorization of ESCA patients into two

subtypes through a consistent clustering algorithm utilizing m6A

regulator expression, the genetic alterations responsible for these

phenotypes and their prognostic implications remain inadequately

comprehended. To gain deeper insights, we conducted univariate
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Cox regression analysis on the 2599 DEGs identified between the

previously established m6A clusters. A total of 80 survival-related

genes were identified through this analysis, which we referred to as

the m6A-related signature genes (Supplementary Table S5).

Through unsupervised clustering analysis using representative

m6A-associated marker genes, we identified three stable

transcriptomic phenotypes, denoted as gene clusters A, B, and C

(Figures 6A–C; Supplementary Table S6). The predictive

importance of these gene subgroups was then investigated by

fusing transcriptome data with survival data. Based on Kaplan-

Meier analysis and log-rank test, it was observed that patients

assigned to gene cluster B displayed a favorable prognosis

(Figure 6D). A heat map was generated to visually depict the

clinical characteristics of 80 m6A -related signature genes and the

expression of m6A subgroups in the three gene clusters (Figure 6E).

Notably, the three m6A gene clusters exhibited significant

differential expression of m6A regulatory factors, which aligns

with the methylation modification process and supports the

predicted effects of m6A (Figure 6F).
FIGURE 5

Construction of m6A score. (A) Differences in m6A scores between two m6A subclusters. (B) Differences in m6A scores between the three gene
clusters. (C) The Sankey diagram illustrates the association between m6A score, m6A clusters, gene clusters, and survival outcomes. (D) Correlations
between the m6A score and tumor-infiltrating immune cells using Spearman’s analysis. The positive and negative correlations are marked with red
and blue, respectively. (E) Correlations between m6A score and the known biological gene signatures using Spearman analysis. The negative
correlation was marked with blue and positive correlation with red. (F) Kaplan-Meier curve showing overall survival probability between high and low
m6A score groups.
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3.6 Establishment of m6A score and its
association with tumor
microenvironmental features

While previous analyzes have yielded valuable insights into the

impact of m6A methylation on immune cell infiltration status and

tumor prognosis, accurate prediction of m6A methylation patterns

in individual patients remains a challenging task. To address this

challenge, the PCA score was employed to compute the m6A score,

which also provides a quantitative assessment of the modified m6A

landscape in patients with ESCA. Figure 5A illustrates that patients
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in m6A cluster B exhibit lower m6A scores compared to those in

m6A cluster A, and Figure 5B demonstrates that patients in gene

cluster B have lower m6A scores than those in gene clusters A and C.

We have depicted the process of m6A score construction in a

Sankey diagram (Figure 5C). In order to evaluate the association

between the m6A score and tumor-infiltrating immune cells, a

Spearman’s analysis was conducted and the outcomes were

presented in a heatmap (Figure 5D), revealing a positive

correlation between the m6A score and the presence of immune

cells within the tumor microenvironment. Additionally, we

examined the correlation between the m6A score and known
FIGURE 6

Consensus clustering of m6A -related gene subtypes (A) Consensus matrices of 80 m6A phenotype-related genes according to TCGA and GEO
cohort for k = 3. (B) Consensus clustering CDF with the number of subtypes k = 2 to 9. (C) Consensus clustering cumulative distribution function
k = 2 to 9. (D) Kaplan-Meier overall survival curves for patients in three m6A-related gene clusters. (E) Heatmap showing the correlation between the
expression levels of the DEGs derived from 3 m6A clusters and sex, age, m6A clusters, tumor stage, survival status and gene clusters. Red is high
expression, blue is low expression. (F) The expression of 23 m6A regulators in three gene cluster. The upper and lower ends of the boxes
represented interquartile range of values (**P < 0.01; ***P < 0.001).
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signal pathway signatures. The resulting correlation matrix

heatmap demonstrated that the m6A score exhibited significant

positive associations with signatures related to EMT, stromal

activity, DNA repair, antigen processing machinery, and the

TGF-b pathway (Figure 5E). In addition, we conducted an

evaluation of the prognostic relevance of the m6A score. Through

implementation of the Kaplan-Meier survival analysis, it was

determined that patients exhibiting low m6A scores experienced a

more favorable prognosis in contrast to those with high m6A scores

(Figure 5F). This indicates that the implementation of the m6A-

score-based computation proficiently delineates the prognosis

of patients.

In addition, we also found that in T0, T1-2, or T3–4 stage, N0,

N1-2, or N3 stage, M0 or M1 stage, male or female, young or old

patients, and patients, lower m6A score showed more significant

survival advantage, which means that m6A score can also be used to

access various clinical features of patients, such as age, gender, or

clinical stage subgroup (Supplementary Figure S5).
3.7 Verification and clinical evaluation of
m6A score

To validate the m6A score, we conducted ROC curve analysis

for 1-year, 3-year, and 5-year intervals and calculated the

corresponding area under the curve (AUC) values. The results

showed that all three ROC curves in the total sample cohort

(Figure 7A) and the separate TCGA-ESCA cohort (Figure 7B)

showed AUC values exceeding 0.67. Furthermore, when

comparing the m6A score with other clinical features, the AUC

value of the m6A score was found to be the highest (Figure 7C).

The findings of the univariate Cox regression analysis indicate

that the stage, stage M, stage N, and m6A score possess prognostic

potential (Figure 7D). Additionally, the multivariate Cox regression

analysis reveals that both the stage and m6A score exhibit

independent prognostic value (Figure 7E). To quantitatively

assess individual risks in the clinical setting, the integration of

multiple clinical indicators can be achieved through a nomogram.

In this study, we developed a nomogram for predicting patients’

overall survival (OS) at 1-year, 3-year, and 5-year intervals

(Figure 7F). The predictive performance of the nomogram was

evaluated using ROC curve analysis. The present study determined

the AUC values of the ROC curves for 1-year, 3-year, and 5-year

intervals to be 0.784, 0.831, and 0.801, respectively (Figure 7G).

These results indicate that the m6A score may serve as a promising

clinical predictor and, when integrated with other clinical factors,

could potentially improve the prognostic precision and clinical

outcomes for patients diagnosed with ESCA.
3.8 Somatic variation correlates with m6A
score

The potential of TMB as a tumor marker for immune

checkpoint therapy in patients has been demonstrated. Given the
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clinical significance of TMB, an analysis was conducted to

investigate the genetic characteristics within each subgroup, as

defined by the m6A score, and their association with TMB.

Patients were divided into two subgroups based on TMB.

Based on the results depicted in Figures 8A, B, it was observed

that both TP53 (86% vs. 71%) and TTN (44% vs. 32%) exhibited a

higher rate of somatic mutation in the group with a high m6A score,

suggesting a potential association with the poorer prognosis

observed in this group (Figure 8C). Subsequently, we assessed the

combined prognostic value of these scores in stratifying ESCA

patients. Survival analysis revealed that the TMB status did not

influence predictions based on the m6A score, consistently

demonstrating a survival advantage in the low m6A score group

(Figure 8D). The results of this study contribute to a more thorough

comprehension of the impact of the m6A score on genomic

variability, presenting innovative perspectives for investigating

potential associations between m6A methylation modification and

somatic mutations. These findings demonstrated that distinct m6A

modification patterns significantly influenced tumor immune

phenotypes and may serve as predictive biomarkers for anti-PD-

1/PD-L1 immunotherapy response efficacy. It has also been

revealed that the m6A score is indirectly used to predict the

success of immunotherapy.
3.9 M6A score predicts the possibility of
benefit from immunotherapy

Subsequently, the differences in the levels of other immune

checkpoints between the high and low m6A score groups were

compared. The high m6A score group had higher expression of

CTLA4, CD70, TNFSF14, ICOS, CD80, TNFRSF9, HAVCR2,

CD200, NRP1, TNFSF15, TNFSF4, CD40, TNFRSF14, LGALS9,

CD86, ADORA2A, and CD28, while the low m6A score group had

higher expression of BTLA (Figure 8E).

The use of ICI therapy, specifically CTLA-4/PD-1 inhibitors, has

resulted in a significant advancement in antitumor treatment.

Alongside established predictors such as TMB, PD-L1, and MSI

(56, 57), newly discovered indicators such as TIDE are extensively

utilized and highly recommended for assessing immune response.

Our analysis further demonstrated a noteworthy reduction in TIDE

within the low m6A score group, as evidenced by the TIDE

distribution in TCGA-ESCA and GSE13898 (both P < 0.01)

(Figures 8F, G). As a result of these findings, it is inferred that

tumor m6A modification patterns play an important role in

mediating immune responses in tumors.

Based on the significant correlation between m6A scores and

immune responses, our subsequent investigation aimed to assess

whether m6A modification signatures could serve as predictive

markers for patient response to ICI therapy in three separate

immunotherapy cohorts. Firstly, a high m6A score exhibited

significantly shorter survival time (HR, 1.845 [95% CI, 1.254 to

2.714], P = 0.013, Figure 9A) and a markedly clinical response in an

anti-PD-L1 therapy in a cohort of metastatic urothelial carcinoma

(response rate, low vs. high m6A score, 53% vs. 19%, Figure 9B)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1572810
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2025.1572810
(51). This result was also identified in both the anti-PD-1 cohort

(49) and anti-CTLA-4 cohort (50). Patients belonging to the high

m6A score group demonstrated noteworthy clinical drawbacks and

a considerably reduced lifespan (anti-PD-1, HR, 2.886 [95% CI,

1.002 to 8.314], P = 0.018. (Figure 9C) anti-CTLA-4, HR, 2.141
Frontiers in Immunology 14
[95% CI, 1.018 to 4.503], P = 0.035, Figure 9E). The significant

therapeutic benefits and immune response to ICI treatment were

confirmed in patients with a low m6A score compared to those with

a high m6A score (anti-PD-1, response rate, low vs. high m6A score,

33% vs. 18%, Figure 9D; anti-CTLA-4, response rate, low vs. high
FIGURE 7

Verification and clinical evaluation of m6A score. (A) For all samples, the area under the curve (AUC) values of 1-, 3-, and 5-year ROC curves for m6A
scores have been calculated. (B) For TCGA-ESCA cohort, the area under the curve (AUC) values of 1-, 3-, and 5-year ROC curves for m6A scores
have been calculated. (C) Comparison of 1-year ROC curves of the m6A score model with other clinical features. (D) Univariate COX regression
analysis of clinicopathological parameter and m6A score. (E) Multivariate Cox regression analysis of clinicopathological parameter and m6A score.
(F) The nomogram is used to forecast the probabilities of 1-year, 3-year, and 5-year survival rates. (G) The AUC values of the nomogram’s 1-year,
3-year, and 5-year ROC curves.
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m6A score, 40% vs. 32%, Figure 9F). The m6A score of the

GSE165252 cohort was further validated, the significant

therapeutic benefits and immune response to anti-PD-1 treatment

were confirmed in patients with a low m6A score compared to those

with a high m6A score (anti-PD-1, response rate, low vs. high m6A
Frontiers in Immunology 15
score, 39% vs. 18%) (Supplementary Figure S6). The m6A score is

also associated with patient response to immunotherapy and can be

used to predict patients’ prognoses. In conclusion, the m6A score

serves as a promising prognostic indicator in ESCA and may also

provide guidance for ICI treatment in clinical practice.
FIGURE 8

Correlation between m6A score and TMB and TIDE in the ESCA cohort. (A, B) OncoPrint for gene mutations in high and low m6A score groups. in
the high m6A score group. (C) Kaplan-Meier curve showing overall survival probability between high TMB group and low TMB group (P < 0.05).
(D) TMB and m6A scores were used in a stratified survival analysis. (E) Violin plot of differential expression of other immune checkpoints between
groups with high and low m6A scores. (*P < 0.05, **P < 0.01,***P < 0.001) (F) TIDE differences in the TCGA cohort between high and low m6A score
groups. (G) TIDE differences in the GSE13898 cohort between high and low m6A score groups.
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3.10 Sensitivity analysis of patients with
ESCA to different small molecule drugs
based on m6A risk score

We performed an estimation of IC50 values and assessed the

drug sensitivities of chemotherapeutic drugs for a cohort of 186

ESCA patients, utilizing data from the TCGA and GEO databases.

The estimation process employed the “pRRophetic” R package,

which utilized the expression profiles of the patients. Then, IC50

values were compared between the groups with high and low m6A

scores. The IC50 values are utilized to assess the cellular response of

various cell lines to a total of 138 distinct chemotherapeutic and

small molecule anticancer drugs. The research found statistically

significant differences (P < 0.05) between patients with high and low

m6A risk scores in the IC50 values of several chemotherapeutic

drugs and small molecule anticancer medicines. Notably,

Bortezomib, Camptothecin, Cytarabine, Erlotinib, Gefitinib,

Gemcitabine, Metformin, Methotrexate, and Paclitaxel exhibited
Frontiers in Immunology 16
particularly noteworthy differences (Figures 10A–I; Supplementary

Figure S7).
3.11 RBMX’s impact on ESCC cell
proliferation and migration

To establish the mechanistic link between m6A modification and

malignant progression in ESCC, we prioritized RBMX for functional

interrogation based on its central position in the m6A regulatory

network. Bioinformatics analysis identified RBMX as a hub gene in

protein-protein-interaction network and co-expressed with key m6A

regulators (METTL3, FTO, YTHDF2). RBMX expression levels were

quantified in the ESCC cell lines KYSE510 and TE-1, revealing a

notable reduction in protein expression following RBMX knockdown

(Figure 11A). The clone formation assay demonstrated that the

knockdown of RBMX significantly impeded the proliferative

capacity of ESCC cells (Figure 11B). EDU staining corroborated
FIGURE 9

The m6A risk score predicts immunotherapeutic benefits. (A) Survival difference analysis of patients with high and low m6A risk score in the
IMvigor210 cohort. P = 0.013. (B) Rate of clinical response to anti-PD-L1 immunotherapy in high or low m6A risk score groups in the IMvigor210
cohort. (C) Kaplan-Meier curves for high and low m6A risk score patient groups in the Riaz et al. cohort. Log-rank test, P = 0.018. (D) The fraction of
patients with clinical response to anti-PD-1 immunotherapy (Riaz et al. cohort) in low or high m6A risk score groups. CR/PR vs. SD/PD: 33% vs. 67%
in the low m6A risk score groups, 18% vs. 82% in the high m6A risk score groups. (E) Kaplan-Meier curves for high and low m6A risk score patient
groups in the Vanallen et al. cohort. Log-rank test, P = 0.035. (F) The fraction of patients with clinical response to anti-CTLA-4 immunotherapy in
low or high m6A risk score groups of Vanallen et al. cohort. CR/SD vs. PD: 40% vs. 60% in the low m6A risk score groups and 32% vs. 68% in the high
m6A risk score groups. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease.
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these findings, indicating a significant decrease in the proliferative

activity of si-RBMX-transfected KYSE510 and TE-1 cells

(Figures 11C, D). The wound healing assay further illustrated that,

after 48 hours, the wound closure ability of si-RBMX-transfected

KYSE510 and TE-1 cells was markedly diminished compared to the

Si-NC control group (Figure 11E). Additionally, migration and

invasion assays were conducted to evaluate the impact of RBMX on

ESCC cell motility. The knockdown of RBMX in KYSE510 and TE-1

cells led to a significant reduction in both the invasive and migratory

capabilities of the cells (Figures 11F, G).
4 Discussion

Accumulating evidence from various studies emphasizes the

important role of m6A methylation modification in the immune
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process of organisms. Further investigation is necessary to achieve a

thorough comprehension of the immune cell infiltration within the

TME in ESCA that is mediated by multiple m6A regulators.

Therefore, it is crucial to clarify the characteristics of immune cell

infiltration in relation to diverse m6A modification patterns. This

will enhance our understanding of the TME and antitumor immune

responses within it, and offer approaches for risk stratification and

clinical management of patients with esophageal cancer. This study

identified two distinct modification patterns with the assistance of

23 m6A regulators. The mRNA transcriptome differences observed

between these patterns were found to be significantly associated

with T cell activation, regulation of immune effector processes,

neutrophil-mediated immunity, mesenchyme development,

mesenchymal cell differentiation, leukocyte transendothelial

migration, the Chemokine signaling pathway, and the VEGF

signaling pathway (Figures 4A, B). The two patterns exhibited
FIGURE 10

Sensitivity of the m6A risk score to different chemotherapy drugs and small molecule anticancer drugs was analyzed based on the GDSC database.
(A) Bortezomib. (B) Camptothecin. (C) Cytarabine. (D) Erlotinib. (E) Gefitinib. (F) Gemcitabine. (G) Metformin. (H) Methotrexate. (I) Paclitaxel.
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markedly different TME cell-infiltrating characteristics. Cluster A

was categorized as an immune-excluded phenotype, marked by the

infiltration of adaptive immune cells and stromal activation. On the

other hand, cluster B was classified as an immune-inflamed

phenotype, characterized by the infiltration of innate immune

cells and metabolic reprogramming. The immune-inflamed

phenotype, also known as “hot tumors,” is distinguished by
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substantial immune cell infiltration within the TME (24, 58, 59).

Despite the presence of a significant number of immune cells in the

immune-excluded phenotype, their distribution is limited to the

stromal compartment surrounding the tumor cell nests, rather than

infiltrating the tumor parenchyma. The stromal compartment may

be localized to the tumor periphery or may extend into the tumor,

potentially leading to the misinterpretation that immune cells are
FIGURE 11

Impact of altered RBMX expression on proliferation and invasion of esophageal cancer cells. (A) RBMX protein expression levels in Kyse510 and TE-1
cells. (B) plate clone formation experiments assays in transfected Kyse510 cells and TE-1 cells. (C) EDU assays in transfected Kyse510 cells (D) and
TE-1 cells. (E) Wound healing assays in transfected Kyse510 cells and TE-1 cells. (F) Invasion assay in transfected Kyse510 cells and TE-1 cells.
(G) migration assay in transfected Kyse510 cells and TE-1 cells (*P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001).
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present within the tumor (60, 61). Consistent with the established

definitions, our findings revealed that cluster A exhibited a

pronounced stromal activation status, including elevated

expression of EMT and TGF-b pathways (Figures 4D, E, G),

which are associated with T-cell suppression. The observed TME

cell-infiltrating characteristics in each cluster reinforce the validity

of our immune phenotype classification based on distinct m6A

modification patterns. Consequently, after comprehensively

exploring the TME cell-infiltrating characteristics induced by

distinct m6A modification patterns, it is not surprising that

cluster A, despite having activated innate immunity, exhibited

poorer prognosis.

The stromal activation in cluster A (e.g., TGF-b, EMT) and its

link to immune exclusion are supported by recent studies on CAF

subtypes (60–62). Cluster A exhibits an immunosuppressive

stromal microenvironment owing to the enrichment of TGF-b
and multiple EMT-related pathways and (Figures 4D, G). The

tumor stroma, particularly CAFs and their remodeled

extracellular matrix (ECM), plays a pivotal role in shaping the

immunosuppressive TME by regulating T cell infiltration and

function through both physical barrier and molecular

mechanisms (60). The physical barrier prevents cytotoxic T cells

from contacting cancer cells, creating an “immune-excluded”

microenvironment (60). In addition to structural constraints,

CAF heterogeneity further exacerbates immune evasion. Distinct

CAF subpopulations may drive divergent stromal remodeling

patterns: certain subsets promote the formation of rigid, cross-

linked stroma that impedes T cell migration, while others secrete

immunosuppressive factors (60, 61). Three functional subtypes of

CAFs have been identified in non-small cell lung cancer (NSCLC)

based on their heterogeneity (63). These functional disparities

among CAFs are driven by their intrinsic TGF-b signaling. This

CAF functional classification correlates with patients’ clinical

responses to targeted therapies and is also associated with the

tumor immune microenvironment (63). Notably, RNA

modification “writers” (e.g., m6A/m1A regulators) appear to

influence CAF activation states, as evidenced by the association

between high “Writers-Score”, poor prognosis, and suppressive

immune infiltration (e.g., M2 macrophages, EMT) (62). These

findings suggest that epigenetic reprogramming of CAFs may

reinforce immune exclusion by coupling matrix stiffness with

broader immunosuppressive signals, such as PD-L1 upregulation.

Thus, stromal activation drives CAF heterogeneity and immune

exclusion via coordinated ECM remodeling (e.g., collagen cross-

linking, fibronectin deposition) and epigenetic reprogramming

(e.g., m6A-mediated RNA stabilization of TGF-b signaling

components). Therapeutically targeting these matrix-driven

immunosuppressive mechanisms—such as through ECM-

degrading enzymes (e.g., collagenase) or epigenetic inhibitors—

could dismantle the stromal-T cell barrier, thereby enhancing the

efficacy of T cell–mediated antitumor immunity. The study by Du

et al. elucidates that RBMX stabilizes IL-33 mRNA through a liquid-

liquid phase separation mechanism, thereby activating the TGF-b
signaling pathway. This process orchestrates the bidirectional

regulation of tumor plasticity and the immunosuppressive
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microenvironment, providing a theoretical foundation for

developing precision therapeutic strategies targeting the RBMX/

TGF-b axis (64). We hypothesize that RBMX, as an m6A reader,

regulates CAF crosstalk by enhancing RNA stability of the IL-33/

TGF-b axis and increasing stromal stiffness, while simultaneously

suppressing immune-activating signals (e.g., CXCL10-STAT1) to

impair T cell function (61). This dual mechanism aligns with

clinical observations in cluster A patients, where despite high

immune cell infiltration, T cells are predominantly confined to

stromal regions and exhibit significantly reduced survival rates.

Such an “immune-excluded” phenotype closely mirrors the stroma-

mediated immune privilege phenomenon proposed by Joyce

et al. (60).

The immune landscape analysis underscores how m6A

modification patterns shape tumor-immune interactions

(Supplementary Figure S4). M6A cluster A (immune-excluded):

Dominated by Tregs, M2 macrophages, and CAFs, this phenotype

aligns with TGF-b-driven stromal activation. The concomitant

suppression of cytotoxic lymphocytes (evidenced by low CD8+/NK

cell ratios, P < 0.001) may explain poorer immunotherapy responses

observed in this subgroup. M6A cluster B (immune-inflamed):

Enriched for cytotoxic T/NK cells and immunostimulatory

dendritic cells, this cluster demonstrates the potential of m6A

modulation to overcome immune desertification. Notably, the M1/

M2 macrophage balance (P < 0.001) mirrors metabolic

reprogramming linked to m6A-regulated pathways.

The expression and function of m6A modulator genes in these

cells may play an important role in regulating the tumor

microenvironment. Especially in immune cells, the expression of

m6A modulator genes may affect the function and activity of

immune cells, thereby regulating tumor immune responses. Most

of the 23 m6A modulator genes are distributed in epithelial cells, B

cells, and T cells. As important components of the immune system,

B cells and T cells play an important role in the tumor

microenvironment. The expression level and functional status of

m6A modulator genes may affect the activity, proliferation,

migration and cell fate decisions of these immune cells, thereby

affecting the efficacy of tumor immunotherapy. In addition, the

expression of m6A modulator genes in tumor cells and epithelial

cells may also directly affect tumor development and treatment

response. Epithelial cells are often the cells of origin of tumors, and

the expression of m6A modulator genes in these cells may regulate

the proliferation, invasion, and metastasis capabilities of tumor

cells. Recent advancements such as spatial transcriptomics and

proteomics, exemplified by works utilizing techniques like spatial

CITE-seq (65), multimodal tri-omics (66), and spatially resolved

CRISPR screens (67), offer powerful methodologies for dissecting

complex interactions within the tumor microenvironment. These

technologies could provide novel insights into the spatial and

functional dynamics of m6A methylation modifications and their

impact on immune infiltration and cancer progression, potentially

unveiling new therapeutic avenues.

M6A related characteristic genes were identified as DEGs

associated with the prognosis of ESCA. By employing the m6A

signature genes, we have successfully categorized the samples into
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three distinct subtypes of m6A -related genes, which exhibit

significant associations with stromal and immune activations.

Therefore, it is imperative to conduct a comprehensive evaluation

of m6A modification patterns to enhance our understanding of

TME cell infiltration characterization. To mitigate inter-individual

variations, quantification of the m6A modification pattern among

m6A -modified tumors is necessary. To this end, we have devised a

set of scoring systems, referred to as the m6A gene signature, to

evaluate the m6A modification pattern. The m6A modification

pattern associated with the immune-excluded phenotype

demonstrated a higher m6A score, whereas the immune-inflamed

phenotype exhibited a lower m6A score.

Our findings align with previous studies on the TME, supporting

the notion that m6A methylation modifications play a vital role in

influencing distinct immune properties within the TME. Scoring

models constructed using specific biomarkers modified by m6A

have been successfully used in gastric cancer and colorectal cancer,

providing improved clinical treatment selection and prognosis

assessment for cancer patients (62, 68, 69). The findings suggest that

the m6A score possesses the capacity to serve as a comprehensive

metric for assessing the m6A modification pattern of individual

tumors, and may be employed in the investigation of tumor

immunophenotype and TME immune cell infiltration. Additionally,

the validation of the m6A score through the TCGA-ESCA cohort

highlights its considerable potential as a prognostic indicator for

patients afflicted with ESCA. The nomogram, incorporating the

m6A score along with other clinical variables, demonstrated effective

predictive capabilities for patient prognosis.

Furthermore, our m6A score demonstrated a superior predictive

capability in the context of immunotherapy for esophageal cancer.

These findings were robustly corroborated in the IMvigor210

cohort, as well as in cohorts receiving anti-PD-1 and anti-CTLA-

4 treatments, where the immune phenotype had been established

(49, 50, 56). We could also predict the efficacy of adjuvant

chemotherapy and the patients’ clinical response to anti-PD-1/

PD-L1 immunotherapy through the m6A score.

The evaluation of genes that may drive mutations in tumors is

an essential method for exploring the fundamental mechanisms of

tumorigenesis and progression. Furthermore, it contributes to the

rational selection of cancer diagnosis and treatment strategies. In

our study, we observed a significant increase in the mutation rates of

TP53 and TTN in the high m6A score group. TP53 mutations are

prevalent in various cancer types and play a critical role in cancer

progression. Loss or mutation of TP53 in cancer cells can disrupt T

cell recruitment and impair T cell activity, aiding immune evasion

and accelerating cancer growth in the process. Research on

esophageal cancer has revealed that the absence of TP53, which

encodes the P53 protein, Consequently, there is an augmentation of

regulatory T cell (Treg) infiltration in both paracancerous and

intratumoral tissues (70). On the other hand, TTN mutations

have been associated with poor immune infiltration and worse

prognosis in liver hepatocellular carcinoma, colorectal cancer, and

ovarian serous cystadenocarcinoma (71–73). Notably, TTN
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mutations are frequently detected in solid tumors and have been

correlated with increased TMB. Moreover, TTN mutations have

been found to be associated with the objective response to immune

checkpoint blockade (ICB) therapy (74).These findings highlight

the potential impact of TP53 and TTNmutations in modulating the

immune response within the tumor microenvironment and their

relevance to clinical outcomes. Understanding the role of these

mutations in tumor biology can provide valuable insights for the

development of targeted therapies and immunotherapeutic

strategies in cancer treatment.

The study elucidates the role of RBMX in ESCC, focusing

specifically on its impact on cell proliferation and migration. The

findings suggest that the expression levels of RBMX are critical for

the malignant behavior of ESCC cells. In the KYSE510 and TE-1

ESCC cell lines, significant reductions in RBMX protein expression

were observed following knockdown. This indicates that RBMX

may play a crucial role in maintaining the cancerous state of these

cells. The plate colony formation assay revealed that RBMX

knockdown significantly impaired the proliferative capacity of

ESCC cells, highlighting its potential as a therapeutic target. EDU

staining, which assesses DNA synthesis during the S phase,

confirmed the reduced proliferative activity in cells with lower

RBMX expression. These findings support the hypothesis that

RBMX is a key regulator of cell cycle progression in ESCC. The

wound healing assay demonstrated that RBMX knockdown

significantly diminished the wound closure ability of ESCC cells,

underscoring its role in cell migration, which is crucial for cancer

invasion and metastasis. Migration and invasion assays further

indicated significant reductions in both the invasive and

migratory capabilities of ESCC cells following RBMX knockdown.

These observations suggest that RBMX is central to ESCC cell

motility, a key factor in the metastatic spread of cancer. In

summary, this study provides evidence that RBMX has multiple

influences on ESCC, impacting both cell proliferation and

migration. These findings indicate that RBMX may serve as a

promising target for therapeutic intervention in ESCC. Additional

research is needed to elucidate the molecular mechanisms through

which RBMX exerts its effects and to investigate the potential of

RBMX-targeted therapies for treating ESCC.

The role of RBMX in tumors is highly tissue-specific. In

hepatocellular carcinoma (HCC) and T-cell lymphoma, elevated

RBMX expres s ion enhances tumor progres s ion and

chemoresistance by stabilizing oncogenic long non-coding RNAs

(lncRNAs), such as BLACAT1, or modulating RNA metabolism (75,

76). In contrast, in bladder cancer, RBMX exhibits an oncogenic effect

by inhibiting hnRNP A1-mediated PKM splicing (77). This paradox

indicates that the function of RBMX may rely on the tissue-specific

expression of its interacting partners, such as hnRNP A1 and specific

lncRNAs. RBMX has been linked to chemoresistance in both T-cell

lymphoma and small-cell lung cancer (75, 78), suggesting that it may

affect treatment responses in esophageal cancer, particularly in

platinum-resistant ESCC, by modulating DNA damage repair and

apoptotic pathways, such as those involving the BCL2 family.
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Research by Tuersun and Bei has emphasized that RBMX is a

significant prognostic biomarker in various cancers, including

esophageal cancer, where its expression correlates with tumor

progression and poor clinical outcomes (79, 80). Investigating

how RBMX influences alternative splicing and m6A methylation,

particularly in relation to other RNA-binding proteins such as

TRA2A, may reveal new insights into the biology of esophageal

cancer and resistance to therapies like sorafenib (80). The

interaction of RBMX with splicing factors such as TRA2A and

hnRNP A1 offers deeper insights into the regulatory networks

governing esophageal cancer progression. RBMX’s role in m6A

methylation may contribute to the dynamic regulation of

oncogenic lncRNAs, thereby influencing tumor biology. Future

investigations should examine the mechanistic pathways by

which RBMX influences alternative splicing and m6A

modification across a broader range of cancers. Longitudinal

studies are needed to assess its prognostic value over

extended periods.

Our research has several limitations that should be

acknowledged. Firstly, although we included 23 well-known m6A

regulators reported in the literature, the significance of

incorporating recently identified regulators to enhance the

precision of m6A methylation pattern identification is

incontrovertible. Incorporating additional regulators into the

model can potentially improve the comprehensive understanding

of m6A modifications. Secondly, while immunotherapy has shown

significant benefits for some patients with low m6A scores, it is

important to recognize that not all patients with low scores derive

equal benefit. To enhance the predictive accuracy, it would be

valuable to integrate additional clinicopathological features into the

analysis. By incorporating these features, we can better identify

patients who are more likely to respond favorably to

immunotherapy. Thirdly, although we obtained a relatively large

sample size of 186 ESCA patients from various cohorts, it is

important to acknowledge that a larger and independent

prospective cohort of ESCA patients who have undergone

immunotherapy is required to validate our findings. Prospective

trials with a substantial patient cohort are required to provide a

more definitive demonstration of the prognostic value of the m6A

score in relation to the response to immunotherapy. Furthermore,

our study focused on a holistic analysis of the tumor

microenvironment without further distinguishing between tumor,

immune, and stromal components. This lack of component-specific

analysis may mask certain subtype-specific information, which is a

limitation of our study. Future investigations should consider

dissecting the tumor microenvironment into its individual

components to gain deeper insights into the interactions and

contributions of different cell types. Lastly, we primarily aimed to

propose molecular subtypes associated with m6A methylation

across the tumor microenvironment and subsequently develop a

scoring system. Furthermore, clinical analysis revealed that the m6A

score, when combined with other clinical indicators, can serve as a
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valuable adjunct to existing variables and effectively predict patient

prognosis. Addressing these limitations through further research

and validation will enhance the scientific significance and clinical

applicability of our findings.

This study offers novel insights into the clinical application of

immunotherapy, presenting potential implications for its use in the

field. One potential avenue for the development of novel

immunotherapy drugs or treatment strategies involves the

modulation of m6A modification patterns through the targeting of

m6A regulators or m6A -related marker genes. This approach may

serve to reverse unfavorable immune cell infiltration in the tumor

microenvironment, thereby converting immune cold tumors into hot

tumors (81). These findings aid in the identification of distinct

immune phenotypes, thereby enhancing our understanding of

patient response to immunotherapy. This information may help

with the clinical use of customized immunotherapy for the

treatment of cancer (82). We also demonstrated that patients with

high m6A scores had increased resistance to immunotherapy, which

may lead to different treatment effects of classical chemotherapeutics

in different patients.
5 Conclusions

We assessed the landscape of m6A methylation modifications

mediated by 23 regulators based on 186 ESCA samples. The variety

and complexity of immune infiltration in the TME are closely

connected to m6A methylation modifications. An m6A score has

been developed to offer a comprehensive evaluation of the m6A

modification pattern and immune infiltration features within a

singular tumor. This score also helps determine the tumor’s

immune phenotype, providing new insights and directions for

identifying potential therapeutic targets.
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SUPPLEMENTARY FIGURE 1

Integrated analysis and study design flowchart.

SUPPLEMENTARY FIGURE 2

The Metascape enrichment network is visually represented through a

visualization that highlights similarities both within and between clusters of

terms. The clustering of terms is indicated by consistent color coding.

SUPPLEMENTARY FIGURE 3

Kaplan-Meier survival curves of overall survival in ESCA cohort according to

the expression value of YTHDF2, YTHDF1, RBMX, LRPPRC, IGFBP3, IGFBP1,
FMR1 or ALKBH5mRNA level in each tumor sample, the optimal value in each

cohort was chosen as the cut-off point.

SUPPLEMENTARY FIGURE 4

Comparative immune landscape analysis of m6A modification clusters in
esophageal cancer. Heatmap depicting immune cell infiltration patterns

between m6A cluster A (left) and cluster B (right) as quantified by four
deconvolution algorithms (CIBERSORT, EPIC, MCP_COUNTER,

QUANTISEQ, TIMER and XCELL). Rows represent immune cell subsets

grouped by lineage (T cells, B cells, myeloid cells, stromal cells), while
columns represent individual samples. Color scale indicates relative

abundance (z-score normalized).

SUPPLEMENTARY FIGURE 5

Relationship between the m6A score and different clinical characteristics.

Kaplan-Meier curves showing the differences in survival depending on the
m6A score and different clinical characteristics. (A) T0; (B) T1–2; (C) T 3–4;

(D) N0; (E) N1–2; (F) N3; (G)M0; (H) M1; (I) male; (J) female; (K) age less than

or equal to 65 years; (L) age above 65 years.

SUPPLEMENTARY FIGURE 6

The m6A risk score predicts immunotherapeutic benefits in the GSE165252

cohort. The fraction of patients with clinical response to anti-PD-1
immunotherapy in low or high m6A risk score groups.

SUPPLEMENTARY FIGURE 7

Sensitivity of the m6A risk score to different chemotherapy drugs and small

molecule anticancer drugs was analyzed based on the GDSC database.
(A) Axitinib, (B) Bexarotene, (C) Bicalutamide, (D) Vinblastine, (E) Bosutinib,
(F) Bryostatin.1, (G) Lapatinib, (H) Imatinib, (I) Elesclomol.
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