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studying healthy donors and
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Introduction: Tumor Necrosis Factor Alpha is a known pro-inflammatory

cytokine that plays a key role in the pathogenesis of rheumatoid arthritis. Anti-

cytokine therapies targeting Tumor Necrosis Factor Alpha have greatly

succeeded in treating rheumatoid arthritis in many patients. Despite these

developments, many of the mechanisms of Tumor Necrosis Factor Alpha

action have yet to be uncovered.

Methods: In this study, we incubated PBMCs from healthy donors and

rheumatoid arthritis patients with Tumor Necrosis Factor Alpha and then

performed their single-cell multi-omics analysis via BD Rhapsody.

Results: We have observed that Classical Monocytes have responded to the

Tumor Necrosis Factor Alpha stimulation the most and that there was an

activational threshold for such response that was dependent on the TNFR2

protein expression level.

Discussion: The profiling of TNFR2 protein expression level on immune cell

populations can be a good predictive factor for the assessment of their activation

by Tumor Necrosis Factor Alpha.
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1 Introduction

Rheumatoid Arthritis (RA) is a chronic autoimmune disease

that primarily affects synovial joints, leading to persistent

inflammation, progressive cartilage degradation, and bone erosion

(1–3). The global prevalence of RA is estimated to be around 0.5–

1% in the general adult population, making it one of the most

common inflammatory arthritis conditions worldwide (4, 5).

Despite advances in treatment strategies, many patients continue

to experience active disease and joint damage, emphasizing the need

for a deeper understanding of RA pathogenesis to optimize

therapeutic interventions (6).

A hallmark of RA is the dysregulated immune response within

the synovium. Multiple immune system components, such as T

cells, B cells, macrophages, and dendritic cells are involved in the

pathogenesis of RA (7–9). Auto-reactive T and B cells contribute to

forming immune complexes, stimulating the synovial membrane

and infiltrating leukocytes to release pro-inflammatory cytokines

and chemokines (10, 11). These events maintain the progression of

local joint inflammation and can also have systemic consequences,

that indicate that the pathogenesis of the disease can extend beyond

the joint. Thus, the composition of immune cell subtypes in RAmay

differ from normal conditions and reflect the disease progression.

Among the wide spectrum of inflammatory mediators, tumor

necrosis factor (TNF) plays a particularly central role in RA

pathogenesis (12, 13). TNF is a central pro-inflammatory

cytokine that orchestrates a wide range of immune responses,

particularly those involving cell-mediated immunity (14).

Primari ly produced by activated macrophages and T

lymphocytes, TNF exerts pleiotropic effects on various immune

cells, helping regulate the balance between protective inflammation

and pathological damage (15). Under physiological conditions,

TNF is critical for immune surveillance, promoting the clearance

of pathogens and tumor cells (16). However, excessive TNF

production can trigger a self-perpetuating cycle of inflammation,

driving the pathophysiological processes seen in autoimmune

disorders such as rheumatoid arthritis (RA) in which elevated

levels of TNF in the synovium and serum correlate with disease

activity and joint damage (17, 18).

Two main types of receptors mediate the effects of TNF on

immune cells: TNFR1 and TNFR2. TNFR1 is expressed on nearly

all cell types, whereas TNFR2 is found on the surface of select cell

populations, including immune cells (19). Importantly, TNFR2 is

predominantly expressed on immune cells and is primarily

activated by the membrane-bound form of TNF. In contrast,

TNFR1 is activated by both the membrane-bound and soluble

forms of the ligand (20). The downstream effects of TNFR1

activation vary significantly, ranging from NF-kB activation with

subsequent activation of gene expression and survival to the

initiation of apoptosis and necroptosis (21). In contrast, TNFR2

predominantly activates both canonical and non-canonical NF-kB
pathways. Canonical NF-kB activation leads to the rapid expression

of pro-inflammatory genes, whereas non-canonical NF-kB
activation supports cell survival and proliferation over a slower

timescale (22). Thus, the balance of TNFR1 and TNFR2 expression
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on immune cells plays a critical role in finely tuning the

physiological state of the cell.

TNF blockade has revolutionized RA treatment over the past

decades. By neutralizing TNF activity, disease-modifying

antirheumatic drugs (DMARDs) can reduce synovitis, slow the

progression of joint damage, and improve clinical outcomes.

However, primary or secondary nonresponse to TNF inhibitors

still occurs in a subset of patients, highlighting the intricate network

of additional pathways that drive RA pathology and the need to

explore new therapeutic targets (12, 23).

Recent advancements in single-cell sequencing have led to

significant discoveries in immunology (24–27), providing powerful

tools to analyze complex immune responses at high resolution.

Leveraging this technology, our study investigates transcriptional

profiles in RA and healthy controls, focusing on the impact of ligand

stimulation of TNFR1 and TNFR2 surface expression. Using the BD

Rhapsody platform and the Cellular Indexing of Transcriptomes and

Epitopes (CITE-seq) method, we simultaneously analyze whole

transcriptome (WTA) and surface protein expression (10 surface

proteins) in peripheral blood mononuclear cells (PBMCs), allowing

us to capture transcriptional changes associated with receptor

activation (Figure 1).
2 Materials and methods

2.1 Activation of PBMCs by TNF

2.1.1 Collection of clinical material
We obtained peripheral blood from healthy donors and patients

diagnosed with rheumatoid arthritis (RA). After signing an

informed consent form, RA patients were recruited at the Clinic

of Immunopathology of the Research Institute for Fundamental and

Clinical Immunology. The study included patients with rheumatoid

arthritis (n = 3, women, 57–67 years old), who had a high degree of

disease activity (DAS28 ranging 5.17-6.69), seropositive for

rheumatoid factor and positive for antibodies to cyclic

citrullinated peptide, receiving basic therapy with Methotrexate or

Leflunomide, and different total duration of the disease.

Subsequently, we recruited a group of conditionally healthy

donors (n = 3, women, 62–68 years old), comparable in gender

and age and without rheumatological pathologies.
2.1.2 Isolation and cultivation of PBMCs
We collected blood (up to 9 mL) from the cubital vein under

sterile conditions and in the fasting state into vacuum tubes

containing the anticoagulant K3-EDTA (the tripotassium salt of

ethylenediaminetetraacetic acid; Vacuette K3-EDTA, Greiner Bio-

One GmbH, Austria). Before the experiment, we prepared a

complete culture medium by supplementing RPMI with 10% fetal

bovine serum (HyClone, Logan, UT, USA), 2 mM L-glutamine

(BioloT, St. Petersburg, Russia), 5 × 10^−4 M 2-mercaptoethanol

(Sigma-Aldrich, St. Louis, MO, USA), 80 µg/mL gentamicin

(KRKA, Novo mesto, Slovenia), 10 mM HEPES (Sigma-Aldrich),

and 100 µg/mL benzylpenicillin (Biosintez, Russia). We isolated
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peripheral blood mononuclear cells (PBMCs) using a Ficoll-

Urografin gradient (1.077 g/mL, PanEco, Russia). We then

cryopreserved PBMCs immediately after isolation in a solution

containing 90% fetal bovine serum and 10% DMSO for subsequent

single-cell multiomics analysis.

2.1.3 PBMC incubation with TNF
To study the effects of TNF on PBMCs, we unfroze the PBMCs,

prepared two aliquots, and then incubated one of the aliquots (5.0 ×

105 cells) with TNF at the concentration of 5 ng/µl for 6h in the

complete RPMI culture medium.
2.2 Single-cell multi-omics analysis

2.2.1 Sample Tag and AbSeq cell staining and
counting

After the TNF incubation we incubated mononuclear cells with

Sample Tag (1–6) antibodies from the BD™ Single-Cell

Multiplexing Kit (633781, BD Biosciences, San Jose, CA, USA) to

barcode individual samples and 10 AbSeq (CD4:SK3 | CD4 |

AHS0032 | Cat#940001, CD8:SK1 | CD8A | AHS0228 |

Cat#940305, CD14:MPHIP9 | CD14 | AHS0037 | Cat#940005,

CD16:B73.1 | FCGR3A_FCGR3B | AHS0242 | Cat#940314, CD19:

HIB19 | CD19 | AHS0161 | Cat#940247, CD45RA: HI100 | PTPRC |

AHS0009 | Cat#940011, CD45RO | PTPRC | AHS0036 |

Cat#940022, CD56:NCAM16.2 | NCAM1 | AHS0019 |

Cat#940007, CD120A (TNFR1) | TNFRSF1A | AHS0439 | 46033,

CD120B (TNFR2) | TNFRSF1B | AHS0421 | 460318, BD

Biosciences) antibodies for surface protein expression profiling for

30 minutes at room temperature according to the manufacturer’s
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recommendations (“Single Cell Labelling with BD AbSeq Ab-Oligos

(1 to 40 plex)”).

After three washing cycles, cells were stained with Calcein

according to the BD Rhapsody Single-Cell Analysis System User

Guide. Calcein-positive cells were counted using the Attune NxT

flow cytometer as events/uL. Cells were then pooled together in

equal proportions and resuspended in a cold sample buffer to a final

concentration of 30 cells/µl for loading onto a BD Rhapsody

Cartridge. The number of cells loaded into the cartridge was

visually validated using the In Cell Analyzer 6000 as mean

Calcein-positive cells in 5 fields of view (FOV)/175 (microwells

per FOV) * 200000 (total number of microwells per cartridge).

Healthy donors’ (n = 3) and rheumatoid arthritis patients’ (n = 3)

PBMCs were loaded onto two separate BD Rhapsody cartridges

within 30 minutes of each other and then were further processed

simultaneously to avoid any additional batch effect.

2.2.2 CITE-seq library preparation and
sequencing

We performed single-cell capture and cDNA library

preparation using the BD Rhapsody Express Single-Cell Analysis

System (BD Biosciences), according to the manufacturer’s

instructions (Whole Transcriptome Analysis (WTA), Sample Tag,

and BD AbSeq Library Preparation Protocol). Briefly, we captured

single cells in the BD Rhapsody cartridge, added magnetic beads for

poly-A-based mRNA capture, along with Sample Tag and AbSeq,

lysed the cells, performed reverse transcription of the poly-A

captured mRNA, AbSeq and Sample Tag on the magnetic beads,

treated the beads with Exonuclease I, denatured the Sample Tag and

AbSeq from the beads, performed Sample Tag and AbSeq PCR1,

performed RPE (Random Priming and Extension) on the beads
FIGURE 1

Overview of the experiment. This figure was created via BioRender.
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with cDNA, denatured and collected the RPE product, and

performed another round of RPE, performed single-sided cleanup

of the RPE product using AMPure XP Beads (A63880, Beckman

Coulter, Brea, CA, USA), to remove primer dimers and other small

molecular weight by-products. Following that, we further amplified

the purified RPE product and purified the resulting RPE PCR

(WTA) and Sample Tag and AbSeq PCR1 products using single-

sided selection with the help of AMPure XP Beads. We then

assessed their concentrations with the Qubit 4 Fluorometer and

the Qubit dsDNA High-Sensitivity Assay Kit (Q32854, Thermo

Fisher, Waltham, MA, USA) and performed quality control using

Qsep1 capillary electrophoresis with the S2 Cartridge (Bioptic,

China). After that, we further amplified the Sample Tag PCR1

product and purified the resulting PCR2 product using single-sided

selection with AMPure XP Beads, performed a final round of

amplification using indexes for Illumina sequencer to prepare the

final libraries for the WTA and Sample Tag PCR2 products, as for

the AbSeq PCR1 product, we normalized its concentration to 1 ng/

mL and then performed index PCR. Eventually, we performed

library clean-up using single-sided selection with AMPure XP

Beads for the Sample Tag and AbSeq index libraries, and double-

sided selection for the WTA index library. Library concentrations

were then assessed using the Qubit 4 Fluorometer with the Qubit

dsDNA High-Sensitivity Assay Kit, followed by quality control with

Qsep1 capillary electrophoresis and the S2 Cartridge. We then

pooled the final libraries (~82/16/2% WTA/AbSeq/Sample Tag

ratio, estimated read/cell: 50000 (WTA), 10000 (AbSeq, 1000

reads per AbSeq) and 1200 (Sample Tag)) to the final

concentration of 5 nM. The final pooled libraries were sequenced

(R1 = 71, R2 = 51, 1300 million clusters, S1 flow cell, one flow cell

for each BD Rhapsody cartridge) on a NovaSeq 6000 sequencer

(Illumina, San Diego, California, United States).

2.3.3 Raw data processing
We processed the FASTQ files obtained from sequencing using

the BD Rhapsody pipeline v2.0 (BD Biosciences). The pipeline

removed read pairs with low quality based on their read length,

mean base quality score, and highest single-nucleotide frequency,

analyzed remaining high-quality R1 reads to identify cell label and

unique molecular identifier (UMI) sequences, aligned WTA R2

reads to the transcriptome reference via STAR, then aligned the

remaining high-quality R2 reads to AbSeq panel reference using

Bowtie2, collapsed reads with the same cell label, the same UMI

sequence and the same gene into a single molecule, adjusted the

obtained counts by error correction algorithms, namely, recursive

substitution error correction (RSEC) (WTA and AbSeq) and

distribution-based error correction (DBEC) (AbSeq only) to

correct for sequencing and PCR errors, estimated cell counts

using the second derivative analysis to filter out noise cell labels,

observed one inflection point, and considered cell labels after that

point to be noise labels. Then, the pipeline used molecular barcoded

oligo-conjugated Sample Tag antibodies (Single-cell multiplexing

kit HS, BD Biosciences) to demultiplex the samples and filter out

the cell multiplets. The pipeline called 31268 single cells (2500–3500
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cells per sample) across the two BD Rhapsody cartridges and output

combined gene and surface protein expression matrices for each

sample. Sequencing metrics showed sequencing saturation of 92-

98% and a mean RSEC sequencing depth of 5.5, which is considered

above medium sequencing depth for BD Rhapsody libraries

(RSEC = 1 - shallow sequencing, RSEC = 8 - deep sequencing).

2.2.4 Multi-omics data analysis via Seurat WNN
We analyzed gene and surface protein expression using Seurat

WNN (Weighted Nearest Neighbors) (28). We imported gene

expression matrices, created Seurat objects for each sample, added

AbSeq surface protein expression data to each object as ADT

(antibody-derived tag) data, merged the individual objects, and

subjected them to a quality control procedure (nCount_RNA <

7500, nCount_ADT < 7500, percent.mt < 23.5). The merged gene

expression matrix was normalized using the SCTransform v2 (SCT)

package (29) of the R programming language. For the SCT-

normalized gene expression matrix, we performed PCA (principal

component analysis) dimensionality reduction and corrected the

batch effect using the Harmony package (30) of the R programming

language. The merged ADT matrix was normalized using the

Centered Log-ratio (CLR) normalization method taking into

account all 10 surface proteins. For the CLR-normalized ADT

matrix, we performed PCA dimensionality reduction and

corrected the batch effect using the Harmony package of the R

programming language. We then performed Weighted Nearest

Neighbors Uniform Manifold Approximation and Projection

(WNN UMAP) multi-omics dimensionality reduction using 30

Harmony-corrected gene expression principal components and 9

Harmony-corrected ADT principal components, found multi-

omics neighbors and clusters (resolution = 0.7). We then

manually annotated the resulting clusters using their surface

protein and gene expression data and created the DimPlot of the

clusters, FeaturePlot, and VlnPlot of the surface protein marker

expression via Seurat. We used the modified VlnPlot by Ming

Tommy Tang, (https://divingintogeneticsandgenomics.com/post/

stacked-violin-plot-for-visualizing-single-cell-data-in-seurat/,

accessed on 27.01.2025).

2.2.5 TNF response analysis
To find single cells that TNF activated, we used AUCell (31)

with the following signature response to TNF via TNFR1 genes:

IL1A, IL1B, CCL3, CCL4, CXCL2, CXCL3, SNX9, NIBAN1, JUNB,

JUN, FOS, ATP2B1, CRIM1, PTGS2, TNIP3, EHD1, ID2, NBN,

PSTPIP2, AK4, DRAM1, MAILR, GCH1, SNX10, MAP3K8, MTF1,

MMP14, SGPP2, ACSL1, TNFAIP6, TNFAIP8 (32–35). In brief,

AUCell ranked genes by their expression values, calculated the Area

Under the Curve (AUC) to determine whether the genes from a

given gene set were enriched in the ranked gene list for each cell. A

higher AUC score indicated that a larger proportion of the gene set

was highly expressed in a given cell, suggesting active expression of

that gene program. We then exported TNFR1 and TNFR2

normalized protein expression, cell clustering data, and AUCell

TNF activation scores to perform Pearson correlation via the corr
frontiersin.org
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function of the Pandas library (36). We represented the correlation

values as a heat map via MatPlotLib (37). We also created a DotPlot

of the TNF-activated genes, TNFR1 and TNFR2 normalized protein

expression, and the AUCell TNF activation scores via Seurat for the

Classical Monocytes as they had the highest AUCell TNF

activation score.

Next, we exported mean TNFR1 and TNFR2 normalized

protein expression and AUCell TNF activation score values via

the AverageExpression function followed by the min-max

transformation for every value to perform correlation and

regression analyses for the values before and after the incubation

with TNF for each sample. We used the corr function of the Pandas

library (36) to perform Pearson correlation and MatPlotLib (37) to

graph the relations between the studied factors. We then added an

activation threshold for the TNFR2. The activation threshold

location was detected as the intersection of TNFR2 protein

expression with the midpoint of the AUC response to the TNF

score that separated high TNF response levels from low or no

response. The activation threshold was then added as dotted lines to

the correlation graph. To convert the TNFR2 normalized protein

expression back into molecule counts we fit a second-degree

polynomial to the data using the predicted TNFR2 receptor

counts (we assumed 1 AbSeq molecule to be equal to 1 TNFR2

receptor) for the activation threshold and created a plot via

MatPlotLib (37).

2.2.6 Differential gene expression analysis
To study the differences between normal and rheumatoid

arthritis Classical Monocytes, we performed pseudo-bulk

differential gene and TNFR1 and TNFR2 protein expression

analysis via pyDeSeq2 (38) using the aggregated Classical

monocyte UMI counts obtained via the AggregateExpression

Seurat function. We used BulkOmicsTools (39) to create a

volcano plot of the differentially expressed genes, we considered

log2(Fold Change) > |0.847| and q-values < 0.01 significant. We

then used GSEApy (40) to perform an overrepresentation analysis

of the differentially expressed genes in Gene Ontology Biological

Process terms.
3 Results

3.1 Multi-omics characteristics of PBMCs

In this study, we performed a multi-omics analysis of the

PBMCs from healthy donors and rheumatoid arthritis (RA)

patients. First, we performed multi-omics integration and

clustering of single cells. We have observed every cell population

that is detectable in PBMCs: CD4 and CD8 Naïve and Memory T-

cells, DP (Double-positive) T-cells, CD4 and CD8 NKT-cells, NK-

cells, B-cells, Classical, Intermediate, and Non-Classical Monocytes,

and Dendritic cells (Figures 2A, C, D). We observed that incubation

of the PBMCs with TNF did not significantly disturb the cell
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composition and that RA patients had 12% more CD4 T-

cells (Figure 2B).
3.2 TNFR2 protein expression level predicts
the response to TNF via TNFR1 in classical
monocytes

As our main goal was to elucidate the details of the response to

TNF by PBMCs via TNFR1, we used AUCell to scan for the single

cells that had responded to TNF via TNFR1 using a set of signature

genes (Figure 3A). We observed that Classical Monocytes had

responded to TNF the most. TNFR2 and TNFR1 protein

expression were the second and the third most important factors

in response to TNF via TNFR1 (Figure 3B). Despite being the most

activated cells through TNFR1, Classical Monocytes did not have

the highest expression of the said receptor and instead had the most

prominent expression of the TNFR2 among all PBMCs (Figure 3C).

We have also observed that normal and RA Classical Monocytes

had different TNFR1 and TNFR2 protein expression, as well as a

different expression of TNF response genes, and, therefore, different

AUCell scores – normal Classical Monocytes had significantly higher

TNFR2 protein expression and responded to TNF more prominently

compared with the RA Classical Monocytes (Figure 3D).

We then tested the relations between TNFR1 and TNFR2 protein

expression and TNF response via TNFR1 AUCell scores pre and

post-TNF incubation for each sample (Figure 3E) and observed that

TNFR2 protein expression pre-TNF incubation strongly and

positively (r = 0.99) correlated with the TNF response via TNFR1

AUCell scores post-TNF incubation (Figures 3E, F), as well as that

TNFR1 protein expression post-TNF incubation strongly and

negatively (r = −0.66) correlated with the TNF response via TNFR1

AUCell scores post-TNF incubation (Figure 3E).

Since Classical Monocytes from healthy donors had a high

response to TNF and Classical Monocytes from RA patients had a

low or no response, and Classical Monocytes from healthy donors

and RA patients, respectively, had high and low levels of TNFR2

protein expression before incubation with TNF (Figure 3D), there

might be a threshold of TNFR2 protein expression that, when

crossed, activates a robust response to TNF. We detected that this

threshold was at 32.5% of the normalized TNFR2 protein expression,

translating into 62 TNFR2 receptor molecules (Figure 3G).
3.3 Classical monocytes in rheumatoid
arthritis show gene expression signature
associated with foam cell differentiation

As Classical Monocytes had differential responses to TNF, we

also performed pseudo-bulk differential gene expression analysis

between the normal and RA Classical Monocytes without the TNF

stimulation. We observed that RA and normal Classical Monocytes

indeed have differentially expressed genes (Figures 4A, C) and that
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1572823
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Perik-Zavodskii et al. 10.3389/fimmu.2025.1572823
genes up-regulated in the RA Classical Monocytes are enriched in

the Foam cell differentiation biological process that included the

STAT1 and PPARG genes (Figure 4B). We also observed that RA

Classical Monocytes had significantly higher CXCR4 chemokine

receptor gene expression (Figure 4C).
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4 Discussion

In this study, we performed a multi-omics analysis of the

response to TNF by peripheral blood mononuclear cells of

healthy donors and rheumatoid arthritis patients. We observed
FIGURE 2

Integrated surface protein and whole transcriptome analysis of the normal (n = 3) and rheumatoid arthritis (n = 3) single peripheral blood
mononuclear cells. (A) UMAP plot of the clusters; (B) Stacked bar plot of the percentages of cells per cluster per experimental group, clusters are
color-labeled following the subFig A; (C) Feature plots of the surface protein marker expression; (D) Violin plots of the surface protein marker
expression per cluster, clusters are color-labeled following the subFig A.
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that Classical Monocytes responded the most to TNF, and had the

most prominent TNFR2 protein expression and medium TNFR1

protein expression. Classical Monocytes from rheumatoid arthritis

patients responded to TNF less prominently compared with

Classical Monocytes from healthy donors. They also had an active

gene expression signature of Foam cell differentiation and

significantly higher CXCR4 gene expression.
Frontiers in Immunology 07
It is also worth mentioning that other immune cell populations,

including T cells, exhibited no detectable response for TNF

activation, suggesting that higher TNF stimulation doses may be

required to elicit activation in these cells. This differential

responsiveness highlights the presence of distinct regulatory

mechanisms or activation thresholds governing receptor

activation in different populations of immune cells, with
FIGURE 3

Response to TNF by the healthy donors (n = 3) and rheumatoid arthritis (RA) patients (n = 3) Classical Monocytes without the TNF stimulation. (A) AUCell
TNF signaling pathway response detection plot, (B) Pearson correlation analysis of the TNF signaling pathway response activity AUCell scores, cell types, and
TNFR1 and TNFR2 protein expression, (C) Violin plots of the TNFR1 and TNFR2 protein expression, (D) Dot plot of the TNF response genes, TNF response
AUC scores, and TNF receptor protein expression, mean marker expression values were Z-score transformed, the blue color represents the lowest marker
expression whereas the red color represents the maximum marker expression, dot size represents the percentage of Classical Monocytes positive for the
marker, samples are split into biogroups by vertical dotted lines, (E) Pearson correlation analysis of the mean TNF signaling pathway response activity AUCell
scores and normalized mean TNFR1 and TNFR2 protein expression (PEX) pre- and post TNF incubation for each sample, (F) linear regression of the
normalized mean TNFR2 protein expression pre TNF incubation and the mean TNF signaling pathway response activity AUCell scores post TNF incubation,
dotted lines depict TNF response activation threshold; (G) conversion between the TNFR2 normalized protein expression and the TNFR2 molecule counts,
dotted lines depict the TNF response activation threshold, curve depicts the fitted second-degree polynomial.
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monocytes being more sensitive to TNF stimulation than other cell

types. Further research is needed to investigate these differences to

gain a deeper understanding of the signaling requirements and

regulatory mechanisms underlying TNF-mediated activation in

diverse immune cell subsets.

Our findings support the notion that receptor expression levels

play a crucial role in determining cellular responsiveness to

cytokine signaling (41). The differential expression of TNFR1 and

TNFR2 observed in RA and healthy monocytes suggests that

distinct activation thresholds may contribute to variations in

TNF-mediated signaling. Notably, we found a positive correlation

between TNFR2 protein expression and the cellular response to

TNF via TNFR1. This could be potentially explained by TNFR2

working as an on-cell depot for TNF and that TNF is later released

from TNFR2 and is uptaken by the TNFR1 (42, 43). Additionally,

the observed decrease in TNFR1 protein expression following TNF

incubation was associated with a robust TNFR1-mediated response,

likely due to the internalization of TNFR1 after the successful

interaction with its ligand. These findings highlight the complex

interplay between TNFR1 and TNFR2 in modulating TNF signaling
Frontiers in Immunology 08
and suggest that receptor expression dynamics play a key role in

shaping immune responses.

The reduced TNFR2 expression observed in RA classical

monocytes may result from chronic TNF stimulation in the

disease environment, leading to receptor downregulation as a

regulatory mechanism. Alternatively, RA monocytes might

possess a higher activation threshold for TNFR2 signaling,

requiring stronger or prolonged stimulation to elicit a comparable

response to that seen in healthy monocytes.

The Foam cell formation gene expression signature in Classical

Monocytes from rheumatoid arthritis patients might reflect

metabolic changes occurring due to rheumatoid arthritis and

validate previous similar findings (44–46). As CXCR4 is up-

regulated in Classical Monocytes from rheumatoid arthritis

patients, they can be expected to migrate towards CXCL12. The

CXCL12-CXCR4 axis is known to be of great importance in

rheumatoid arthritis (47) where abnormally high concentrations

of CXCL12 in synovial fluid and overexpression of CXCL12 in

synovial cells have been found (48–50). The expression levels of

both CXCL12 and CXCR4 were also shown to positively correlate
FIGURE 4

Differential gene expression analysis of the Classical Monocytes of healthy controls (n = 3) and rheumatoid arthritis (RA) patients (n = 3). (A) Volcano
plot of the differentially expressed genes; (B) Gene Ontology Biological Process overrepresentation analysis of the up-regulated genes. Red
corresponds to the lowest q-value, blue corresponds to the highest q-value, and the dot size reflects the percentage of genes in the analysis from
the full set of genes in the Gene Ontology Biological Process database; (C) Dot plot of the differentially expressed genes, mean marker expression
values were Z-score transformed, the blue color represents the lowest marker expression whereas the red color represents the maximum marker
expression, dot size represents the percentage of Classical Monocytes positive for the marker.
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with ESR, CRP, RF, and DAS28 scores (51). As there is a CXCL12-

based chemoattraction in RA towards the inflamed joints, these

Classical Monocytes turned Foam cells could be migrating to the

site of joint inflammation, where they could contribute to the

pathogenesis of RA.

In conclusion, TNF reception and the initiated response are

greatly affected by the expression of both TNFR1 and TNFR2, with

the latter taking up the most prominent role by forming the

activation threshold for the response to TNF.
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31. Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H,
Hulselmans G, et al. SCENIC: single-cell regulatory network inference and
clustering. Nat Methods. (2017) 14:1083–6. doi: 10.1038/nmeth.4463

32. Ott LW, Resing KA, Sizemore AW, Heyen JW, Cocklin RR, Pedrick NM, et al.
Tumor necrosis factor-a-and interleukin-1-induced cellular responses: coupling
proteomic and genomic information. J Proteome Res. (2007) 6:2176–85. doi: 10.1021/
pr060665l

33. Guo F, Yuan Y. Tumor necrosis factor alpha-induced proteins in Malignant
tumors: progress and prospects. OncoTargets Ther. (2020) 20:3303–18. doi: 10.2147/
OTT.S241344

34. Gibaldi D, Vilar-Pereira G, Pereira IR, Silva AA, Barrios LC, Ramos IP, et al.
CCL3/macrophage inflammatory protein-1a is dually involved in parasite persistence
and induction of a TNF-and IFNg-enriched inflammatory milieu in Trypanosoma
cruzi-induced chronic cardiomyopathy. Front Immunol. (2020) 11:306. doi: 10.3389/
fimmu.2020.00306

35. Lee IT, Lin CC, Cheng SE, Hsiao LD, Hsiao YC. TNF-a induces cytosolic
phospholipase A2 expression in human lung epithelial cells via JNK1/2-and p38
MAPK-dependent AP-1 activation. PloS One. (2013) 8:e72783. doi: 10.1371/
journal.pone.0072783

36. Reback J, McKinney W, Van Den Bossche J, Augspurger T, Cloud P, Klein A,
et al. pandas-dev/pandas: pandas 1.0. 5. Geneva, Switzerland: Zenodo (2020).
doi: 10.5281/zenodo.3509134

37. Matplotlib M. Visualization with python. Poveznica (2022). Available at: https://
matplotlib.org. Geneva, Switzerland. doi: 10.5281/zenodo.13308876
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