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Apolipoprotein M expression
modifies the sphingolipid
landscape in murine blood
and lymph
Victoria A. Blaho* and Joshua T. Minyard

Cancer Metabolism and Microenvironment Program, NCI-designated Cancer Center, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
Members of the diverse family of sphingolipids (SPL), such as ceramides (Cer) and

sphingomyelins (SM), are well-known structural and bioactive signaling

molecules. A key SPL family member and critical signaling lipid, sphingosine 1-

phosphate (S1P), is carried in blood primarily by its “chaperone” protein

apolipoprotein M (ApoM) on high-density lipoprotein (HDL) particles. S1P has

been shown to regulate diverse biological pathways through specific G protein-

coupled receptor signaling (GPCR) that can be modulated based upon

chaperone: ApoM or albumin. Blood concentrations of ApoM itself are altered

in human diseases such as coronary artery disease, type I and II diabetes, and

systemic lupus erythematosus, diseases that have also been linked to changes in

other SPL species; however, studies measuring molecules only in blood while

neglecting lymph concentrations may be excluding clues to the physiology

affected by multiorgan metabolic pathways. Comparing SM, dihydroSM, Cer,

dihydroCer, a-hydroxy Cer (aOHCer), Cer 1-phosphate (C1P), sphingosine (Sph)/

dihydroSph, S1P/dihydroS1P, and diacylglycerol (DAG) concentrations in wild-

type mouse blood and lymph plasmas with those in mice lacking ApoM and mice

expressing a human transgene of ApoM, we describe unanticipated differences

between the blood and lymph sphingolipidomes and their ApoM-responsive lipid

species. Of the 100 unique SPL species targeted, 97 were identified in blood and

94 in lymph. Some of the most striking findings were in lymph, where we

identified aOHCer as a previously unidentified major SPL constituent. This

report provides a unique resource and starting point for further investigations

into the contributions of the circulating sphingolipidome to homeostasis

and disease.
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Introduction

Sphingolipids (SPL) are a family of molecules with heterogeneous

contributions to cellular structure and signaling. The SPL,

sphingosine 1-phosphate (S1P), is a powerful signaling lipid formed

by phosphorylation of sphingosine (Sph) derived from ceramide

(Cer) and is carried in blood by two protein “chaperones”:

apolipoprotein M (ApoM) and albumin (1, 2). At homeostasis,

ApoM is found primarily on high-density lipoprotein (HDL)

particles (1, 3). S1P regulates diverse biological pathways through

activation of specific G protein-coupled receptors (GPCRs), S1P1-5
(4–6). In some instances, these signals may be modulated based upon

chaperone: ApoM or albumin. For instance, ApoM- versus albumin-

bound S1P has been shown to differentially regulate endothelial cell

activation and subsequent vascular inflammation, as well as the

suppression of lymphocyte progenitor proliferation versus other

hematopoietic progenitor cell types (7, 8). Clinically, blood plasma

or serum concentrations of both S1P and ApoM have been linked to

human diseases such as sepsis, coronary artery disease (CAD), type I

and II diabetes (T1/IID), systemic lupus erythematosus (SLE), and

most recently, COVID (9–14).

Due to the difficulty of obtaining samples, studies of lymph fluid

composition are comparatively rare versus those of blood, which is

more readily obtained from animal and human subjects. Yet the

lymphatic system is a critical component of the vascular system,

transporting interstitial fluid, immune cells, and signaling molecules

from the periphery to be reincorporated into the central venous

system (15, 16). The lymphatics are also a major contributor to

pharmacodynamics of molecules administered via subcutaneous,

intranasal, and oral delivery routes and their subsequent blood

pharmacokinetics (17–19). Measurements collected solely from

blood while neglecting lymph concentrations may be excluding

clues to physiology affected by multiorgan metabolic pathways. The

role of S1P in lymphocyte egress is one such example. In 2002, it

was shown that S1P receptor expression by lymphocytes was

required for them to recognize high S1P concentrations in blood

and lymph, drawing them out of lymph nodes and the spleen, which

have tightly controlled, very low S1P concentrations (20, 21).

Almost a decade later, HDL-bound ApoM was identified as a

specific chaperone for approximately two-thirds of blood S1P

versus the one-third carried by albumin (1, 22). Subsequently,

mice lacking ApoM have blood plasma S1P concentrations one

third to a quarter of wild-type (WT) samples (approximately 600-

750 nM) (1, 7). Since previous studies repeatedly found that HDL-

versus albumin-bound S1P had differential effects on signals

transduced via S1P receptors, it was hypothesized that

lymphocyte trafficking versus vascular permeability might

similarly be modulated by S1P chaperone. However, loss of

ApoM-bound S1P signaling did not affect lymphocyte egress in

vivo, likely due in part to S1P concentrations in KO lymph that did

not differ from WT (7).

S1P is the product of kinase activity on Sph, which is produced

by ceramidase hydrolysis of ceramides (Figure 1) (23, 24). De novo

production of Cer begins with serine palmitoyltransferase (SPT)-

mediated condensation of serine and palmitoyl-coenzyme A (CoA)
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and reduction of that product to generate dihydroSph (dhSph),

which is then acylated to form dihydroCer (dhCer) (25, 26).

Desaturation of dhCer generates Cer, where branching of the

sphingolipid metabolic pathways rapidly multiplies, leading to

production of phosphorylated forms (ceramide 1-phosphate,

C1P) or sphingomyelin (SM) and diacylglycerol (DAG)

production by sphingomyelin synthases (SMS) (27–30). If alpha-

hydroxy (aOH)-fatty acyl-CoAs are utilized by dihydroceramide

synthases (dhCers) rather than non-hydroxylated fatty acyl-CoAs,

a-hydroxylated Cer (aOHCer) are synthesized (31). Changes in

subcellular location or availability of enzymes and/or substrates also

add dimension along this pathway. For instance, targeting of

sphingosine kinase 1 (Sphk1) to the endoplasmic reticulum (ER)

results in increased phosphorylation of dhSph to dihydroS1P

(dhS1P) (32).

While cellular sources of blood and lymph S1P have recently been

more clearly defined and the enzymes involved are now known, the

source of the metabolic precursors, the mechanisms of S1P chaperone

choice and loading, and their impact on metabolic flux in the SPL

pathways remain to be fully characterized. Since altering abundance

of one SPL family member can affect dramatic changes in both direct

and distant metabolic precursors and products, it is reasonable to

hypothesize that altering S1P chaperone capacity may trigger a

response by S1P precursor molecules (33–35).

The paucity of studies reporting SPL concentrations in the

lymph and the intriguing lack of effect on lymph S1P in the absence

of ApoM led us to determine concentrations of an expanded panel

of SPL species in blood and lymph from WT, Apom-/- (KO), and

APOMTg (Tg) mice, which constitutively express a human APOM

transgene (1). The goal was to create the first murine lymph and

corresponding blood plasma SPL profiles while using genetic

models to examine how ApoM concentration affects the

circulating sphingolipidome. This will provide a starting point for

future investigations of how these two pools of circulating SPLs may

influence mammalian physiology.
Materials and methods

Animals

Animals were housed in a specific pathogen-free facility and

provided food and water ad libitum. All animal protocols were

approved by the IACUC of Weill Cornell Medicine. Apom-/- (KO)

and APOMTg (Tg) mice were crossed at least 9 generations to the

C57BL/6J genetic background and were previously described (1,

36). KO mice were created by deletion of 39 bp of Apom exon 2. Tg

mice have a 6817 bp insertion of the human APOM sequence.

C57BL/6 mice purchased from The Jackson Laboratory were used

as wild-type (WT) controls. Female and male mice 8-9 weeks old

were used for experiments. Animals were provided Teklad global

18% protein rodent diet (TD2018) and water ad libitum. WT, KO,

and Tg mice from which suitable blood and lymph samples had

been obtained were randomly selected from four different

experiments to be included in this study.
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Blood and lymph plasma collection

Mice were euthanized with CO2. 800 µl to 1 mL of blood was

recovered via terminal cardiac puncture and collected in tubes

containing 35 µl 0.1M EDTA (EDTAf = 3.5 - 4.375 mM). Samples

were immediately mixed by inversion before being placed on ice. 500

µl whole blood was removed to a new tube and centrifuged at 2,000 x

g for 15 minutes at 4°C. Plasma was removed and stored at -80°C
Frontiers in Immunology 03
until extraction and analysis. Lymph was recovered from the thoracic

duct as previously described and collected in 5 µl acid citrate-dextrose

(7, 37). The entire sample was centrifuged at 2,000 x g for 15 minutes

to isolate plasma. Total lymph plasma volume of each sample was

determined before being removed to a new tube and stored at -80°C.

If evidence of blood contamination was observed in the lymph (pink

color, sedimented erythrocytes upon centrifugation), samples from

that animal were not used in this study.
FIGURE 1

The biosynthetic pathway of sphingosine 1-phosphate and related molecules. De novo sphingolipid (SPL) metabolism begins with serine
palmitoyltransferase (SPT)-mediated condensation of serine and palmitoyl-coenzyme A (CoA) and reduction of that product to generate
dihydrosphingosine (dhSph). dhSph can then be phosphorylated to dihydrosphingosine 1-phosphate (dhS1P) by sphingosine kinases (Sphk1 and 2) or
acylated by (dihydro) ceramide synthases ((dh)Cers) to form dihydroceramide (dhCer). If aOH-fatty acyl-CoAs are utilized by dhCers rather than
non-hydroxylated fatty acyl-CoAs, a-hydroxylated Cer (aOHCer) are synthesized and can serve as the backbone for aOH glycosphingolipids.
Dihydrosphingomyelin (dhSM) is synthesized from dhCer by sphingomyelin synthase (SMS), or desaturation of dhCer by dihydroceramide desaturases
(Des 1 and 2) generates ceramide (Cer). Cer can then be phosphorylated by ceramide kinase (CERK) to form ceramide 1-phosphate (C1P), used as a
substrate by SMS to produce SM and diacylglycerol (DAG), modified with covalently linked sugar moieties to create glycosphingolipids, or hydrolyzed
by ceramidases (CDase), creating Sph and a free fatty acid. Like dhSph, Sph can be phosphorylated by Sphks, producing sphingosine 1-phosphate
(S1P), which can be dephosphorylated by S1P phosphatase (SPP1 and 2) or lipid phosphate phosphatase 3 (LPP3) back to Sph or terminally degraded
by S1P lyase to phosphoethanolamine to produce phospholipids and hexadecenal and subsequently provide palmitoyl-CoA. In the salvage pathway,
Cer is produced from SM hydrolysis by sphingomyelinases (SMase).
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Blood and lymph sample preparation

Total lymph plasmas from five mice were pooled to create a sample

volume suitable for lipidomic analysis. 10 µl of this lymph/anticoagulant

mix was transferred to a new tube and 90 µl H2O added before storage

at -80°C for shipment on dry ice to the Medical School of South

Carolina (MUSC) Lipidomics Core for processing and analyses. For

each genotype, two tubes of pooled lymph samples were created. 20 µl of

blood plasma from the same five animals was pooled to yield a

matching blood plasma sample for lipidomic analyses. A previous

study found that concentrations of plasma (non-glyco) sphingolipids

were not significantly affected by two freeze-thaw cycles (38).
Lipid quantitation and calculations

SPL were extracted from blood or lymph plasma by single phase

ethyl acetate:isopropanol:water process and quantitated by

electrospray ionization-tandem mass spectrometry (ESI-MS/MS) as

described in detail elsewhere (39–41). Briefly, samples were brought to

2 mL with serum-free medium before addition of 50 µl internal

standards in methanol (1 µM Sph (d17:1), S1P (d17:1), 13C16-Cer,

17C16-Cer, 17C24:1-Cer, 18C17-Cer, and 18C17-dhCer, and 5µM 18C8-

SM, 18C12-SM, and 18C17-SM), which were obtained primarily from

the synthetic unit of the MUSC Lipidomics Shared Resource facility,

and from commercially available sources, Avanti Polar Lipids Inc.

(Alabaster, AL) and Matreya LLC (Pleasant Gap, PA), with purity of

98% or greater. Samples were then extracted with isopropyl:ethyl

acetate (15:85, v:v) and divided for further processing specific for

sphingoid bases/ceramides or SM/DAG species. At the time of our

analyses, no authentic standards were available for some lipids of

interest, particularly the dhSM species. Therefore, calculations for

retention times (RT) and quantitation of these SPL species utilized

surrogate calibration curves generated from the most similar SPL

counterpart available. For each species, the standard used to create the

calibration curve and mean retention times (min) are listed in

Supplementary Table 1.

High lymph dilution with anticoagulant and variation in

volumes obtained were unavoidable consequences of sample

collection. To determine the molar concentration in lymph, 5 µl

was subtracted from the total volume measured for each animal at

the time of lymph plasma isolation to account for anticoagulant

volume, giving the actual volume of plasma in that sample. Total

volumes of lymph plasma + acid citrate dextrose and calculated

total volumes of actual lymph plasma for each pooled sample were

then used to determine molar concentrations and based on the

resultant pmol/total sample derived from ESI-MS/MS analyses.
Statistical analyses

Statistical analyses were performed using GraphPad Prism

software v7.0-9.3. Two-tailed Student’s t-test was used for direct

comparison of KO or Tg means to the WT mean. Several factors

led us to not adjust for multiple comparisons. The corrected a
Frontiers in Immunology 04
(familywise error rate) for multiple comparisons were based upon

the number of lipid species analyzed within a given family (e.g., 13 Cer

versus 20 DAG versus 12 aOHCer species). Thus, the likelihood of a

comparison with p ≤ 0.05 could vary dramatically based upon how we

grouped lipid species for analysis (e.g., more likely to find a difference

in aOHCer or Cer versus DAG). Because of the exploratory nature of
this study and the low n, we have set a = 0.05 per comparison and

created tables containing the nM values of each species within each

individual sample and their means (42). Equal variances were assumed

within blood or lymph; however, for any direct comparisons between

blood and lymph, Welch’s t-test was used.
Results

Effect of ApoM genotype on lymph
volume, total SPL mass, and S1P

Whole blood and lymph plasmas (referred to as “blood” and

“lymph” unless otherwise stated) were collected from WT, KO, and

Tg mice. KO mice have increased triacylglyceride (TAG; also known

as triglyceride) metabolism and conversely, mice with the human

APOM transgene exhibit decreased TAG clearance from circulation

(43, 44). Altered TAG concentrations were evident in the lymph

opacity: Tg mice had milky white lymph and an easily identifiable

thoracic duct, whereas KO mice had dramatically reduced lymph

opacity, increasing the difficulty of identifying the thoracic duct and

obtaining samples not contaminated by blood (data not shown).

Exclusion of subjects based on blood contamination of lymph led to a

slightly increased minimum lymph volume obtained in KO versus Tg

or WT (Figure 2A). However, the lymph volume means and ranges

were similar for all three genotypes.

100 unique SPL species representing eight SPL and related family

groups were assayed for: sphingomyelins (SM), dihydrosphingomyelins

(dhSM), diacylglycerols (DAG), ceramides (Cer), dihydroceramides

(dhCer), alpha-hydroxy ceramides (aOHCer), ceramide 1-phosphate

(C1P), sphingosine/dihydrosphingosine (Sph/dhSph), and sphingosine

1-phosphate/dihydrosphingosine 1-phosphate (S1P/dhS1P)

(Supplementary Table 1). In WT mice, 96 distinct SPL species were

found in blood and 88 in lymph. 96 and 97 SPL were quantitated in

blood of KO and Tg mice, respectively, and 90 (KO) or 89 (Tg) SPL

species in lymph. Overall, of the 100 unique species targeted, 97 SPL

species were identified in blood and 94 in lymph, regardless of ApoM

genotype. When compared by total SPL mass, there was significantly

less SPL per mL in WT lymph versus blood (Figure 2B). Although the

number of SPL species in blood was similar between all ApoM

genotypes, blood from Tg mice had significantly lower total SPL

mass compared to WT control. Lymph total SPL mass did not differ

between ApoM genotypes (Figure 2B).
SM is the predominant SPL in murine blood

Mass percentage calculations were performed to determine the

contribution of each lipid family to the total SPL composition of
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FIGURE 2

Lymph volume, total sphingolipid concentrations, and percentages of individual sphingolipid classes in wild-type (WT), Apom-/- (KO), and APOM
transgenic mice (Tg). (A) Volume of lymph (µl) obtained from individual WT (black), KO (blue), and Tg (green) animals before pooling for analyses. Bars
represent means and circles represent values from individual animals. (B) Total sphingolipid concentrations (ng/mL) in blood (open bars) and lymph
(hashed bars). Bars represent means ± SD and circles represent values from separate pooled samples. (C–E) Percentage of each sphingolipid class in
blood. (F–H) Percentage of each sphingolipid class in lymph. aOHCer, alpha-hydroxyceramide; Cer, ceramide; C1P, ceramide 1-phosphate; DAG,
diacylglycerol; dhCer, dihydroceramide; dhSM, dihydrosphingomyelin; dhSph, dihydrosphingosine; dhS1P, dihydrosphingosine 1-phosphate; SM,
sphingomyelin; Sph, sphingosine; S1P, sphingosine 1-phosphate.
Frontiers in Immunology frontiersin.org05
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blood and lymph (Figures 2C–H, respectively) in mice of different

ApoM genotypes. As previously reported for human blood plasma,

SM predominated in mouse blood plasma, regardless of ApoM

expression (Figures 2C–E) (38). dhSM was the second most

abundant and all other species combined for 2.346% of the WT

total blood SPL mass. S1P/dhS1P were only 0.26% of the SPL mass

percentage of WT blood but were four times the mass of their

precursors Sph/dhSph (0.06%). dhSM and dhSph can serve as

metabolic precursors for dhCer, which at 0.49% was almost twice

as abundant as S1P/dhS1P. Cer, the desaturation product of dhCer,

was less abundant at 0.38%, but the phosphorylated forms, C1P,

were the third highest SPL in total mass percentage at 0.56%. DAG,

a product of the conversion of Cer to SM, was only 0.33%.

Surprisingly, aOHCer, an alternative metabolite of dhSph when

CerS incorporates an aOH-fatty acyl-CoA instead of a non-

hydroxylated fatty acyl-CoA, constituted 0.26% of WT blood total

SPL mass, equivalent to S1P/dhS1P. To our knowledge, this is the

first report of aOHCer in circulation.

We then compared these values to those obtained for blood from

KO and Tg animals (Figures 2D, E). S1P/dhS1P dropped to 0.09% in

KO and rose to 0.76% in Tg, approximating the expected ~65%

decrease and ~300% increase, respectively (2, 7). Although S1P

contributes less than half a percent to total SPL mass in blood, the

interdependency of SPL metabolic pathways suggests compensatory

changes in other low mass percentage lipids could be anticipated in

both KO and Tg blood. The mass percentage of the S1P/dhS1P

precursors Sph/dhSph increased to 0.11% in KO blood but were

unchanged in Tg (0.05%). Mass percentages of Cer, dhCer,aOH-Cer,

C1P, and DAG all increased in KO blood; however, they also

increased in the blood of Tg animals. Thus, the total contribution

of the minor blood SPL species increased from 2.346% in WT to

2.794% in KO and almost doubled to 4.191% in Tgmice. The greatest

losses and gains in blood SPL mass percentage were seen in the two

most abundant families. KO blood had 3.39% increased SM, and

3.83% decreased dhSM, while the inverse was observed in Tg blood:

dhSM increased by 1.66% and SM decreased by 3.51%. These

differences indicate that the presence or absence of ApoM protein

shifts the mass percentages of most blood SPL by greater degrees than

expected by simple subtraction or addition of its ligands.
aOHCer is the predominant SPL in murine
lymph

The detailed SPL composition of lymph is largely unknown.

DAG was the major lipid species measured in WT lymph,

constituting 40.20% mass percentage compared to the SPL

families (Figure 2F). Measurements of aOHCer species again

yielded surprising results, since they contributed the greatest SPL

mass percentage in WT lymph. At 20.75%, the aOHCer were

almost equal to the mass percentage of all other SPL species

combined, minus dhSM. To our knowledge, this is also the first

report of aOHCer in the lymph. dhSM were again the second

greatest contributor to SPL mass percentage at 18.24%, similar to its

blood SPL percentage. The dhSM product, dhCer was next in
Frontiers in Immunology 06
percent abundance at 6.12%. SM contributed only 5.87% SPL

mass of lymph, less than one tenth their contribution to blood

mass percentage. C1P were slightly less than SM (5.37%) and

unphosphorylated Cer were 3.23%. Sph/dhSph were only 0.21%

and S1P/dhS1P a minuscule 0.02% of the SPL mass percentage in

WT lymph.

Many of the changes in SPL mass percentage of KO versus WT

lymph were less dramatic than those seen in blood (Figure 2G). Loss

of ApoM did not affect lymph mass percentage of S1P/dhS1P, and

Sph/dhSph only slightly increased to 0.24% from 0.21%. The KO

mass percentages of Cer, dhCer, SM, and aOHCer differed from

their WT values by less than 0.5% and the DAG increased by 1% to

41.23%. C1P were the only SPL with a large percentage gain in KO

lymph, 8.11% from 5.37% in WT, and dhSM the only sizeable loss,

to 14.49% from 18.24% in WT lymph. Thus, loss of ApoM had a

greater influence on the percent contribution of individual SPL

families to total mass in blood compared to lymph.

Changes in SPL mass percentages compared to WT lymph were

more pronounced in Tg lymph (Figure 2H). Although still small

compared to other species, the percent S1P/dhS1P was three times

greater in Tg lymph (0.07% versus 0.02% in WT) while precursors

Sph/dhSph decreased by only 0.04% (from 0.21% to 0.17%). SM

increased to 10.92%, almost doubling the SM contribution in WT.

dhSM increased by 1.5 times to 27.66%, replacing aOHCer species

as the most abundant SPL by mass percentage in Tg lymph.

Although the change in dhCer was only 2.2%, it was a 40%

decrease of the contribution in WT lymph. Cer also decreased in

Tg by 0.92% while C1P increased by about the same percent, 0.93%.

DAGs contributed 7.3% less to the mass percentage of Tg lymph

compared to WT.

We next considered molar SPL concentrations in blood and

lymph. Within the two tissues, there was no difference in total SPL

molar concentrations between KO or Tg compared to WT mice

(Figure 3A). However, total molar SPL concentrations were

significantly increased in lymph compared to blood within each

genotype. With the exception of SM and dhSMN (Figure 3B), most

of the SPL families in blood were found in high nanomolar to low

micromolar concentrations (less than 1.5 µM). Concentrations of

all SPL families were statistically similar between KO and WT

blood; however, total SM and dhSM concentrations in Tg blood

were significantly lower thanWT. In contrast, all SPL groups except

sphingoid bases (SB) Sph, dhSph, S1P, and dhS1P, were over 2.5 µM

in lymph (Figure 3C). DAG and aOHCer were found in the highest

concentrations. Similar to blood, total SPL concentrations in KO

lymph did not differ from WT, whereas aOHCer and DAG were

significantly lower in Tg compared to WT lymph.
Effects of ApoM expression on sphingoid
bases are tissue-specific

One of the primary roles of ApoM is the strong and specific

binding of S1P in blood (22, 45). As expected, S1P concentrations

were significantly lower in the blood of KO and higher in the blood

of Tg mice compared to WT controls, and dhS1P showed similar
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trends (Figure 4A, Supplementary Table 2). While Sph trended

higher in KO and lower in Tg blood, this did not reach significance.

Analysis of lymph revealed no change in concentrations of S1P or

the other sphingoid base, Sph, confirming our previous report (7).

The interconnectedness of the SPL pathways can make ratios a

useful method for examining perturbations in various lipid species.

In particular, the ratios of Sph and S1P to their fully saturated

dihydro forms, dhSph or dhS1P, or the ratio of S1P to its parent
Frontiers in Immunology 07
molecule, Sph (or dhS1P to dhSph). S1P:Sph was significantly

different in both KO and Tg, which correlated with the significant

changes in S1P concentrations (Figure 4B). There was a similar

trend in dhS1P:dhSph. Although blood S1P:dhS1P was decreased in

KO compared to WT, it was not significant. Neither of these ratios

in lymph were individually affected by ApoM genotype; however,

lymph Sph:dhSph and S1P:Sph were significantly increased in Tg

compared to WT (Figure 4C).
FIGURE 3

Concentrations of blood and lymph sphingolipid classes in wild-type (WT), Apom-/- (KO), and APOM transgenic (Tg) animals. (A) Combined
concentrations (mM) of all sphingolipid species detected in blood (open bars) and lymph (hashed bars) of WT (black), KO (blue), and Tg (green)
animals. (B) Concentrations (µM) of individual sphingolipid classes in blood. (C) Concentrations (µM) of individual sphingolipid classes in lymph. Bars
represent means ± SD and circles represent values from separate pooled samples. aOHCer, alpha-hydroxyceramide; Cer, ceramide; C1P, ceramide
1-phosphate; DAG, diacylglycerol; dhCer, dihydroceramide; dhSM, dihydrosphingomyelin; SM, sphingomyelin; SB, sphingoid bases.
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Greater SPL species diversity in lymph
versus blood

To create a full sphingolipidomics analysis comparing blood

versus lymph lipid species and their concentrations, we next

determined concentrations of individual Cer, dhCer, aOHCer,

C1P, DAG, SM, and dhSM in blood and lymph of WT mice

(Figure 5, Supplementary Tables 3–9). Similar to results from

humans, C22:0, C24:0, and C24:1 species had the greatest

contribution to blood Cer (Figure 5A, Supplementary Table 3). In

addition to these species, C22:1 and particularly C16:0 Cer were also

at high concentrations in lymph with C16:0 at micromolar levels.

The majority of blood dhCer (Figure 5B, Supplementary Table 4)

was C24:1, whereas long chain and very long chain (>20 carbons)

dhCer were present in lymph at high nanomolar to low micromolar

concentrations. Long chain aOHCer (Figure 5C, Supplementary

Table 5) species C14 and C16 were present in blood, but C22:1 was

the most abundant at 162.13 nM. Surprisingly, all aOHCer species

assayed for were detected in lymph, ranging from 275.30 nM
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(C26:1) to 8.753 µM (C16:0). C1P (Figure 5D, Supplementary

Table 6) in blood was primarily restricted to long chain species

C16 and C18. Lymph contained primarily C16 and C18 C1P, but

also moderate concentrations of C14 (250.96 nM), C26 (423.07

nM), and C26:1 (248.3 nM) C1P. Blood DAG (Figure 5E,

Supplementary Table 7) consisted primarily of DAG species with

C16 in the sn-1 position (di-C16, C16/18, C16/18:1), which were

also the most abundant species in lymph. Except for C16:1/24:1,

most DAG species targeted were detected in lymph, and half were at

micromolar concentrations. Overall, compared to WT blood, WT

lymph had a greater variety of high-abundance Cer, dhCer,

aOHCer, C1P, and DAG.

While many of the lipid species targeted were not found in

blood but were present in lymph, SM showed the opposite trend

(Figure 5F, Supplementary Table 8). SM species of C14 through

C24:1 were all found at medium to high nanomolar concentrations

in blood, with C24:1 and C16 being the most abundant. At less than

one-fifth the concentration in blood, C16 was also the most

abundant SM species in lymph. Although C20:1 SM was detected
FIGURE 4

Quantification of blood and lymph sphingoid bases in wild-type (WT), Apom-/- (KO), and APOM transgenic (Tg) mice. (A) Concentrations (nM) of S1P,
dhS1P, Sph, and dhSph in blood (open bars) and lymph (hashed bars) of WT (black), KO (blue), and Tg (green) animals. (B) Ratios of sphingoid bases
in blood of WT, KO, and Tg animals. (C) Ratios of sphingoid bases in lymph of WT, KO, and Tg animals. Bars represent means ± SD and circles
represent values from separate pooled samples. dhSph, dihydrosphingosine; dhS1P, dihydrosphingosine 1-phosphate; Sph, sphingosine; S1P,
sphingosine 1-phosphate. (a): value is from a sample whose signal was one to two times that of the matrix blank; nd: at least one value used to
compute the ratio is from a sample whose signal was below the detection limit and thus the ratio is undefined.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1572959
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Blaho and Minyard 10.3389/fimmu.2025.1572959
in blood, it was not found in lymph and the 26 carbon SM species

were below the detection limit in both blood and lymph. The dhSM

(Figure 5G, Supplementary Table 9) were the only SPL family with

the majority of species found in both blood and lymph at

similar concentrations.
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ApoM expression alters SPL levels in both
blood and lymph

Having established baseline WT concentrations for SPL species

in blood and lymph, the impact of ApoM knockout or
FIGURE 5

Concentrations of individual sphingolipid species in blood and lymph of wild-type (WT) mice. Concentrations (nM) of individual sphingolipid species were
determined in blood (open bars) and lymph (hashed bars) of WT mice and are shown grouped according to sphingolipid class: (A) Cer (ceramides); (B)
dhCer (dihydroceramides); (C) aOHCer (a-hydroxyceramides); (D) C1P (ceramide 1-phosphates); (E) DAG (diacylglycerols); (F) SM (sphingomyelins); (G)
dhSM (dihydrosphingomyelins). Bars represent means ± SD and circles represent values from separate pooled samples. (a) value is from a sample whose
signal was one to two times that of the matrix blank; (b) value is from a sample whose signal was below that of the matrix blank.
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overexpression on these species was determined. In KO blood, no

Cer were altered, and only a single Cer, C24:1 Cer, was significantly

affected by Tg expression (Figure 6A). dhCer was the only SPL

family assayed that was not significantly affected in blood by altered

ApoM expression (Figure 6B). aOHCer C22:1, already the highest

concentration blood aOHCer, was significantly further increased in

both KO and Tg blood compared to WT (Figure 6C). Similar to

precursor molecule Cer, blood concentrations of C1P species

(Figure 6D) were mostly unaffected, with the exception of

increased C16 C1P in KO blood. A single DAG, di-C16

(Figure 6E), was significantly changed in Tg blood with no

changes in KO. SM and dhSM (Figures 6F, G, respectively) were

unique as the only SPL families with species significantly decreased

in blood as a result of altered ApoM expression and also had the

most species affected. While ApoM KO did not affect blood SM

concentrations, C22, C24, and C24:1 SM were significantly

decreased in Tg compared to WT blood. C22:1 and C24:1 dhSM

were significantly decreased in Tg as well as KO blood. With the

exception of SM C22 and C24, the blood SPL species significantly

changed as a result of ApoM expression were the most abundant

species in their respective families.

We next compared concentrations of SPL species in lymph

from KO or Tg mice to concentrations in WT animals, where the

influence of ApoM expression was more evident (Figure 7). Again,

only a single Cer species was significantly affected by ApoM

expression, Cer C16, decreased in both KO and Tg lymph

(Figure 7A). Whereas blood dhCer had been unaffected, lymph

concentrations of multiple dhCer species were significantly

affected by ApoM expression: C20, C22, and C24 were

decreased in Tg, and C16 decreased in both KO and Tg lymph

(Figure 7B). The most affected by ApoM expression were lymph

aOHCer: nine of 12 species were significantly different from WT

(Figure 7C). All significantly different aOHCer species in Tg

lymph (C14, C16, C18, C18:1, C20, C20:1, C22, C22:1, and C24)

were decreased compared to WT controls. aOHCer C18:1, C20,

C22, and C24 were also significantly decreased in KO. However,

the two most abundant aOHCer species in WT lymph, C16 and

C22:1, were significantly increased in lymph from KO mice (p <

0.0001 and p = 0.0001, respectively). Although lymph C1P

concentrations were higher than those in blood, there was also

greater variability within KO and Tg samples, and no significant

differences from WT lymph C1P were detected (Figure 7D). As in

blood, lymph DAG di-C16 was significantly affected in Tg

animals, but decreased rather than increased compared to WT.

Tg lymph also had significant decreases in DAG species C14/16,

C14/18, C16/18, C16/18:1, and C18/18:2 (Figure 7E). No

differences were seen in KO lymph DAG species. SM C16 was

the sole lymph SM species affected and was decreased in KO

compared to WT (Figure 7F). Lastly, KO lymph had significantly

decreased concentrations of dhSM C16, C22:1, and C24:1, whereas

C24:1 was significantly increased in lymph from Tg animals

(Figure 7G). Overall, more than twice as many SPL and DAG

species were significantly affected in the lymph versus blood by

either KO or Tg expression of ApoM (9 blood species versus 24

lymph species).
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Concentration variability within genotypes or between tissues can

be observed in Figure 8, a heat map summary of the data shown in

Figures 4-7.When examined in this manner, it is more apparent when

some species show higher variability whereas others are very similar

(e.g., blood DAG C16:1/20 versus blood Sph species, respectively).
Molar ratios of individual SPL species in WT
blood:lymph

Although lymph plasma originates from multiple sites in the

body, the base of lymph is primarily derived from blood plasma

(15). To investigate how the two pools might influence each other,

we next determined the blood:lymph molar ratios of individual SPL

(Figure 9, Supplementary Tables 10–17). Our initial targets were the

SB: S1P, dhS1P, Sph, and dhSph (Figure 9A, Supplementary

Table 10). While S1P was ten times higher in WT blood versus

lymph, the unphosphorylated forms Sph and dhSph were found at

approximately equal concentrations in blood and lymph. The

decrease in KO blood S1P coupled with unchanged lymph S1P

concentrations dramatically decreased the blood:lymph S1P ratio;

however, ratios of Sph and dhSph were not affected. The low molar

ratios of Cer (Figure 9B, Supplementary Table 11) and dhCer

(Figure 9C, Supplementary Table 12) species emphasize their

much higher concentrations in lymph versus blood. Only Cer

C24:1 and dhCer C24:1 had blood:lymph greater than 1.0, and

were also the only significantly affected Cer or dhCer species, both

significantly increased in Tg animals.

The low blood:lymph ratio of all aOHCers species reflects

their micromolar contributions to total lymph SPL versus low

nanomolar concentrations in blood (Figure 9D, Supplementary

Table 13). In Tg animals, significant increases in blood and

decreases in lymph aOHCer C22:1 resulted in a significant

change in the blood:lymph of this species. Significant increases

in KO blood:lymph aOHCer C18 and C22 were driven by

increases in blood and decreases in lymph concentrations.

Blood:lymph aOHCer C18, C24:1, and C26:1 were significantly

increased in Tg samples. KO also had increased blood:lymph

C26:1 but decreased C24:1. All C1P species were higher in lymph

than in blood and had ratios less than one largely unaffected by

ApoM KO or Tg expression (Figure 9E, Supplementary Table 14).

Although their concentrations in either blood or lymph were

unchanged in KO and Tg samples, blood:lymph ratios of low

abundance DAG C18/20:4 (KO) and C18:1/24:1 (KO and Tg)

were significantly different from WT (Figure 9F, Supplementary

Table 15). In contrast to the other SPL species besides S1P, most of

the detected SM species (Figure 9G, Supplementary Table 16) and

a third of the dhSM species (Figure 9H, Supplementary Table 17)

were higher in blood than lymph. SM C22:1 blood:lymph was

decreased in Tg without significant changes in either blood or

lymph concentrations. Similarly, blood:lymph dhSM changes in

C24 (KO and Tg) and C26:1 (Tg) were not the result of changes in

the individual compartments, whereas the decrease in Tg blood:

lymph dhSM C24:1 was the result of decreased blood and

increased lymph concentrations.
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FIGURE 6

Effect of ApoM expression on individual sphingolipid species concentrations in blood from wild-type (WT), Apom-/- (KO), and APOM transgenic (Tg)
mice. Concentrations (nM) of individual sphingolipid species were determined in blood of WT (black), KO (blue), and Tg (green) animals and are
shown grouped according to sphingolipid class: (A) Cer (ceramides); (B) dhCer (dihydroceramides); (C) aOHCer (a-hydroxyceramides); (D) C1P
(ceramide 1-phosphate); (E) DAG (diacylglycerols); (F) SM (sphingomyelins); (G) dhSM (dihydrosphingomyelins). Bars represent means ± SD and
circles represent values from separate pooled samples. Statistical differences detected between WT versus KO or Tg samples are indicated with the
calculated p value. (a) value is from a sample whose signal was one to two times that of the matrix blank; (b) value is from a sample whose signal
was below that of the matrix blank. (c) value is from a sample whose signal was below the detection limit.
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FIGURE 7

Effect of ApoM expression on individual sphingolipid species concentrations in lymph from wild-type (WT), Apom-/- (KO), and APOM transgenic (Tg)
mice. Concentrations (nM) of individual sphingolipid species were determined in lymph of WT (black), KO (blue), and Tg (green) animals and are
shown grouped according to sphingolipid class: (A) Cer (ceramides); (B) dhCer (dihydroceramides); (C) aOHCer (a-hydroxyceramides); (D) C1P
(ceramide 1-phosphate); (E) DAG (diacylglycerols); (F) SM (sphingomyelins); (G) dhSM (dihydrosphingomyelins). Bars represent means ± SD and
circles represent values from separate pooled samples. Statistical differences detected between WT versus KO or Tg samples are indicated with the
calculated p value. (a) value is from a sample whose signal was one to two times that of the matrix blank; (b) value is from a sample whose signal
was below that of the matrix blank. (c) value is from a sample whose signal was below the detection limit.
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SPL chain length and saturation in blood
and lymph

Carbon chain saturation and acyl chain length can dramatically

affect SPL biological activities through altered binding and signaling

properties or inducing biophysical changes in cell membranes (46, 47).

Such differences have drawn interest as potential biomarkers in human

diseases, leading us to further analyze our sphingolipidomics data on

the basis of acyl chain saturation (saturated versus unsaturated) and

carbon number (LC, 12-18 carbons, versus VLC, ≥ 20 carbons), shown

in Figure 10 (25, 48–52). Lymph concentrations of saturated Cer,

dhCer, aOHCer, C1P, and DAG were 10-20 times concentrations in

blood (Figures 10A–E). Curiously, total unsaturated Cer, dhCer, and

C1P concentrations were similar between blood and lymph, whereas

unsaturated aOHCer and DAG concentrations were similar to their

saturated species and more than 10 times greater in lymph than blood.

SM species were unique in that both saturated and unsaturated SM

were much higher in blood than lymph (Figure 10F). dhSM species
Frontiers in Immunology 13
were also unique, with roughly equivalent concentrations of saturated

and unsaturated species in blood compared to lymph (Figure 10G).

With regard to acyl chain length, most of the total LC

concentrations mirrored the blood versus lymph patterns seen

within their respective total saturated concentrations, while total

VLC mirrored that of unsaturated species. For instance, total LC

Cer, aOHCer, C1P, and DAG were much higher in lymph than

blood, whereas LC SM were higher in blood than lymph and LC

dhSM species in blood and lymph were similar. While total

unsaturated dhCer species were similar between blood and

lymph, total VLC dhCer lymph concentrat ions were

approximately 10 times their concentration in blood, but total

unsaturated dhCer were similar between blood and lymph.

Significant decreases in lymph saturated SPL were seen between

Tg and WT for four of the seven SPL groups: Cer, dhCer, aOHCer,

and DAG. C1P in blood was the only group of saturated lipids that

differed significantly between KO and WT animals; however,

unsaturated aOHCer and dhSM were significantly changed in
FIGURE 8

Heat map comparing concentrations of circulating lipid species in wild-type (WT), Apom-/- (KO), and APOM transgenic (Tg) mice. Concentration
values shown in Figure 6 (blood) and Figure 7 (lymph) are normalized to WT values by dividing the concentration of each individual sample by the
WT mean, followed by a log 10 transform. aOHCer, alpha-hydroxyceramide; Cer, ceramide; C1P, ceramide 1-phosphate; DAG, diacylglycerol;
dhCer, dihydroceramide; dhSM, dihydrosphingomyelin; dhSph, dihydrosphingosine; dhS1P, dihydrosphingosine 1-phosphate; SB, sphingoid base;
SM, sphingomyelin.
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FIGURE 9

Effect of ApoM expression on blood:lymph ratios of individual sphingolipid species in wild-type (WT), Apom-/- (KO), and APOM transgenic mice (Tg),
grouped according to sphingolipid class. Ratios of individual sphingolipid species were determined in samples from WT (black), KO (blue), and Tg
(green) animals and are shown grouped according to sphingolipid class: (A) SB (sphingoid bases); (B) Cer (ceramides); (C) dhCer (dihydroceramides);
(D) aOHCer (a-hydroxyceramides); (E) C1P (ceramide 1-phosphates); (F) DAG (diacylglycerols); (G) SM (sphingomyelins); (H) dhSM
(dihydrosphingomyelins). Bars represent means ± SD and circles represent values from separate pooled samples. Statistical differences detected
between WT versus KO or Tg samples are indicated with the calculated p value. (a) at least one value used to compute the ratio is from a sample
whose signal was one to two times that of the matrix blank. (b) at least one value used to compute the ratio is from a sample whose signal was
below that of the matrix blank. (c) at least one value used to compute the ratio is from a sample whose signal was below the detection limit and thus
the ratio is undefined.
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FIGURE 10

Effect of ApoM expression on carbon chain saturation and length. Total concentrations (nM) of saturated (sat), unsaturated (unsat), long chain (LC; ≤
18 carbons), and very long chain (VLC; ≥ 20 carbons) sphingolipids were determined in blood (open bars) and lymph (hashed bars) of wild-type (WT),
Apom-/- (KO), and APOM transgenic (Tg) mice. Results are shown grouped according to sphingolipid class: (A) Cer (ceramides); (B) dhCer
(dihydroceramides); (C) aOHCer (a-hydroxyceramides); (D) C1P (ceramide 1-phosphates); (E) DAG (diacylglycerols); (F) SM (sphingomyelins); (G)
dhSM (dihydrosphingomyelins). Bars represent means ± SD and circles represent values from separate pooled samples. Statistical differences
detected between WT versus KO or Tg values are indicated with the calculated p value.
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KO blood. Unsaturated dhSM was also significantly decreased in

KO lymph and Tg blood. These significant decreases in KO and Tg

blood and lymph were mirrored in VLC dhSM. When the influence

of ApoM genotype on chain length was considered, KO resulted in

significant increases in blood LC C1P and VLC aOHCer and

significant decreases in VLC lymph aOHCer. Tg expression

resulted in significant decreases only, regardless of tissue or chain

length. LC and VLC SM were both decreased in Tg blood, as were

VLC dhSM species. Lymph LC Cer, aOHCer, and DAG and VLC

dhCer were significantly decreased in Tg versus WT samples.

Overall, a pattern emerged upon sorting SPL groups by chain

length and saturation: when total saturated species were affected

by genotype, total LC species were also significantly affected or

trended in the same direction within the same tissue. Similarly, if

unsaturated species were significantly different, the total VLC

species were affected or displayed a similar trend.
Discussion

There is an increasing appreciation of the importance of

circulating lipids beyond HDL/low-density lipoprotein (LDL) as

indicators of health and disease status. Members of the SPL family,

while structurally simple relative to proteins, are powerful signaling

molecules and critical to cellular infrastructure. Sphingolipidomics of

blood plasma and serum have uncovered potential biomarkers of

early-stage disease and novel drivers of pathology in numerous

diseases including stroke, amyotrophic lateral sclerosis (ALS),

Alzheimer’s disease, SLE, non-alcoholic fatty liver disease (NAFLD),

and sepsis (38, 48, 53–61). Recently, blood SPL concentrations have

been correlated with COVID-19 severity in humans and animal

models: blood concentrations of S1P, total HDL, ApoM, and the

ratio of ApoM- versus albumin-bound S1P may be some of the most

reliable predictors of COVID-19 morbidity and mortality (13, 62, 63).

By comparison, the lymph is often neglected and lymph

“omics” studies are much less common than those of blood

despite its crucial roles in inflammation, immunity, and

maintenance of homeostasis (15, 64–66). Difficult sample

collection, particularly from animal models, is likely the greatest

contributor to the lack of lymph characterization. The overall

disinterest in lymph may also stem from the misconception that

it is merely filtered blood plasma components rather than a unique

mixture consisting of metabolic products drained from each organ

as well as immune cells, tumor extracellular vesicles, intracellular

components, and soluble signaling mediators (67–69). Reports of

lymph lipid composition are typically focused on free cholesterol,

cholesterol esters, or phospholipids, with a few notable exceptions:

it was recently reported that high lymph oleic acid created an

antioxidative environment compared to blood plasma and

protected metastasizing melanoma cells from ferroptosis (70–72).

Regulation of lymphocyte trafficking by S1P receptors and searches

for tissue-specific S1P transporters have produced measurements of

lymph S1P and Sph; however, in a recently published

sphingolipidome reference map, analyses of blood plasma, but

not lymph, were included (37, 73).
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Beyond S1P and TAG concentrations, there remains a persistent

paucity of data regarding lymph lipid composition. This incomplete

characterization of the two fluids transported by interconnected

circulatory systems led us to determine concentrations of SPL in

blood plasma and corresponding concentrations in lymph of WT

mice. These WT values were then used as a baseline for comparison of

SPL detected in blood and lymph of mice lacking expression of the S1P

chaperone ApoM (KO) or expressing a human APOM transgene (Tg)

to determine the possible influence of ApoM-bound S1P on the

circulating sphingolipidome. Another reason for this endeavor was

our previously reported observation that ApoM KO affected blood S1P

concentrations but had no effect on lymph S1P (7), which we

confirmed in the studies reported herein (Figure 4). Although there

was a trend of increased blood Sph in KO and decreased blood Sph in

Tg, inversely correlating to blood S1P concentrations, it is still unclear

why S1P does not change in KO or Tg lymph as it does in blood. Blood

S1P is produced and secreted primarily from erythrocytes and activated

platelets via the transporter Mfsd2b, whereas the majority of lymph

S1P is produced by lymphatic endothelium and secreted through

SPNS2 (74, 75). In the absence of both ApoM and albumin another

apolipoprotein, ApoA4, was found to be the most likely blood S1P

chaperone; however, lymph was not examined (2). Since ApoM does

not appear to be an S1P chaperone in lymph, future studies must

characterize the role of ApoM in lymph and determine whether

albumin is the sole carrier of lymph S1P or a yet-to-be-determined

protein. That KO or Tg expression of ApoM led to more than twice as

many significant differences in lymph than in blood (33 versus 14 SPL

species significantly different in KO or Tg compared to WT) further

emphasizes the need to include lymph in efforts to deploy

sphingolipidomics for characterization of pathologies or biomarker

identification. This also implies that the changes are not due to intrinsic

effects on circulating blood cell utilization of SPL but are more likely to

have resulted from altered SPL metabolism by lymphatic versus

vascular endothelium, although detailed studies of ApoM effects on

SPL metabolism in specific tissues are required.

In addition to S1P and Sph, our characterization of WT blood

and lymph SPL included species conventionally considered the

direct precursor molecules of S1P (dhSph, dhCer, Cer, and SM) as

well as lipids with the potential to alter flux along the biosynthetic

pathway as products and/or precursors, and structurally similar

lipids known to bind to S1P chaperones or activate S1P receptors

(Figure 1; dhS1P, dhSM, aOHCer, and C1P). The dramatic impact

of ApoM expression on immune development, specifically

lymphocyte progenitor proliferation, and cardiovascular biology

led us to anticipate more significant differences in measurements

from KO or Tg animals. Tight regulation of SPL metabolic flux

combined with constitutive deletion or overexpression of ApoM

likely resulted in activation of compensatory mechanisms to

maintain homeostasis. A model of inducible ApoM knockout or

overexpression could be capable of triggering greater perturbations

in the SPL metabolic pathways.

The most surprising data obtained from our analyses were the

presence of the aOHCer species in blood plasma and their high

abundance in lymph plasma. Hydroxylated Cer, such as aOHCer,

are considered uncommon and high concentrations are restricted to
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specific tissues, such as brain, skin, gut, and kidney (76–78). In some

cell types, aOHCer and other aOH SPL may regulate cell cycle and

apoptotic responses, since lower concentrations of aOHCer are

required for induction of apoptosis in vitro compared to non-

hydroxylated Cer (79, 80). The canonical pathway for aOHCer

synthesis is fatty acid alpha-hydroxylase (FA2H) generation of an

a-hydroxylated fatty acid from which the aOH fatty acyl-CoA is

produced, but studies utilizing knockout animals and samples from

patients with FA2H mutations have demonstrated that FA2H is

required for aOH SPL synthesis in some organs but not others (31,

81). aOHCer serve as precursors for the aOH glycosphingolipids

required for myelin sheath maintenance and mutations in FA2H

have been identified in patients with neurological disease and

correlate with clinical signs of demyelination (31, 82). However,

while fibroblasts from patients with FA2H mutations produced less

than half the aOH-SM of control fibroblasts, only a single aOH-SM

species was decreased in patient erythrocytes and lymphocyte

aOH-SM production was indistinguishable regardless of FA2H

mutational status, indicating there must be another enzyme

responsible for SPL alpha-hydroxylation in blood cells (83).

Additionally, whereas upregulation of FA2H was necessary for

differentiation of human keratinocytes in vitro, studies of Fa2h

LacZ reporter mice showed that sebocytes were the primary

expressors of Fa2h and not keratinocytes, and total aOH SPL

were unchanged in the skin of Fa2h knockout mice (84, 85).

While data indicate that FA2H cannot be the sole generator of

aOHCer precursor molecules, the identities of the other a-
hydroxylating enzymes involved in aOH SPL synthesis are

unknown, as potential candidates are believed to have substrate

restrictions and would require additional precursor and/or product

trafficking steps due to their subcellular localization, e.g. phytanoyl-

CoA 2-hydroxylase expression is restricted to peroxisomes and

metabolizes branched acyl CoAs; stearoyl-CoA desaturase-1

introduces cis-bonds at the C9 rather than the C2 position (86,

87). This class of SPL was also the most affected by ApoMKO or Tg,

particularly in the lymph. To our knowledge, this is the first report

of aOHCer detection in blood or lymph. Thus, the source of

aOHCer in either compartment and the import of circulating

aOHCer concentration dynamics are yet to be explored.

There are some limitations to be considered for this report.

Although SMs are the most abundant SPL in HDL, SM

concentrations decrease as HDL particle density increases,

whereas S1P concentrations are higher in smaller (usually denser)

HDL particles (88). DAG can be produced as a direct consequence

of SM synthesis from Cer and can subsequently be acylated to form

TAG, but circulating DAGs and TAGs are likely primarily obtained

from dietary sources (89, 90). Circulating TAGs, particularly in

lymph, largely reflect dietary intake and their concentrations in

unfasted animals vary widely (91, 92). While TAG metabolism and

cholesterol efflux pathways have been linked to ApoM blood

concentrations (43, 44, 93), a primary goal of this study was to

provide the first characterization and comparison of SPL in blood
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versus lymph plasma. Thus, since TAG was another step removed

from SPL metabolism and measurements are confounded by diet

and fasting, we did not include their measurement in this study.

Other SPL and lipids that we did not address in this study were

the glycosphingolipids (GSL) or glycerolipids. GSL are formed from

Cer or aOHCer by covalent linkage of one or more sugar moieties to

the Cer backbone, beginning with either glucose or galactose (94, 95).

GSL are the most diverse group of glycolipids and serve to modify cell

and organelle membranes, interacting with cholesterol,

phospholipids, glycerophospholipids, and other SPL to alter

membrane density and form membrane domains for signaling

platforms (94). Defects in GSL synthesis can result in rare genetic

diseases, such as those seen in patients mentioned above unable to

produce aOHGSL, leading to ataxia andmyelin degradation (82, 83).

Conversely, lysosomal storage diseases such as Tay-Sachs, Sandhoff,

Krabbe, and Fabry disease result from defective GSL catabolism and

may also affect the integumentary, nervous, renal, and digestive

systems (29, 95, 96). Alterations in the metabolism of Cer to SM

can also result in the accumulation of GSL. Knockout of the genes for

SMS1 or SMS2 illustrated their differential contribution to the

balance of circulating SPL concentrations: plasma from Sms1-/-

(which associates with glucosylceramide synthase (Ugcg)) animals

had significantly increased concentrations of GSL but unchanged Cer,

whereas Sms2-/- animals had significantly increased Cer and wildtype

levels of GSL (97). Future studies of animals with altered ApoM

expression should determine if the changes we identified in blood or

particularly in lymph result in altered GSL, thus contributing to the

previously reported autoimmune, vascular, or metabolic phenotypes

(7, 8, 44).

Lastly, collecting mouse lymph is not trivial: upon finding the

cisterna chyli, if lymph is collected uncontaminated by blood, the

average volume obtained is less than 2 µl. Lipidomic technologies are

not yet capable of interrogating such a small volume, necessitating

pooling of samples. While the low N is not optimal, we believe these

results provide increased awareness of the true complexity of lymph

and blood plasmas and a starting point for researchers in diverse

fields to investigate previously overlooked SPL species.
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