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Outbreaks of emerging and re-emerging infectious diseases have consistently

threatened human health. Since vaccinations are a powerful tool for preventing

infectious illnesses, developing new vaccines is essential. Compared to

traditional injectable vaccines, mucosal vaccines have the potential to offer

more effective immune protection at mucosal sites. Mucosal immunization

strategies include sublingual, oral, intranasal, genital, and rectal routes, in

which intranasal immunization being the most efficient and applicable method

for mucosal vaccine delivery. Nevertheless, low antigen availability and weak

immunogenicity making it challenging to elicit a potent immune response when

administered intranasally, necessitating the incorporation of immune delivery

systems. However, there is a notable absence of reviews that summarize the

intranasal vaccine delivery system against infectious disease. Therefore, this

review summarizes the recent advances in intranasal delivery systems,

classified by physical and chemical properties, and proposes potential

improvement strategies for clinical translation. This review elucidates the

potential and current status of intranasal delivery systems, while also serving as

a reference point for the future development of intranasal vaccines.
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1 Introduction

Infectious diseases including influenza, acquired immune

deficiency syndrome (AIDS), measles, and coronavirus disease

2019 (COVID-19) pose persistent threats to global public health,

necessitating urgent advancements in prophylactic strategies (1).

While medical advancements over the past two decades have

reduced mortality through improved sanitation and healthcare

infrastructure (2), the emergence of novel pathogens and

antimicrobial resistance underscores the need for innovative

immunization approaches. As the cornerstone of infectious

disease prevention, vaccines function by priming innate immunity

to activate antigen-specific adaptive responses through antibody

production and T-cell mediation—a dual mechanism that curbs

pathogen transmission while protecting vulnerable populations (3).

Current vaccine delivery modalities can be broadly categorized

into systemic injection and mucosal immunization. In contrast to

traditional injectable vaccines that primarily elicit systemic

immunity, mucosal vaccines offer dual protective advantages:

1) induction of both systemic and mucosal immune responses,

2) generation of secretory IgA and tissue-resident memory T cells at

portal-of-entry mucosal sites, and 3) needle-free administration

that enhances safety and compliance (4, 5). Given that >90% of

pathogens invade through mucosal surfaces, mucosal immunization

serves as the primary immunological barrier against infection

establishment (6).

Among mucosal delivery routes—including oral, buccal,

sublingual, intranasal, and genital approaches—intranasal

immunization stands out as a particularly promising candidate.

This preference stems from the nasal cavity’s unique immunological

architecture: 1) dense networks of microfold (M) cells and antigen-

presenting cells (APCs) within nasal-associated lymphoid tissue

(NALT), 2) vascularized subepithelial layers facilitating rapid

systemic absorption, and 3) interconnected mucosal immunity

enabling cross-protection at distal sites such as pulmonary and

intestinal mucosa (7). Notably, currently approved intranasal

vaccines predominantly target influenza, including FluMist (US)

(8) and Nasovac-S (India) (9). The COVID-19 pandemic further

accelerated clinical development of intranasal SARS-CoV-2

vaccines (10), with emergency approvals granted for formulations

acting as primary immunogens or heterologous boosters to enhance

mucosal immunity and tissue-resident memory T cells

(11) (Table 1).

The clinical advantages of intranasal vaccines are multifaceted:

(i) Non-invasive administration: Intranasal vaccines are an
Frontiers in Immunology 02
excellent non-invasive vaccination method (7, 12). (ii) Induction

of mucosal immunity: In addition to systemic immune response,

intranasal vaccines can act on the extensive respiratory mucosa,

eliciting mucosal immunity and providing more comprehensive

and effective protection for the human body (12). (iii) Improved

pediatric compliance: compared to the pain caused by

intramuscular injections, nasal drops offer a more comfortable

vaccination experience for children and are also suitable for other

individuals with needle or pain phobias (13, 14). (iv) Operational

and economic benefits: intranasal vaccines offer greater practicality

in terms of cost and ease of administration (15). While transient

adverse effects (e.g., rhinorrhea, low-grade fever) occur in some

recipients, these typically resolve without intervention (16).

The nasal cavity is a complex anatomical structure with

superior, inferior, medial, and lateral walls. The two nasal

passages have a combined surface area of about 160 cm2 (96 m2

if nasal epithelial microvilli are included), and a combined volume

of about 15 mL. The nasal cavity can be divided into three main

regions: the nasal vestibule, the respiratory tract, and the olfactory

region. The nasal septum, which separates the two nasal passages,

forms the medial wall of the nasal cavity. The superior, middle, and

inferior turbinates, which delineate the upper, middle, and lower

nasal passages respectively, constitute the lateral wall of the nasal

cavity (17). The human Waldeyer’s ring, comprising the adenoid,

lingual tonsil, two palatine tonsils, and two tubal tonsils, is believed

to be analogous to the NALT (nasal-associated lymphoid tissue)

observed in rodents (8). The NALT can be defined as an organized

mucosal-associated lymphoid tissues within the nasal mucosa,

consisting of lymphoid tissue, B cells, T cells, antigen-presenting

cells (APCs) and microfold (M) cells. M cells are specifically for

antigen uptake (9). NALT plays a critical role in antigen recognition

and immune activation following intranasal immunization, serving

as a key site for immune induction within the nasal

mucosa (Figure 1).

Low antigen availability and weak immunogenicity, combined

with antigen clearance by nasal cilia, the mucous layer barrier, and

tight junctions between epithelial cells, significantly reduce vaccine

uptake. This hinders the elicitation of a robust immune response,

thereby posing challenges for nasal administration (18). The nasal

drug delivery system (NDDS) is a needle-free, non-invasive, and

efficient method for delivering drugs, vaccines, and other

therapeutic agents into the human body via the nasal route which

include nanoparticles (Tables 2, 3), nanoemulsions, and some

microbial preparations (Table 4) (12, 19). Among them,

nanoparticles are the most widely used, which include
TABLE 1 Currently approved intranasal vaccines.

Disease Vaccine Type Country Links

influenza FluMist Live attenuated vaccine MedImmune, LLC https://www.fda.gov/media/180697/download?attachment

FluMist Quadrivalent Live attenuated vaccine MedImmune, LLC https://www.fda.gov/media/160349/download?attachment

Nasovac-S4 Live attenuated vaccine Serum Institute of India https://www.seruminstitute.com/product_ind_NASOVAC-S4.php

COVID-19 BBV154 adenovirus vector vaccine Bharat Biotech https://www.bharatbiotech.com/intranasal-vaccine.html
The data is derived from FDA, Serum Institute of India, Bharat Biotech provided in the websites.
frontiersin.org
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polysaccharide-based particles, poly lactide-co-glycolide (PLGA),

gold nanoparticles, nanogels, lipopeptides, liposomes and others

(19, 20). Through boosting antigen penetration, shielding the

antigen from degradation, facilitating sustained antigen release,

improving nasal retention time, and recruiting/activating APCs,

the nasal delivery system can significantly increase the antigen

availability and immunogenicity (18). The NDDS offers the

advantage of boosting vaccination efficiency against pathogens

through the induction of both systemic and mucosal immune

responses at respiratory and distal mucosal sites (21).

Currently, the majority of clinical research on intranasal

vaccines focuses on respiratory diseases such as influenza, RSV

(Respiratory Syncytial Virus), COVID-19, and whooping cough

(Table 5). Among these, some vaccines incorporate delivery systems

such as nanoemulsions, liposomes, VLPs (Virus-Like Particles), and

chitosan to enhance the efficacy of antigens. In these studies,

influenza vaccines are the most extensively researched and widely

applied intranasal vaccines. The primary type is the live attenuated

vaccine, which holds significant research value and market

potential, and has also spurred the development of other live

attenuated vaccines.

In this review, we focus on NDDS as advanced carriers for

optimizing antigen transport and mucosal retention. While the

primary emphasis lies in elucidating mechanistic strategies for

targeted delivery, we also examine the combination role of adjuvants.

To avoid ambiguity, adjuvants (e.g., TLR agonists, cyclic dinucleotides)

is restricted to the components enhancing immune responses although

certain adjuvants (e.g., particulate carriers like alum or lipid-based
Frontiers in Immunology 03
nanoparticles) inherently possess dual functionalities as both

immunostimulants and delivery vehicles.
2 Nanoparticles types used in nasal
vaccines

2.1 Polysaccharide: biocompatible and
biodegradable polymers for delivery
systems

Polysaccharides represent an exciting class of biomaterials for

intranasal vaccine delivery, offering three critical advantages: excellent

biocompatibility, predictable biodegradability, and potent

immunomodulatory properties (9, 22). The most promising

polysaccharide platforms include chitosan, starch, maltodextrin,

alginate, etc (Figure 2). These innovative materials effectively solve

three major challenges in intranasal vaccination: overcoming

mucociliary clearance, enhancing epithelial barrier penetration, and

providing sustained antigen release (18), all while maintaining superior

safety and stability profiles (8). Ongoing research continues to unlock

their full potential for developing next-generation mucosal vaccines.
2.1.1 Chitosan
Chitosan is a naturally occurring, biocompatible linear

polysaccharide composed of repeating units of d-glucosamine and

N-acetyl-d-glucosamine. It is the product of N-deacetylation of
frontiersin.o
FIGURE 1

Anatomy of and immune induction in nasal-associated lymphoid tissues in rodents. (A-C) Anatomical location of NALT: The sagittal anatomy of
mouse nasal tissues can be divided into two distinct regions—the respiratory and olfactory parts—based on the structure and function of the mucosa
(A). A specialized structure in the nasal tissue, the nasal mucosa-associated lymphoid tissue (NALT), consists of two parallel bell-shaped formations
located above the hard palate (B, C). Immune response in NALT: The immune response in NALT progresses through three main stages: antigen
uptake and presentation, immune cell activation, and the subsequent immune response. Antigens entering the nasal cavity are first internalized by
microfold cells (M cells), which then transport them into NALT, where dendritic cells further process and present the antigens. In addition, some
dendritic cells are capable of crossing the epithelial barrier by extending their dendrites, allowing them to directly capture antigens. Antigen-loaded
dendritic cells activate both CD4+ and CD8+ T cells upon antigen presentation. Activated CD4+ T cells further stimulate B cells via CD40L/CD40
interaction, promoting their differentiation into plasma cells. These fully differentiated plasma cells subsequently initiate an immune response at the
effector site through the production of IgA and IgG antibodies (D). NT, nasoturbinate; MT, maxillary turbinate; ET, ethmoid turbinate; S, septum; HP,
hard palate.
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chitin, which is derived from the exoskeletons of crustaceans and

insects. Chitosan is a safe and biocompatible cationic polymer that

can be degraded by a group of chitinases found in many organisms,

including humans (23). In addition to its safety and

biocompatibility, chitosan has been extensively researched for its

low toxicity, mucoadhesiveness, immunogenicity, and permeability.
Frontiers in Immunology 04
The U.S. Food and Drug Administration (FDA) has approved the

use of chitosan in foods and pharmaceuticals (24).

Nanoparticles (NPs) based on chitosan or chitosan derivatives,

ranging in size from 1 to 1000 nanometers have been utilized as

promising immune delivery systems, delivering vaccine antigens

through mucosal pathways such as the nasal routes. Chitosan
TABLE 2 Preclinical studies of intranasal vaccines using polysaccharides as an intranasal delivery system.

Type of
particle

Species Antigen Immunization parameters Key outcome Ref.

chitosan BALB/c mice SARS-CoV-2 S-RBD CS & O-HTCC/5mg of S-RBD/
immunotherapy in three doses with 14-
day intervals

↑of the humoral, mucosal and cellular
immune responses.
CS/S-RBD/O-HTCC with two antigens
could induced neutralizing antibodies
against both the ancestral and mutated
S-RBD

(25)

BALB/c mice recombinant H1N1
hemagglutinin protein

C-O-NP/20 mL(containing 1.5mg HA)/
immunotherapy in 2 doses on days 0
and 14

↑of the cellular immune responses
Stimulated proximal and distal mucosal
immune responses through antigen-
specific sIgA in both saliva and vaginal
lavage fluid

(30)

C57BL/6 mice HBsAg Chi-C48/80 NPs/15mL of vaccine
formulation (7.5µL per nostril)/
immunotherapy in 3 doses on Days 0, 7,
and 21

Induced humoral and mucosal antibodies
against HBV (anti-HBsAg IgA,
specific IgG)

(32)

BALB/c mice HBsAg GC NPs/immunotherapy in 2 doses on
Days 0 and 21

Elicited stronger humoral and mucosal
immune response and lower rate of
clearance from the nasal cavity compared
to chitosan NPs after nasal administration

(31)

Starch Balb/c mice Human serum
albumin (HSA)

HSA containing TS-PDMS-grafted MP/10
ul per dose/intranasally vaccinated on days
0, 7 and 14

Elevated anti-HSA serum IgG levels (36)

Pullulan Balb/c mice pneumococcal surface protein
A (PspA)

cationic cholesteryl group-bearing pullulan
nanogel with PspA/Once weekly for 3
consecutive weeks

Elevated anti-PspA serum IgG and
mucosal PspA-specific sIgA levels and
enhanced bacterial clearance from BALF
and the lung

(42)

cynomolgus
macaques

PspA cationic cholesteryl group-bearing pullulan
nanogel with PspA/25 ug per dose/nasally
immunized five times at 2-week intervals

PspA-specific bronchoalveolar lavage fluid
IgG and nasal wash IgA responses
exhibited higher levels

(41)

Maltodextrin CBA/J (H-
2k) mice

Toxoplasma gondii antigen
extract (TE)

Maltodextrin (MD)-loaded TE/three doses
intra-nasally at 2-week intervals of DGNP,
free TE, CT, CT/TE and DGNP/TE
(6mL/nostril)

Higher levels of total IgG, the mixed IgG1/
IgG2a response and a mixed Th1/Th17
response
Protective immune response: higher
reduction rate of TE cysts, reducing
parasite growth and protecting mice
against long-term infection

(50)

BALB/c and
DBA/2J mice

split Udorn virus antigens Maltodextrin (MD)-loaded split Udorn
virus
antigens/three times, 10 days apart of split
Udorn only, split Udorn/NPL, split
Udorn/CTA1-DD/NPL(5ml/nostril)

Increased intracellular antigen delivery and
specific humoral immune response
Decreased viral titers
Inhibited viral transmission

(51)

Alginate pigs Bee venom chitosan/alginate nanoparticles double
encapsulated 1mg/2mg of BV and
administered it one week before PRRSV
challenge and 2 weeks after the challenge

Showed significant increases in the
populations of Th cells and PRRSV-
specific IgG Ab levels. Viral loads in serum
and tissues with PRRSV
challenge decreased.

(54)
frontier
SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; S-RBD, spike receptor binding domain; CS, curdlan sulfate; O-HTCC, O-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan
chloride; C-O-NP, curdlan-chitosan conjugate nanoparticle; HA, hyaluronic acid; HBsAg, hepatitis B surface antigen; Chi-C48/80, compound 48/80 loaded chitosan; HBV, hepatitis B virus; IgA,
immunoglobulin A; IgG, immunoglobulin G; GC, glycol chitosan; HAS, human serum albumin; TS-PDMS-grafted MP, 3-(triethoxysilyl)-propyl-terminated polydimethylsiloxane-grafted
microparticles; PspA, pneumococcal surface protein A; BALF, bronchoalveolar lavage fluid; TE, total extract of Toxoplasma gondii antigens; MD, Maltodextrin; DGNP, Dendritic Gold
Nanoparticles; CT, cholera toxin; CTA1-DD, cholera toxin A1 subunit -dimer of the D-fragment of protein A from Staphylococcus aureus bacteria; NPL, nanoparticles lipid; BCV, Bee venom;
PRRSV, porcine reproductive and respiratory syndrome virus.
sin.org

https://doi.org/10.3389/fimmu.2025.1573037
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1573037
nanoparticulate systems are particularly successful as vaccine

delivery vehicles due to their positive charge, which can improve

antigen absorption and boost cellular uptake. Experiments have

revealed that positively charged chitosan nanoparticles tend to

adhere to negatively charged mucoproteins, reducing nasal

evacuation of the nanoparticles. Additionally, Chitosan and its

derivatives have the ability to open tight junctions between

epithelial cells, elicit immunological responses, and promote IFN-

I production, making them potentially effective immune delivery

systems (25–27).

In recent years, vaccines based on chitosan or its derivatives as

intranasal immune delivery systems have been extensively studied

and have been applied in the development of vaccines for infectious

disease. For instance, a lentogenic live-virus vaccine (strain LaSota)

against newcastle disease virus encapsulated chitosan nanoparticles

can elicit robust mucosal immune responses and show a high level

of safety in chickens (28).

Although chitosan has significant potential for application, it is

sensitive to pH: chitosan dissolves readily at lower pH levels but is

less soluble at higher pH levels. Since many proteins are unstable at

low pH levels, chitosan’s pH sensitivity may limit its use in antigen

delivery (29). Therefore, chitosan is typically modified, such as by

forming nanoparticles or allowing free amino and carboxyl

functional groups in chitosan through various chemical reactions,

including carboxylation, esterification, hydroxylation, and

acetylation, to make chitosan derivatives (24).
Frontiers in Immunology 05
Among different chitosan derivatives, quaternization,

particularly N-trimethyl chitosan (N-TMC), has received the

greatest interest. This is owing to its persistent cationic charge

and wide pH solubility range. Even at neutral pH, it exhibits strong

mucoadhesive and permeation-enhancing properties (26). Chen

et al. developed a nanoparticle delivery system, CS/O-HTCC,

using the chitosan derivative O-(2-hydroxy) propyl-3-trimethyl

ammonium chitosan chloride (O-HTCC) and the b-glucan
derivative, curdlan sulfate (CS). They created a nasal mucosal

protein subunit vaccine, CS/S-RBD/O-HTCC, using the SARS-

CoV-2 spike receptor binding domain (S-RBD) as the antigen,

and confirming its safety in vitro and in vivo. When CS/O-HTCC is

loaded with S-RBD mixed antigens (ancestral and omicron), it

provoked high levels of ancestral S-RBD specific IgG in serum, sIgA

from nasal lavage fluid and antigen-specific IFN-g from splenic

lymphocytes, suggesting that CS/S-RBD/O-HTCC could induce

robust humoral, mucosal and cellular immunity. For the

neutralizing assay, this vaccination could induce neutralizing

antibodies against both ancestral and omicron pseudoviruses than

those in the groups using single antigens. This delivery vehicle

might be utilized to rapidly prepare vaccines against the

continuously mutating SARS-CoV-2 virus (25). In another study,

Chen et al. discovered that nanoparticles formed by coupling

sulfated lentinan and O-HTCC, as a nasal H1N1 subunit vaccine

delivery carrier can stimulate mice macrophage phagocytosis,

promote dendritic cell maturation and activation, enhance the
TABLE 3 Preclinical studies of other nanoparticles used in intranasal delivery system.

Type of
particle

Species Antigen Immunization parameters Key outcome Ref.

PLGA mouse (J774) and
human (THP-1)
macrophage cell lines

The antigenic
peptide epitope of
the ESAT-6
protein of
M. tuberculosis

PVP coated PLGA nanoparticle Augmented the macrophages with much less
quantity of the antigenic peptide

(63)

AuNPs transgenic C57BL/6J-DR
and BALB/c mice

SARS-CoV-2 SARS-CoV-2-spike DNA vaccine transported
on a modified gold-chitosan nanocarrier/20
micrograms of DNA

AuNP-chitosan- SARS-CoV-2-spike DNA
vaccines effectively induced S-antigen specific
IgG, IgA, and IgM responses in
immunocompetent mice

(69)

C57BL/6 mice Bm nano-glycoconjugate vaccine/10 mg of protein
and 10 mg of LPS coupled to AuNPs and 20
mg of CpG

Enhanced specific IgG titer and protection-
related Th1-biased immune responses

(70)

Nano gel C57BL/6 mice – a gel system composed of a derivative of
glutamine amide and benzaldehyde/given EVs
hydrogel/solution intranasally, 2 mL each time

Reduced the levels of pro-inflammatory Ly6C
(high) monocytes/macrophages
and neutrophils

(76)

Lipopeptides Swiss outbred mice GAS
epitope peptide

Lipopeptides-loaded GAS epitope peptide (LP-
88/30-J14, LP-88/30, LP-J14)/first
immunization and followed by similar booster
doses on days 21 and 41 post
primary immunization

Smaller lipopeptides were taken up more
readily by APCs
Significantly higher serum IgG antibody
responses
More efficient APC uptake, promoting the
maturation of APCs

(79)

Liposomes mice H3N2, H1N1 A self-assembling influenza virus vaccine
platform that seamlessly converts soluble
antigens into nanoparticles

Induction of mucosal antibody responses and
production of large amounts of IgA and IgG
in respiratory tissues

(86)
frontier
PLGA, poly(lactide-co-glycolide); ESAT, Early Secretory Antigenic Target; PVP, poly (4-vinylpyridine); AuNPs, Gold nanoparticles; SARS-CoV-2, Severe Acute Respiratory Syndrome
Coronavirus 2; IgA, immunoglobulin A; IgM, immunoglobulin M; IgG, immunoglobulin G; Bm, Burkholderia mallei; LPS, lipopolysaccharide; Th1, type-1 helper T cell; GAS, Group A
Streptococcus; LP, Lipopeptides; APCs, antigen presenting cells.
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production of antigen-specific sIgA in saliva and vaginal lavage fluid

and IgG in serum, indicating promising applications (30).

What’s more, numerous recent studies have explored the

modification of chitosan nanoparticles with other substances,

such as ethylene glycol. Dilip Pawar et al. were the first to

synthesize and evaluate glycol chitosan (GC) nanoparticles. In the

in vitro Calu-3 cell line model, they found that chitosan and GC

exhibited minimal toxicity. In comparison to bare chitosan

nanoparticles, intranasal treatment of GC nanoparticles loaded

with hepatitis B surface antigen (HBsAg) in mice demonstrated

better mucoadhesion, which resulted in a substantially lower rate of

clearance as compare to chitosan NPs (31).

In addition to surface modification of chitosan to enhance the

immune response elicited by vaccines, studies have also explored

the adjuvant combination to develop more effective vaccine

formulations. Dulce Bento developed a co-adjuvant delivery

system for intranasal administration of the hepatitis B virus

vaccine, combining the mast cell activator C40/80 with chitosan

nanoparticles. The delivery system was shown to have promising

features for vaccine delivery, such as the ability to adsorb high

amounts of antigen, internalization by APCs, and stability after

lyophilization, which can be important during the development of

designing a cold chain-free vaccine. C48/80 loaded chitosan

nanoparticles NPs have the ability to enhance the immune
Frontiers in Immunology 06
response to HBsAg such as inducing mucosal anti-HBsAg IgA

and specific IgG titers in the vaccinated mice compared to free

HBsAg and chitosan-poly epsilon caprolactone NPs (32).

2.1.2 Starch
Starch is a naturally biocompatible and biodegradable polymer.

There are two different types of starch: amylose and amylopectin.

Most starch consists of ~20% amylose and ~80% amylopectin.

While amylose and amylopectin are readily degraded by a-amylase,

starch remains insoluble in water (33). Starch microparticles can be

utilized as a vaccine carrier because it prevents the denature of

antigen proteins by temporarily protecting antigens from the acidic

and enzymatic environment of mucosal surfaces (34). Protein

molecules can be encapsulated and coupled into particles made of

modified and cross-linked starch. Starch can be shaped in a variety

of forms, including Spherex microparticles, polyacryl starch

microparticles, silicone-grafted starch microparticles, and more

(33). Studies have shown that macrophages stimulated by starch

in the form of granules release IL-1 (35). In the meantime, mice

immunized intranasally with an antigen and silicone-polymer-

grafted starch microparticle system likewise produced a robust

circulating IgG responses (34, 36).

Pullulan, a microbial exopolysaccharide generated by

Aureobasidium pullulans, is a highly biocompatible and
TABLE 4 Preclinical studies for intranasal vaccination with other delivery systems.

Type of
particle

Species Antigen Immunization parameters Key outcome Ref

nanoemulsion BALB/c mice Helicobacter pylori HpaA epitope peptide (P22) NE-loaded HpaA epitope peptide P22/four
times at 1-week of the NE, NE-P22, NE-
P22 with CpG, P22 with CpG 1826, P22
only, NE with CpG or CpG only
(10mL/nostril)

Enhancing the protective
efficiency of the epitope
vaccine against
helicobacter pylori
Promoting the
maturation of BMDC
Slowing the release of
P22 in vitro, significantly
prolonging nasal
residence time in vivo
Effectively enhancing
P22 uptake by CD11+

DCs in nasal
mucosal tissues

(104)

C57BL/
6 mice

Recombinant SARS-CoV-2
spike protein S1 subunit

NE/IVT DI-loaded SARS-CoV-2 spike
protein/three times at 4-week intervals of
S1 only NE/S1, NE/IVT DI/S1
(6mL/nostril)

Higher serum antigen-
specific IgG, IgA titers
Higher virus-neutralizing
antibody titers

(105)

Bacillus
subtilis spores

Balb/c
mice

Recombinant protein of P. falciparum CSP
(rPfCSP)

rPfCSP coupled to B. subtilis spores/10ug
per dose/intranasally vaccinated on days 0,
14 and 21

Elevated serum IgG
levels, especially IgG2b
levels, and induced a
balanced Th1/Th2
immune response

(116)

C57BL/
6 mice

C fragment of the tetanus toxin (TTFC) Spore-adsorbed TTFC/2.0×109 spore-
adsorbed with 2.0 µg of TTFC in a volume
of 20 µl of 50 mM Sodium Citrate buffer/
vaccinated by the intranasal route on day 0
and received a booster on days 14 and 28

Increased sIgA
production, accelerated
the production of
serum IgG

(119)
frontier
HpaA, Helicobacter pylori adhesin A; NE, nanoemulsion; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; IVT DI, an RNA agonist of RIG-I; IgA, immunoglobulin A; IgG,
immunoglobulin G; rPfCSP, recombinant P. falciparum circumsporozoite surface protein; Th1, type-1 helper T cell; Th2, type-2 helper T cell; TTFC, C fragment of the tetanus toxin; BMDC,
Bone Marrow-Derived Dendritic Cells.
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biodegradable polymer that is odorless, tasteless, non-toxic and

edible. It has maltotriose repeating units and is a linear, unbranched

polymer chain structurally (37). A nanogel particle consisting of a

cholesterol-bearing pullulan has been proposed as an intranasal

delivery system (38). Charge-based interaction can be employed to

make the particles stick to the nasal epithelium and release antigens

since the particles have a positive charge while the mucosa has a

negative charge (39). This mechanism can slow the release of

antigens and prolong the existence time of antigens in the nasal

mucosa (40). The antigen can be efficiently delivered to the nasal

epithelium, where it is then taken up by dendritic cells. A protective

immune response against Streptococcus pneumoniae was induced in
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mice after they were intranasally immunized with a vaccine

conjugated with pneumococcal surface protein A using a cationic

cholesteryl-group-bearing pullulan nanogel as a delivery system.

This resulted in an increased production of serum PspA-specific

IgG1 antibodies, high levels of mucosal antigen-specific sIgA

antibodies, Th17 and Th2 responses, and the growth of bacteria

in the mice’s lungs and nasal cavities was inhibited (41).

Furthermore, the vaccine was administered to rhesus macaques, a

non-human primate species. It not only induced systemic and

mucosal antibody responses in the macaques, but it also

prevented the antigen from being deposited in their brains or

olfactory bulbs, making it safe (42). A recent study investigated
TABLE 5 The current progress in clinical studies of intranasal vaccines.

Disease Interventions Delivery
system/
adjuvant

ClinicalTrials.
gov
Identifier

Phase Sponsor Status

Norovirus Norwalk VLP Vaccine VLP
adjuvanted
with MPL
and chitosan

NCT00806962 1 LigoCyte Pharmaceuticals, Inc. Completed

HIV Vacc-4x Endocine NCT01473810 1/2 Oslo University Hospital Completed

Ad4-mgag
Ad4-EnvC150
gp 120 Protein Boost

NCT01989533 1 National Institute of Allergy and
Infectious Diseases (NIAID)

Completed

influenza Influnza vaccination Liposomes NCT00197301 1/2 Hadassah Medical Organization Completed

Sing2016
M2SR
H3N2 influenza vaccine

NCT04785794 1 FluGen Inc Completed

BW-1014 Nanoemulsion NCT05397119 1 BlueWillow Biologics Completed

hemagglutinin (HA) AD07010LTh
(aK)

NCT03784885 2 Advagene Biopharma Co. Ltd. Completed

A/California/07/09 live
monovalent
H1N1 vaccine

NCT01023776 4 University of Rochester Completed

Whooping
Cough

Vaccine GamLPV NCT04036526 1/2 Gamaleya Research Institute of
Epidemiology and Microbiology,
Health Ministry of the
Russian Federation

Unknown
status

BPZE1 NCT03541499 2 National Institute of Allergy and
Infectious Diseases (NIAID)

Completed

Covid19 MV-014-212 NCT04798001 1 Meissa Vaccines, Inc. Unknown
status *

CVXGA1 NCT04954287 1 CyanVac LLC Completed

RSV MV-012-968 NCT04444284 1 Meissa Vaccines, Inc. Completed

RSVt Vaccine NCT05687279 1/2 Sanofi Pasteur, a Sanofi Company Completed

Tuberculosis TB/Flu-05E NCT05945498 1 Tatyana Zubkova Completed

TB/Flu-05E NCT06873282 2 Research Institute of Influenza, Russia Completed

Anthrax BW-1010 Nanoemulsion NCT04148118 1 BlueWillow Biologics Completed

Asthma
in Children

LAIV
IIV

NCT03600428 4 Vanderbilt University Medical Center Completed
VLP, Virus-like particle; HIV, Human immunodeficiency virus; Covid-19, Coronavirus disease 2019; RSV, Respiratory syncytial virus; LAIV, Live attenuated influenza vaccine; IIV, Inactivated
influenza vaccine; The data us derived from https://clinicaltrials.gov/ provided in the websites.
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the utilization of pullulan-bearing cholesterol moieties in nanogel

particles as a delivery system. The delivery system induced antigen-

specific serum IgG and nasal mucosal IgA by intranasally

immunizing mice with pneumococcal surface protein A as an

antigen (43).

2.1.3 Maltodextrin
Maltodextrin (MD) is a natural polysaccharide derived from

partially hydrolyzed starch. Maltodextrin-based nanoparticles,

known as supramolecular biovectors (SMBVs) and cationic

porous maltodextrin nanoparticles (NPLs), can be mixed with

lipids to be employed as intranasal delivery systems (44).

After intranasal immunization, lipid-coated SMBVs with

maltodextrin scaffolds cling to the mucosa continuously,

enhancing intranasal antigen delivery and inducing systemic and

mucosal immunological responses, such as antibody production

and Th1 and Th2 immune responses (45). The efficacy of SMBV-

based nasal influenza vaccinations was demonstrated in a dose-

escalation clinical trial that was randomized, placebo-controlled,

and conducted on healthy individuals. The vaccines produced

mucosal immune responses and were well tolerated with

moderate immunogenicity (46).

With anionic lipids contained in the maltodextrin scaffold as the

core, Maltodextrin nanoparticles (MdNP) is a porous cationic

maltodextrin scaffold and has been investigated as nasal route

delivery methods for antigens and medications (47, 48).

Regarding the safety of maltodextrin, numerous in vivo and in

vitro tests have demonstrated that MdNP is safe since it is unable to

penetrate the nasal mucosal epithelial barrier (48). When compared

to other nanoparticle delivery systems, MdNP also had the longest

residence duration in dendritic cells, macrophages, and airway

epithelial cells, the highest endocytosis efficiency, and the

strongest antigen delivery effect (49). The immune response

induced by MdNP is dominated by Th1/Th17 (44). MdNP has

been utilized to prevent acute or chronic toxoplasma gondii
Frontiers in Immunology 08
infection (50). According to a recent study, mice inoculated with

the MdNP formulations were not only protected against infection,

but also did not transmit the influenza virus (51).

2.1.4 Alginate
Alginate is the basic carbohydrate component of brown algae. It is

an unbranched copolymer with the qualities of hydrophilicity,

adhesion, biocompatibility and biodegradability (52–54). Gel

microparticles are formed when most bivalent cations are added to

alginate solutions (52). The resulting microparticles are irregular in

shape, have a rough and porous surface, and a high polypoid structure.

These particles can develop under more hospitable settings (55). Their

benefits include being inexpensive and non-toxic at the same time (52).

Alginate has strong adhesion and can extend the duration of contact

between microparticles and M cells, hence augmenting antigen

absorption (55). By activating macrophage-like cells through the NF-

kB pathway, alginate can trigger an innate immune response (56).

Alginate microparticles have been employed in the creation of

Klebsiella pneumoniae vaccines (55).

Alginate nanoparticles are often negatively charged, and mucus

on the mucosal surface is similarly negatively charged, so this makes

it unsuitable for substance delivery. Chitosan and alginate are

frequently used in combination because the inclusion of chitosan

enhances the positive charge on the particle surface while also

enhancing the immunostimulatory qualities and stability of

chitosan (54, 57). Chitosan/alginate nanoparticle encapsulated bee

venom (BV), CH/AL-BV, has slow-releasing properties and

mucosal adhesiveness. Nasal delivery of CH/AL-BV in pigs

enhanced Th1-related responses, porcine reproductive and

respiratory syndrome virus (PRRSV)-specific viral neutralizing

antibody and significant reductions in PRRSV load in serum, lung

and bronchial lymph nodes (54). Recently, nasal immunization of

mice with trimethylchitosan nanoparticles containing influenza

virus coated with sodium alginate induced a significant increase

in the IgG2a/IgG1 ratio and improved immune protection against
FIGURE 2

Structural and functional features of polysaccharide-based intranasal delivery systems. The most promising polysaccharide platforms include
chitosan, starch, maltodextrin, alginate and others. Low-toxicity and mucoadhesive chitosan improves antigen transport across mucosal barriers;
biodegradable starch microparticles protect antigens from enzymatic breakdown; hydrophilic gel microparticles, alginate, aid in the absorption and
retention of mucosal antigens; maltodextrin nanoparticles improve intranasal delivery effectiveness, and they induce Th1/Th17 responses with
high tolerability.
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the virus (57). The combination of chitosan and alginate

nanoparticles has the potential to be a highly effective vaccine

delivery system.

Hyaluronic acid and dextran are other polysaccharides that can

be also utilized as vaccine delivery platform. As a nanoparticle vaccine

delivery system, a biodegradable polymer micellar coated with

hyaluronic acid was created. Ovalbumin and adjuvant CpG-DNA

were loaded onto the micellar, increasing the expression of MHC-II

also IFN-g and IL-4 mRNA expression in mouse dendritic cells.

Correspondingly, nasal immunization resulted in higher antigen-

specific serum IgG and nasal IgA levels (58).
2.2 PLGA: a promising and thriving
mediators for delivery system

PLGA, poly (lactic-co-glycolic acid), is a biodegradable polymer

consisting of lactic acid and glycolic acid linked via ester linkages.

PLGA is soluble in common solvents such as acetone, chlorinated

solvents, and ethyl acetate, and can be processed into virtually any

shape and size, and encapsulated into various molecules (59). PLGA

nanoparticles are one of the most widely used particles, having been

used in a wide range of cosmetic, food, agricultural, and drug

delivery systems (60).

Among vaccine delivery systems, PLGA is commonly used to

protect peptide vaccines from degradation, enhance antigen

absorption by APCs, and stimulate robust T cell immune

responses (61). Furthermore, PLGA nanoparticle vaccines allow

for a sustained release of antigen, which is essential for the duration

and intensity of the induced vaccine response. Since PLGA

nanoparticles are biodegradable, biocompatible, and non-toxic,

they have been approved for many biomedical applications, with

the U.S. FDA approving them as sustained-release drug delivery

systems (62).

Büyükbayraktar et al. developed an anti-tuberculosis vaccine

with polycation-coated PLGA nanoparticles as delivery system, a

potential vaccine model for long-term pulsatile release of antigenic

peptide of ESAT-6 protein of M. tuberculosis, which augment the

immunostimulation and also allows to be administered via nasal

route. Using in vitro model of murine macrophage cell line (J774)

and human macrophage cell line (THP-1), the peptide-loaded

nanoparticle enhanced the immunogenicity of the peptides to

induce more nitric oxide (NO) than the free peptide and non-

coated nanoparticle, demonstrating the immunostimulant activity

of the nanoparticle systems. They also discovered that the

macrophages exposure to these formulations maintained their

intact structure without any cytotoxic effects (63).

Additionally, a number of studies using a model antigen such as

tetanus or diphtheria confirmed the potent adjuvant effect of PLGA,

which connected with their capacity to be effectively taken up by

APCs (61). Many studies also tend to surface-modify it which can

help them evade the body’s defense system, and make vaccines safer

and more efficient through nasal immunization, a non-invasive

route (59).
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2.3 Gold nanoparticles (AuNPs) can
capture and retain antigenic epitopes

Gold nanoparticles (AuNPs) represent one of the most widely

studied metallic nanomaterials, which typically range in size from 1

nm to 100 nm, which may be beneficial in overcoming biological

barriers (64). It is available in various types such as gold nanorods,

nanocages, nanostars, nanocubes and nanospheres, and the type and

size of the nanoparticles affect their physical characteristics and

surface functionalization (65). Gold nanoparticles are widely used

in the biomedical field due to their small size-to-volume ratio,

functionalization, stability, low toxicity, and ease of detection, and

they can bind to a variety of functionalized fractions through different

types of interactions, including ligands, medicinal agents, DNA,

amino acids, proteins, peptides, and oligonucleotides (66, 67).

Gold nanoparticles can capture and retain antigenic epitopes

and improve the efficiency of antigen delivery and presentation. By

studying different shapes of gold nanoparticles, Hongjuan Zhao

et al. found that star-shaped AuNPs captured and retained more

repetitive antigenic epitopes and triggered a strong humoral

immune response mediated by the cooperation of CD4+ T helper

cells and follicular B cells, whereas caged AuNPs caused a strong

CD8+ T cell immunity (68).

Immunoreactivity of a DNA vaccine expressing the SARS-CoV-

2 spike (S) protein on gold chitosan nanocarriers reveals a sustained

surge in antibodies (IgG, IgA, and IgM) (69). In addition, coupling

lipopolysaccharide (LPS) from Bacillus thailandensis with AuNPs

for intranasal immunization of mice, which promote robust

antigen-specific antibody responses (70).
2.4 Nanogels can retain the hydrated
nature and shrink-swell properties of
hydrogels

Nanogels are drug delivery vehicles with three-dimensional

tunable porous structures with particle sizes in the submicron

range, from 20 to 250 nm (71). It is formed by a system of

chemically or physically cross-linked swellable polymer networks,

which help encapsulate small molecules, oligonucleotides and even

proteins while maintaining their structural integrity (72). As a

hydrogel, nanogels can retain the highly hydrated nature and

shrink-swell properties of hydrogels under different conditions,

and these unique properties give nanogels the ability to enable

drug delivery, diagnostics, and imaging (72, 73). Unlike typical

nanoparticles, nanogels exhibit tunable particle size, particle shape,

and sensitivity to pH, temperature, ionic strength, redox conditions,

and other external stimuli. Nanogels have a pronounced spherical

structure, and with the latest advances in their fabrication processes

can also be produced in a variety of nanogel types, allowing for

effective controlled drug release properties (74, 75).

Nanogel consisting of self-assembled cholesteryl group-bearing

pullulan (CHP) has strong advantages as a novel adjuvant-free and

safe carrier for mucosal vaccines. For example, nasal administration
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of nanogels containing subunit types of botulinum antigen (BoHc-

nanogel) or pneumococcal surface protein A (PspA-nanogel)

enhance antigen-specific systemic and mucosal immune

responses, even in the absence of biologically active mucosal

adjuvants (e.g., CT) (38).

Gel system consisting of glutamine and benzaldehyde

derivatives combined with extracellular vesicles derived from

mouse aortic endothelial cells has better absorption efficiency in

the nasal cavity and reduces levels of pro-inflammatory Ly6Chi

monocytes/macrophages and neutrophils (76). Y Fukuyama et al.

established a nanosized nasal vaccine delivery system by using a

cationic cholesterol group-bearing pullulan nanogel (cCHP

nanogel) in a study examining the central nervous system safety

and efficacy of nasal vaccination with their developed cCHP

nanogel containing pneumococcal surface protein A (PspA-

nanogel) against pneumococcal infection in nonhuman primates,

demonstrating that nasal PspA-nanogel vaccination is a safe and

effective strategy for the development of a nasal vaccines for the

prevention of pneumonia in humans (41).
2.5 Lipopeptides: self-assembly structure
and efficient immune response

Lipopeptides are mixtures of lipids and peptides that have the

ability to self-assemble into the structures of nanoparticles in an

aqueous environment. The interaction or balance between the

hydrophilic and lipophilic qualities of lipids and peptides

determines the lipopeptides’ ability to self-assemble (77).

Lipopeptides are used as delivery systems in nasal vaccines

primarily to prevent rheumatic fever and rheumatic heart disease,

which are significant respiratory infections caused by Group A

streptococcus (GAS), which makes it an ideal delivery system,

suitable for both mucosal and systemic immunization (78).

Because of their small nanosize structure and shape, lipopeptide

vaccines are well absorbed by APCs and trigger a robust immune

response and employed as a nasal vaccination to prevent GAS

infection. For instance, the LP-88/30-J14 lipopeptide vaccine

(containing both the N-terminal and C-terminal epitope of GAS)

has a higher IgG titer and APC uptake of antigen due to its smaller

nanosize, which increases the uptake of M protein antigen by DC, in

comparison to LP-88/30 (N-terminal epitope) and LP-J14 (C-

terminal epitope) alone (79).
2.6 Liposomes enhance the delivery of
antigens to antigen-presenting cells

Lipid nanoparticles are submicron capsules with an aqueous

core, such as liposomes, micelles, or nanoparticles with oil, solid, or

a non-crystalline core surrounded and stabilized by a lipid layer,

e.g., nucleic acid-containing lipid nanoparticles (commonly referred

to as LNP) (80). Among them, liposomes are safe, biocompatible,

biodegradable spherical nanoparticles composed of cholesterol and
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phospholipids that can be loaded with both hydrophilic and

lipophilic molecules, and these properties make liposomes good

gene, drug, and vaccine delivery systems (81). Liposomes can be

cationic, anionic, or neutral, depending on the phospholipids that

make up the liposome. Phospholipids are amphiphilic molecules

with hydrophilic heads and lipophilic tails, and the surface charge of

liposomes depends on the phospholipid head group (82).

Depending on the nature of the loaded substance, liposomes can

be loaded with drugs or antigens in two ways, either by

encapsulating a water-soluble substance in a hydrophilic core or

by containing a lipid-soluble substance in the hydrophobic space of

a bilayer lipid membrane (82).

Liposomes enhance the delivery of antigens to antigen-

presenting cells and co-deliver antigens with adjuvants, thereby

increasing vaccine efficacy and enhancing immunogenicity (83).

Cationic liposomes are widely used for gene and protein delivery.

Cationic liposomes have been used in nasal immunization (84).

Cationic DOTAP/DC-chol liposomal complex OVA drops

preferentially induced the Th2 response after nasal immunization

and enhanced OVA uptake by CD11c+ DCs in nasal-associated

lymphoid tissues (85). In addition, it has also been shown that

immunization with cationic liposomes complexed with antigen

followed by nasal drops enhances antigen-specific mucosal IgA

responses by inducing IL-6 expression. Intranasal liposomal vaccine

delivery induces a mucosal response in the respiratory system and a

systemic immune response that produces IgA and systemic

IgG (86).

In addition, polymeric micelles are considered good carriers for

drug delivery due to their stability, nanosize, surface properties, and

enhanced permeability and retention effects (87). The hydrophobic

core of the micelles consists mainly of polyester, poly (L-amino

acids) and polycaprolactone, and the hydrophilic shell consists

mainly of polyethylene glycol (PEG), with sizes ranging from 10

to 100 nanometers (88, 89). Polymeric micelle-based antigen

delivery systems were developed for bacterial pathogens. Shaobin

Shang et al. loaded mycolic acid (MA), a lipid components of

Mycobacterium tuberculosis (Mtb) cell wall, into micellar

nanocarriers (MA-Mc), which elicited a CD1b-restricted T cell

response in the lungs after intranasal immunization of mice,

demonstrating that MA-Mc can be explored as subunit vaccines

against Mtb infection (90). Kengo Suzuki et al. found that

hyaluronic acid (HA)-coated micelles can efficiently deliver

antigens and adjuvants to mucosal resident immune cells, and

that HA-coated micelles are a promising platform for the

development of nasal vaccines against infectious diseases (58).
2.7 VLPs can be easily detected by immune
system cells

Virus-like particles (VLPs) are multimeric self-assembled

particles made up of one or more structural proteins that lack

viral genetic material, making them incapable of infecting the host

cell (91). As in the case of virus capsids, the antigenic proteins of
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VLPs self-assemble into highly symmetrical and strict architectures,

usually icosahedral and octahedral, with the most of VLPs’ size

ranging from 20-200nm (92). Virus-like particles can be produced

using a variety of expression systems (ESs) without the requirement

to propagate pathogenic viruses. The ESs include bacteria, yeast,

insect cell lines, plants, mammalian cell lines and cell-free ESs (92).

VLPs are used for a variety of purposes. Because they contain an

internal cavity, they can be used as carriers for the delivery of bio-

and nanomaterials, including drugs, vaccines, quantum dots and

imaging substances (93). Using VLPs as a delivery strategy has

numerous benefits, including precise targeting, biocompatibility,

and biodegradability (94).

Vaccines based on virus-like particles have gained popularity

due to their high immunogenicity. Because of their underlying

geometry, VLPs resemble pathogen-associated structural patterns

(PASP), which are easily detected by immune system cells (93). As a

result, VLPs are excellent for cellular phagocytosis and antigen

presentation of dendritic cells (DCs), eliciting both robust cellular

and humoral immune responses even without an adjuvant (91, 95).

To date, numerous perilous viral pathogens have been

mimicked by VLPs, including Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV-2); Hand, foot and mouth disease virus.

Authorized VLP vaccines against hepatitis B virus (HBV), hepatitis

E virus (HEV), and human papillomavirus (HPV) are globally used

and many others are in clinical trials (92, 96). VLPs are readily

absorbed by APCs, particularly DCs, which improves interactions

with NALT. Furthermore, VLP-based intranasal vaccinations can

efficiently boost mucosal immune responses, hence reducing viral

shedding and local transmission (97). These benefits have made

VLP-based vaccinations popular in the development of intranasal

vaccines. Rothen et al. described a COVID-19 vaccine based on

virus-like particles (VLPs) for intranasal administration. Intranasal

delivery of the CuMVTT-RBD vaccine induces robust local and

systemic immune responses, generating high-avidity antibodies

with broad-spectrum neutralization against SARS-CoV-2 and its

variants of concern (VOCs) in a murine model. This work

establishes a foundational framework for advancing next-

generation mucosal COVID-19 vaccines designed to block viral

entry at respiratory portals while curbing transmission (98).
3 Nanoemulsion enhances adhesion
and immune response

Nanoemulsion (NE) is composed of water in oil (W/O) or oil in

water (O/W), surfactants and cosurfactants, with an average droplet

diameter of less than 500nm. Long-chain triglycerides (LCT) and

medium-chain triglycerides (MCT) are the two categories of

commonly utilized oils (99). Ionic and non-ionic surfactants are

the two categories of commonly used surfactants. Non-ionic

surfactants include Tween, Span, Poloxamer, etc., while ionic

surfactants include Cetylpyridinium Chloride (CPC),

Benzalkonium Chloride (BCI), etc (100).
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Nanoemulsion with good adhesion enhances the duration of

antigen residency in the nasal cavity, hence increasing the capacity

of APC to absorb antigens and potently stimulating the immune

system. The physical and chemical characteristics of surfactants

may be connected to the robust NE adherence to mucosa. The

cationic surfactant CPC interacts with the negatively charged mucin

and the non-ionic surfactant Tween interacts with the mucin due to

its hydrophilicity, both of which can make NE firmly adhere to the

surface of nasal mucosa, promote the uptake of antigen by nasal

epithelial cells, and thus enhance the specific humoral immune

response (100).

NE such as MF59 and W805EC are used for intranasal

immunization. MF59, an oil-in-water emulsion (O/W), is

primarily used for influenza vaccine (101). A W805EC-based

influenza vaccine has been successfully tested in a Phase 1

randomized, controlled, observer blind clinical trial, showing a

good safety profile in healthy adult volunteers, and induced

systemic and mucosal immunity after a single intranasal

vaccination (102). Furthermore, in mice, rats, and guinea pigs, the

NE-based hepatitis B vaccine has demonstrated significant

immunogenicity and good safety (103). According to research on

vaccines against Helicobacter pylori infection, NE vaccine has high

delivery efficiency and no obvious cytotoxicity, induces effective

specific Th1 response, reduces the colonization of Helicobacter

pylori (104). One study has developed an adjuvant integrating NE

that activates TLR2/4 and NLRP3 with an RNA agonist of RIG-I

(IVTDI). The spike protein vaccine incorporating NE/IVD

significantly enhances a Th1-biased cellular immune response and

elicits high neutralizing antibody titers (105).

Recently, a new nano-adjuvant, O/ILNE, consisting of an ionic

liquid of choline (+) and niacin (–) instead of water. In contrast to

MF59 emulsion (O/W), O/IL NE has been shown to increase

mucosal IgA, systemic IgG, and cellular immunity. Therefore, the

prolonged retention of antigens in the nasal cavity and improved

paracellular transport of antigens to the submucosa make it an

incredibly effective delivery strategy (106).
4 Probiotics in intranasal delivery
system

The WHO defines probiotics as living microorganisms which

administered in adequate amounts confer a health benefit on the

host (107). Good safety, adherence, and availability make probiotics

highly promising for use in vaccine administration (108, 109).
4.1 Bacterial spores: a stable and effective
mucosal vaccine delivery system

Bacillus spores can be used as mucosal vaccine carriers (110).

Among them, Bacillus subtilis spores have the advantages of

thermal stability, and non-pathogenicity and can be used as a
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vaccine delivery system (111). Bacillus subtilis is a Gram-positive

non-pathogenic and endospore-forming bacterium (112). Bacillus

subtilis spores can sprout, develop, and revert to mature bacteria

when the surrounding conditions are right (113). The resistance

and stability of the spore are determined by its unique structure

(110). Chromosome copies are found in the spore’s core, which is

encased and shielded by a protein shell and peptidoglycan (110).

Isticato R et al. reported that mutant spores with modified shells are

better at absorbing antigens than spores of the wild type (114).

Bacillus subtilis spores can activate innate immunity via TLRs and

promote DC maturation and NK cell recruitment. Intranasal

immunization of spores absorbed with antigen increased the

uptake of antigen, raises cytokine levels and sIgA levels, and

conferred protection against viral challenge (114, 115).

Recently, a study using Bacillus subtilis spores coupled with

Plasmodium falciparum recombinant protein to intranasally

immunize mice showed that the spores increased the

immunogenicity of the antigen and induced higher levels of
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serum IgG (116). Studies have also been conducted to create

vaccines against C. difficile (Clostridioides difficile) spores by

adsorbing C. difficile spore surface proteins to Bacillus subtilis

spores (117, 118). Furthermore, studies that adsorbed tetanus

toxin to Bacillus subtilis spores and immunized mice intranasally

showed that spore treatment increased tetanus toxin-specific sIgA

production and resulted in more rapid serum IgG production (119).
4.2 Others

Apart from Bacillus subtilis spores, mucosal vaccines can also be

delivered intranasally via Escherichia coli and Lactic acid bacteria.

Some studies have constructed Escherichia coli expressing allergens

and demonstrated that intranasal pretreatment with this Escherichia

coli before multiple sensitization in mice can significantly reduce

allergen-specific serum IgE levels and lung inflammation (120).

Lactic acid bacteria are a group of Gram-positive, non-sporogenic
FIGURE 3

Schematic overview of intranasal vaccine delivery system against infectious disease. The outer blue segment and the green segment in the middle
represents the key outcome induced by and the diagram of intranasal delivery system, respectively. Polysaccharides stimulate dendritic cell
maturation and natural killer cell recruitment through TLR ligation. Nanoemulsions enhance antigen uptake in antigen-presenting cells. Lipopeptides
boost APC absorption and activate potent immune responses. Liposomes optimize antigen delivery efficiency. Probiotics strengthen host health.
Virus-like particles inhibit viral shedding and curb local transmission. Nanogels suppress pro-inflammatory Ly6C hi levels. Au nanoparticles elicit
robust CD8+ T cell immunity. PLGA nanoparticles amplify antigen immunogenicity.
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bacteria, including Lactobacillus, Lactococcus, etc (121).

Pneumococcus and tetanus vaccinations have been developed

using lactic acid bacteria as a delivery system to stimulate a

favorable immune response (122, 123).
5 Limitations and safety concerns of
intranasal vaccine delivery system

While intranasal vaccines offer significant advantages, their

development and application are constrained by anatomical,

physiological, and technical challenges.
5.1 Anatomical and physiological risks

The nasal cavity’s proximity to the central nervous system poses

unique risks. The thin olfactory epithelium-blood-brain barrier

raises concerns about neurotoxic effects if vaccine components

inadvertently enter the brain. For instance, mild adverse effects

such as rhinorrhea and nasal congestion are common, while severe

complications—though rare—have been documented (12, 124,

125). A notable example is the NasalFlu vaccine (approved in

Switzerland in 2001), which was withdrawn due to reports of

Bell’s palsy in immunized individuals (126).
5.2 Technical limitations of delivery
systems

Current delivery platforms face three major hurdles: (i) Inefficient

Antigen Release: Many carriers, such as PLGA nanoparticles, exhibit

incomplete antigen release and cannot undergo sterile filtration,

limiting their clinical scalability (127). (ii) Manufacturing

Complexity: Materials like chitosan require chemical modification to

improve water solubility and biocompatibility, adding to production

costs (128). (iii) Carrier-Related Toxicity: Certain formulations,

including cationic liposomes, may induce dose-dependent

inflammation, genotoxicity, or cell membrane disruption (129, 130).
5.3 Safety evidence from preclinical studies

Emerging preclinical data highlight potential safety issues: (i)

Chitosan-based nanoparticles have shown dose-dependent

developmental toxicity in zebrafish embryos, including reduced

hatching rates, increased malformations, and neurobehavioral

abnormalities (131). (ii) Acylated starch nanoparticles exhibit

moderate cytotoxicity at high concentrations, though low doses

remain tolerable (132). (iii) PLGA particles may trigger local

immune overactivation if antigen release kinetics are poorly

controlled (127). Despite these challenges, systematic safety

evaluations remain limited, underscoring the need for standardized

toxicity assays and long-term monitoring in future studies.
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Intranasal immunization is a safe, effective, and convenient

route of mucosal immunization. The nasal cavity itself, with its

enormous surface area and specialized immunological tissue

(NALT), is an efficient entry channel for vaccinations, making

intranasal immunization promising for the mucosal routes.

However, intranasal cilia clearance, mucus barrier, and enzyme

milieu which make intranasal delivery of antigens challenging.

Various intranasal delivery technologies, such as nanoparticles

and nanoemulsions, have been created to improve vaccine

distribution, increase antigen penetration, and elicit more robust

immune responses to solve these problems (Figure 3). Among

diverse types of delivery system, nanoparticles especially chitosan

nanoparticles are well-studied and offer a promising delivery

strategy for promoting antigen uptake and lowering unfavorable

vaccine reactions. Despite the promising results in animal models,

clinical findings were limited. Therefore, further studies are needed

to evaluate the efficiency and safety of these delivery system in

human studies. With advances in delivery technologies such as

nanoparticles, the challenges of antigen degradation and

malabsorption can be mitigated, which may lead to more efficient

and broader vaccination strategies. Furthermore, combining

advanced delivery systems with adjuvants including STING-

activating (e.g., CDNs) could represent a powerful strategy to

amplify mucosal immunity. Co-delivery of antigens and adjuvants

within nanocarriers may ensure spatiotemporal synchronization of

antigen presentation and innate immune activation, thereby

enhancing vaccine efficacy. These advances have the potential to

increase vaccine efficacy and acceptance, particularly in the

prevention of respiratory infections such as influenza, respiratory

syncytial virus and coronavirus, and will play an increasingly critical

role in global vaccination campaigns and contribute to improved

global public health outcomes.
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AuNPs Gold nanoparticles
BALF bronchoalveolar lavage fluid
Bm Burkholderia mallei
BoHc botulinum type A neurotoxin
BV Bee venom
cCHP Cationic-type CHP
Chi-C48/80 compound 48/80 loaded chitosan
Chi-PCL Chitosan-poly epsilon caprolactone
CHP cholesteryl group-bearing pullulan
CH/AL-BV chitosan/alginate nanoparticle encapsulated bee venom
C-O-NP curdlan-chitosan conjugate nanoparticle
CPC Cetylpyridinium Chloride
CS curdlan sulfate
CTA1-DD cholera toxin A1 subunit -dimer of the D-fragment of protein

A from Staphylococcus aureus bacteria
CT cholera toxin
CTB cholera toxin B subunit
DGNP Dendritic Gold Nanoparticles
DOTAP 1,2-dioleoyl-3-trimethylammonium-propane
DT diphtheria toxoid
ESs expression systems
ESAT Early Secretory Antigenic Target
GAS Group A Streptococcus
GC glycol chitosan
HA hyaluronic acid
HAS Human serum albumin
HBsAg hepatitis B surface antigen
HBV hepatitis B virus
HpaA Helicobacter pylori adhesin A
HPV human papillomavirus
IFN-I type I interferons
IFN-g interferon-gamma
IgA immunoglobulin A
IgG immunoglobulin G
IL-1 interleukin-1
ogy 18
IL-6 Interleukin-6
IVT DI an RNA agonist of RIG-I
LNP Lipid Nano Particle
LP Lipopeptides
LPS lipopolysaccharide
MA mycolic acid
MA-Mc MA-loaded micellar
MD Maltodextrin
MdNP Maltodextrin nanoparticles
Mtb Mycobacterium tuberculosis
NALT nasal-associated lymphoid tissue
NE nanoemulsion
NF-kB nuclear factor kappa-B
NPL nanoparticles lipid
O-HTCC O-(2-hydroxy l ) propy l -3 - t r ime thy l ammon ium

chitosan chloride
OVA ovalbumin
PASP pathogen-associated structural patterns
PEG polyethylene glycol
PLGA poly (lactic-co-glycolic acid)
PRRSV porcine reproductive and respiratory syndrome virus
PspA pneumococcal surface protein A
PVP poly (4-vinylpyridine)
rPfCSP recombinant P. falciparum circumsporozoite surface protein
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2
SMBVs supramolecular biovectors
S-RBD spike receptor binding domain
TE total extract of Toxoplasma gondii antigens
Th1 type-1 helper T cell
Th2 type-2 helper T cell
Th17 type-17 helper T cell
TS-PDMS-grafted MP 3-(triethoxysilyl)-propyl-terminated polydimethylsiloxane-

grafted microparticles
TTFC C fragment of the tetanus toxin
VOCs variants of concern
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