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Introduction: Legionella pneumophila is the causative agent of Legionnaires’

Disease (LD), an atypical pneumonia with potentially fatal outcome. Neutrophils,

the first line of defense, infiltrate the lungs during L. pneumophila infection,

although the precise immune mechanisms involved remain unclear.

Methods: This study aims to examine in vitro the interaction of neutrophils with L.

pneumophila. Neutrophils from healthy individuals were infected with opsonized

and non-opsonized bacteria. Phagocytosis was assessed by immunolabeling,

and reactive oxygen species (ROS) generation by flow cytometry. The ability of

neutrophils to form Neutrophil Extracellular Traps (NETs) in response to L.

pneumophila and the impact of these NETs on bacterial proliferation were

examined. Immunolabeling and Western blotting were used for specific NET-

associated epitope detection.

Results: It was demonstrated that neutrophils phagocytose opsonized L.

pneumophila, while non-opsonized bacteria were not phagocytosed.

Opsonized bacteria triggered ROS production, unlike non-opsonized bacteria.

Neutrophils released NETs upon L. pneumophila interaction in a ROS-

independent manner, but these NETs failed to inhibit bacterial proliferation.

Notably, IL-1b was detected on NETs.

Discussion: This study provides evidence that neutrophils react to L.

pneumophila through phagocytosis, the production of ROS, and NET release.

IL-1b on NETs could play a role in complicated LD cases. These findings

contribute to the understanding of neutrophil-mediated immune responses

in LD.
KEYWORDS

Legionella pneumophila, Legionnaires’ Disease, neutrophils, neutrophil extracellular
traps, NETs, IL-1beta
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1 Introduction

Legionella spp. are facultative, intracellular, Gram-negative

bacteria which typically inhabit freshwater environments, and

their natural hosts are amoebae and protozoa (1, 2). However,

they can also multiply in poorly maintained human-made water

systems, leading to human infections, with humans considered as

accidental hosts (3). Legionella spp. can cause Pontiac fever, which

is a relatively mild, self-limiting, flu-like disease, or Legionnaires’

Disease (LD) which is a more severe, life-threatening illness. The

primary causative agent of LD is Legionella pneumophila (4). It is an

important cause of Community-Acquired Pneumonia (CAP), as

well as an occasional cause of Hospital-Acquired Pneumonia

(HAP) (5, 6). The severity of LD ranges from a mild cough to a

fatal pneumonia with an overall mortality rate of 5-10% (7). Multi-

organ failure is a frequent complication correlated with a worse

prognosis in LD. Research findings indicate that 61% of individuals

experiencing a fatal outcome presented with complications (8).

Human infection occurs through the inhalation of contaminated

aerosols, which can be generated by air conditioning systems, cooling

towers, spas, fountains, showerheads, etc (9). LD is an atypical

pneumonia, manifested with fever, cough, dyspnea, chills, chest pain,

headache, and fatigue (6). Moreover, typical clinical manifestation of

LD is diarrhea (10). In addition, extrapulmonary manifestations of LD

including cardiac, brain, abdominal (gallbladder), joints, and skin

involvement have been reported (11). L. pneumophila primarily

infects alveolar macrophages and lung epithelial cells; however, it can

transmigrate across the lung epithelium barrier (12), leading to organ

infiltration, infection of gut epithelial cells, renal dysfunction (13–15),

septic shock (15, 16), and ultimately multi-organ failure (17, 18). After

invasion into the host cell, the bacterium translocates more than 300

virulence factors using its Type IV Secretion System (T4SS), in order to

create a protective niche for intracellular replication (11, 19). For

instance, using these effector proteins, the L. pneumophila-containing

phagosome is transformed into an endoplasmic reticulum (ER)-like

compartment called the Legionella-containing vacuole (LCV) (20), by

hijacking protein and membrane material that are involved in vesicle

trafficking (21, 22). Additionally, L. pneumophila employs mechanisms

to inhibit autophagy (23), as well as to resist the phagosome-lysosome

fusion (24, 25), thereby creating a safe replication environment.

Neutrophils are the most prevalent type of immune cells in human

blood and are the first cells to migrate to the site of infection through

chemotaxis during the innate immune response (26). They are a type of

immune cell that play a key role in combating lung infections and have

been reported to continuously patrol the lungs (27). Further, they are

equipped with an impressive array of antimicrobial strategies which are

tightly regulated to avoid damage in host tissues (28, 29). To counteract

an infection, neutrophils use phagocytosis, degranulation, Reactive

Oxygen Species (ROS) production and the release of Neutrophil

Extracellular Traps (NETs) (30). Indeed, the importance of

neutrophils as a first-line defense mechanism in the lungs during L.

pneumophila infection has been previously reported (31). During

pulmonary infection in mice, alveolar macrophages and neutrophils

serve as the primary reservoir cells for L. pneumophila as well as

generators of proinflammatory cytokines (32). Nonetheless,
Frontiers in Immunology 02
exacerbated infiltration of neutrophils has been reported as potential

cause of much of the pathology associated with LD but their

involvement in Legionella infections has not been thoroughly

investigated (33, 34).

NETs are extensive web-like structures consisting of

cytoplasmic, granular, and nuclear components, assembled on a

scaffold of decondensed chromatin (35). NETs exhibit antimicrobial

properties not only through pathogen immobilization via

entrapment, but also exert a direct microbicidal activity due to

antimicrobial peptides (36, 37), histones (38) and DNA (39).

Interestingly, the composition of NETs varies according to the

inflammatory environment in which they are formed (40) and it has

been reported that NET-bound proteins remain at the site of NET

formation even after the DNA backbone has been degraded (41).

NETs decorated with Interleukin-1 beta (IL-1b) have been

previously identified in patients with inflammatory diseases (42–

44). IL-1b is a major proinflammatory cytokine which, in peripheral

tissues, is essential for the effective clearance of bacterial infections

(45, 46). Nevertheless, IL-1b is also involved in the development of

various acute and chronic peripheral diseases (47). For instance,

excessive acute activation of the IL-1b system plays a significant role

in the orchestration of the cytokine storm, which can lead to severe

inflammatory responses and subsequently result in a multi-organ

failure associated with sepsis (48–53).

Given this context, the aim of this study was to examine in vitro

and understand the neutrophil responses that are orchestrated in a

potential L. pneumophila infection e.g phagocytosis, ROS

generation, NET release and further identify potential mediators

implicated in the pathophysiology of LD infection as specific

epitopes decorating these NETs.
2 Materials and methods

2.1 Cultivation of Legionella pneumophila

Legionella pneumophila subsp. pneumophila (ATCC 33152™)

was cultivated onto Buffered Charcoal-Yeast Extract (BCYE) agar

plates (VWR) for 24 hours at 37°C. Bacteria were collected with a

loop and resuspended into 1x Phosphate Buffered Saline (PBS) for

OD600 measurement. Opsonization of bacteria was performed by

incubation with serum from healthy donors for 30 minutes at 37°C.
2.2 Neutrophil and serum isolation

Peripheral blood neutrophils were isolated from heparinized

blood of 10 healthy individuals (five female and five male), from

whom written consent was taken, by density double-gradient

centrifugation using Histopaque-1119 and Histopaque-1077

(Sigma-Aldrich) (54). After isolation, neutrophils were washed

once with 1x PBS and cultured into Roswell Park Memorial

Institute (RPMI 1640) medium (Gibco BRL) supplemented with

2% serum from the enrolled healthy donors (54). Neutrophil purity

was ≥98% as confirmed by flow cytometry using a PE anti-human
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CD66b antibody (BioLegend). Healthy serum was collected from

healthy blood donors with centrifugation at 1500 × g for 10 min at

room temperature and stored in aliquots at -80°C until analysis.
2.3 Stimulation studies with opsonized and
non-opsonized L. pneumophila

Neutrophils were seeded and cultured in 24-well plates at a

density of 1–2 × 105 cells per well in RPMI 1640 medium

supplemented with 2% healthy serum, in a 5% CO2 atmosphere,

at 37°C as previously described (42). For opsonized conditions, the

cultures were supplemented with 2% healthy serum, while for non-

opsonized conditions, cultures were maintained in serum-free

medium. Neutrophils were incubated for 20 minutes in order to

settle and were then stimulated with ionomycin as a positive control

and opsonized L. pneumophila at a concentration of ~10 bacteria

per neutrophil. For the ROS inhibition studies, neutrophils were

pretreated for 15 min at 37°C with 10 mM diphenyleneiodonium

chloride (DPI) (Sigma-Aldrich) before the infection. The inhibitory

effect of DPI was confirmed by FACS analysis using the FagoFlowEx

Kit (exbio) according to manufacturer’s recommendations with

neutrophils infected by Escherichia coli as a positive control

(Supplementary Figure 1). Different duration of stimulation was

used depending on the assay according to optimization

experiments: 60 minutes for phagocytosis assay, 30 minutes for

ROS release and 3 hours for NET generation.
2.4 Phagocytosis determination

Phagocytosis quantification by immunofluorescence

microscopy was performed as previously described (55).

Peripheral blood neutrophils were seeded on poly-L-lysine coated

coverslips and after stimulation, cells were fixed with 4%

paraformaldehyde (PFA). Immunolabeling was conducted with

the following antibodies: a rabbit anti-L. pneumophila polyclonal

Ab (1/150; Life Technologies), a donkey anti-rabbit IgG (H+L)

antibody conjugated to a fluorophore with an emission peak at 568

nm (1/500; Biotium), and DNA was counterstained by 4′,6-
diamidino-2-phenylindole (DAPI) (1/10.000; Sigma-Aldrich).

Images were acquired using a Leica TCS-SP8 confocal microscope

with a 63x objective. Phagocytosis quantification was performed

with Imaris v.9.3.1 (Oxford Instruments). Initially, the number of

nuclei per image was calculated using the surfaces module.

Following, a surface was created for the neutrophils (green

channel - MPO), which was used as a mask for the red channel

(L. pneumophila). In this way, Imaris generates a new channel,

which contains only the L. pneumophila bacteria inside the

neutrophils. Finally, a surface for the masked red channel was

created and the number of L. pneumophila bacteria inside the

neutrophils was calculated. Phagocytosis was quantified as the

percentage of the number of neutrophils with L. pneumophila

bacteria inside them against the total number of neutrophils

(number of nuclei) per image.
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2.5 NET visualization and quantification

NET visualization was performed by immunofluorescence

microscopy as previously described (55). Peripheral blood

neutrophils were seeded, stimulated and fixed as previously

described. Immunolabeling was conducted with the following

antibodies: a rabbit anti-citrullinated H3 (R2+R8+R17) (1/500

dilution; Abcam) polyclonal Ab, a goat anti-myeloperoxidase

(MPO)-specific mAb (1/150 dilution; R&D systems) and a mouse

anti-IL-1b antibody (1/200 dilution; OriGene). A donkey anti-goat

IgG (H+L) antibody conjugated to a fluorophore with an emission

peak at 647 nm (1/500; Biotium), a donkey anti-rabbit IgG (H+L)

antibody conjugated to a fluorophore with an emission peak at 568

nm (1/500; Biotium), and a donkey anti-mouse IgG (H+L) antibody

conjugated to a fluorophore with an emission peak at 488 nm (1/500;

Biotium) were utilized as secondary antibodies. DNA was

counterstained by DAPI (1/10.000; Sigma-Aldrich). Images were

acquired using a Leica TCS-SP8 confocal microscope with a 20x

objective. The percentage of NET-releasing cells was determined by

eye examination of several fields from every sample. Quantification of

NET release was conducted with a MPO/DNA complex ELISA as

previously demonstrated (56, 57). Briefly, 50 ml of a 5 mg/ml anti-MPO

mAb was coated onto 96-well plates overnight at 4°C. Following

washing, 20 ml of samples and 80 ml incubation buffer with peroxidase-
labeled anti-DNA mAb were added. The plate was incubated for 2

hours at room temperature with shaking at 300 rpm. After washing,

100 ml ABTS peroxidase substrate was added, and absorbance at 405

nm was measured after 20 minutes in the dark. NET formation was

expressed as the percentage increase in absorbance above the control.
2.6 ROS measurement

Measurement of respiratory burst of neutrophils after incubation

with different stimuli was performed using the FagoFlowEx Kit (exbio)

according to the manufacturer’s instructions with modifications as

follows. Purified neutrophils from the healthy individuals were

incubated in the presence of dihydrorhodamine 123 (DHR123), for

30 minutes, at 37°C, with non-opsonized as well as with opsonized L.

pneumophila. After incubation, cells were lysed, and ROS were

determined using a flow cytometer (BD FACSCalibur).
2.7 NET structures isolation and co-
cultivation with L. pneumophila

Peripheral blood neutrophils were seeded in 6-well culture

plates at a density of 1 × 106 cells per well in RPMI 1640

medium, supplemented with 2% healthy serum, for 20 minutes in

order to settle and were then incubated with ionomycin as a positive

control and with opsonized L. pneumophila bacteria for another 3

hours (37°C, 5% CO2). After incubation, the supernatant was

removed, and cells were washed with fresh medium. NET

structures were collected after vigorous agitation. The medium

was centrifuged at 50 x g for 5 minutes at 4°C to remove debris
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and NETs were collected in supernatant phase (58). For the co-

cultivation assay assessing the ability of NETs to inhibit L.

pneumophila proliferation, heat-inactivated L. pneumophila was

used to trigger NET release in neutrophils in order to avoid pre-

existing alive bacteria on the NET structures. Extracellular DNA

formations were collected and 300ml of each condition was

incubated with freshly prepared L. pneumophila bacteria in a

ratio of 3:1 for 30 minutes, at 37°C, and after incubation directly

plated onto prewarmed BCYE agar plates for the examination of the

ability of ionomycin-induced and L. pneumophila-induced NETs to

retain L. pneumophila growth.
2.8 NET protein isolation for biochemical
assays

To isolate the protein load of the produced NETs, supernatants

were removed following incubation with the stimuli for 3 hours in the

6-well plates as mentioned previously, and cells were washed with

freshmedium once. DNAwas digested withmicrococcal nuclease (10

U/ml; Thermo Fisher) for 20 min at 37°C in the presence of 50 mM

Tris-HCl pH 8.0 and 5 mM CaCl2. Supernatants were collected and

centrifuged at 300 x g for 5 min at 4°C to remove debris and

supernatants containing the protein load were transferred to a fresh

tube for storage at −80°C until further analysis (59).
2.9 Western Blot

An automated Jess Simple Western Blot system (ProteinSimple,

USA) was used according to the manufacturer’s standard method for

12-230-kDa Jess separation module (SMW004). The same volume

from each NET protein sample was mixed with 0.1X Sample buffer and

Fluorescent 5X Master mix (ProteinSimple) in the presence of

fluorescent molecular weight markers and 400 mM dithiothreitol

(ProteinSimple) and was denatured at 95°C for 5 min. The ladder

and the protein samples were separated in capillaries as they migrated

through a separation matrix. After separation, proteins were

immobilized by photoactivated capture chemistry on the capillaries.

A 1/1000 dilution of the mouse anti- IL-1b antibody and a RTU anti-

mouse secondary antibody (ProteinSimple) were utilized for the

identification of the target. Peroxyde/luminol-S (ProteinSimple) was

used to establish the chemiluminescent revelation. The Compass

Simple Western software (Protein Simple) was utilized to capture a

digital image of the capillary’s chemiluminescence. The software

automatically determined the area, signal/noise ratio, and heights

(chemiluminescence intensity).
2.10 Ethics approval statement

All study participants provided written informed consent in

accordance with the principles expressed in the Declaration of

Helsinki. Participants’ records were anonymized and de-identified

prior to analysis to ensure anonymity and confidentiality. The study
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protocol was approved by the Ethics Committee of the Hellenic

Pasteur Institute (Approval Number 3702/12 - 06- 2024).
3 Results

3.1 Neutrophils phagocytose L. pneumophila
following opsonization

One of the mechanisms that neutrophils use to eliminate

pathogens is phagocytosis. Hence, we investigated whether

neutrophils are able to phagocytose L. pneumophila in in vitro

conditions. Image analysis by confocal microscopy revealed that

healthy control (HC) neutrophils were able to phagocytose serum-

opsonized L. pneumophila bacteria, when the latter were added in

HC cultures (Figure 1A). In contrast, phagocytosis was absent in

non-opsonized L. pneumophila bacteria (Figure 1A). Quantification

of phagocytosis was performed using Imaris v 9.3.1 and was defined

as the percentage of neutrophils with L. pneumophila bacteria inside

them against the total number of neutrophils (Figure 1B).

Additionally, 3D models were constructed using Imaris v 9.3.1

which clearly show that in opsonized conditions, L. pneumophila

are inside the neutrophils in contrast to non-opsonized conditions

(Figure 1C). These findings demonstrate the ability of neutrophils

to phagocytose in vitro L. pneumophila after serum opsonization.
3.2 Neutrophils produce ROS in a
phagocytosis-dependent manner in
response to L. pneumophila

It has been previously shown that neutrophils are able to produce

ROS as another defense mechanism in response to L. pneumophila

(60). However, the implication of phagocytosis in the generation of

ROS was not investigated. To assess the role of phagocytosis in ROS

generation in neutrophils by L. pneumophila, HC neutrophils were

cocultured with L. pneumophila in the presence or absence of

opsonization conditions. In the presence of opsonization,

coculturing with L. pneumophila indicated a statistically significant

increase of ROS generation compared to HC neutrophils, as

demonstrated by flow cytometry (Figure 2B). In the absence of

opsonization, L. pneumophila did not induce ROS generation

(Figure 2A) compared to controls. These findings indicate that

ROS generation is induced in neutrophils by L. pneumophila

bacteria in a highly phagocytosis-dependent manner since non-

opsonized bacteria lose the capacity to induce ROS.
3.3 Neutrophils release NETs as a response
to L. pneumophila

Taking into account the ability of neutrophils to generate NETs as

a defense mechanism in a potential infection (28, 30), we investigated

whether L. pneumophila infection could potentially induce this

defense mechanism. Coculturing of HC neutrophils with opsonized
frontiersin.org
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L. pneumophila indicated statistically significant increased NETs

release compared to controls (Figure 3B), as observed by

immunofluorescence (Figure 3A) and quantified by MPO/DNA

complex ELISA (Figure 3C). HC neutrophils cocultured with L.
Frontiers in Immunology 05
pneumophila demonstrated lower levels of NETs release compared

to ionomycin treated HC neutrophils (Figure 3B).

Previous reports demonstrated that NET release triggered by

Gram-negative pathogens is ROS-dependent (61, 62). Since L.
FIGURE 2

Neutrophils produce ROS in response to L. pneumophila in a phagocytosis-dependent manner. ROS production in neutrophils from (A) HC
neutrophils (mean ROS MFI ± SD; 12.45 ± 2.654, n=7) cocultured with non-opsonized L. pneumophila in serum-free conditions (mean ROS MFI ±
SD; 10.72 ± 1.703, n=7. p = 0.0903) and (B) HC neutrophils (mean ROS MFI ± SD; 3.835 ± 0.9617, n=10) cocultured with opsonized L. pneumophila
(mean ROS MFI ± SD; 7.819 ± 2.190, n=10. p = 0.002). Data from 7 independent experiments in panel (A) and 10 independent experiments in panel
(B) are presented as means ± SDs (n.s., not significant, p >0.05; **p <0.01).
FIGURE 1

Neutrophils phagocytose opsonized L. pneumophila. (A) HC neutrophils cocultured with either non-opsonized (serum-free conditions) L.
pneumophila (mean ± SD; 0.0% ± 0, n=3) or serum-opsonized L. pneumophila (mean ± SD; 84.19% ± 12.45, n=3. P = 0.0072), (confocal
microscopy; blue: DAPI/DNA, green: MPO, red: L. pneumophila). Images were acquired with a Leica TCS SP8 confocal microscope using a 63x
objective. Scale bar, 20 mm. (B) Quantification of phagocytosis using Imaris v 9.3.1. Data from 3 independent experiments in panel (B) are presented
as means ± SDs (**p <0.01). (C) 3D reconstruction of neutrophils infected with opsonized and non-opsonized L. pneumophila. Scale bar, 10 mm.
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FIGURE 3

L. pneumophila induces NETs in neutrophils in vitro in a ROS-independent manner. (A) NETs in HC peripheral blood neutrophils (mean ± SD; 4.4% ±
1.647, n=10), either treated with ionomycin (mean ± SD; 30.6% ± 4.742, n=10, p < 0.0001) or cocultured with L. pneumophila (mean ± SD; 22% ±
3.801, n=10. p < 0.0001) (confocal microscopy; blue: DAPI/DNA, green: MPO, red: citH3). Images were acquired with a Leica TCS SP8 confocal
microscope using a 20x objective. Scale bar, 100 mm. (B) Quantification of NET-releasing neutrophils from (A) and (C) Quantification of NET
releasing neutrophils with MPO/DNA complex ELISA. (D) NETs in HC peripheral blood neutrophils cocultured with L. pneumophila in the presence
(mean ± SD; 15.5% ± 4.123, n=4. p > 0.9999) or absence (mean ± SD; 14% ± 3.651, n=4.) of DPI. Images were acquired with a Leica TCS SP8
confocal microscope using a 20x objective. Scale bar, 100 mm. (E) Quantification of NET-releasing neutrophils from (D) Data from 10 independent
experiments in panel (B), from 6 independent experiments in panel (C) and 4 independent experiments in panel (E) are presented as means ± SDs
(n.s., not significant, p >0.05; **p <0.01; ****p <0.0001).
Frontiers in Immunology frontiersin.org06
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pneumophila has the capacity to induce ROS to HC neutrophils we

investigated if the observed increase in NETs release is ROS-

dependent. HC neutrophils pre-treated with DPI before the

addition of L. pneumophila demonstrated similar NET release to

HC treated with L. pneumophila alone (Figures 3D, E). This finding

indicates that NET release by L. pneumophila is ROS-independent.
3.4 NETs are unable to restrain L. pneumophila
growth in vitro

Given the bactericidal properties of NETs (30) and the ability of

neutrophils to release NETs in response to L. pneumophila, we

examined whether these NET structures can inhibit L. pneumophila

growth in vitro. L. pneumophila-induced NET structures in vitro did

not have an effect on the growth of L. pneumophila compared to control

conditions, as observed macroscopically (Figures 4A, B). Similarly,

ionomycin-induced NET structures had no significant effect. This

finding indicates that L. pneumophila growth is not inhibited by NETs.
3.5 Identification of IL-1b on NETs induced
by opsonized L. pneumophila

IL-1b is a major proinflammatory cytokine that plays a pivotal

role in initiating and regulating the cytokine storm, which can
Frontiers in Immunology 07
ultimately result in multi-organ failure (51). Considering that

multi-organ failure is a common complication of LD and that

NETs can express bioactive IL-1b under inflammatory conditions

(43, 44, 63, 64), we investigated the presence of IL-1b on NETs

induced by L. pneumophila. NETs generated in vitro by HC

neutrophils in response to L. pneumophila were decorated with IL-

1b as observed by confocal microscopy (Figure 5A) and confirmed by

immunoblotting (Figure 5B). On the other hand, IL-1b was not

prevalent on ionomycin-induced NETs. This finding suggests that IL-

1b is expressed on NETs induced by L. pneumophila in vitro.
4 Discussion

In this report we demonstrated for the first time that HC

neutrophils infected in vitro with opsonized L. pneumophila,

produce NETs decorated with IL-1b. Although neutrophils have

been reported to release NETs decorated with IL-1b in sterile

inflammation (43, 44, 63, 64), the expression of IL-1b on NETs

due to an infecting agent has not been reported previously.

Moreover, we demonstrated that this NETs release is not ROS-

dependent and L. pneumophila growth is unaffected by NETs.

Neutrophils are able to restrict L. pneumophila infection as

previously demonstrated (60, 65, 66), however the mechanism of

the immune response has only partially been explored. In agreement
FIGURE 4

L. pneumophila proliferation is not inhibited in the presence of NET structures. (A) L. pneumophila cultures in BCYE plates (mean CFU/ml ± SD; 195.3 ±
80.17, n=4.) in the presence or absence of NETs induced by different stimuli; ionomycin (mean CFU/ml ± SD; 211.3 ± 74.27, n=4. p = 0.9909) or L.
pneumophila (mean CFU/ml ± SD; 202.8 ± 72.41, n=4. p = 0.9990) or control NETs (vehicle from untreated neutrophils) and (B) Quantification of CFU from
(A). In panel (B), data from 4 independent experiments are presented as means ± SDs (n.s., not significant, p >0.05).
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with the findings of others, we also observed that opsonized L.

pneumophila bacteria were significantly phagocytosed by

neutrophils, but non-opsonized L. pneumophila were phagocytosed

only to a small extend (60, 67). Also, in accordance with previous

studies (60, 66), we demonstrated that neutrophils produce ROS in

response to L. pneumophila. However, we further determined that

ROS production was phagocytosis-dependent, since the infection

with opsonized L. pneumophila was resulting in significantly more

ROS than non-opsonized bacteria. Moreover, we provide evidence

for the first time that opsonized L. pneumophila induced significant

NET release in vitro in HC neutrophils. To our knowledge, there is no

previous research on the ability of L. pneumophila to induce NET

release, nor the role of NETs in host defense against L. pneumophila

infection. Several other pneumonia-causing bacteria, such as

Streptococcus pneumoniae (68), Staphylococcus aureus (69),

Haemophilus influenzae (70), Klebsiella pneumoniae (35), and

Mycoplasma tuberculosis (71) have been previously studied and are

also known to induce NET release (30). Additionally, we observed

that NET release was ROS-independent, since NET release was not

affected after the inhibition of ROS. Initially, it was thought that only

ROS-dependent NET release was possible (62), however, Pilsczek
Frontiers in Immunology 08
et al. reported a novel NET release mechanism in response to S.

aureus that was ROS-independent (69). Leishmania parasites have

also been found to trigger ROS-independent NET release (72).

Functional studies regarding the NET structures induced by

opsonized L. pneumophila as well as by ionomycin demonstrated

that these NETs were unable to restrain L. pneumophila growth in

vitro. Bactericidal properties of NETs alone have also been

questioned in the case of S. aureus (73). Likewise, several

pneumonia-causing bacteria are known to have evolved

mechanisms that escape NETs, like S. pneumoniae (68), S. aureus

(74), H. influenzae (70) and M. tuberculosis (71).

In certain instances, NETs not only fail to benefit the host, but

instead they may contribute significantly to the pathophysiology of

various diseases (75). For example, it has been demonstrated that in

sepsis patients, NETs decorated with Tissue Factor are implicated in

the initiation of the coagulation cascade, which is a critical step in

disseminated intravascular coagulation and ultimately lead to

multi-organ failure (76). Additionally, the excessive release of

NETs has been linked to multiple organ dysfunction in sepsis, as

inhibiting NET release led to diminished organ dysfunction and

reduced lethality in septic mice (77). Specifically, the protein load of
FIGURE 5

L. pneumophila induces IL-1b expressing NETs in vitro. (A) NETs in HC peripheral blood neutrophils, either treated with ionomycin or cocultured
with L. pneumophila (confocal microscopy; blue: DAPI/DNA, red: citH3, magenta: MPO, green: IL−1b). Images were acquired with a Leica TCS SP8
confocal microscope using a 20x objective. Scale bar, 20 mm. (B) Western Blot analysis of NET proteins derived from healthy controls after treatment
with ionomycin or coculture with L. pneumophila.
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NETs has also been linked to non-infectious pathologies (78–82).

IL-1b was previously identified as a decorative component of NETs

in patients with inflammatory diseases like active ulcerative colitis

(63) and non-alcoholic steatohepatitis (43). Additionally, IL-1b has

been identified on NETs of Familial Mediterranean Fever patients

during their attack episodes (44, 64). Interestingly, in Familial

Mediterranean Fever patients, circulating levels of IL-1b are not

correlated to the severity of the disease, however, they respond

highly to IL-1b blockade therapy, indicating its fundamental role in

the orchestration of the disease (83, 84).

The ability of IL-1b blockade therapy to prevent multi-organ

failure has been previously evaluated. In sepsis patients, in the

subgroup of multi-organ dysfunction syndrome, where the

inflammasome pathway is implicated, anakinra had been shown

to have beneficial effects (85). Additionally, a subgroup of patients

with COVID-19 was linked to increased levels of IL-1b, severe
cytokine storm and hyperinflammatory symptoms (86, 87). Several

studies have investigated the role of anakinra treatment on COVID-

19 revealing beneficial results (48, 88–91).

This study’s main limitation is the absence of clinical specimens

in order to observe NETs ex vivo or in situ in patient biopsies. This

leads to the lack of direct clinical evidence. Furthermore, another

limitation is the lack of functional assays of IL-1b on L.

pneumophila induced NETs which would clarify its contribution

to the disease. Further studies are needed to expand our findings

and improve our understanding of the pathophysiology of LD.

In conclusion, we provide evidence that upon L. pneumophila

infection, neutrophils fight bacteria by phagocytosis, generation of

ROS in a phagocytosis-dependent manner and release of NETs.

These findings contribute significantly to the understanding of the

effect of neutrophils in neutralizing a L. pneumophila infection. In

addition, the presence of NETs decorated with IL-1b in response to

L. pneumophilamay provide some insight into the pathophysiology

of multi-organ failure in LD and could trigger further investigation

into its association with the disease.
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