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Dendritic cell-based
immunotherapy for head and
neck squamous cell carcinoma:
advances and challenges
Wenyue Chen, Zhengqiang Li , Jin Tang and Shuguang Liu*

Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology,
Southern Medical University, Guangzhou, Guangdong, China
Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer with

poor response to conventional treatments such as surgery, chemotherapy and

radiotherapy. Immune checkpoint inhibitors (ICIs) have revolutionized the

treatment of HNSCC, but many patients still exhibit poor responses due to

insufficient T cell infiltration and impaired dendritic cell (DC) function within the

tumor microenvironment. DCs are crucial for initiating anti-tumor immune

responses, but their dysfunction in HNSCC leads to inadequate T cell

activation and immune evasion. DC-based immunotherapy offers a promising

approach to enhance ICIs therapy efficacy by improving DC function and

enhancing T cell-mediated anti-tumor immune response. This review

discusses the mechanisms underlying DC dysfunction in HNSCC, recent

advances in DC-based immunotherapy, and the potential for combination

therapies to overcome resistance to ICIs. Future strategies should focus on

optimizing DC vaccines and developing personalized treatments to improve

outcomes for HNSCC patients.
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1 Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer

globally, the overall efficacy of conventional treatments such as surgery, chemotherapy and

radiotherapy, is unsatisfactory, with a five-year survival rate of only about 60% for HNSCC

patients (1). Immune checkpoint inhibitors (ICIs), especially PD-1/PD-L1 inhibitors, have

emerged as a crucial therapeutic modality for HNSCC in recent years. However, a

substantial proportion of HNSCC patients exhibit poor response to PD-1/PD-L1

inhibitors (2). The underlying reasons for this phenomenon are multifaceted. First,

HNSCC tumors often display insufficient T cell infiltration in the tumor parenchyma

compared to normal tissues, a characteristic that has been termed “cold tumors” (3).
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Second, HNSCC is associated with impaired or inhibited T cell

priming (4) and the development of T cell exhaustion (5).

Dendritic cells (DCs) are the key antigen-presenting cells

(APCs) for cancer immunosurveillance and the initiation of

anti-tumor immune responses (6). Studies have demonstrated

that tumor-induced DC dysfunction is one of the major causes

of impaired T cell priming, decreased T cell infiltration, and

T cell exhaustion (7). Therefore, the lack and dysfunction of

tumor-infiltrating DCs are closely associated with poor response

to PD-1/PD-L1 inhibitors.

DCs play an integral role for T cell priming in tumors. DCs

located in peripheral and internal tissues recognize a variety of

antigens. Upon stimulation with tumor antigens, DCs migrate to

regional draining lymph nodes (DLNs), where they activate tumor-

specific T cells that mediate anti-tumor immune responses (8–10).

In HNSCC, however, DC function is severely impaired. Various

immunosuppressive cells within the tumor microenvironment

(TME), such as tumor cells, myeloid-derived suppressor cells

(MDSCs), regulatory T cells (Tregs), and immunosuppressive

cytokines, interfere with DC antigen uptake, antigen presentation,

maturation, and migration. These interactions prevent DCs from

functioning as immune activators and transform them into an

immunosuppressive phenotype (11–13), which further leads to T

cell dysfunction (9).

Hence, restoration of suppressed DC function is essential to

reactivate anti-tumor immunity and increase the response rate of

HNSCC to PD-1/PD-L1 inhibitors. It has been shown that DCs in

the regional DLNs and tumors of HNSCC are critical for PD-1/

PD-L1 inhibitors, and increasing the infiltration of intratumoral

DCs significantly improves the response rate to PD-1/PD-L1

inhibitors. DC-based immunotherapy heats up “cold” tumors by

increasing intratumoral T cell infiltration, thereby improving the

efficacy of PD-1/PD-L1 inhibitors and exerting a synergistic

anti-tumor effect. Additionally, it enables the direct killing and

clearance of tumor cells by priming and expanding T cells,

mediating tumor antigen-specific cytotoxic T lymphocyte (CTL)

responses. It is reasonable to conclude that DC-based

immunotherapy represents a promising approach for the

treatment of HNSCC.

Currently, the application of DC-based immunotherapy in

HNSCC is still in its early stages. Initial studies, while obtaining

optimistic results, have also led to the emergence of new questions

and challenges. For example, it remains unclear how the presence of

immunosuppressive DCs and the expression of PD-1/PD-L1 on

DCs may interfere with the efficacy of DC vaccines (14, 15). Some

technical challenges such as antigen loading, vaccine quality

control, and DC preservation also remain to be tackled (16, 17).

This article provides an overview of the mechanisms underlying the

anti-tumor functions of DCs and their impairment in HNSCC,

potential therapeutic targets, recent advances in DC vaccines for

HNSCC, and discusses existing challenges and limitations. The aim

is to provide new insights for the further clinical translation of

potential therapeutic targets of DCs, as well as for the future clinical

application of DC-based immunotherapy.
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2 DCs and their roles in HNSCC

In HNSCC, multiple subtypes of DCs exhibit their distinct and

unique roles. The most well-studied subtypes are conventional DCs

(cDCs) and plasmacytoid DCs (pDCs). cDCs are efficient at antigen

presentation, while pDCs are adept at producing type-I interferons

(IFNs). In addition to these two subtypes, mature dendritic cells

enriched in immunoregulatory molecules (mregDCs), a newly

discovered subtype, have been found to be closely related to

disease prognosis of HNSCC. DCs in HNSCC are pivotal for

initiating anti-tumor immune responses by capturing and

processing tumor antigens, migrating to regional DLNs, and

presenting antigens to T cells (Figure 1) (18–20). However, the

immunosuppressive TME often hampers their functions, which

further contributes to T cells inhibition. In the context of ICIs

therapy, DCs can enhance treatment efficacy by improving antigen

presentation and T cell activation, but their function must be

restored or optimized to overcome the immunosuppressive

barriers posed by the tumor.
2.1 DC function and dysfunction in HNSCC

2.1.1 cDC1
The cDC subtype consist of two groups: cDC1 and cDC2.

cDC1s exist in various tissues, including blood, lymph nodes,

spleen, skin, lung, ileum, Peyer’s patches, intestine, liver, and

tonsils. Human cDC1s express multiple TLRs, including TLR1,

TLR3, TLR6, and TLR8 (21). However, there is a lack of expression

of TLR4 and TLR9 on cDC1s in HNSCC, while they are expressed

in mice (22).

The most notable ability of cDC1s is antigen cross-presentation.

They uptake antigens from necrotic tumor cells, transport them to

draining lymph nodes, and cross-present soluble and particulate

antigens via MHC class I molecules (MHC-I) to cancer-specific

CD8+ T cells, stimulating tumor-specific CTL responses (23). This

unique function relies on the restricted expression of C-type lectin

domain family 9A (Clec9a, also known as DNGR-1) (24).

The dysfunction of cDC1 in HNSCC is a key factor contributing

to resistance to anti-PD-1 (aPD-1) therapy. The low expression of

CD86 and CD40 on cDC1s, along with impaired DC migratory

function in aPD-1-resistant HNSCC, contributes to T cell priming

inhibition and reduced infiltration of CD8+ T cells in the DLNs.

Targeting cDC1 with tumor antigens upregulates CD86 and CD40

expression and promotes their CCR5-mediated migration into

DNLs. This leads to CD8+ T cell priming and increased

intratumoral infiltration, thereby converting “cold” tumors into

“hot” tumors and reversing resistance to aPD-1 (25).

2.1.2 cDC2
cDC2 primarily presents antigens to naïve CD4+ T cells,

priming the differentiation of T helper 2 (Th2) cells and Th17

cells via MHC-II presentation (26, 27), and initiates type 3 immune

responses by activating ILC3 and Th17 cells.
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cDC2 mediates the immune response against human

papillomavirus (HPV)+HNSCC. cDC2s can migrate with loaded

antigens to the T-B border in the lymph node (28), where they

present antigens to CD4+ T cells and induce differentiation into T

follicular helper cells (Tfh) (29). Tfh are a specialized subpopulation

of CD4+ T cells that help B cells produce antibodies against external

pathogens (30). Subsequently, Tfh further activate B lymphocytes to

generate an immune response via the CXCL13/CXCR5 axis (31).

Notably, only cDC2 can migrate to the T-B border (28), suggesting

their integral role in fighting HPV+HNSCC.

In addition, in HNSCC, lactate secreted due to PKM2

upregulation inhibits the NF-kB pathway, thereby promoting
Frontiers in Immunology 03
Galectin-9-mediated immunosuppression (32). This may

contribute to the impaired migration of cDC2 in HPV+HNSCC

(33). Moreover, it has now been confirmed that Galectin-9 interacts

with PD-1 and TIM-3 to regulate T cell death (34). These findings

suggest that Galectin-9 could be a potential target for improving

cDC2 migration in HNSCC.

2.1.3 pDC
pDCs, the major producer of IFN-I in HNSCC, detect antigenic

RNA and DNA through TLR7 and TLR9, respectively (35–38), and

signal through TLR7/9-MyD88-NF-kB pathway (39), leading to

pDC maturation, and the secretion of IFN-I (40). As a key
FIGURE 1

DC-mediated Anti-tumor Immune Response. DCs induce anti-tumor immune responses through a series of steps: Ag uptake, Ag processing,
maturation, migration of DCs to the T cell regions of sentinel lymph nodes, Ag presentation to T cells, and T cell activation. First, iDCs detect Ags of
dying tumor cells through receptors such as TLRs and PRRs. Next iDCs uptake antigens and initiate the maturation process. With the help of
chemokine receptors iDCs migrate spontaneously to secondary lymph nodes. Along the way, they up-regulate the expression of MHC class I and
class II molecules and costimulatory molecules (CD80, CD86 and CD40). Once reach lymph nodes, mDCs present Ag-derived peptides to T cells via
MHC class I and II molecules and provide the second signals necessary for T cell activation, initiating the activation and differentiation of T cells.
TCR, T cell receptor; mDC, mature DC; iDC, immature DC.
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component, pDC-derived IFN-I has a broad impact on immune

regulation. It enables pDCs to initiate adaptive CTL priming

responses, contributes to long-term T cell survival and Th cell

generation (41), which are essential to the antiviral immune response.

However, pDCs demonstrate an immunosuppressive function

in HNSCC, and high pDCs infiltrations are associated with poor

prognosis (42). The immunosuppressive microenvironment in

HNSCC inhibits pDC maturation and impairs their capacity to

secrete IFN-I. This prevents the proliferation and inhibits the

functions of CD4+ Th cells and CD8+ CTLs, while facilitating the

infiltration of Tregs (43). In turn, the increasing intratumoral

infiltration of Tregs further contributes to immunosuppression,

worsening the dysfunction of pDCs. One study indicated that

depleting pDCs in HNSCC leads to a decrease in infiltrated Tregs

and MDSCs, and enhances tumor control in mouse models (42),

suggesting targeting tumor-infiltrated pDCs could be a potential

approach to improve HNSCC prognosis.

2.1.4 mregDC
Recently, a new subpopulation of DCs in the TME of HNSCC

was identified: myeloid DCs enriched in regulatory molecules, also

known as mregDCs, which express IL23A and IL12B. This type of

DC controls Tregs and IL-17-secreting T cells in the TME. The

Study found that high expressions of IL23A, IL17A, and IL17F are

associated with a favorable prognosis in HNSCC. These finding

suggested that the expression of IL-23A and IL-12B of mregDCs

may contribute to the induction of IL-17 in Th17 and CD8+ T

cells (44).

Intriguingly, despite maintaining a mature phenotype,

mregDCs are incapable of initiating a sufficient immune response

within TME. This phenomenon is associated with the Treg-

mregDC crosstalk. The TME is characterized by an abundance of

prostaglandin E2 (PGE2), which has been demonstrated to enhance

the production of CCL17 and CCL22 by mregDCs via PGE2-EP2/4

signaling (45). Both CCL22 and CCL17 serve as potent chemo-

attractants for Tregs and are responsible for CCR4-dependent

recruitment of Tregs into the tumor niche (46). Consequently,

mregDCs facilitate the accumulation of Tregs around lymphatic

vessels in the peripheral tumor stroma, establishing a Treg-

mregDC-lymphatic niche (47). Within this peri-lymphatic niche,

mregDCs promote Tregs activation as well as the upregulation of

their inhibitory molecules and co-stimulatory molecules. In turn,

Tregs primarily target mregDCs and inhibits mregDC migration to

the DLNs (47). This inhibition effectively restricts the presentation

of tumor antigens by mregDCs, ultimately impeding the initiation

of anti-tumor immune responses.
2.2 Factors contributing to DC dysfunction
in HNSCC

TME is a dynamic network system composed of tumor cells,

immune cells, fibroblast, endothelial cells, extracellular matrix,

cytokines, chemokines and receptors (48). Tumors attract and
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reprogram DCs to give them immunosuppressive and pro-

angiogenic functions (49–51). Additionally, the interactions between

DCs, T cells, and MDSCs contribute to the formation of an

immunosuppressive environment.

2.2.1 MDSCs hamper DC maturation
MDSCs are a significant regulatory cell population originating

from the bone marrow. They exhibit an immature phenotype and

exert immunosuppressive effects in the TME (52). Their generation

is due to the pathologically activated state of immature myeloid cells

and the tumor-induced blockade of their differentiation into DCs or

other mature myeloid cells. This blockade is one of the major

mechanisms that promote cancer progression (53), and it occurs

under cancer conditions and is influenced by tumor-derived factors

such as VEGF, IL-6, and IL-1b (54).

Accumulation of MDSCs in TME associates with the inhibition of

DC differentiation, which is one of the major immunological

abnormalities in cancer and leads to suppression of anti-tumor

immune responses. MDSCs infiltration in HNSCC is typically

associated with advanced clinical stage and pathological grade,

indicating poor overall survival (55). MDSCs are recruited into TME

mainly via CCL2/CCR2 axis, CXCLs-CXCR1/2 axis, and CCR5/CCR5

ligand axis (53). In addition, abnormal DC differentiation, resulting

from excessive activation of the JAK-STAT3 pathway, also contributes

to increased accumulation of MDSCs (56).

What is particularly intriguing about these cells is their complex

relationship with DCs. On one hand, MDSCs negatively influence

the maturation of DCs through several mechanisms. These include

reducing antigen uptake by DCs, blocking of the migration of both

iDCs and mDCs, inhibiting of the capacity of DCs to induce

IFN-g-producing T cells, and altering the cytokine production of

DCs toward an anti-inflammatory phenotype (12). The production

of the pro-inflammatory cytokine IL-23 by DCs and its

downstream induction of Th17 cells may contribute to the effects

of MDSCs on DCs (57). However, these mechanisms have not been

fully investigated.

On the other hand, under certain conditions, MDSCs can be

induced and transformed into mature myeloid cells, including

mDCs, thereby breaking the suppression (58). The IFN-a
produced by pDCs upon the stimulation of cytosine-

phosphorothioate-guanine (CpG) plays a major role in promoting

the maturation of MDSCs. Since CpG is an agonist for TLR9, it can

be applied as an adjuvant for DC vaccine (59). A study of breast

cancer in a murine mammary carcinoma model showed that

increased extracellular release of Heat shock protein 70 (Hsp70)

induces MDSCs to differentiate into mature DCs, alleviating

MDSC-mediated immune suppression and ultimately activating a

potent anti-tumor immune response (60). Since Hsp70 is also

expressed on HNSCC cell membranes (61), it is reasonable to

speculate that the same mechanism is also existing in HNSCC.

These findings provide a molecular basis for inducing the

differentiation of MDSCs into mDCs, potentially serving as a

novel strategy to enhance the effectiveness of DC-based

immunotherapy for HNSCC.
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2.2.2 Nature killer cells contribute to DC
maturation, but their number decreases in
HNSCC

NK cells are significantly decreased in HNSCC (62), which may

contribute to the abnormal DC maturation and hamper the

clearance of iDCs. NK cells promote DC maturation and enhance

their ability to stimulate naïve CD4+ T cells through cell-cell

contact (63) and the secretion of soluble factors such as TNF-a
and IFN-g. Intriguingly, NK cells also induce the lysis of iDCs (58).

However, the underlying mechanism remains poorly understood,

and it is not yet clear under what circumstances iDCs would further

mature or be killed by NK cells.
2.3 DC dysfunction contributes to T cell
exhaustion and “cooling” the tumor

2.3.1 Immunosuppressive DCs inhibit T cell
function and induce Tregs

The antigen cross-presentation function of DCs is of

paramount importance for the generation of anti-tumor T cells,

as previously highlighted. However, a growing body of evidence

suggests that, in addition to their beneficial effects, DCs can

sometimes exert an opposing influence within the TME (64, 65).

The modification and inhibition of tumor-infiltrating DCs by the

TME compromise their ability to initiate robust anti-tumor

immune responses and may even facilitate tumor progression.

Consequently, tumor-infiltrating DCs induce T cell tolerance

rather than immunity via tumor antigen cross-presentation in

tumor-bearing hosts (66).

LAMP3+cDCs represent a mDC subset with an “active”

phenotype and a higher migratory propensity, identified in the

TME of various tumor types by Cheng et al. In nasopharyngeal

carcinoma (NPC) the infiltration of LAMP3+cDCs in tumors is

significantly increased than in normal tissues (67). LAMP3+cDCs

interact with T cells through the PD-1/PD-L1 (68). CMTM6, a

protein that can reduce the half-life of PD-L1, is highly expressed in

LAMP3+ cDCs (67). Moreover, LAMP3+ DCs also express

PDCD1LG2, CD274, NECTIN2, CD80, and CD86, which are

immune checkpoints targeting CTLA-4, TIGIT, and PDCD1 thus

inhibiting CD8+T cell activation (69). Additionally, cDC1-derived

LAMP3+cDCs promote the differentiation of Tregs by expressing

higher levels of BTLA, while cDC2-derived LAMP3+cDCs express

chemokine CCL17 to recruit Tregs into the TME (68). Collectively,

through these mechanisms, LAMP3+cDCs contribute to T cell

exhaustion and mediate immunosuppression within the TME.

2.3.2 DC maturation dysfunction leads to T Cell
priming inhibition

The activation of T cells during an immune response requires

two signals. The first signal comes from the T cell receptor (TCR)

recognizing MHC/antigen peptide complexes, the second signal is

provided by co-stimulatory molecules on DCs. Without the second

signal, T cells cannot be effectively activated and may instead
Frontiers in Immunology 05
undergo apoptosis, leading to immunosuppression. Immature

DCs (iDCs) are unable to provide the essential signals for T cell

priming due to the low expressions of MHC I and II molecules and

co-stimulatory molecules (70). Only during the maturation, do DCs

upregulate the expressions of these molecules. Thus, mDCs are

essential for T cell priming (71).

In peripheral circulation, antigens are captured and internalized

by iDCs and activate maturation in normal conditions (72). However,

in the immunosuppressed environment of HNSCC, important

maturation-related receptors are inhibited, such as TLRs, causing

maturation dysfunction. Consequently, these dysfunction iDCs or

semi-mature DCs mediate immunosuppression or immune tolerance

(73) through several mechanisms:

First, dysfunction iDCs inhibit T Cell priming and regulate T

cell anergy and apoptosis by presenting antigens to T cells with the

absence of co-stimulatory signals (74), interacting with T cells via

PD-1/PD-L1 axis, and secreting of TGF-b1 (75).

Second dysfunction iDCs promote the proliferation of T cells

toward phenotypes that contribute to immunosuppression. mDCs

are capable of secreting cytokines (e.g., IL-12) that drive T cell

differentiation into effector cells (e.g., Th1 and CTL). In contrast,

DC maturation dysfunction results in decreased secretion of these

cytokines, thereby altering the direction of T cell differentiation and

leading to the generation of Tregs (74).

Third, iDCs secrete fewer immunostimulatory cytokines compared

to mDCs (76), while releasing higher levels of immunomodulatory

cytokines such as IL-10 and TGF-b and enzymes like indoleamine 2,3-

dioxygenase (IDO) and heme-oxygenase-1 (75). As a result, iDCs

creates an immunosuppressive environment that prevents the immune

system from detecting and eliminating tumor cells, thereby facilitating

tumor immune evasion (77). Meanwhile, the impaired functionality of

T cells also contributes to the poor response of HNSCC to ICIs therapy.

2.3.3 DC migratory dysfunction leads to a
decrease in antigen-specific CD8+T cells

After antigen uptake, DCs migrate spontaneously to DLNs

under the mediation of chemokines (78). mDCs upregulate

chemokine receptors CCR5, CCR7, CXCR4, and chemokine co-

receptor CD38, which is essential for the proper functioning of

chemokine receptors (79, 80). In DLNs, mDCs present antigen to T

cells, thereby activating an immune response.

Current findings have confirmed the importance of cDC1s in

the DNLs in mediating an effective antigen-specific CD8+T cells

anti-tumor response, and in establishing a favorable response to

ICIs therapy in HNSCC (81, 82). However, in HNSCC the

expression of CCL5 was insufficient, and it is associated with

resistance to aPD-1 therapy (25). CCL5 is an important

chemokine that mediates the migration of DCs, and its

insufficient expression may have impaired the migratory function

of DCs, leading to a reduction of functionally normal CDC1s in

DNLs. This impairs the antigen trafficking and presentation

process, resulting in decreased antigen-specific CD8+ T cell

infiltration and contributing to the resistance against aPD-

1 therapy.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1573635
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2025.1573635
3 Leveraging DC functions for HNSCC
treatment

3.1 TLR-mediated DC modulation for
HNSCC therapy

In the peripheral circulation, antigens are captured and

internalized by DCs through phagocytosis, pinocytosis, and

receptor-mediated endocytosis (72). TLRs expressed on DCs are a

type of pattern-recognition receptor (PRR) that enables DCs to

recognize pathogen-associated molecular patterns from pathogens

and tumor cells. TLR activation has profound effects on DCs,

influencing various aspects such as endocytosis, cytoskeletal

rearrangement, migration, antigen processing, and antigen

presentation. Surface TLRs (TLR 1, 2, 4, 5, 6, and 11) bind to

common structural components of tumor cells to mediate antigen

endocytosis, while intracellular TLRs (TLR 3, 7, 8, and 9) detect

nucleic acids, inducing both inflammatory responses and IFN-I

responses (83, 84). Once triggered by tumor or pathogens (19),

TLRs signal through two major pathways, MyD88-dependent

pathway and TRIF-dependent pathway (84), leading to the

production of pro-inflammatory cytokines and the initiation of

immune responses. Given the important roles TLRs play in DC

activation, they are considered potential therapeutic target for

HNSCC treatment.

3.1.1 TLR2
The functions of TLRs in DCs are intricate. Sometimes, their

activation not only mediates the antitumor functions of DCs, but also

impairs the normal functions of DCs. Versican is a large chondroitin

sulfate proteoglycan, and also serves as a TLR2 ligan. It has been

found to be more strongly expressed in the stroma of local metastases

and in the earlier stages of disease in pharyngeal squamous cell

carcinoma (PSCC) (85). A study demonstrated that versican induces

upregulation of IL-6R and IL-10R expression on DCs through TLR2

activation, thereby enhancing the sensitization of DCs to IL-6 and IL-

10. In contrast, IL-10 and IL-6 reprogram sensitized DCs to an

immunosuppressive phenotype that produces IL-10. Additionally,

the inhibition of TLR2 results in alleviation of DC dysfunction (86),

which could be a potential strategy to alter DC dysfunction in PSCC.

3.1.2 TLR3
TLR3 is a receptor for double-stranded RNA selectively

expressed in cDCs. TLR3 triggers cDC maturation and the

production of cytokines, chemokines, chemokine receptors, co-

stimulatory molecules, MHC molecules, and a series of signaling

molecules during maturation (87), contributing to antigen cross-

presentation and the induction of T cell responses. TLR3 can be

upregulated by viral infection and exogenous poly(I:C), triggering a

strong IFN-I response (88). Therefore, it could potentially be

targeted for reversing DC migratory dysfunction.

3.1.3 TLR4
TLR4 is well known for recognizing lipopolysaccharides (LPS)

on the outer membrane of bacteria (89). However, it also
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demonstrates anti-tumor functions. Evidence has shown that DCs

require signaling through TLR4 and its adaptor MyD88 for

processing and cross-presentation of antigens from dying tumor

cells during chemotherapy or radiotherapy (90). Therefore, it is

indeed worth discussing whether targeting TLR4 might enhance the

efficacy of chemotherapy or radiotherapy.

3.1.4 TLR9
TLR9 is a known receptor for detecting bacterial and viral

unmethylated CpG-DNA (36), and mediates DC maturation in a

MyD88-depending manner (18). Similar to TLR4, a recent study on

HPV-associated tumors bearing mice showed that targeting TLR9 is

also capable of initiating DC-mediated anti-tumor immune

response following chemotherapy and radiation therapy (91, 92).

TLR9 senses tumor DNA that released following chemotherapy and

radiation therapy, and facilitates DC accumulation, antigen uptake,

and DC maturation in the TME. It also promotes the migration of

DCs into the DLNs to generate tumor-specific CTLs. However,

these studies were conducted in mice, and additional validation is

needed for targeting TLR9 in human HNSCC, as TLR9 expression

is lacking in human in this context (93). In addition, it is unclear

whether this mechanism exists only in HNSCC following

radiotherapy and chemotherapy.
3.2 Non-TLR DC activation pathways in
HNSCC therapy

3.2.1 Clec9a
Clec9a is a member of the C-type lectin domain family and is

restrictedly expressed on cDC1 (94). Clec9a on the cDC1 surface

can bind to F-actin exposed by dying tumor cells (95).

Subsequently, the surface Clec9a is internalized and diverts

phagocytosed dead cell cargo to a non-degradative recycling

endosome compartment. Clec9a activates Syk and NADPH

oxidase causing phagosomal rupture, which leads to the release of

phagosomal contents into the cytosol and subsequent presentation

via MHC-I. This process facilitates cross-presentation of dead cell-

associated antigens to CD8+ T cells and induces an efficient CTLs

response (96). Clec9a may serve as a potential therapeutic target

that enhances the efficacy of aPD-1 therapy by improving the

function of infiltrating cDC1 cells in HNSCC.

3.2.2 RIG-I-like receptors
HPV+ HNSCC is associated with the long-term viral infection,

particularly high-risk HPV16 (97). Other high-risk subtypes, such

as HPV18 and 33, are most strongly associated with oropharyngeal

cancer, while HPV52 is associated with oral cancer (98).

RIG-I-like receptors (RLRs) are the receptors of viral RNA, and

are key mediators of immune responses in HPV-associated

carcinomas. Both cDCs and pDCs express cytosolic RLRs,

including RIG-I, MDA5, and LGP2. Both RIG-I and MDA5 are

capable of inducing the production of IFNs and pro-inflammatory

cytokines that mediate innate immune responses against virus (99).

In HPV infections, the vial oncoproteins E6, especially those from
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high-risk HPV16, partially impair innate immune signaling pathway

RIG-I/MAVS/TBK1, leading to an unresponsive cellular state that is

conducive to viral persistence and tumorigenesis (100). RIG-I agonist

M8 can be reactivate this pathway and triggers the production of large

amounts of type I/III IFN, thereby enhancing chemotherapy-

mediated cell killing (101). Although LGP2 does not induce the

production of IFNs directly, it promotes the survival and cytokine

production of activated CD8+ T cells in virus infection (102).

Interestingly, RLRs also exhibit anti-tumor effects in non-virus

associated cancer, which has been confirmed by numerous studies.

Selective activation of RIG-I has been demonstrated to enhance the

infiltration of CD8+ and CD4+ T cells with antitumor function in

breast cancer, and has the potential improve the response to immune

checkpoint inhibitors and other immunotherapeutic modalities (103).

Moreover, another study on breast cancer revealed that MDA5-

mediated type-I IFN production is essential for the cross-priming

capability of DCs after radiotherapy; its absence impairs ionizing

radiation-induced IFN-g production by CD8+ T cells (104).

Although no studies have yet examined whether targeting RLRs have

a therapeutic effect on HNSCC, given that Tregs in HPV+/- HNSCC

express IFN-a signaling and general IFN response genes early during

differentiation (105), it is worth discussing whether therapies targeting

RLRs can boost DC cross-priming function, reduce early-activated

subpopulations of Tregs, and enhance the effectiveness of radiotherapy

in HNSCC patients.
4 DC-based Immunotherapy for
HNSCC

In cancer, the efficacy of cytotoxic T cell immunity is significantly

constrained if there is an insufficient number of DCs infiltrating in the

tumor and the regional DLNs. DC-based immunotherapy addresses

this issue through a variety of strategies, including increasing the

number of infiltrating DCs, inducing DC activation, or reducing the

presence of inhibitory immunosuppressive DCs. Currently, a diverse

array of DC-based immunotherapy approaches exists. They vary

from the selection of antigens for vaccines, the methods of antigen

loading, the choice of adjuvants, to the routes of administration.

However, in general terms, DC vaccines can be classified into two

main categories: in situ DC vaccination and ex vivo-generated DC

vaccines (Figure 2) (106, 107).
4.1 Tow major approaches for DC vaccines
preparation

4.1.1 In Situ DC vaccination
In situ DC vaccination is designed to directly target the

activation of DCs present in the lesion or in lymph nodes at

specific sites, as well as their migration to the draining lymph

nodes. There, they present the antigens to immune cells (108). To

date, several agents have been developed for targeting DCs in situ,

including the use of cytokines, RNA, exosomes, and nanoparticle-

loaded therapeutic agents.
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4.1.2 Ex Vivo DC vaccination
In contrast to in situ vaccination, which is susceptible to

interference from in vivo factors such as the immunosuppressive

environment of the TME, ex vivo-generated DC vaccines employ a

distinct strategy. This approach is based on the isolation of DCs

from peripheral blood mononuclear cells (PBMCs). These

personalized PBMCs are treated with exogenous cytokines like IL-

4, granulocyte-macrophage colony-stimulating factor (GM-CSF),

and CD40L to be induced into mDCs, then loaded with antigens/

adjuvants and reinjected into the patient (109).

The first generation of ex vivo-generated DC vaccines used

monocytes cultured with GM-CSF and IL-4 to generate monocyte-

derived DCs (moDCs), which had a poor outcome, with tumor

regression rate of 3.3% (110). In the second generation, maturation

cocktails were introduced in the vaccine, as a result the median

overall survival of this generation increased by 20% (110). Third

generation DC therapy focuses on specific DC subtypes such as

pDCs and cDCs. They are selected from naturally occurring DCs for

their different functions in immune activation and antigen

presentation (110). This more refined vaccine development

strategy helps to avoid interference with therapeutic efficacy

caused by immunosuppressive DCs, resulting in more controlled

and predictable efficacy.

4.1.3 Strengths and limitations of the two
approaches

In situ vaccination activates DCs directly in the patient through

therapeutic agents. However, the influence of the internal environment

of HNSCC patients on DCs is unpredictable. The tumor creates an

immunosuppressive-dominant environment, characterized by the

presence of a wide range of immunosuppressive cells and cytokines.

Additionally, the extremely complex crosstalk between DCs and other

cells in the TMEmakes it difficult to effectively rule out factors that may

interfere with this therapy.

In contrast, ex vivo vaccination induces DCs in a controlled in

vitro environment, which allows for the creation of conditions

favorable to DC maturation and maximizes the exclusion of

interference from immunosuppressive factors. Notably, however,

DCs induced in vitro must eventually be infused back into the

patient. Since DCs are living cells, they will still respond to various

stimuli, and their phenotype may shift. These changes remain

unpredictable and uncontrollable at present.

Both in situ and ex vivo vaccination approaches have been studied

in the treatment of HNSCC. Although the current amount of clinical

data is insufficient to scientifically analyze the efficacy of the two

approaches in HNSCC treatment, comparing the external influences

on DCs in the two approaches suggests that in situ vaccination may

face more potential negative interferences in its application.

In terms of safety, neither in situ nor ex vivo vaccination has

resulted in serious adverse events. However, the preparation of ex

vivo DC vaccines requires the collection of peripheral blood from

the patient, which might lead to some associated adverse effects.

Most patients with advanced HNSCC have complications such as

cachexia and anemia, and therefore may not be suitable for this

treatment strategy. Insufficient blood collection may also result in
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the failure of vaccine preparation (111). In addition, compared with

ex vivo DC vaccines, in situ DC vaccines are easier to prepare, have

a shorter production cycle, and have lower production costs, and

may therefore be more efficiently deployed in clinical applications.
4.2 Current DC vaccines strategies for
HNSCC

4.2.1 Single-target DC vaccines strategies
There are multiple therapeutic targets in tumors, and the

common strategy for tumor-targeted therapy is to bind them with
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antibodies and inhibit their effects. However, the efficacy of this

single strategy is often limited. DC-based immunotherapy provides

a new approach for tumor targeting, which involves mediating the

recognition and killing of tumor cells that overexpress specific

targets by T cells, thereby enhancing tumor control. This new

strategy has been tested in the treatment of HNSCC. The

epidermal growth factor receptor (EGFR) is overexpressed in over

80% of HNSCC patients, and its overexpression is associated with a

poor prognosis (112). A recombinant glutathione-S-transferase-

EGFR fusion protein-pulsed DC vaccine has been developed with

the aim of targeting EGFR+ HNSCC. Results showed that the

vaccine effectively induced high cytotoxicity of CTL responses
FIGURE 2

Two Basic Types of DC Vaccines. DC vaccines can be roughly divided into two types, in situ DC vaccination and ex vivo generated DC vaccine. In
situ DC vaccination can directly target the activation of DCs present in the lesion or in lymph nodes at specific sites by injecting drugs, RNA,
exosomes or nanoparticle-loaded therapeutic agents. And recently exosomes, whether are cell-originated or engineered, are also used as in situ
vaccines. Ex vivo vaccination is based on PBMCs isolated from peripheral blood. These personalized PBMCs are induced to differentiate into iDCs ex
vivo with exogenous cytokines such as IL-4, GM-CSF and CD40L. And then they are loaded with Ags to become fully mature DCs and reinjected
back to the patient. Ag, antigen; iDC, immature DC; mDC, mature DC.
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against EGFR+ cancer cells. Significant anti-tumor immunity was

observed, characterized by increased IFN-g secretion from T cells, a

marked reduction in tumor volume, and prolonged survival (113).

Several studies have been conducted on this single-target DC

vaccine strategy for HNSCC. For example, a Wilms Tumor 1

(WT1) peptide-pulsed DC vaccine, which targets a common WT1

gene mutation in HNSCC (114), and a p53 peptide-loaded DC

vaccine, targeting the p53 gene (115), are already undergoing

clinical trials and will be described in detail in the next section.

In addition, DC vaccines possess distinct advantages over

traditional targeted therapies. There are certain molecules that are

exclusively overexpressed in tumor cells rather than in normal

tissues. However, their specific roles in tumor progression and the

underlying mechanisms remain unclear. As a result, these

molecules are currently utilized solely as prognostic markers, and

no drugs are available to target them. In contrast, in DC-based

therapy, these molecules can be prepared as antigens for loading

onto DCs, in order to induce antigen-specific CTL responses for

targeted killing of tumor cells.

4.2.2 Multi-target DC vaccines strategies
HNSCC is a heterogeneous disease, and mutations within it

occur frequently, leading to high variability in the expression of its

molecules. This variability is highly likely to affect the effectiveness

of a DC vaccine targeting a single antigen. Therefore, increasing the

number of targets for DC vaccines as much as possible will help to

maintain the stability of therapeutic efficacy. This requires that the

antigens used for pulsing DCs have an antigenic spectrum that is as

broad as possible. Currently, the commonly used antigen sources in

the design of this type of DC vaccine for HNSCC are whole tumor

cells and cell lysates.

Hybrid DC vaccines is prepared by fusing DCs with tumor cells,

which allows for the introduction of antigenic information into

DCs. Autologous whole tumor cells encompass the full spectrum of

a patient’s tumor antigens, including mutated neoepitopes,

eliminating the need for individual antigen identification (116).

As early as 2004, a study confirmed the feasibility of producing

hybrid cells using DCs and human laryngeal cancer tumor cells via

electrofusion (117). Subsequent research by Lee et al. showed that

DC-SCC7 cell hybrids vaccine provided significant protection

tumor bearing mice; after subcutaneous vaccination, a reduction

in tumor size (P<0.001) was observed. Moreover, after the

introduction of anti-OX40R monoclonal antibodies as an

adjuvant, survival rates in pulmonary metastasis and subdermal

tumor models were both increased (118). However, the high cost of

electrofusion and high technical challenge of electrofusion poses

challenges for its large-scale clinical application (119).

Tumor cells can be prepared into lysates, which also allows the

loading of a wide variety of antigens to DCs to ensure maturation,

and are capable to induce both CD4+ and CD8+ T cell response

(120). As one of the most commonly used antigen sources for DC

vaccines, tumor lysates offer the advantages of simple preparation

and lower cost. However, DCs loaded with tumor lysates must first

overcome technical challenges that may hamper vaccine efficacy.

These challenges include the instability and inefficient
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internalization of soluble macromolecules, which are major issues

for antigen transportation and cross-presentation to T cells. In the

development of a DC vaccine pulsed with FaDu cell and FAT7 cell

lysates, a nanoparticle delivery system composed of poly(lactic-co-

glycolic acid) (PLGA) copolymers was introduced to address these

challenges (121). The increased efficiency of antigen delivery to CD8

+ T cells attributed to PLGA nanoparticles has been demonstrated.

However, since tumor cell lysates also contain immunomodulatory

cytokines from the tumor cells, which cannot be isolated during

preparation, a tolerogenic transformation of DCs may be induced

(120), thus limits the application of tumor cell lysates.

4.2.3 Universal cancer vaccine strategies
Since HNSCC follows the universal pathological mechanism

and shares some common targets with many tumors, we herein

review some of the in situ DC vaccination approaches that have the

potential to be applied in HNSCC.

A in situ DC vaccine based on albumin fused with FMS-related

tyrosine kinase 3 ligand (Alb-Flt3L) has been proven to improve

tumor control and overall survival. Alb-Flt3L is a Flt3L-based

immunotherapy used in combination with chemoradiation. Its

core function relies on the expansion of cross-presenting DCs and

the synergistic effects of chemoradiation on immunotherapy (122).

Flt3L is a key cytokine mediates the differentiation of

haematopoietic progenitor cells into cDCs and pDCs. Fusing

Flt3L to Alb promotes its accumulation in tumor and lymphatic

nodes (123). In the presence of the Alb-Flt3L, cDC1, which is

crucial for antigen cross-presentation, is expanded in a BATF3-

dependent manner (122). At the same time, chemoradiation

induces cell death and apoptosis, thereby increasing the release of

tumor antigens. This provides greater access to antigens for uptake

and cross-presentation by Alb-Flt3L-expanded DCs. Since DCs are

not pulsed by specific tumor antigens, therefore, Alb-Flt3L can be

widely applied to a wide range of cancer types.

RNA vaccine is universally approach that is applicable to most

types of malignancies, since all tumor-associated antigens (TAAs) can

be encoded by the corresponding RNA. An RNA lipoplexes (RNA-

LPX) vaccine has been developed by loading RNA onto LPX, a lipid

carrier. This protects RNA from extracellular ribonucleases and ensures

that the coding antigens are efficiently taken up and expressed by cDCs

and pDCs following intravenous injection. RNA-LPX vaccine has

demonstrated a high efficacy in inducing robust antigen-specific T-

cell responses in phase I clinical trial (NCT02410733) (124). Although

the trial was conducted on melanoma patients, two of the RNA-LPX

vaccines tested encoded MAGE-A3 and NY-ESO-1, respectively,

which are also expressed in HNSCC. MAGE-A has been shown to

impair p53 function (125), potentially leading to decreased

chemosensitivity and radiosensitivity (126). MAGE-A3 expression in

HNSCC is associated with decreased overall survival, since in

conventional therapy, the immune system appears unable to

counteract the aggressiveness of MAGE-positive tumors (127).

Therefore, antigen-specific therapy in the form of RNA vaccines may

be helpful in improving responses to chemotherapy and radiotherapy

in HNSCC. NY-ESO-1 is one of the most immunogenic proteins

described in human cancer, capable of inducing simultaneous antibody
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and CD8+ and CD4+T cell responses. However, its expression rate is

too low for clinical application, though it might be a candidate for

immunotherapy and poly-vaccination in HNSCC patients (128). In

addition, engineered nanoparticles that can be use as RNA carrier to

enhance the therapeutic efficacy of RNA vaccine by facilitating targeted

delivery and immune modulation (129). Multiple nanoparticles, such

as ionizable lipid nanoparticles (LNPs) (103), PLGA nanoparticles

(130), have been used as RNA carriers to enhance the therapeutic

efficacy of RNA vaccines by facilitating targeted delivery and immune

modulation. These nanoparticles have demonstrated highly stable,

loadable, and sustained-release features, as well as the ability to target

DCs. However, it is worth noting that tumor-derived mRNA allows the

transfection of TAAs and co-stimulatory molecules, ensuring antigen

presentation in MHC-I without requiring cross-presentation, but it

cannot induce a potent CD4+ immune response (120).

Tumor-derived exosomes (TEXs) carry a variety of proteins such

as MHC-I and MHC-II, phosphatidylserine, milk fat globulin-E8

(MFGE8), rab7, liposome-associated membrane protein 1 (LAMP1),

CD9, CD81, Annexin II, CD54, and CD63 that facilitate exosome-

binding and uptake by relative ligands on DCs (131). They also

contain a wide spectrum of TAAs and demonstrate immunogenicity

for activating DCs (132). When TEXs are loaded onto DCs, they

transfer shared tumor antigens and initiate DC maturation, allowing

for the specific activation of CTLs both in vitro and in vivo (133).

Meanwhile, there is growing evidence revealed in the studies on other

cancers, that mDCs induced by TEXs mediate stronger CD8+ CTL

responses and exhibit enhanced anti-tumor effects compared to

cancer cell lysates, which are currently the most widely used for

pulsing DCs (134–136).

However, HNSCC-derived exosomes can also contain other

immunosuppressive molecules from parental tumor cells, such as

DNA, mRNA, and microRNAs (137). When they transfer these

molecules to DCs, they reprogram DC functions and promote

tumor progression (138). Therefore, current studies on HNSCC-

derived exosomes have focused on its mediation of tumor immune

escape and less attention has been paid to its effect on DC

maturation. Notably, most of the exosomes that are currently

used as antigens for DCs can be engineered to eliminate their

immunosuppressive properties and to acquire characteristics that

enhance immune activation performance (139). Hence, HNSCC-

derived exosomes can be made a potential antigen source for DC

vaccines by combining them with the engineering technics.

4.2.4 Combination therapies for HNSCC
DC-based immunotherapy is an excellent adjunct to ICIs

therapy due to its inherent ability to mediate T cell immune

responses. The activation of DCs in HNSCC have now been

shown in multiple studies to be associated with improving

response rate to ICIs therapy (25, 81, 82), and the mechanisms

have been discussed in detail in this review. The combination of DC

vaccines and ICIs therapies is currently being explored in several

clinical studies (Table 1). Although there is not enough data

available at this point in time, it is a strategy with optimistic

prospects, considering the promising outcomes it has obtained in

other cancer treatments (140).
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Chemotherapy and radiotherapy have been shown to enhance the

efficacy of DC-based immunotherapy through several mechanisms.

First, the abscopal effect of radiotherapy and chemotherapy can

damage tumors at unirradiated sites, generating large amounts of

extracellular damage-associated molecular patterns and IFN-g. This
facilitates the uptake of antigens by iDCs. Second, radiotherapy induces

immunogenic cell death of immunosuppressive cell subsets within the

TME, thereby blocking inhibitory molecules. Third, radiation triggers

the upregulation of adhesion molecules on the vascular endothelium of

tumor cells, promoting T cell infiltration (141, 142). It has been proven

that the combination of radiotherapy or chemoradiation with DC

injections induced strong systemic antitumor effect, and resulted in

improved survival and tumor regression in SCC-tumor-bearing mice

models (141, 143). Similar to chemotherapy and radiotherapy, the

products released by dead tumor cells triggered by photodynamic

therapy are potent stimulators for DC maturation. The combination

strategy of DC vaccines and photodynamic therapy has been tested in

HNSCC tumor-bearing mice models. Activation of iDCs and tumor

regression were observed. Moreover, this combined therapy enhanced

the anti-tumor effect of anti-PD-L1 (144).

Cholesterol metabolism is closely related to T cell function, and

acyl-CoA: cholesterol acyltransferase 1 (ACAT1) inhibitors

improve the anti-tumor function of CD8+ T cells by inhibiting

cholesterol esterification in these cells (145). Therefore, DC vaccines

can be combined with ACAT1 inhibitor therapy to simultaneously

enhance CD8+ T cell-mediated anti-tumor immune responses

through both mechanisms. In an animal study, a cancer stem cell

antigens-loaded DC (CSCs-DC) vaccine was combined with an

ACAT1 inhibitor to test the improvement of this treatment for

HNSCC tumor recurrence and post-operative metastasis. Mice that

received this combined treatment exhibited significantly longer

survival and smaller tumor sizes (P< 0.01), suggesting that the

ACAT1 inhibitor enhances the effect of the CSCs-DC vaccine

against postoperative tumor recurrence. ACAT1 may serve as an

excellent adjuvant for DC vaccines to help them better exert their

anti-tumor effects (146).
4.3 Ongoing clinical trials of DC vaccines

There are currently 17 studies of DC-based immunotherapy for

HNSCC registered on ClinicalTrials.gov (147). One of the studies is a

preclinical animal experiment that involves human, and therefore is

excluded from this review. Among the remaining 16 human trials

(Table 1), 8 are in phase II. These studies cover both major DC

vaccine approaches, aiming to explore the efficacy and safety of the

therapies. As of today, 4 of these studies have been completed, 2 have

been terminated or withdrawn, and 4 are currently recruiting

participants. Additionally, a clinical trial (UMIN 000027279)

registered in the University Hospital Medical Information Network

(UMIN) in Japan (114) cannot be found on ClinicalTrail.gov; and a

terminated pilot/feasibility approved by the Institutional Review

Board (IRB) at the University of Pittsburgh and by the Food and

Drug Administration (FDA) (IND #010318) (148) is also not

registered on clinicaltrail.gov. Most of the studies employed the ex
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vivo-generated DC vaccine approach, with only 1 study

(NCT06016920) utilizing the in situ vaccination approach. In some

studies, DC therapy has been combined with radiotherapy,

chemotherapy, and other immunotherapies. The completed studies

to date have shown that DC therapies hold promising therapeutic

potential, such as prolonged tumor-free survival, reduced relapses,

improved survival rates, and enhanced biosafety. Moreover, for

patients with treatment resistance, the combination of DC therapy

can effectively reverse the situation.
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4.3.1 Flt3L/CDX-301 in combination of
radiotherapy, pembrolizumab, and poly-ICLC

A phase I/II trial (NCT03789097) for HNSCC is designed to assess

the safety and efficacy of a combination of four therapies: Flt3L/CDX-

301, radiotherapy, Pembrolizumab, and Poly-ICLC. Radiotherapy can

damage tumor cells and cause the release of tumor antigens, which can

be uptake by DCs (142). Flt3L/CDX-301 is an immune cell growth

factor that stimulates the production of DCs. Fms-like tyrosine kinase-

3 ligand (Flt3L) induces DC proliferation, differentiation, development,
TABLE 1 Clinical trials of DC-based immunotherapy for HNSCC registered in ClinicalTrails.gov.

Trail ID Strategies Indication Phase Status Antigen Combinatorial
treatment

NCT00377247 Autologous
DC vaccination

Carcinoma of Oral Cavity or Oropharynx I TERMINATED autologous
tumor DNA

-

NCT00404339 Autologous
DC vaccination

HNSCC I COMPLETED wild-type p53
peptides, T-
helper peptides

–

NCT00492947 Autologous
DC vaccination

HNSCC I WITHDRAWN - -

NCT00589186 Autologous DCs
transduced with
AD5F35-LMP-1/LMP-2

Nasopharyngeal Cancer II UNKNOWN LMP-1, LMP-2 Celecoxib

NCT01149902 Autologous
immature DC

HNSCC I COMPLETED - Cyclophosphamide,
Docetaxel, OK-432

NCT01821495 DC-CIK Immunotherapy Nasopharyngeal Cancer II UNKNOWN – Chemoradiotherapy

NCT03047525 DC-CIK Immunotherapy Nasopharyngeal Carcinoma, Colorectal
Cancer, Renal Cell Carcinoma,
Lung Cancer

I/II UNKNOWN - -

NCT03282617 Autologous CD137L-DC-
EBV-VAX

Nasopharyngeal Cancer I COMPLETED Epstein Barr nuclear
antigen 1, LMP-1,
LMP-2

–

NCT03789097 In situ DC vaccination
with Flt3L and
Poly-ICLC

HNSCC, Non-Hodgkin’s Lymphoma,
Metastatic Breast Cancer

I/II RECRUITING Not Applicable Radiotherapy,
Pembrolizumab

NCT04166006 Autologous
DC vaccination

HNSCC, neuroendocrine tumors, soft
tissue sarcoma

II RECRUITING Autologous
tumor homogenate

IL-2

NCT04476641 DC-CIK Immunotherapy Nasopharyngeal Cancer, liver cancer,
kidney cancer, lung cancer, colorectal
cancer, breast cancer

II UNKNOWN - -

NCT05261750 Autologous DCs and
allogenic DC secretomes

Nasopharyngeal Cancer I/II UNKNOWN – Chemoradiotherapy

NCT06016920 In situ DC vaccination
with VB10.16

HNSCC I/II RECRUITING - Pembrolizumab

NCT06097793 KSD-101 Nasopharyngeal Cancer I RECRUITING EBV-related antigen –

NCT06370026 KSD-101 Nasopharyngeal Cancer I NOT
YET
RECRUITING

EBV-related antigen -

NCT06752473 KSD-101 Nasopharyngeal Cancer I NOT
YET
RECRUITING

EBV-related antigen –
HNSCC, head and neck squamous carcinoma; AD5F35, adenoviral vector 5F35; LMP-1, latent membrane protein 1; LMP-2, latent membrane protein-2; CIK, cytokine-induced killer cells;
CD137L-DC-EBV-VAX, autologous CD137L-DC pulsed with EBV peptides spanning Epstein Barr nuclear antigen 1, LMP1 and LMP2; ICIs, Immune Checkpoint Inhibitors; -, Not Applicable.
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and mobilization in the bone marrow, peripheral blood, and lymphoid

organs by binding to the Flt3 receptor expressed on DCs (149). CDX-

301 has the same amino acid sequence and comparable biologic activity

as recombinant human Flt3L and specifically binds to Flt3L to promote

DC activation (150). Poly-ICLC is a TLR3 agonist that can be used as a

vaccine adjuvant to assist in the activation of DCs and has been shown

to promote T cell infiltration into the tumor parenchyma (151).

Pembrolizumab inhibits PD-1 and restores T cell functions.

Together, the combination of these four therapies targets the anti-

tumor response from antigen uptake to the induction of CTLs, fighting

HNSCC through four distinct yet interrelated mechanisms.

4.3.2 VB10.16
VB10.16 is a DNA-based DC vaccine designed for the treatment of

malignant lesions associated with HPV16. It contains E6 and E7

tumor-specific antigens that are expressed by HPV16-infected cells.

The mutation-inactivated E6 and E7 proteins are linked in a dimeric

form to the natural human chemokine (C-C motif) ligand 3-like 1

(CCL3L1). CCL3L1 attracts DCs and binds to their receptor CCR5,

thereby delivering the E6 and E7 antigens directly to DCs. This results

in an increased antigenic load and enhanced cross-presentation.

Mature DCs then migrate to the lymph nodes, where they activate

antigen-specific T cells. This unique mechanism of targeting antigens

to chemokine receptors on DCs induces a robust cellular immune

response, which is superior to that of traditional therapeutic vaccines

that deliver only the antigens (152). A multi-center phase I/II trial

(NCT06016920) is aimed at evaluating the safety, immunogenicity, and

anti-tumor activity of VB10.16 in combination with pembrolizumab in

patients with unresectable recurrent or metastatic HPV16-positive

HNSCC. The trial commenced on September 19, 2023, and is

planned to produce primary outcomes by 2027.

4.3.3 p53 peptide-loaded DC vaccines
The p53 gene is one of the most frequently mutated genes in

HNSCC, with a mutant rate of 65–85% (153). Wild-type p53

(wtp53) is a key tumor suppressor protein and transcription

factor that regulates cell cycle progression. It inhibits the cell cycle

through multiple mechanisms, such as upregulating the expression

of p21 protein, which binds to the cell cycle proteins E/Cdk2 and D/

Cdk4, leading to cell cycle G1 phase blockade (154). Mutant p53

proteins often accumulate in HNSCC tumor cells, they lose their

ability to regulate the cell cycle, apoptosis and DNA repair, but also

frequently acquire oncogenic gain-of-functions, leading to cellular

carcinogenesis (155).

A DC vaccine targeting p53 strategy is developed as an adjuvant

therapy for HNSCC, and it has been tested in a phase I clinical trial

(NCT00798655). In the trial, 16 patients with advanced HNSCC who

were disease-free after surgery received the vaccine and were followed

for up to 42 months. The 2-year and 3-year disease-free survival rates

reached 88% and 80%, respectively. A decrease in Tregs was observed

after vaccination, which may have been a contributing to the improved

prognosis. However, the current rate of CTL-specific positive immune

response to the vaccine stands at only 69%, indicating that further

experiments are necessary to explore and develop strategies to enhance

the positive immune response rate (115).
Frontiers in Immunology 12
4.3.4 WT1 peptide-loaded DC vaccines
A phase I/II pilot study (UMIN 000027279) conducted in Japan

investigated the value and efficacy of DC vaccines loaded with

Wilms tumor 1 (WT1) peptide in clinical settings. WT1 is

frequently overexpressed in HNSCC and has an impact on cell

proliferation through multiple genes involved in cell proliferation,

cell cycle regulation, and DNA replication (156), and is closely

associated with poor tumor differentiation and high tumor stage in

HNSCC histology (157). Therefore, WT1 is a potential target for

HNSCC immunotherapy. Meanwhile, OK-432 was also introduce

as an adjuvant. OK-432, also called Picibanil, is a mixture of group

A streptococcus with anti-tumor properties. Previous studies have

shown that injection of OK-432 into HNSCC tumors resulted in

tumor size reduction (158, 159). And because it is a TLR4 ligan it

can serve as a adjuvant for DC vaccination (160). The study

involved 11 patients with relapsed or refractory WT1+ HNSCC.

They received a combination of WT1-based DC vaccine and OK-

432 injection along with chemotherapy, radiotherapy, or surgery.

Unfortunately, only 5 out of the 11 patients maintained a stable

condition after vaccination, while the remaining 6 patients

experienced varying degrees of disease progression. An increased

Th1/Th2 ratio was detected after vaccination, yet, there was no

significant change in other T cell subsets. In addition, CD8+T cells

are found increased only in disease stable patients, suggesting that

the disease progression after vaccination might be attributed to the

lack of antigen-specific CTL responses (114).

The main adverse reactions observed were injection site

erythema and low-grade fever. Other symptoms commonly seen

with chemotherapy, such as malaise, constipation, nausea, and

anorexia, were also observed. It is worth noting that two patients

experienced grade 2 to 3 leukocytopenia after receiving the vaccine.

However, there is still a lack of evidence to determine whether the

adverse reactions were caused by chemotherapy or the DC vaccine

itself (114).

4.3.5 KSD-101
KSD-101 an autologous DC vaccine, loaded with EBV-

associated tumor antigens derived from human monocytes. It was

initially applied in the treatment of EBV-related hematological

diseases, and demonstrated promising therapeutic efficacy in an

ongoing early Phase I exploratory trials (NCT05635591), with

efficient induction of immune responses, and both overall

response rate and complete response rate of 100% (111).

Administered subcutaneously, the vaccine activates EBV-specific

CTLs in the body to effectively recognize and kill tumor cells.

Activations of CD3+HLA-DR+T cells, CD8+T cells, CD4+T cells,

and NK cells were also observed. Consequently, its application has

now extended to the treatment of EBV-related NPC, and patients

are being recruited for an early Phase I exploratory trial

(NCT06097793) being conducted at Tongji Hospital in China.

EBV-related NPC is one of the most metastatic cancers of the head

and neck, oftenmetastasizing to lymph nodes and distant organs by the

time of diagnosis. The survival rate for patients in advanced stages is

only 50-60%. To date, no targeted therapies for EBV-related NPC have

been approved for treatment. KSD-101 is one of the few therapies
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currently available for targeting EBV-related cancers and has shown

more promising results. Its development is significant for the treatment

of this EBV-related NPC carcinoma.

4.3.6 DC-CIK vaccines
Combining DCs and cytokine-induced killer (CIK) cells for

vaccination represents an innovative therapeutic strategy. CIK cells

belong to a unique subpopulation of immunomodulatory cells and

are classified as a type of adoptive T cell-mediated immunotherapy.

They consist of CD3+/CD56+ natural killer T cells, which serve as

the primary effector cells, along with CD3-/CD56+ NK cells and

CD3+/CD56- cytotoxic T cells. CIK cells exhibit enhanced in vitro

proliferation and expansion capabilities, as well as improved

migratory and invasive abilities. They can induce tumor cell death

through various pathways and mechanisms, demonstrating

significant anti-tumor potential and a broad anti-tumor spectrum

(161). Additionally, the interaction between DCs and NK cells is

complex, characterized by bidirectional crosstalk. NK cells aid in

DC maturation and T cell priming, while DCs can induce the

maturation of NK cells and enhance their cytotoxicity. IL-15

expressed by DCs promotes NK cell proliferation, while IL-18, in

conjunction with the synergistic effect of IL-12, contributes to the

enhancement of NK cell cytotoxicity (162).

There are several clinical studies (NCT01821495, NCT04476641,

and NCT03047525) are currently combining DC-therapy with CIK-

therapy for the treatment of NPC. These studies aim to explore the

initial therapeutic effects of DC-CIK therapy on tumors, the safety of

the vaccine, and improvements in the quality of life of cancer patients.

However, no results have been published yet.
5 Discussions

5.1 Limitations and challenges

5.1.1 The low response rate to DC vaccines limits
their therapeutic effect

Among the current clinical studies conducted for HNSCC,

although one study reported a 100% response rate (NCT06097793)

(111), the remaining studies still demonstrated less satisfactory

response rates. When considering the overall efficacy of DC

vaccines in other cancer therapies, only 5–15% of patients benefit

from an objective immune response (163). This is primarily due to

low antigen delivery efficiency and weak DC migration ability (164),

which are attributed to several major factors.

First, the effects of immunosuppressive cells, such as tumor

cells, Tregs, MDSCs, and immunosuppressive cytokines on DCs in

the TME cannot be effectively neutralized or segregated (11–13).

Consequently, directly activating DCs in vivo in such an

environment presents significant challenges. It is important to

note that the effectiveness of DCs generated ex vivo may still be

compromised by the TME following their reinjection into the body.

Second, most ex vivo DC vaccine preparations favor the use of

moDCs, as they are easier to obtain. However, compared to
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endogenous DC subsets, moDCs may lack sufficient expression of

chemokine receptors, resulting in weaker migratory capacity to

regional DNLs and diminished cross-presentation and T cell-

stimulating capabilities within the TME.

Third, the presence of mregDCs and pDCs with semi-mature

phenotypes suggests that DCs can also induce immune tolerance

(44, 165), which is a potential obstacle to the success of vaccine

strategies. Taken together, these factors may combine to impair the

clinical efficacy of DC vaccines.

To break the current limitations, several strategies can be

considered based on recent research and advancements. Instead

of relying solely on moDCs, using endogenous DC subsets such as

cDC1 or cDC2, which have better migratory and cross-presentation

capabilities, may improve vaccine efficacy. Combining DC Vaccines

with other therapies, such as ICIs therapy, which can enhance the

overall immune response by overcoming immune checkpoints and

boosting T cell activation. Utilizing nanoparticle delivery systems to

target DC vaccines directly to lymph nodes can improve antigen

delivery efficiency and reduce systemic side effects (166). In

addition, it has been shown that using adjuvants or cytokines to

enhance the maturation and activation of DCs before vaccination

can improve their ability to migrate to lymph nodes and present

antigens (167). However, current understanding of DC vaccine

adjuvant dosing is still inadequate, and the immune effects of

different types of vaccines paired with adjuvants cannot be

accurately predicted. Future investigations are still required.

5.1.2 HNSCC tumor heterogeneity and the
challenge of DC vaccine target selection

HNSCC is characterized by marked tumor heterogeneity, which

presents a significant challenge for the selection of effective DC

vaccine targets. This heterogeneity is evident at multiple levels,

including genetic, epigenetic, and phenotypic variations among

tumor cells, as well as differences in the TME across patients and

even within the same patient over time (168).

Epigenetic changes in HNSCC, such as DNA methylation,

chromatin remodeling, histone posttranslational covalent

modifications, and effects of non-coding RNA (169), can influence

gene expression profiles and the presentation of TAAs (170), making it

difficult to predict which antigens will be consistently expressed and

immunogenic across different tumors.

In addition, HNSCC tumors can evolve over time, acquiring

new mutations and phenotypes in response to treatment or other

selective pressures (171, 172). This dynamic nature means that a

target antigen that is effective at one point in time may become less

relevant as the tumor evolves, necessitating the development of

adaptive or multitargeted DC vaccines.

Addressing these challenges requires a multifaceted approach,

including the development of personalized vaccines tailored to

individual patient tumors, the identification of robust and consistently

expressed TAAs, and strategies to overcome the immunosuppressive

TME. Future research should focus on integrating advanced genomic

and proteomic analyses to better understand HNSCC heterogeneity and

identify optimal targets for DC-based immunotherapies.
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5.1.3 Technical challenges
The development and application of DC vaccines face several

technical challenges. These challenges include the efficient generation

and expansion of DCs both in vivo and ex vivo, the optimization of

antigen-loading methods to ensure robust and specific T cell

activation, and the need for standardized protocols for DC vaccine

production and administration (16). In addition, monitoring and

evaluating the performance of DC vaccines after application in

HNSCC patients remains a critical area of research, as it is essential

for determining the efficacy and safety of these therapies in a clinical

setting. Moreover, adjuvants are also an important component of

cancer vaccines, as they enhance APC function, promote epitope

spreading, and boost the host’s intrinsic anti-tumor immunity (173).

Due to the high production costs and significant technical challenges,

DC vaccines still cannot be produced on a large scale. Addressing

these technical challenges is crucial for improving the clinical

applications and the outcomes of DC vaccines in HNSCC treatment.
5.2 Future expectations

The field of DC-based immunotherapy for HNSCC is poised to

address the limitations of current ICIs therapy. DC dysfunction in

the TME is a key factor underlying the poor response rates to ICIs

therapy, as it impairs T cell activation and leads to immune evasion.

Restoring DC function is essential for enhancing the efficacy of

ICIs therapy. DC-based immunotherapy can directly target and

modulate DCs to improve antigen presentation and T cell

activation. Future research should focus on developing advanced

DC therapies that enhance DC maturation and migration, and on

creating personalized treatment strategies to overcome tumor

heterogeneity. Synergistic combination therapies with ICIs

therapy will also be crucial for maximizing anti-tumor effects.

In summary, DC-based immunotherapy holds significant

promise for improving the current therapeutic approaches and

outcomes of HNSCC by addressing DC dysfunction and

enhancing overall immune responses.
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