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Colon cancer (CC) remains a primary contributor to cancer-related fatalities

worldwide, driven by difficulties in early diagnosis and constrained therapeutic

options. Recent studies underscore the importance of the tumor

microenvironment (TME), notably tumor-associated macrophages (TAMs), in

fostering malignancy progression and therapy resistance. Through their

inherent plasticity, TAMs facilitate immunosuppression, angiogenic processes,

metastatic spread, and drug tolerance. In contrast to M1 macrophages, which

promote inflammatory and tumoricidal responses, M2 macrophages support

tumor expansion and dissemination by exerting immunosuppressive and pro-

angiogenic influences. Consequently, manipulating TAMs has emerged as a

potential avenue to enhance treatment effectiveness. This review outlines the

origins, polarization states, and functions of TAMs in CC, highlights their role in

driving tumor advancement, and surveys ongoing efforts to target these cells for

better patient outcomes. Emerging therapeutic strategies aimed at modulating

TAM functions - including depletion strategies, reprogramming approaches that

shift M2-polarized TAMs toward an M1 phenotype, and inhibition of key signaling

pathways sustaining TAM-mediated immunosuppression-are currently under

active investigation. These approaches hold promise in overcoming TAM -

induced resistance and improving immunotherapeutic efficacy in CC.
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metastasis, chemokines
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1 Introduction

Colon cancer (CC), a frequent malignancy of the gastrointestinal

tract, has outcomes and therapeutic responses shaped by various

contributing factors (1). More than one million new diagnoses

emerge across the globe annually, making it the second leading

contributor to cancer-associated mortality (2). Limited survival

rates largely stem from obstacles in early detection and a paucity of

potent treatment strategies. Current protocols primarily center on

surgery, complemented by radiation and chemotherapy. As overall

health standards advance, there is a pressing demand for novel

therapeutic avenues and refined prognostic tools (3–5). Recent

findings underscore the importance of targeting the tumor

microenvironment (TME) alongside conventional interventions to

bolster treatment efficacy (6–9).

Established malignancies often present a suppressive

microenvironment that impairs antitumor immunity and drives

cancer progression (10, 11). Within these “immune evasion

mechanisms,” tumor cells circumvent normal immune processes by

modifying antigen presentation, releasing suppressive signals that

promote lymphocyte apoptosis, or engaging detrimental regulatory

pathways (12–14). These strategies evolve over the course of tumor

development, growing ever more varied and complex. Consequently,

disrupting these pathways and reactivating host immunity remain

significant hurdles for tumor immunotherapy. The underlying factors

behind tumor evasion are highly intricate, with the TME exerting a

pivotal influence. Macrophages, which can comprise up to half of the

tumor’s cellular mass, are the most abundant infiltrating immune

cells in the TME (15). Termed tumor-associated macrophages

(TAMs), they facilitate tumor establishment, metastatic spread,

immune suppression, and vascularization (16–18).

In the setting of CC, TAMs play a central role in disease onset

and progression, highlighting their potential as immunotherapeutic

targets. Yet, their functions are multifaceted, and either depleting

these macrophages or modifying their phenotypes may boost anti-

tumor immunotherapy (19). This review synthesizes current

findings on TAM origins, polarization states, and overall roles. It

also examines how TAMs facilitate CC initiation and progression,

underscores emerging TAM-focused strategies for personalized

diagnostics and treatment, and outlines prospective challenges.

These insights are intended to spur the development of TAM-

oriented precision medicine in CC.
2 Origin and polarization of TAMs

Monocytes and macrophages circulating in the bloodstream

represent the principal source of TAMs. Their entry into specific

regions of the TME is governed by various cytokines, including C-C

motif chemokine ligand 2/5/7 (CCL2/5/7), C-X-C motif chemokine

ligand 8/12 (CXCL8/12), vascular endothelial growth factor (VEGF),

and transforming growth factor-b (TGF-b) (20). Macrophages

exhibit notable plasticity, transitioning into M1 or M2 phenotypes

depending on local cues. M1 TAMs primarily initiate Th1 responses,

amplify inflammation, and exert tumoricidal activity (21, 22). M2
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TAMs secrete VEGF, matrix metalloproteinases (MMPs), and

epidermal growth factor (EGF), displaying elevated IL-10 and

reduced IL-12 levels. M2 TAMs predominantly engage in Th2-

oriented immune pathways, facilitate angiogenesis and extracellular

matrix remodeling, and play vital anti-inflammatory roles in wound

repair. Currently, most TAMs within tumor stroma adopt the M2

phenotype, which promotes tumor initiation, disease progression,

and eventual metastasis, thus serving as a prognostic marker in

oncology (23, 24). TAM polarization is governed by multiple,

dynamic signals from the TME. Classical M1 polarization is driven

by factors such as lipopolysaccharide (LPS) and interferon-g, which
increase interleukin-2 (IL-2) while reducing IL-10 (21, 22).

Conversely, M2 TAMs are polarized when exposed to IL-10, IL-4,

and IL-13, displaying elevated IL-10 and reduced IL-12 levels (25).
3 The role of TAMs in CC

3.1 TAM-mediated immune suppression
in CC

TME is predominantly composed of immune cells, including T

lymphocytes, neutrophils, natural killer (NK) cells, macrophages,

dendritic cells, and myeloid-derived suppressor cells (MDSCs) (26–

29). As the predominant cellular component within the TME, TAMs

foster immunosuppression in CC by releasing chemokines and

cytokines that compromise the local immune response (30).

Chemokines produced by TAMs, such as CCL5, CCL22, and

CCL20, recruit regulatory T cells (Tregs), while cytokines including

IL-10 and TGF-b promote Treg differentiation, thereby driving

tumorigenesis. Furthermore, TAMs suppress antitumor functions

of T cells and NK cells (19, 31), and cooperate with MDSCs, tumor-

associated dendritic cells, and neutrophils to intensify

immunosuppression (32). These macrophages also reduce T cell

activity through enzymes including nitric oxide synthase (NOS)

and arginase (ARGI) (33). In addition, they display high expression

of ligands for PD-1 and CTLA-4 (for example, PDL1 and B7-H1),

thereby weakening the cytotoxic capacity of T cells, NKT cells, and

NK cells (34–36), which further hampers the host’s ability to

eliminate colorectal cancer cells. Elevated CSF-1R levels on TAMs

can facilitate immune evasion via Treg recruitment, potentially

accelerating colon adenocarcinoma progression (37).

Siglec9 has been recognized as a crucial immune checkpoint

molecule expressed on TAMs, significantly contributing to the

development of an immunosuppressive TME (38–40). Studies

indicate that Siglec9+ TAMs drive immune evasion in CC by

facilitating suppressive cell infiltration and compromising CD8+ T-

cell function (41). Leukemia inhibitory factor (LIF), a pleiotropic

cytokine, is robustly produced in tumor-associated macrophages, and

its administration endows them with potent immunosuppressive

traits. MSC-1 interferes with LIF signaling by engaging epitopes

overlapping the gp130 receptor binding region on LIF, prompting

TAMs to adopt antitumor, proinflammatory attributes in a syngeneic

CC mouse model (42). Additionally, heightened metastasis-

associated protein 1 (MTA1) expression in CC fosters an
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1573917
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xiang et al. 10.3389/fimmu.2025.1573917
immunosuppressive milieu exhibiting abundant CD8+ T cells but

lacking classical macrophages (43). Moreover, eight pivotal enzymes

governing amino acid metabolism in colon TAMs-ACADM,

ACADS, GPX4, GSR, HADH, HMGCL, HMGCS1, and IDH1-

trigger pyroptotic cell death in these macrophages, thereby

potentially bolstering immune evasion in CC (44).

In addition to secreting cytokines and chemokines, TAMs

mediate immune suppression through diverse receptor-ligand

interactions and intracellular signaling cascades that affect T cells,

NK cells, dendritic cells, and B cells. For instance, Tim-4+

macrophages in tumor cavities suppress CD8+ T cell anti-tumor

responses, inhibiting cytotoxic immunity (45). Furthermore, TAM-

derived PGE2 and TGF-b, along with various chemokines, disrupt

dendritic cell (DC) maturation. This disruption destabilizes the

equilibrium between innate and adaptive immune responses, while

concurrently impairing the effector functions of both T cells and NK

cells (46). Indoleamine 2,3-dioxygenase (IDO)-expressing TAMs

metabolize tryptophan to kynurenine, an aryl hydrocarbon receptor

(AHR) ligand that drives Treg differentiation while suppressing Th17

development and T-cell proliferation (47–50). As a consequence,

TAMs establish an immune-privileged niche that enables CC cells to

escape immunosurveillance and thrive within the TME.
3.2 TAM promotes angiogenesis

The vascular network sustaining tumor cells is pivotal in

tumorigenesis and metastatic dissemination, making angiogenesis a

critical process in tumor progression. Earlier investigations posited

that this neovascularization was driven exclusively by tumor cells

(51). However, emerging evidence shows that TAMs are major

contributors to angiogenic regulation. Analyses of human CC

tissues revealed that central angiogenic mediators-including

S100A4, SPP1, and SPARC-are largely produced in stromal

regions, particularly by TAMs, and strongly correlate with

macrophage infiltration levels (52). Through immunohistochemical

staining and image-based morphometry, Badawi et al. (53) examined

microvascular density and macrophage presence in CC biopsy

specimens and 15 benign adenomatous polyps, finding a marked

link between elevated macrophage numbers and increased

microvessel density in malignant tumors. Moreover, Luput et al.

(54) demonstrated in an animal model that co-culturing C26 murine

CC cells with TAMs significantly heightened total angiogenic protein

levels in cell lysates. They also observed an inverse relationship

between NF-kB activity and VEGF expression in C26 cells,

indicating that TAMs boost angiogenesis by downregulating NF-

kB. Additionally, CXCL1 is markedly upregulated in colorectal

tumors and promotes neovascularization (55), while VEGF released

by Siglec9+ TAMs further drives angiogenesis in CC (41).
3.3 TAMs involved in metastasis

Over 90% of cancer-related deaths are attributed to metastasis

(56, 57). TAMs play essential roles in this process, contributing to
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epithelial-mesenchymal transition (EMT), local invasion,

intravasation, systemic dissemination, extravasation, and final

colonization that results in metastatic outgrowth (58–60). Within

CC, TAMs facilitate metastatic progression by secreting various

chemokines, proinflammatory molecules, and growth factors

(61, 62). Jinushi and colleagues (63) reported that metastatic

spread largely originates from tumor cells responding to cytokines

released by TAMs, thus guiding migratory behavior. Furthermore,

Xu et al. (64) observed that elevated Six1 protein levels in a murine

colorectal cancer model foster TAM accumulation, which in turn

amplifies metastatic potential. Moreover, TAMs increase EMR1/

ADGRE1 expression in CC cells, potentially driving lymph node

metastasis and disease progression through JAK2/STAT1,3

signaling (65). In colon adenocarcinoma (COAD), heightened

CCL3 levels in both TAMs and tumor cells, acting via the CCL3-

CCR5 axis, boost Akt-mediated migration and invasiveness (66).

Additionally, CXCL1 fosters CC cell proliferation, enhances

angiogenesis, and promotes M2 TAM recruitment through NF-

kB/P300, ultimately advancing CC progression (55). The

compound phenylhydrazine and pyrrolidinone sulfate 1 (PHPS1),

identified as a potential phosphotyrosine inhibitor, can modulate

M2-polarized TAMs and exosome secretion through the PI3K–

AKT axis by downregulating SHP-2, thereby bolstering CC cell

migration and invasion (67). Meanwhile, TAM-derived TGF-b1
instigates motility, invasiveness, and EMT in CC cells. Besides, the

progression of EMT is facilitated by TAMs through activation of the

CCL2/AKT/b-catenin signaling pathway (68). IL-6 secreted by

TAMs interacts with the receptor complex involving glycoprotein

130 (gp130), thereby activating the JAK/STAT3 pathway in CC

cells. This signaling cascade promotes EMT and chemoresistance

(69, 70). Through heightened RBP-Jk expression, CC cells release

CXCL11, which elevates TGF-b1 levels in TAMs, further driving

metastatic spread (71). Moreover, CCL14 fortifies M1 macrophage–

mediated inhibition of CC cell proliferation and invasion, while

negating the tumor-promoting influence of M2 macrophages (72).
3.4 TAM promotes chemoresistance

Macrophages, often referred to as TAMs, can hinder the success of

chemotherapy. Numerous in vivo and in vitro investigations have

shown their tumor-protective influence under various

chemotherapeutic conditions (73, 74). Following chemotherapy,

TAMs stimulate tumor advancement through a range of

mechanisms, including increased recruitment of immunosuppressive

macrophages, pro-tumor polarization, a Th17 response that favors

malignancy, and heightened anti-apoptotic signaling in cancer cells

(74). In particular,M2macrophages are instrumental in driving tumor

progression by sustaining an immunosuppressive local milieu (62).

Moreover, a fraction of tumor cells known as cancer stem cells (CSCs)

holds self-renewal potential and can produce malignant offspring. Due

to their notable resilience to chemotherapy, CSCs serve as critical

contributors to tumor recurrence (75–77). TAMs influence both CSC

self-renewal and therapy resistance by controlling an intricate network

of cytokines, chemokines, growth factors, and extracellular matrix
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molecules. Research indicates that TAMs induce chemoresistance by

providing survival cues or activating anti-apoptotic pathways within

malignant cells (62). This process often relies on macrophage-derived

soluble mediators, although it may also involve extracellular matrix

remodeling or direct cellular contacts (61). Inflammatory factors

significantly influence the efficacy of therapies (78–81).

Chemoresistance in CC cells frequently relies on the activation of

STAT3, often driven by macrophage-derived IL-6 or other factors

produced by macrophages (82). Moreover, FJX1 expression is

positively associated with TAM infiltration and immune-related

genes, such as TGFB1 and IL-10, as well as with immune-

suppressive pathways involving TGFB1 and WNT1. By contrast,

FJX1 demonstrates an inverse correlation with CD8+ T-cell

abundance. Elevated FJX1 also diminishes immunotherapy efficacy

while exacerbating therapy resistance (83). In parallel, hypoxia

prompts HIF2a-dependent upregulation of dihydropyrimidine

dehydrogenase in TAMs, thereby driving 5-FU resistance in CC

(84). Studies have demonstrated a correlation between EMT and the

development of resistance to chemotherapy (85). TAMs have been

found to facilitate this transition through multiple mechanisms,

including IL-8 (86), CCL20 (87), and the toll-like receptor 4/

interleukin-10 (TLR4/IL-10) signaling cascade (88).

Mounting evidence suggests that TAMs foster oncogenesis, and

their increased numbers correlate with greater malignancy and worse

patient outcomes across various cancers. Recent investigations

underscore how TAMs remodel the TME. In CC, they primarily

stimulate tumor progression by promoting angiogenesis, immune
Frontiers in Immunology 04
evasion, metastatic spread, and chemoresistance-partly through

expanding cancer stem cell populations. During immunotherapeutic

interventions, TAMs can also reshape the microenvironment to enable

anti-tumor responses. Accordingly, emerging clinical data indicate that

therapeutic strategies directed at TAMs-such as limiting their

infiltration, altering M2/M1 polarization, or inhibiting key signaling

pathways linked to TAM-associated antigen functions-may provide a

promising route to enhance tumor immunotherapy (Figure 1).
4 Therapies targeting TAMs

4.1 Reduction of TAMs

Elevated levels of TAMs in tumors are strongly correlated with the

progression of colorectal cancer (89). Current therapeutic strategies

aim to restrict the infiltration of macrophage precursors and eliminate

existing TAM populations within the TME. This process is facilitated

by several chemokines, including CCL3, CCL4, CCL5, CCL22, and

CXCL8, which are highly expressed in various tumors and promote

TAM migration (90–92). Additionally, cytokines such as CSF-1 and

EMAPII (93, 94), as well as growth factors like VEGF, endothelin-2,

and PDGF, further enhance the recruitment of monocytes and

macrophages (95–98). In hypoxic regions of tumors, HIF-1a plays

a critical role in reprogramming TAMs toward a protumor phenotype

by altering gene expression (99, 100). HIF-1a upregulates CXCR4 and

induces CXCL12, which drives the recruitment of monocytes and
FIGURE 1

The role of TAMs in colon cancer.
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macrophages into these oxygen-deprived areas (101, 102). It also

increases VEGF-A expression in TAMs, creating a self-sustaining

cycle that reinforces their survival and persistence (103). Meanwhile,

hypoxia triggers MKP-1, which curbs ERK1/2 and p38 MAPK

activity, restricting TAM mobility and causing them to remain

under hypoxic stress (104). Additionally, hypoxia downregulates

CCR2 and CCR5 on macrophages, reducing their chemotactic

responsiveness (105). Targeting TAMs has emerged as a promising

strategy to combat cancer progression. For instance, in an orthotopic

CC xenograft mouse model, the CSF-1R inhibitor PLX3397 effectively

reduced M2 macrophage populations, and its combination with anti-

PD-1 therapy significantly suppressed tumor growth (106).

Furthermore, FAP-modified, tumor-derived exosome-like vesicles

(eNVs-FAP) demonstrated potent anticancer vaccine activity by

inducing robust tumor-specific cytotoxic T lymphocyte (CTL)

responses. This approach also reduced immunosuppressive

components, including M2-TAMs, in the CC model (107).
4.2 Modulation of TAM polarization

In CC, TAMs typically adopt an M2-oriented phenotype,

contrasting with M1 macrophages, which display a classically

activated profile. These cells actively collaborate with tumor

elements, primarily via the TME driving them toward an

immunosuppressive M2 state that promotes vascularization,

tumor expansion, invasion, and metastatic spread (36). Notably,

M1 and M2 macrophages can switch between phenotypes under

changing conditions. According to Georgoudaki et al. (108),

immune checkpoint treatments in a mouse MC38 colorectal

cancer model strengthened antitumor defenses by shifting TAMs

toward an M1 phenotype and elevating tumor immunogenicity.

Stimulating the STING pathway within TAMs presents a potential

approach for managing CC. Recent data indicate that the prodrug

STING agonist GB2 redirects TAM polarization by targeting

TREM2 within malignant tissue, thereby enhancing CC

immunotherapy (109). Moreover, inhibiting phosphoglycerate
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mutase 1 can diminish M2 polarization in CC cells, thereby

restricting TAM-driven disease progression (110). Blue light

exposure was further shown to impede M2 polarization in TAMs

during CC (111). Curcumin mitigates malignant features of CC

cells by controlling TAMM2 polarization and metastasis-associated

colon cancer 1 (MACC1) levels (112). Through dual targeting of

M2-oriented TAMs and TGF-b1-dependent positive feedback

mechanisms, paclitaxel hinders CC advancement (113).

Tasquinimod modulates myeloid cell recruitment in CC, inducing

a shift from immunosuppressive M2-like TAMs with pro-

angiogenic traits toward M1-like macrophages, consistent with its

documented effects on vascularization, immune evasion, and

metastatic activity (114). Within peptide-guided cancer therapy,

recent investigations examined IFN-g liposomes engineered with an

M2-targeting peptide, selectively adhering to anti-inflammatory

TAMs. Findings revealed improved uptake and antitumor activity

of liposomal IFN-g in C26 CC mouse models (115). Mesobuthus

eupeus venom also shows promise against tumor expansion and

metastasis by redirecting macrophages from M2 to M1 polarity

(116). Furthermore, inhibiting CD39 with polyoxotungstate (POM-

1) curbed CC tumor burden in mice and was associated with an

upsurge of M1-like TAMs in tumor tissue (117).
4.3 Novel and ongoing clinical trials
targeting TAMs

In CT26 CC models, HDAC6 inhibitor AVS100 increased pro-

inflammatory tumor-infiltrating macrophages and CD8 effector T

cells with inflammatory gene profiles (118). Recently, AVS100’s

favorable safety profile led to FDA IND approval, enabling clinical

trials (118). A Phase I trial of Trebananib (Angiopoietin 1/2

inhibitor) with Pembrolizumab in CC showed reduced T cells

and increased immunosuppressive macrophages post-resistance

(119). Zhang et al. identified CD155 expressing on M2 type

TAMs as therapeutic target in digestive cancers, with CD155-

directed CAR-T cells showing promise in clinical evaluations,
TABLE 1 Potential therapeutic approaches targeting TAMs in colon cancer.

Strategy Treatments Mechanism

Depletion of TAMs
CSF-1R inhibitors (e.g., PLX3397) Block recruitment and survival of TAMs by inhibiting CSF-1/CSF-1R signaling

eNVs-FAP vaccine Induce robust tumor-specific T-cell responses, reducing M2 TAMs

Inhibition of
TAM Recruitment

Targeting chemokines (CCL2, CCL3, CXCL8/12) Interfere with chemokine-driven monocyte infiltration

Blocking hypoxia-induced pathways (HIF-1a) Suppress hypoxia-driven TAM recruitment and retention

Reprogramming TAMs

STING agonists (e.g., GB2) Activate pro-inflammatory M1 phenotype

Allosteric inhibitors (e.g., phosphoglycerate
mutase 1 inhibitors)

Downregulate immunosuppressive signaling

Modulating the TME
or Checkpoints

Anti-PD-1/PD-L1 antibodies;
Anti-CTLA-4 antibodies

Reduce immunosuppressive signals from TAMs and other TME components;
Restore cytotoxic T-cell function

Novel and Ongoing
Clinical Trials

HDAC6 inhibitor AVS100; Trebananib
(Angiopoietin 1/2 inhibitor) with Pembrolizumab;
CD155-directed CAR-T

Increase tumor-infiltrating macrophages and CD8 effector T cells; By identifying the
M2 immunosuppressive marker CD155, showing promise in models of
gastrointestinal tumors, including CC
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including CC (120). These findings underscore the translational

potential of targeting TAMs to enhance immunotherapy (Table 1).
5 Conclusion

TAMs are central to colon cancer progression by fostering

immune evasion, neovascularization, metastasis, and resistance to

chemotherapy. The predominance of M2-oriented TAMs correlates

with unfavorable clinical outcomes. Efforts to minimize their

infi l trat ion, a lter their polarization, or disrupt their

immunosuppressive traits may greatly enhance the efficacy of

established colon cancer interventions. Approaches that focus on

TAMs-used individually or in conjunction with existing

immunotherapies-could form promising, patient-specific

strategies. While obstacles remain in effectively neutralizing

TAMs, continued investigations reveal new therapeutic prospects

that hold potential for significantly influencing colon cancer

management. Future directions for TAM research should include

(1) leveraging advanced molecular and imaging techniques (e.g.,

single-cell RNA sequencing, multiplex immunofluorescence) to

dissect TAM heterogeneity within the tumor microenvironment;

(2) exploring combinatorial therapeutic strategies that integrate

TAM modulation (via polarization reprogramming or depletion)

with immune checkpoint inhibitors or targeted therapies; (3)

identifying novel biomarkers that can accurately assess TAM

activity and predict patient response to treatment; and (4)

elucidating the role of the gut microbiome and other systemic

factors in regulating TAM function. By pursuing these

multidisciplinary approaches, researchers may uncover innovative

interventions that enhance antitumor immunity and substantially

improve clinical outcomes in CC.
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